JP2009073698A - High-strength concrete composition for centrifugal force molding and its manufacturing method - Google Patents

High-strength concrete composition for centrifugal force molding and its manufacturing method Download PDF

Info

Publication number
JP2009073698A
JP2009073698A JP2007244675A JP2007244675A JP2009073698A JP 2009073698 A JP2009073698 A JP 2009073698A JP 2007244675 A JP2007244675 A JP 2007244675A JP 2007244675 A JP2007244675 A JP 2007244675A JP 2009073698 A JP2009073698 A JP 2009073698A
Authority
JP
Japan
Prior art keywords
strength
mass
centrifugal force
concrete composition
gypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007244675A
Other languages
Japanese (ja)
Other versions
JP5488776B2 (en
Inventor
Nobuyuki Matsushima
信行 松嶋
Shinji Mochinaga
真二 持永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2007244675A priority Critical patent/JP5488776B2/en
Publication of JP2009073698A publication Critical patent/JP2009073698A/en
Application granted granted Critical
Publication of JP5488776B2 publication Critical patent/JP5488776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/56Compositions suited for fabrication of pipes, e.g. by centrifugal casting, or for coating concrete pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a concrete composition for centrifugal force molding exerting high strength in regard to centrifugally molded concrete secondary products such as a pile, a pole or a Hume pipe and the like. <P>SOLUTION: In the high-strength concrete composition for centrifugal force molding containing early-strength portland cement, a high-strength additive, a dispersant, an aggregate and water, the containing ratio of gypsum hemihydrate in gypsum is 10-90 mass% and the unit quantity of cement is 490-640 kg/m<SP>3</SP>in the early-strength portland cement, the mass ratio of water to the early-strength portland cement is 20.0-25.5 mass%, the high-strength additive contains anhydrous gypsum and noncrystalline silica wherein the mass ratio of anhydrous gypsum/noncrystalline silica is 15/85-90/10 and the dispersant is a naphthalene-based dispersant. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、遠心力を利用して製造するパイル、ポール、ヒューム管等のコンクリート成形用に適したコンクリート組成物及びそれを使用するコンクリート二次製品の製造方法に関する。特に、特殊な骨材や繊維補強材等を使用することなく、蒸気養生及びその後の気中養生後に130N/mmレベルの極めて高い強度を有する遠心力成形用コンクリート組成物に関する。 The present invention relates to a concrete composition suitable for concrete forming such as piles, poles, and fume pipes manufactured using centrifugal force, and a method for manufacturing a concrete secondary product using the same. In particular, the present invention relates to a centrifugal molding concrete composition having an extremely high strength of 130 N / mm 2 after steam curing and subsequent air curing without using special aggregates or fiber reinforcements.

従来、パイル、ポール又はヒューム管等の円柱形又は円筒形のコンクリート二次製品の製造には遠心力を利用した成形方法が一般に採用されている。この方法では、鉄筋を配した型枠中にコンクリートを打設して遠心力成形し、常温で所定時間前養生を行ったのち常圧で蒸気養生を行い、冷却後脱型し、数週間気中養生して出荷される。   Conventionally, a forming method using centrifugal force is generally employed for manufacturing a columnar or cylindrical concrete secondary product such as a pile, a pole, or a fume tube. In this method, concrete is placed in a formwork with reinforcing bars and molded by centrifugal force, precured at room temperature for a predetermined time, steam-cured at normal pressure, demolded after cooling, and aired for several weeks. Shipped with medium curing.

最近、コンクリートパイルをはじめとするコンクリート二次製品には、支持力がより高いものが求められる傾向にある。このような要求を満たすために、使用する材料、コンクリートの配合、遠心力成形条件、前養生条件、さらには常圧蒸気養生条件や高温高圧養生の付加等によって最適化する手法がとられているが、必ずしも安定した高強度硬化体を得るには至っていないのが現状である。ちなみに、通常のコンクリート材料を使用した場合、遠心力成形用コンクリート組成物の設計基準強度(圧縮強度)130N/mmレベルのような高強度領域は、技術的にも限界に近く、その高強度を確保することが極めて難しいとされている(特許文献1〜3参照)。
特許第2887561号公報 特開2005−263567号公報 特開2005−179149号公報
Recently, concrete secondary products such as concrete piles tend to be required to have higher support. In order to satisfy these requirements, methods are used to optimize the materials used, the mix of concrete, centrifugal molding conditions, pre-curing conditions, and the addition of atmospheric steam curing conditions and high-temperature high-pressure curing. However, the present situation is that the stable high-strength cured body has not necessarily been obtained. Incidentally, when using ordinary concrete material, the high intensity regions such as the design strength (compressive strength) 130N / mm 2 level centrifugal molding concrete composition is close to a limit to technical, high strength that It is said that it is extremely difficult to ensure (see Patent Documents 1 to 3).
Japanese Patent No. 2887561 JP 2005-263567 A JP 2005-179149 A

このように、従来、遠心力成形コンクリート硬化体では、設計基準強度(圧縮強度)130N/mm以上を満たすことが困難であったことに鑑み、本発明は、遠心力成形用製品において、コンクリートの蒸気養生後の脱型圧縮強度が約115N/mm以上、その後の気中養生後(1〜2週間後)で130N/mmレベルの高強度化を実現する遠心力成形用コンクリート組成物を提供することを目的とする。 As described above, in view of the fact that it has been difficult to satisfy the design standard strength (compressive strength) of 130 N / mm 2 or more in the conventional centrifugally molded concrete cured body, Concrete composition for forming a centrifugal force that has a demolding compression strength of about 115 N / mm 2 or more after steam curing and a high strength of 130 N / mm 2 after subsequent air curing (after 1 to 2 weeks) The purpose is to provide.

本発明はまた、コンクリート材料、配合、練混ぜ、型枠への充填、遠心力成形、前養生及び蒸気養生の最適条件を明らかにして、上記のような高強度の遠心力成形用製品を製造する方法を提供することを目的とする。   The present invention also clarifies the optimum conditions of concrete material, blending, kneading, filling into molds, centrifugal force forming, pre-curing and steam curing, and manufacturing the above-described high-strength centrifugal force forming products. The purpose is to provide a method to do.

本発明者らは、遠心力成形用製品の高強度化を実現するために鋭意検討した結果、早強ポルトランドセメント、高強度混和材、分散剤、骨材及び水を含む高強度遠心力成形用コンクリート組成物であって、早強ポルトランドセメントの石膏中の半水石膏割合が10〜90質量%、単位セメント量が490〜640kg/m、水/早強ポルトランドセメント質量比が20.0〜25.5質量%であり、高強度混和材は無水石膏と非晶質シリカとを含み、無水石膏/非晶質シリカの質量比が15/85〜90/10であり、分散剤がナフタレン系分散剤である高強度遠心力成形用コンクリート組成物を発明するに至った。 As a result of intensive studies to achieve high strength of centrifugal force molding products, the present inventors have found that high strength centrifugal force molding containing early strength Portland cement, high strength admixture, dispersant, aggregate and water. It is a concrete composition, and the ratio of hemihydrate gypsum in gypsum of early-strength Portland cement is 10 to 90 mass%, the unit cement amount is 490 to 640 kg / m 3 , and the water / early strength Portland cement mass ratio is 20.0. 25.5% by mass, the high-strength admixture contains anhydrous gypsum and amorphous silica, the mass ratio of anhydrous gypsum / amorphous silica is 15/85 to 90/10, and the dispersant is naphthalene-based. It came to invent the high-strength centrifugal force molding concrete composition which is a dispersing agent.

本発明の高強度遠心力成形用コンクリート組成物は、高強度混和材中の非晶質シリカがシリカフュームであることが好ましく、高強度混和材が、無水石膏とシリカフュームとを混合粉砕したものがより好ましい。さらに、早強ポルトランドセメント100質量部に対して、高強度混和材を6〜25質量部及び分散剤を水溶液基準で1.0〜5.5質量部含むことがより好ましい。   In the high-strength centrifugal molding concrete composition of the present invention, the amorphous silica in the high-strength admixture is preferably silica fume, and the high-strength admixture is obtained by mixing and crushing anhydrous gypsum and silica fume. preferable. Furthermore, it is more preferable that 6 to 25 parts by mass of the high-strength admixture and 1.0 to 5.5 parts by mass of the dispersant are included on an aqueous solution basis with respect to 100 parts by mass of the early strong Portland cement.

本発明はさらに、上記の高強度遠心力成形用コンクリート組成物を練混ぜ、鉄筋を配した円筒形型枠に充填したのち遠心力成形し、前養生、続いて蒸気養生したのち脱型し、その後気中で養生する高強度遠心力成形用製品の製造方法を提供する。   The present invention is further mixed with the above-mentioned high-strength centrifugal force molding concrete composition, filled into a cylindrical formwork with reinforcing bars, and then subjected to centrifugal force molding, precured, then steam cured and then demolded, A method for producing a high-strength centrifugal force molding product that is then cured in air is provided.

本発明の遠心力成形用製品の製造方法により、設計基準強度130N/mmレベルの高強度遠心力成形用製品が製造できる。このため、杭の場合では支持力を大きく取ることができるので、施工本数が低減でき、経済的であるという効果を奏する。また、高強度遠心力成形用コンクリート組成物は組織が緻密になることから、耐久性の向上に貢献するという効果も奏する。 By the method for producing a centrifugal force molding product of the present invention, a high strength centrifugal force molding product having a design standard strength of 130 N / mm 2 can be produced. For this reason, in the case of a pile, since a supporting force can be taken largely, the number of construction can be reduced and there exists an effect that it is economical. Moreover, since the structure of the high-strength centrifugal force forming concrete composition becomes dense, it also has an effect of contributing to improvement in durability.

以下に本発明を詳細に説明する。
先ず、コンクリート組成物に使用する材料の好ましい特性は下記のとおりである。
The present invention is described in detail below.
First, the preferable characteristic of the material used for a concrete composition is as follows.

本発明の高強度遠心力成形用コンクリート組成物に使用するセメントは、早強ポルトランドセメントであり、早強ポルトランドセメントの石膏中の半水石膏割合は10〜90質量%、好ましくは20〜80質量%である。早強ポルトランドセメントの石膏中の半水石膏量は、遠心力成形性(締固め、均質性(内面での波打ち抑制)、ノロ(泥状物)の発生抑制)及び蒸気養生後の強度発現性に極めて重要な役割を果たすため、後述の示差熱熱重量分析方法によって測定するセメントの石膏中の二水石膏と半水石膏との合量に対する半水石膏量の質量比は、早強ポルトランドセメントで上記の10〜90質量%の範囲にあることが重要な必須要件の一つである。   The cement used in the high-strength centrifugal molding concrete composition of the present invention is early-strength Portland cement, and the proportion of hemihydrate gypsum in the gypsum of early-strength Portland cement is 10 to 90% by mass, preferably 20 to 80% by mass. %. The amount of hemihydrate gypsum in gypsum of early-strength Portland cement is determined by centrifugal force formability (consolidation, homogeneity (inhibition of undulation on the inner surface), suppression of generation of sludge), and strength development after steam curing. Therefore, the mass ratio of the amount of hemihydrate gypsum to the total amount of dihydrate gypsum and hemihydrate gypsum in the gypsum of cement measured by the differential thermogravimetric analysis method described later is In the above-mentioned range of 10 to 90% by mass, it is one of the essential essential requirements.

さらに、早強ポルトランドセメントの水硬率(H.M.)は2.20〜2.30、より好ましくは2.23〜2.28、セメント中のSO量は2.5〜3.5質量%、より好ましくは2.8〜3.1質量%のものを使用することができる。また、早強ポルトランドセメントの粒度は、特に限定されるものではなく、粉末度(ブレーン比表面積)が4200〜4800cm/g、エアジェットシーブによる32μm篩残分が3.0〜8.0質量%、レーザー回折式粒度分布測定装置(セイシン企業製、LMS−30(レーザー・マイクロ・サイザー))による体積含有率が50%通過径6〜16μm、より好ましくは8〜12μm、90%通過径/10%通過径比が5〜15、Rosin−Rammler線図におけるn値(粒度分布均等数、粒径対象範囲4〜32μm)が1.10〜1.40、好ましくは1.15〜1.35のものであれば、良好に使用することができる。 Furthermore, the hydraulic strength (HM) of early strong Portland cement is 2.20 to 2.30, more preferably 2.23 to 2.28, and the amount of SO 3 in the cement is 2.5 to 3.5. The thing of the mass%, More preferably, the thing of 2.8-3.1 mass% can be used. The particle size of the early strong Portland cement is not particularly limited, and the fineness (Blaine specific surface area) is 4200 to 4800 cm 2 / g, and the 32 μm sieve residue by air jet sieve is 3.0 to 8.0 mass. %, Volume content by laser diffraction particle size distribution measuring device (manufactured by Seishin Enterprise, LMS-30 (Laser Micro Sizer)) is 50% passage diameter 6-16 μm, more preferably 8-12 μm, 90% passage diameter / The 10% passage diameter ratio is 5 to 15, and the n value (particle size distribution uniform number, particle size target range 4 to 32 μm) in the Rosen-Rammler diagram is 1.10 to 1.40, preferably 1.15 to 1.35. Can be used satisfactorily.

本発明の高強度遠心力成形用コンクリート組成物に使用する高強度混和材は、高強度遠心力成形用製品の製造に不可欠な材料の一つであり、無水石膏と非晶質シリカとを含むものである。非晶質シリカとしては、シリカフュームや微粉フライアッシュ(平均粒径10μm以下)等が使用でき、特にシリカ含有割合が90質量%以上のシリカフュームがより好ましく、その一次粒子が凝集又は焼結されることによって形成された二次粒子が十分解砕・分散されていることが好ましい。これを実現するための方法として、無水石膏とシリカフュームとを混合粉砕することも有効である。高強度混和材中の無水石膏及び非晶質シリカの好ましい含有割合(無水石膏/非晶質シリカ質量比)は15/85〜90/10、より好ましくは20/80〜65/35である。高強度混和材の粉末度(ブレーン比表面積)は、構成成分の割合あるいは特に非晶質シリカ粒子の分散状態によって影響されるが、より好ましい配合割合においては、4000〜15000cm/g、好ましくは5000〜13000cm/gの範囲である。 The high-strength admixture used in the high-strength centrifugal force molding concrete composition of the present invention is one of the indispensable materials for producing a high-strength centrifugal force-forming product, and contains anhydrous gypsum and amorphous silica. It is a waste. As the amorphous silica, silica fume, fine powder fly ash (average particle size of 10 μm or less) and the like can be used. In particular, silica fume having a silica content of 90% by mass or more is more preferable, and the primary particles are aggregated or sintered. It is preferable that the secondary particles formed by the above are sufficiently crushed and dispersed. As a method for realizing this, it is also effective to pulverize anhydrous gypsum and silica fume. The preferable content ratio (anhydrous gypsum / amorphous silica mass ratio) of anhydrous gypsum and amorphous silica in the high-strength admixture is 15/85 to 90/10, more preferably 20/80 to 65/35. The fineness (brain specific surface area) of the high-strength admixture is influenced by the ratio of the constituent components or particularly the dispersed state of the amorphous silica particles, but in a more preferable blending ratio, it is 4000 to 15000 cm 2 / g, preferably It is the range of 5000-13000 cm < 2 > / g.

また、高強度混和材は、無水石膏と非晶質シリカとを混合粉砕した混合物を使用することがより好ましい。非晶質シリカは製造時に高温状態にさらされるため一次粒子が塊状の二次粒子を形成しており、混合粉砕することにより解膠され、コンクリートに使用した際の分散状態が良くなる。また、蒸気養生用混和材として一般に市販されているものも好適に使用することができる。この例としては、デンカΣ1000、デンカΣ2000(電気化学工業(株)製)、ノンクレーブ、スーパーノンクレーブ(住友大阪セメント(株)製)、ダイミックス(昭和KDE(株)製)、太平洋ウルトラスーパーミックス(太平洋マテリアル(株)製)等を挙げることができる。これらの中で、デンカΣ2000、スーパーノンクレーブの使用がより好ましい。   The high-strength admixture is more preferably a mixture obtained by mixing and grinding anhydrous gypsum and amorphous silica. Since amorphous silica is exposed to a high temperature state during production, primary particles form agglomerated secondary particles, which are peptized by mixing and pulverization, and the dispersion state when used in concrete is improved. Moreover, what is generally marketed as an admixture for steam curing can also be used conveniently. Examples include Denka Σ1000, Denka Σ2000 (manufactured by Denki Kagaku Kogyo Co., Ltd.), nonclave, super nonclave (manufactured by Sumitomo Osaka Cement Co., Ltd.), die mix (manufactured by Showa KDE Co., Ltd.), Taiheiyo Ultra Supermix. (Manufactured by Taiheiyo Material Co., Ltd.). Among these, use of Denka Σ2000 and super nonclave is more preferable.

本発明の高強度遠心力成形用コンクリート組成物に使用する分散剤は、比較的多量に添加しても遅延性がなく、空気連行性もない減水率の高い高性能減水剤である。高性能減水剤としては、ポリアルキルアリルスルホン酸塩系または芳香族アミノスルホン酸塩系のいずれかを主成分とするものが使用できる。より好ましくはポリアルキルアリルスルホン酸塩系高性能減水剤である。この例として、メチルナフタレンスルホン酸ホルマリン縮合物、ナフタレンスルホン酸ホルマリン縮合物及びアントラセンスルホン酸ホルマリン縮合物等が挙げられる。形態としては、粉末状又は水溶液タイプのもののいずれも使用できるが、扱いやすさから後者(水溶液)の使用がより好ましい。水溶液中の固形分含有量(溶質含有量)は約25〜45質量%の範囲のものが多い。分散剤の水分量は、コンクリート配合設計上、練り混ぜ水に加算するので、その使用に際しては水分量を予め求めておく必要がある。分散剤の市場品の具体例としては、マイティHS(花王(株)製)、マイティ150(花王(株)製)、セルフロー(第一工業製薬(株))、レオビルド8000H(BASFポゾリス(株)製)、ポールファイン510−AN(竹本油脂(株)製)、フローリックPS((株)フローリック製)等を挙げることができる。
代表的なポリアルキルアリルスルホン酸塩系分散剤の赤外線吸収スペクトルを図1に示す。分散剤の赤外線吸収スペクトルは日本分光社製のFT/IR−4000(測定精度:4cm−1)を用いて測定した。分散剤はNaCl板に原液のまま塗布して110℃で乾固し透過法により測定した。測定範囲は400〜4000cm−1、積算回数は16回とした。
The dispersant used in the concrete composition for high strength centrifugal force molding according to the present invention is a high performance water reducing agent having a high water reduction rate that is not delayed and does not entrain air even when added in a relatively large amount. As the high-performance water reducing agent, one having a polyalkylallyl sulfonate or aromatic amino sulfonate as a main component can be used. More preferred is a polyalkylallyl sulfonate high-performance water reducing agent. Examples thereof include methyl naphthalene sulfonic acid formalin condensate, naphthalene sulfonic acid formalin condensate and anthracene sulfonic acid formalin condensate. As the form, either powdered or aqueous solution type can be used, but the latter (aqueous solution) is more preferable from the viewpoint of ease of handling. The solid content (solute content) in the aqueous solution is often in the range of about 25 to 45% by mass. Since the water content of the dispersant is added to the kneaded water in the concrete blending design, it is necessary to obtain the water content in advance for its use. Specific examples of marketed dispersants are Mighty HS (manufactured by Kao Corporation), Mighty 150 (manufactured by Kao Corporation), Cellflow (Daiichi Kogyo Seiyaku Co., Ltd.), Leo Build 8000H (BASF Pozzolith Co., Ltd.) Product), Pole Fine 510-AN (manufactured by Takemoto Yushi Co., Ltd.), Floric PS (manufactured by Floric Co., Ltd.), and the like.
FIG. 1 shows an infrared absorption spectrum of a typical polyalkylallyl sulfonate dispersant. The infrared absorption spectrum of the dispersant was measured using FT / IR-4000 (measurement accuracy: 4 cm −1 ) manufactured by JASCO Corporation. The dispersant was applied as it was on the NaCl plate, dried at 110 ° C., and measured by the transmission method. The measurement range was 400 to 4000 cm −1 and the number of integrations was 16 times.

本発明の高強度遠心力成形用コンクリート組成物に使用する骨材は、種類は特に限定されず、通常、遠心力成形用製品に使用されているものを使用することができる。粗骨材の最大寸法は、より好ましくは15mmのものを使用し、細骨材率(s/a)は30〜45質量%の範囲から選択される。   The type of the aggregate used in the high-strength centrifugal force molding concrete composition of the present invention is not particularly limited, and those usually used in centrifugal force molding products can be used. The maximum size of the coarse aggregate is more preferably 15 mm, and the fine aggregate rate (s / a) is selected from the range of 30 to 45% by mass.

次に、本発明の高強度遠心力成形用コンクリート組成物におけるコンクリート配合は以下のとおりである。
まず、早強ポルトランドセメントの単位量は490〜640kg/mであることが好ましい。早強ポルトランドセメントの単位量が490kg/m未満では十分な強度が得られず、640kg/mを超えると水セメント比は小さくできるが、骨材間間隙に対するセメントペーストの容積比が過大となって遠心成形による締め固めが不充分となり、結果として高強度を得ることができない。
Next, the concrete composition in the high strength centrifugal molding concrete composition of the present invention is as follows.
First, the unit amount of early strong Portland cement is preferably 490 to 640 kg / m 3 . If the unit amount of early-strength Portland cement is less than 490 kg / m 3 , sufficient strength cannot be obtained, and if it exceeds 640 kg / m 3 , the water-cement ratio can be reduced, but the volume ratio of cement paste to the gap between aggregates is excessive. Thus, compaction by centrifugal molding becomes insufficient, and as a result, high strength cannot be obtained.

高強度混和材は、早強ポルトランドセメント100質量部に対して、6〜25質量部が好ましく、8〜20質量部がより好ましい。高強度混和材の含有量が6質量部未満では強度向上効果が期待できず、25質量部を越えると、遠心力成形性が低下し、強度が低下する場合もあり好ましくない。   The high-strength admixture is preferably 6 to 25 parts by mass and more preferably 8 to 20 parts by mass with respect to 100 parts by mass of the early strong Portland cement. If the content of the high-strength admixture is less than 6 parts by mass, an effect of improving the strength cannot be expected, and if it exceeds 25 parts by mass, the centrifugal force moldability is lowered and the strength may be lowered.

ナフタレン系の分散剤は、早強ポルトランドセメント100質量部に対して、水溶液基準で1.0〜5.5質量部が好ましく、経済性をも踏まえると2.0〜4.5質量部がより好ましい。すなわち、分散剤が水溶液基準で1.0質量部未満では減水性が不十分で、5.5質量部を超えて添加しても、減水効果は頭打ちとなり、その増量分に見合う程の大きな減水効果が得られ難いため不経済となる。   The naphthalene-based dispersant is preferably 1.0 to 5.5 parts by mass on the basis of an aqueous solution with respect to 100 parts by mass of early strong Portland cement, and more preferably 2.0 to 4.5 parts by mass in view of economy. preferable. That is, when the dispersant is less than 1.0 part by mass on the basis of the aqueous solution, water reduction is insufficient, and even if added over 5.5 parts by mass, the water reduction effect reaches its peak, and the water reduction is large enough to meet the increased amount. It is uneconomical because it is difficult to obtain the effect.

また、本発明の遠心力成形用コンクリート組成物の高強度化は、高強度混和材と分散剤との間の相互作用が起こるなかで達せられるものであり、これらの混和材(剤)は単に多ければ良いというものでなく、適正添加量が存在する。   Further, the high strength of the centrifugal force-forming concrete composition of the present invention can be achieved while the interaction between the high-strength admixture and the dispersant occurs, and these admixtures (agents) are simply used. It is not a good thing if there is much, but there exists a proper addition amount.

水/早強ポルトランドセメントの適正質量比は、使用する各種コンクリート材料及び単位量(配合)によっても変化するが、20.0〜25.5質量%、好ましくは21〜23質量%の範囲である。20.0質量%未満ではコンクリートの粘性が上がり、ハンドリング性が悪化するとともに、硬すぎて型枠への投入が困難となり、また、25.5質量%を超えるとコンクリートが流動化し遠心力による締固めが不十分となり、高強度が得られ難くなるため好ましくない。   The appropriate mass ratio of water / early strength Portland cement varies depending on the various concrete materials used and the unit amount (formulation), but is in the range of 20.0-25.5% by mass, preferably 21-23% by mass. . If the amount is less than 20.0% by mass, the viscosity of the concrete increases, the handling property is deteriorated, and it is too hard to be put into the formwork. If the amount exceeds 25.5% by mass, the concrete is fluidized and tightened by centrifugal force. This is not preferable because the hardening is insufficient and high strength is difficult to obtain.

なお、遠心力成形で高強度の鋼管パイルを製造する場合には、上記のコンクリート配合として、高強度混和材に加えて膨張材を併用するのが好ましい。膨張材はアウィン−石灰−石膏系又は石灰−石膏系のものであり、早強ポルトランドセメント100質量部に対し、膨張材と高強度混和材との合量を基準に18質量部以内で使用するのが好ましい。この場合、膨張材としては、市販のデンカCSA20(電気化学工業(株)製)、太平洋エクスパン又は太平洋ジプカル(太平洋マテリアル(株))等が使用でき、この膨張材単体分の配合量は概ね5〜8質量部が好ましい。 In addition, when manufacturing a high intensity | strength steel pipe pile by centrifugal force shaping | molding, it is preferable to use an expansion material together with a high intensity | strength admixture as said concrete mixing | blending. The expansion material is of Awin-lime-gypsum system or lime-gypsum system, and is used within 18 parts by mass based on the total amount of the expansion material and high-strength admixture with respect to 100 parts by mass of early-strength Portland cement. Is preferred. In this case, as the expansion material, commercially available Denka CSA # 20 (manufactured by Denki Kagaku Kogyo Co., Ltd.), Taiheiyo Expan or Taiheiyo Gypcal (Pacific Material Co., Ltd.) can be used. Approximately 5 to 8 parts by mass is preferable.

コンクリート使用材料の投入順序、使用するミキサ、練混ぜ時間等は特に限定されず、遠心力成形用製品の製造で通常行われている条件を採用することができる。練混ぜられた適正なコンクリートの流動性は、スランプで10cm以下、好ましくは1〜4cm、鋼管パイルでは6〜12cm程度である。このコンクリートは、配筋された型枠内に打設し、コンクリートの型枠軸方向での均質化を行なう工程(1〜4G)、型枠内面への貼り付けを行なう工程(低速5〜14G、高速15〜20G)、粗骨材の型枠内面方向への濃集と締固めを行を行なう工程(20G以上)の4工程で遠心成形する。それぞれの遠心力付加時間は1〜5分間の範囲で選択される。   There are no particular limitations on the order in which the concrete materials are used, the mixer to be used, the kneading time, etc., and the conditions normally used in the production of centrifugal force forming products can be employed. The fluidity of the proper mixed concrete is 10 cm or less, preferably 1 to 4 cm with slump, and about 6 to 12 cm with steel pipe pile. This concrete is placed in a placed formwork, homogenizing the concrete in the axial direction of the formwork (1-4G), and attaching to the inner surface of the formwork (low speed 5-14G) , High speed 15 to 20G), centrifugal molding is performed in four steps (20G or more) in which the coarse aggregate is concentrated and compacted toward the inner surface of the mold. Each centrifugal force application time is selected in the range of 1 to 5 minutes.

遠心力成形された成形体は、常温、例えば、5〜35℃の温度範囲で4〜6時間前養生を行ったのち、蒸気養生を行う。蒸気養生は15〜22℃/hの昇温速度で最高温度60〜100℃、好ましくは70〜90℃まで昇温し、最高温度で3〜6時間保持したのち、8〜12時間かけて冷却する。冷却後脱型し、1週間以上気中で養生を行う。   The molded body formed by centrifugal force is precured for 4 to 6 hours at room temperature, for example, a temperature range of 5 to 35 ° C., and then steam-cured. Steam curing is performed at a temperature rising rate of 15 to 22 ° C./h, a maximum temperature of 60 to 100 ° C., preferably 70 to 90 ° C., held at the maximum temperature for 3 to 6 hours, and then cooled for 8 to 12 hours. To do. After cooling, the mold is removed, and curing is performed in the air for one week or longer.

[使用材料]
[1]早強ポルトランドセメント(HC):
早強ポルトランドセメントは、水硬率(H.M.)が2.23〜2.28、セメント中のSO量が2.80〜3.11質量%、粉末度(ブレーン比表面積)が4450〜4640cm/g、エアジェットシーブによる32μm篩残分が5.1〜7.7質量%、レーザー回折式粒度分布測定装置(セイシン企業製、LMS−30(レーザー・マイクロ・サイザー))によるRosin−Rammler線図におけるn値(粒度分布均等数、粒径対象範囲4〜32μm)が1.16〜1.35のもので、半水石膏割合(質量%)がそれぞれ異なる、表1に示す5種類を使用した。
[Materials used]
[1] Early strong Portland cement (HC):
The early strength Portland cement has a hydraulic modulus (HM) of 2.23 to 2.28, an amount of SO 3 in the cement of 2.80 to 3.11% by mass, and a fineness (Brain specific surface area) of 4450. ˜4640 cm 2 / g, 32 μm sieve residue by air jet sieve is 5.1 to 7.7% by mass, Rosin by laser diffraction type particle size distribution measuring device (manufactured by Seishin Enterprise, LMS-30 (Laser Micro Sizer)) -As shown in Table 1, the n value (particle size distribution equal number, particle size target range 4 to 32 μm) in the Rammel diagram is 1.16 to 1.35, and the proportion of hemihydrate gypsum (% by mass) is different. Used the type.

早強ポルトランドセメントのSO量は、JIS R 5202:1999「ポルトランドセメントの化学分析方法」及びJIS R 5204:2002「セメントの蛍光X線分析方法」により測定した。 The amount of SO 3 of early strong Portland cement was measured by JIS R 5202: 1999 “Chemical analysis method of Portland cement” and JIS R 5204: 2002 “Fluorescent X-ray analysis method of cement”.

Figure 2009073698
Figure 2009073698

なお、半水石膏割合は、以下の方法より求めた。
まず、半水石膏量及び二水石膏量を、示差熱重量分析(TG−DTA)によって定量した。具体的には、示差熱熱重量分析装置TG−DTA6200(セイコーインスツルメンツ(株)製)を用いて、直径20μmの孔を有する容量30μLのセル(アルミ製)に、試料を約30mg入れ、昇温速度5℃/minで室温から300℃まで昇温した。図2に示すように、まず、重量減少曲線(図2のTG)を微分した曲線(図2のDTG)から、DTGピークAの立ち上がり温度(約125℃)、半水石膏の脱水に伴うDTGピークBの立ち上がり温度(約155℃)、ピークBの終局点(約195℃)を求めた。次に、二水石膏の脱水に伴う125〜155℃附近の減量(a質量%)と、半水石膏の脱水に伴う155〜195℃附近の減量(b質量%)を求め、式(1)及び式(2)を用いて、セメントの石膏中の二水石膏量(質量%)及び半水石膏量(質量%)を算出した。これらより、半水石膏の割合(質量%)は式(3)を用いて算出した。なお、リファレンスとして、アルミ板を用いた。
In addition, the hemihydrate gypsum ratio was calculated | required with the following method.
First, the amount of hemihydrate gypsum and the amount of dihydrate gypsum were quantified by differential thermogravimetric analysis (TG-DTA). Specifically, using a differential thermothermal gravimetric analyzer TG-DTA6200 (manufactured by Seiko Instruments Inc.), about 30 mg of the sample is put into a cell (made of aluminum) having a hole of 20 μm in diameter and having a capacity of 30 μL. The temperature was raised from room temperature to 300 ° C. at a rate of 5 ° C./min. As shown in FIG. 2, first, from the curve (DTG in FIG. 2) obtained by differentiating the weight loss curve (TG in FIG. 2), the DTG peak A rising temperature (about 125 ° C.), DTG accompanying dehydration of hemihydrate gypsum The rise temperature of peak B (about 155 ° C.) and the end point of peak B (about 195 ° C.) were determined. Next, the weight loss around 125 to 155 ° C. due to dehydration of dihydrate gypsum (a mass%) and the weight loss near 155 to 195 ° C. due to dehydration of hemihydrate gypsum (b mass%) are obtained, and the formula (1) And the amount of dihydrate gypsum (mass%) and the amount of hemihydrate gypsum (mass%) in the gypsum of cement were computed using Formula (2). From these, the ratio (mass%) of hemihydrate gypsum was computed using Formula (3). An aluminum plate was used as a reference.

二水石膏量(質量%)=減量a(質量%)×172(二水石膏の分子量)÷(1.5×18(HOの分子量)) (1)半水石膏量(質量%)=(減量b(質量%)−減量a(質量%)÷3)×145(半水石膏の分子量)÷(0.5×18(HOの分子量)) (2)半水石膏割合(質量%)=半水石膏量÷(半水石膏量+二水石膏量)×100 (3) Dihydrate gypsum amount (mass%) = weight loss a (mass%) × 172 (molecular weight of dihydrate gypsum) ÷ (1.5 × 18 (molecular weight of H 2 O)) (1) hemihydrate gypsum amount (mass%) = (Weight loss b (mass%)-weight loss a (mass%) ÷ 3) x 145 (molecular weight of hemihydrate gypsum) ÷ (0.5 x 18 (molecular weight of H 2 O)) (2) hemihydrate gypsum ratio ( (Mass%) = hemihydrate gypsum amount ÷ (hemihydrate gypsum amount + dihydrate gypsum amount) x 100 (3)

[2]高強度混和材(A):
調製品:II型無水石膏粉末(フッ酸無水石膏)とシリカフューム(エルケム社製)との配合割合(石膏/シリカフューム質量比)を、10/90、20/80、30/70、65/35、80/20、95/5に変え、試験ボールミル(Φ30×30cm)によりブレーン比表面積が5500〜11000cm/gになるように混合粉砕した。また、無水石膏/シリカフュームの質量比が20/80については、混合粉砕することなく、無水石膏粉末とシリカフュームとをV型混合機で単に混合したものも使用した。
[2] High strength admixture (A):
Preparation: Type II anhydrous gypsum powder (hydrofluoric acid anhydrous gypsum) and silica fume (manufactured by Elchem Co.) were mixed at a ratio of gypsum / silica fume mass ratio of 10/90, 20/80, 30/70, 65/35, It changed into 80/20 and 95/5, and mixed and pulverized by a test ball mill (Φ30 × 30 cm) so that the specific surface area of the brain was 5500 to 11000 cm 2 / g. Further, when the mass ratio of anhydrous gypsum / silica fume was 20/80, a mixture obtained by simply mixing anhydrous gypsum powder and silica fume with a V-type mixer was used without mixing and grinding.

また、市販品として、デンカΣ2000(無水石膏/非晶質シリカ質量比:20/80、電気化学工業(株)製)、ダイミックス(無水石膏/非晶質シリカ質量比:60/40、昭和KDE(株)製)、スーパーノンクレーブ(無水石膏/非晶質シリカ質量比:50/50、住友大阪セメント(株)製)、ノンクレーブ(無水石膏/非晶質シリカ質量比:98/1、住友大阪セメント(株)製)を使用した。なお、記載した無水石膏/非晶質シリカ質量比は、JIS M8852:1998「セラミック用高シリカ質原料の化学分析方法」に準じて、SO及びSiOを定量し、SO量をCaSO(無水石膏)に換算、またSiO量は全て非晶質シリカ量とみなした。 As commercial products, Denka Σ2000 (anhydrous gypsum / amorphous silica mass ratio: 20/80, manufactured by Denki Kagaku Kogyo Co., Ltd.), Dymix (anhydrous gypsum / amorphous silica mass ratio: 60/40, Showa KDE), super nonclave (anhydrous gypsum / amorphous silica mass ratio: 50/50, manufactured by Sumitomo Osaka Cement Co., Ltd.), nonclave (anhydrous gypsum / amorphous silica mass ratio: 98/1), Sumitomo Osaka Cement Co., Ltd.) was used. The mass ratio of anhydrous gypsum / amorphous silica described was determined according to JIS M8852: 1998 “Chemical analysis method of high siliceous raw material for ceramics”, and SO 3 and SiO 2 were quantified, and the amount of SO 3 was CaSO 4 In terms of (anhydrous gypsum), the amount of SiO 2 was regarded as the amount of amorphous silica.

[3]分散剤:
市販品のナフタレン系の高性能減水剤マイティHS(花王(株)製)を使用した。
[3] Dispersant:
A commercially available naphthalene-based high-performance water reducing agent Mighty HS (manufactured by Kao Corporation) was used.

[4]骨材
粗骨材は、硬質砂岩砕石(JIS A 5005:1993「コンクリート用砕石及び砕砂」による粒の大きさによる区分が砕石1505、JIS A 1110:1999「粗骨材の密度及び吸水率試験方法」による密度が2.70g/cm及び吸水率が0.50%、JIS A 1102:1999「骨材のふるい分け試験方法」による粗粒率が6.67)を使用した。
[4] Aggregate Coarse aggregate is classified into hard sandstone crushed stone (JIS A 5005: 1993 “crushed stone for concrete and crushed sand” is classified according to the size of the crushed stone 1505, JIS A 1110: 1999 “rough aggregate density and water absorption. The density according to “rate test method” was 2.70 g / cm 3, the water absorption was 0.50%, and the coarse particle rate according to JIS A 1102: 1999 “aggregate screening test method” was 6.67).

また、細骨材としては砕砂(JIS A 1109:1999「細骨材の密度及び吸水率試験方法」による密度が2.66g/cm及び吸水率が1.20%、JIS A 1102:1999「骨材のふるい分け試験方法」による粗粒率が2.80)を使用した。 The fine aggregate is crushed sand (JIS A 1109: 1999 “Density and water absorption test method of fine aggregate”, the density is 2.66 g / cm 3 and the water absorption is 1.20%, JIS A 1102: 1999 “ The coarse particle ratio according to “Aggregate screening test method” was 2.80).

〔コンクリートの練混ぜ〕
セメント、混和材、細骨材及び粗骨材を二軸強制練りミキサ(容量:50リットル)に投入し、30秒間攪拌した後、練混ぜ水及び混和剤を投入し、4分間練混ぜ、コンクリートを作製した。このうち、単位水量には練混ぜ水量(水道水)に分散剤(水溶液タイプ)に由来する水量が加算されている。
[Mixing concrete]
Cement, admixture, fine aggregate and coarse aggregate are put into a biaxial forced kneading mixer (capacity: 50 liters), stirred for 30 seconds, then mixed with water and admixture, mixed for 4 minutes, concrete Was made. Of these, the amount of water derived from the dispersant (aqueous solution type) is added to the amount of mixing water (tap water).

〔供試体の作製〕
強度試験用円柱供試体は内径Φ10×長さ20cmの型枠にコンクリートを充填し、テーブルバイブレータにより振動締固めを行った。一方、遠心力成形体(外径Φ20×長さ30×厚さ4cm)はその型枠に所定量のコンクリートを投入し、2G−3min、10G−1min、20G−1min及び30G−5minの条件下で遠心力成形を行った。
成形状況は供試体断面における締固め性状、空洞部(円筒)内面の平滑性(例:波打ちの有無)及びスラッジ発生状況等で判断し、一部の遠心力成形供試体については圧縮強度の試験に供した。
[Preparation of specimen]
The strength test column specimen was filled with concrete in a mold having an inner diameter of Φ10 × length of 20 cm, and subjected to vibration compaction by a table vibrator. On the other hand, the centrifugal force molded body (outer diameter Φ20 × length 30 × thickness 4 cm) is charged with a predetermined amount of concrete into the mold, and the conditions are 2G-3min, 10G-1min, 20G-1min and 30G-5min. Was subjected to centrifugal force molding.
The molding condition is judged by the compaction properties in the cross section of the specimen, the smoothness of the inner surface of the cavity (cylindrical) (eg, the presence or absence of undulations), the sludge generation situation, etc., and the compressive strength test of some centrifugally molded specimens It was used for.

〔前養生及び蒸気養生〕
強度試験用円柱供試体及び遠心力成形供試体は、20℃で4時間前養生を行い、20℃/hの昇温速度(3時間)で80℃まで加熱し、80℃で3時間保持したのち、降温速度10℃/h(6時間)で冷却した。
[Pre-curing and steam curing]
The cylindrical specimen for strength test and the centrifugal molded specimen were pre-cured at 20 ° C. for 4 hours, heated to 80 ° C. at a heating rate of 20 ° C./h (3 hours), and held at 80 ° C. for 3 hours. After that, it was cooled at a temperature drop rate of 10 ° C./h (6 hours).

〔圧縮強度試験〕
脱型直後及び引き続き7日間気中養生後の強度試験用円柱供試体はJIS A 1108:1999「コンクリートの圧縮強度試験方法」、遠心力成形供試体はJIS A 1136:1993「遠心力締固めコンクリートの圧縮試験方法」に準じ、圧縮強度試験を行った。
[Compressive strength test]
JIS A 1108: 1999 “Compression strength test method for concrete” is used for the strength test column specimens immediately after demolding and subsequently for 7 days in the air. Centrifugal force molding specimens are JIS A 1136: 1993 “centrifugal compacted concrete. The compressive strength test was performed according to the “compression test method”.

なお、特記しない限り、下記条件を基準条件とした。なお、実施例及び比較例のコンクリート組成物単位量(kg/m)を表3に示す。 Unless otherwise specified, the following conditions were used as reference conditions. In addition, Table 3 shows concrete composition unit amounts (kg / m 3 ) of Examples and Comparative Examples.

Figure 2009073698
Figure 2009073698

[1]早強ポルトランドセメント(3):密度3.14g/cm、ブレーン比表面積4580cm/g、半水石膏割合51質量%
[2]高強度混和材(A):デンカΣ2000(無水石膏/非晶質シリカ質量比:20/80、電気化学工業(株)製、ブレーン比表面積4900cm/g)
[3]分散剤:マイティHS(花王(株)製、固形分量35.5質量%)
[4]骨材:粗骨材の最大寸法(GMAX)15mm、細骨材率(s/a)35質量%
[5]配合(単位量):単位水量125kg/m、早強ポルトランドセメント550kg/m、高強度混和材55kg/m
[1] Early strength Portland cement (3): density 3.14 g / cm 3 , Blaine specific surface area 4580 cm 2 / g, hemihydrate gypsum ratio 51% by mass
[2] High-strength admixture (A): Denka Σ2000 (anhydrous gypsum / amorphous silica mass ratio: 20/80, manufactured by Denki Kagaku Kogyo KK, Blaine specific surface area 4900 cm 2 / g)
[3] Dispersant: Mighty HS (manufactured by Kao Corporation, solid content 35.5% by mass)
[4] Aggregate: Maximum size of coarse aggregate (G MAX ) 15 mm, fine aggregate rate (s / a) 35% by mass
[5] Formulation (unit amount): unit water amount 125 kg / m 3 , early strength Portland cement 550 kg / m 3 , high strength admixture 55 kg / m 3

[実施例1〜7、比較例1〜3]
早強ポルトランドセメントおよび市販の高強度混和材を使用し、その単位量を変えた場合の振動成形品の圧縮強度および遠心成形性を表3に示す。なお、この場合、高強度混和材の添加割合も変えて試験し、所要水/セメント質量比(W/C)との関係も評価した。
[Examples 1-7, Comparative Examples 1-3]
Table 3 shows the compressive strength and centrifugal moldability of the vibration molded product when using early-strength Portland cement and a commercially available high-strength admixture and changing the unit amount. In this case, the addition ratio of the high-strength admixture was also changed, and the relationship with the required water / cement mass ratio (W / C) was also evaluated.

比較例1(単位セメント量480kg/m,水/セメント質量比26.0%)は振動締固め成形品の強度発現性が低く好ましくない。また、比較例4(単位セメント量650kg/m,水/セメント質量比18.5%)では振動締固め成形品の強度発現性は良いものの、遠心成形供試体の成形性が好ましくない。
比較例2(単位水量110kg/m、単位セメント量560kg/m,水/セメント質量比19.6%)は、分散剤を標準添加量より多く添加しても、スランプ発現性が劣り、遠心成形供試体の成形が出来なかった。
また、高強度混和材の添加割合(A/C)を増加させることにより水/結合材比(W/(C+A))が低減でき、遠心成形供試体の強度発現性が増加した。比較例3は,A/Cが少ないこともあって振動締固め成形品および遠心力成形体の圧縮強度が130N/mmに達しなかった。(実施例3〜6、比較例3)。
実施例7(単位水量120kg/m、単位セメント量600kg/m,水/セメント質量比20.0%)は、分散剤が標準添加量の上限値ではあるものの,振動締固め成形品の強度発現性も良好であり,遠心成形供試体の成形も可能である。
比較例3(単位水量120kg/m、単位セメント量650kg/m,水/セメント質量比18.5%)は、振動締固め成形品の強度発現性は良いものの、遠心成形供試体の成形性が好ましくない。
Comparative Example 1 (unit cement amount: 480 kg / m 3 , water / cement mass ratio: 26.0%) is not preferable because the strength development of the vibration compacted molded product is low. Further, in Comparative Example 4 (unit cement amount 650 kg / m 3 , water / cement mass ratio 18.5%), although the strength development of the vibration compacted molded article is good, the moldability of the centrifugal molded specimen is not preferable.
Comparative Example 2 (unit water amount 110 kg / m 3 , unit cement amount 560 kg / m 3 , water / cement mass ratio 19.6%) is inferior in slump development even when the dispersant is added more than the standard addition amount. Centrifugal molding specimen could not be molded.
Further, by increasing the addition ratio (A / C) of the high strength admixture, the water / binder ratio (W / (C + A)) could be reduced, and the strength expression of the centrifugal molded specimen increased. In Comparative Example 3, the compression strength of the vibration compacted molded product and the centrifugal molded product did not reach 130 N / mm 2 because A / C was small. (Examples 3 to 6, Comparative Example 3).
In Example 7 (unit water amount 120 kg / m 3 , unit cement amount 600 kg / m 3 , water / cement mass ratio 20.0%), although the dispersant is the upper limit of the standard addition amount, The strength development is also good, and it is possible to mold a centrifugal molded specimen.
In Comparative Example 3 (unit water amount 120 kg / m 3 , unit cement amount 650 kg / m 3 , water / cement mass ratio 18.5%), although the strength development of the vibration compacted molded article is good, the molding of the centrifugal molding specimen is performed. Sex is not preferred.

Figure 2009073698
Figure 2009073698

[実施例8〜10、比較例4、5]
早強ポルトランドセメントの石膏中の半水化割合の異なるセメントを使用した場合の供試体の圧縮強度及び遠心成形性を表4に示す。
比較例4(半水石膏割合が5質量%)では振動締固め成形及び遠心力成形品ともに強度発現性が低く、逆に比較例5(半水石膏割合が95質量%以上)になると締固め性状及び圧縮強度ともに低下した。
[Examples 8 to 10, Comparative Examples 4 and 5]
Table 4 shows the compressive strength and centrifugal moldability of the specimens when cements having different half-waterification ratios in gypsum of early-strength Portland cement are used.
In Comparative Example 4 (hemihydrate gypsum ratio is 5% by mass), both the vibration compaction molding and the centrifugal force molded product have low strength development. In contrast, in Comparative Example 5 (semihydrogypsum ratio is 95% by mass or more), compaction is achieved. Both properties and compressive strength decreased.

Figure 2009073698
Figure 2009073698

[実施例11〜15、比較例6、7]
高強度混和材のII型無水石膏(AH)とシリカフューム(SF)との割合を変えて、混合粉砕した場合についての振動成形品の圧縮強度を表5に示す。なお、実施例15は、II型無水石膏粉末(3840cm/g)とシリカフューム(BET比表面積:16m/g)をV型混合器で混合したものであり、混合粉砕していない場合である。
[Examples 11 to 15, Comparative Examples 6 and 7]
Table 5 shows the compression strength of the vibration molded article when the ratio of the high strength admixture type II anhydrous gypsum (AH) and silica fume (SF) was changed and mixed and pulverized. Example 15 is a case where II type anhydrous gypsum powder (3840 cm 2 / g) and silica fume (BET specific surface area: 16 m 2 / g) are mixed with a V type mixer and are not mixed and pulverized. .

無水石膏とシリカフュームとの質量比が10/90或は95/5の比較例6、比較例7は圧縮強度が低く、高強度混和材の無水石膏とシリカフュームとの質量比の適正領域は15/85〜90/10であることが判る。また、この質量比は、20/80〜65/35の範囲のものが、圧縮強度をより高くすることができた。また、実施例15は、無水石膏とシリカフュームとの質量比が20/80であっても、混合粉砕したものではないため、混合粉砕した実施例11よりも、圧縮強度が若干低い。   In Comparative Examples 6 and 7 in which the mass ratio of anhydrous gypsum to silica fume is 10/90 or 95/5, the compressive strength is low, and the appropriate range of the mass ratio of anhydrous gypsum and silica fume of high strength admixture is 15 / It turns out that it is 85-90 / 10. In addition, this mass ratio in the range of 20/80 to 65/35 was able to increase the compressive strength. In Example 15, since the mass ratio of anhydrous gypsum and silica fume is 20/80, it is not mixed and pulverized, so the compressive strength is slightly lower than Example 11 that was mixed and pulverized.

Figure 2009073698
Figure 2009073698

[実施例16〜18、比較例8]
市販の高強度混和材を使用した場合の振動成形供試体の圧縮強度を表6に示す。高強度混和材銘柄としてはデンカΣ2000、スーパーノンクレーブ及びダイミックス(実施例16〜18)が好ましく、換言すれば無水石膏/非晶質シリカの質量比が大き過ぎるノンクレーブ(比較例8)は好ましくなかった。
[Examples 16 to 18, Comparative Example 8]
Table 6 shows the compressive strength of the vibration molded specimen when a commercially available high-strength admixture is used. As the high-strength admixture brand, Denka Σ2000, super nonclave and die mix (Examples 16 to 18) are preferable. In other words, an anhydrous gypsum / amorphous silica mass ratio that is too large (Comparative Example 8) is preferable. There wasn't.

Figure 2009073698
Figure 2009073698

代表的な分散剤の赤外線吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of a typical dispersing agent. 半水石膏量及び二水石膏量の示差熱重量分析結果を示す図である。It is a figure which shows the differential thermogravimetric analysis result of the amount of hemihydrate gypsum and the amount of dihydrate gypsum.

Claims (5)

早強ポルトランドセメント、高強度混和材、分散剤、骨材及び水を含む高強度遠心力成形用コンクリート組成物であって、
早強ポルトランドセメントの石膏中の半水石膏割合が10〜90質量%、単位セメント量が490〜640kg/m、水/早強ポルトランドセメント質量比が20.0〜25.5質量%であり、
高強度混和材は無水石膏と非晶質シリカとを含み、無水石膏/非晶質シリカの質量比が15/85〜90/10であり、
分散剤がナフタレン系分散剤であることを特徴とする高強度遠心力成形用コンクリート組成物。
A high-strength centrifugal force molding concrete composition comprising early-strength Portland cement, high-strength admixture, dispersant, aggregate and water,
The ratio of hemihydrate gypsum in the gypsum of early strong Portland cement is 10 to 90% by mass, the unit cement amount is 490 to 640 kg / m 3 , and the water / early strong Portland cement mass ratio is 20.0 to 25.5% by mass. ,
The high-strength admixture contains anhydrous gypsum and amorphous silica, and the mass ratio of anhydrous gypsum / amorphous silica is 15/85 to 90/10,
A high-strength centrifugal molding concrete composition, wherein the dispersant is a naphthalene-based dispersant.
高強度混和材中の非晶質シリカがシリカフュームである請求項1記載の高強度遠心力成形用コンクリート組成物。   The high-strength centrifugal force molding concrete composition according to claim 1, wherein the amorphous silica in the high-strength admixture is silica fume. 高強度混和材が、無水石膏とシリカフュームとを混合粉砕したものである、請求項1又は2記載の高強度遠心力成形用コンクリート組成物。   The concrete composition for high-strength centrifugal force molding according to claim 1 or 2, wherein the high-strength admixture is obtained by mixing and crushing anhydrous gypsum and silica fume. 早強ポルトランドセメント100質量部に対して、高強度混和材を6〜25質量部含み、分散剤を水溶液基準で1.0〜5.5質量部含む、請求項1〜3のいずれか1項記載の高強度遠心力成形用コンクリート組成物。   The high-strength admixture is contained in an amount of 6 to 25 parts by mass and the dispersant is contained in an amount of 1.0 to 5.5 parts by mass on the basis of an aqueous solution with respect to 100 parts by mass of early-strength Portland cement. The concrete composition for high-strength centrifugal force forming as described. 請求項1〜4のいずれか1項記載の高強度遠心力成形用コンクリート組成物を練混ぜ、鉄筋を配した円筒形型枠に充填したのち遠心力成形し、前養生、続いて蒸気養生したのち脱型し、その後気中で養生する高強度遠心力成形用コンクリート組成物の製造方法。   The concrete composition for high-strength centrifugal force molding according to any one of claims 1 to 4 is mixed, filled into a cylindrical formwork with reinforcing bars, and then subjected to centrifugal force molding, followed by pre-curing and subsequent steam curing. A method for producing a high-strength centrifugal force molding concrete composition which is subsequently demolded and then cured in the air.
JP2007244675A 2007-09-21 2007-09-21 High strength centrifugal molding concrete composition and method for producing the same Active JP5488776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007244675A JP5488776B2 (en) 2007-09-21 2007-09-21 High strength centrifugal molding concrete composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007244675A JP5488776B2 (en) 2007-09-21 2007-09-21 High strength centrifugal molding concrete composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009073698A true JP2009073698A (en) 2009-04-09
JP5488776B2 JP5488776B2 (en) 2014-05-14

Family

ID=40609064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007244675A Active JP5488776B2 (en) 2007-09-21 2007-09-21 High strength centrifugal molding concrete composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP5488776B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073700A (en) * 2007-09-21 2009-04-09 Ube Ind Ltd High-strength concrete composition for centrifugal force molding and its manufacturing method
JP2021020835A (en) * 2019-07-30 2021-02-18 日本コンクリート工業株式会社 Concrete-molded material and method for production thereof
US11279658B2 (en) 2018-03-09 2022-03-22 Specification Products, Inc. Compositions for improved concrete performance
US11866366B2 (en) 2019-09-03 2024-01-09 Specification Products, Inc. Wear-resistant concrete formulations and methods for their preparation
US11884600B2 (en) 2018-03-22 2024-01-30 Specification Products, Inc. Method for preparing an improved finished concrete product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302045A (en) * 1998-04-23 1999-11-02 Taiheiyo Cement Corp Cement
JP2002003249A (en) * 2000-06-16 2002-01-09 Denki Kagaku Kogyo Kk Cement admixture, cement composition and cement concrete with high flowability
JP2005060202A (en) * 2003-08-20 2005-03-10 Nissan Chem Ind Ltd Admixture for porous concrete
JP2007076955A (en) * 2005-09-14 2007-03-29 Denki Kagaku Kogyo Kk Centrifugal force concrete product and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302045A (en) * 1998-04-23 1999-11-02 Taiheiyo Cement Corp Cement
JP2002003249A (en) * 2000-06-16 2002-01-09 Denki Kagaku Kogyo Kk Cement admixture, cement composition and cement concrete with high flowability
JP2005060202A (en) * 2003-08-20 2005-03-10 Nissan Chem Ind Ltd Admixture for porous concrete
JP2007076955A (en) * 2005-09-14 2007-03-29 Denki Kagaku Kogyo Kk Centrifugal force concrete product and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012056129; 米澤敏男、外3名: 'シリカフュームの物性が高強度コンクリートの性質に及ぼす影響' コンクリート工学年次論文集 vol.13、No.1, 1991, 第291-296頁, コンクリート工学協会 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073700A (en) * 2007-09-21 2009-04-09 Ube Ind Ltd High-strength concrete composition for centrifugal force molding and its manufacturing method
US11279658B2 (en) 2018-03-09 2022-03-22 Specification Products, Inc. Compositions for improved concrete performance
US11884600B2 (en) 2018-03-22 2024-01-30 Specification Products, Inc. Method for preparing an improved finished concrete product
US11919823B2 (en) 2018-03-22 2024-03-05 Specification Products, Inc. Compositions for improved concrete performance
JP2021020835A (en) * 2019-07-30 2021-02-18 日本コンクリート工業株式会社 Concrete-molded material and method for production thereof
US11866366B2 (en) 2019-09-03 2024-01-09 Specification Products, Inc. Wear-resistant concrete formulations and methods for their preparation

Also Published As

Publication number Publication date
JP5488776B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5139777B2 (en) Sulfate-resistant centrifugal molded concrete composition
JP2008254963A (en) Admixture for cement/concrete and low shrinkage high strength concrete, and high strength cement composition
JP2008214147A (en) Cement composition for highly flowable concrete and highly flowable concrete composition
JP5488776B2 (en) High strength centrifugal molding concrete composition and method for producing the same
JP5493259B2 (en) High strength centrifugal molding concrete composition and method for producing the same
JP2004345898A (en) Grout composition
JP4775058B2 (en) Centrifugal force forming concrete composition and method for producing the same
KR102410655B1 (en) Cement composition and manufacturing method for cement cured body using same
JP4797973B2 (en) High strength centrifugal molding concrete composition and method for producing the same
JP5061664B2 (en) High strength centrifugal molding concrete composition and method for producing the same
JP3215516B2 (en) Hydraulic composition and method for producing concrete pile using the composition
JP2010100505A (en) High-strength concrete composition for centrifugal molding and method for producing high-strength centrifugal-molded concrete
JP2010275124A (en) Ultrahigh early strength cement composition and method for producing the same
JP5145842B2 (en) High strength centrifugal molding concrete composition and method for producing the same
Lima et al. Evaluation of the effect of nanosilica and recycled fine aggregate in Portland cement rendering mortars
JP4889549B2 (en) Centrifugal concrete products
JP5284820B2 (en) Cement admixture and cement binder
JP4932348B2 (en) Hydraulic composition for centrifugal molded cured body
JPH01242445A (en) Hydraulic cement composition
JP5919940B2 (en) High water retention block and method for producing high water retention block
Mutuk et al. High performance cement composites with nano-SiO2 and nano-Al2O3 powders
JP4220930B2 (en) Concrete for manufacturing centrifugal force molded body, centrifugal force molded body using the same, and method for manufacturing the same
dos Santos Limaa et al. Evaluation of the effect of nanosilica and recycled fine aggregate in Portland cement rendering mortars
JP2001233655A (en) Mortar composition
JP5974534B2 (en) Lightweight immediate demolding block and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140211

R150 Certificate of patent or registration of utility model

Ref document number: 5488776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250