JP2007076955A - Centrifugal force concrete product and its manufacturing method - Google Patents

Centrifugal force concrete product and its manufacturing method Download PDF

Info

Publication number
JP2007076955A
JP2007076955A JP2005267394A JP2005267394A JP2007076955A JP 2007076955 A JP2007076955 A JP 2007076955A JP 2005267394 A JP2005267394 A JP 2005267394A JP 2005267394 A JP2005267394 A JP 2005267394A JP 2007076955 A JP2007076955 A JP 2007076955A
Authority
JP
Japan
Prior art keywords
mass
parts
amount
binder
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005267394A
Other languages
Japanese (ja)
Other versions
JP4593412B2 (en
Inventor
Yoshiharu Watanabe
芳春 渡邉
Shigeru Tomioka
茂 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2005267394A priority Critical patent/JP4593412B2/en
Publication of JP2007076955A publication Critical patent/JP2007076955A/en
Application granted granted Critical
Publication of JP4593412B2 publication Critical patent/JP4593412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the improvements of concrete workability, extensibility in centrifugal molding, plugging at an end part, a rock pocket, a honeycomb and the like in a centrifugally cast concrete product and in its manufacturing method using high strength admixtures such as silica fumes and/or plasters and the like and to provide a high quality product molded with centrifugal force. <P>SOLUTION: The centrifugally cast concrete product comprises a binding material, fine aggregate, coarse aggregate and a high performance water reducer or a high performance AE water reducer. The binding material consists of cement, silica fume of 2-15 pts.mass and/or plasters of 10 pts.mass at a maximum in terms of an anhydride and fly ash classified to 20 μm or less of 0.5-8 pts.mass to 100 pts.mass of cement. The centrifugally cast concrete product having a unit binding material amount of 400-650 kg/m<SP>3</SP>and a water rate to the binding material of 35 mass% or less is manufactured by the centrifugal molding of concrete and by curing under insulating or normal pressure steaming. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は遠心力コンクリート製品及びその製造方法に関する。詳しくは、遠心力成形で製造されるコンクリートパイルやポール、ヒューム管、鋼管とコンクリートの複合パイルや柱状体を製造する際して、結合材としてセメントとシリカフューム及び/又は石膏類と、20μm以下に分級したフライアッシュを配合したものを使用するものであり、コンクリートの作業性や遠心力成形時の延展性や脱水性及びジャンカの生成などを改善するものである。   The present invention relates to a centrifugal concrete product and a method for producing the same. In detail, when manufacturing concrete piles and poles manufactured by centrifugal force molding, fume pipes, steel pipe and concrete composite piles and pillars, cement and silica fume and / or gypsum as a binder, 20 μm or less It uses a mixture of classified fly ash, which improves the workability of concrete, the spreadability and dewaterability when forming centrifugal force, and the generation of junkers.

コンクリートパイルやポール、ヒューム管、鋼管とコンクリートの複合パイルや柱状体等遠心力成形によって製造されるコンクリート製品は、コンクリートを型枠に盛り込み又はポンプ注入してから、低速回転から高速回転まで3〜5段階に分けて遠心力成形され、成形後、数時間の前養生を経て蒸気養生される。又は、蒸気養生後脱型して、さらに高温高圧のオートクレーブ養生(180℃、10気圧)して製造される。また、近年、遠心力コンクリート製品は高強度化が進み、パイルでは従来の設計基準強度80又は85N/mm2から支持力を高くとれる100〜120N/mm2の超高強度のものが認可されるようになり、ポールなどでも設計基準強度60N/mm2から80〜120N/mm2で、かつ、高曲げ強度のものが製造されるようになっている。推進管(ヒューム管)の場合も従来の設計基準強度50N/mm2から、推進距離を延長するために70N/mm2となり、さらにカーブ推進などの推進工法の発展に伴い80〜100N/mm2のものが要求されている。 Concrete products manufactured by centrifugal force molding, such as concrete piles, poles, fume pipes, steel piles and concrete composite piles, and pillars, are filled with concrete in a formwork or pumped, and from 3 to 3 Centrifugal force molding is performed in five stages, and after molding, steam curing is performed after several hours of pre-curing. Alternatively, it is produced by demolding after steam curing, and further by curing at a high temperature and high pressure (180 ° C., 10 atm). In recent years, centrifugal force concrete products goes high strength, the pile is authorized those ultra high strength 100~120N / mm 2 from the conventional design strength 80 or 85N / mm 2 can have a high bearing capacity It looks like the pole at 80~120N / mm 2 from design strength 60N / mm 2 at such and of high flexural strength is adapted to be manufactured. Promotion tubes from conventional design strength 50 N / mm 2 if the (Hume pipe), 70N / mm 2 becomes to extend the propulsion distance, further with the development of jacking method such as a curve propulsion 80~100N / mm 2 Things are required.

これら遠心力コンクリート製品の高強度化に対しては、コンクリート配合的には単位セメント量の増加と単位水量の低減及び高性能減水剤又は高性能AE減水剤の多量使用、シリカフュームや石膏類などの既に公知の高強度混和材の多使用化で対応することが考えられる。しかしながら、単位セメント量の増加と単位水量の低減及び高性能減水剤又は高性能AE減水剤の多量使用化はコンクリートの粘性が大きくなり型枠へのコンクリートの投入などの作業性が悪くなる。また、遠心力成形ではコンクリートの延展性が悪くなり、両端部までコンクリートが廻り難く、端部にコンクリートが詰まらないという現象が発生し、不良率が高まるという課題が示される。   In order to increase the strength of these centrifugal concrete products, in terms of concrete mix, increase the unit cement amount, decrease the unit water amount, use a large amount of high-performance water-reducing agent or high-performance AE water-reducing agent, silica fume, plaster, etc. It is conceivable to cope with the use of already known high-strength admixtures. However, increasing the amount of unit cement, reducing the amount of unit water, and using a large amount of high-performance water reducing agent or high-performance AE water reducing agent increases the viscosity of concrete and deteriorates workability such as putting concrete into a formwork. In addition, in the case of centrifugal molding, the spreadability of the concrete is deteriorated, and it is difficult for the concrete to turn to both ends, and the phenomenon that the end does not get clogged with the concrete occurs, which raises the problem that the defect rate increases.

一方、高性能減水剤又は高性能AE減水剤の多量使用化の習慣は、従来の低い設計基準強度の製品を製造する場合は単位セメント量の低減に繋がるので経済的となるが、遠心力成形による脱水作用が増幅され、粗骨材の周囲やコンクリート層とモルタル層の間にジャンカ(空隙)が生成し易くなり、遠心力コンクリート製品の強度や耐打撃性(パイル)の低下及び水密性(ヒューム管)などの低下が懸念される。   On the other hand, the custom of mass use of high-performance water reducing agent or high-performance AE water reducing agent is economical because it leads to a reduction in the amount of unit cement when manufacturing products with conventional low design standard strength. The dehydration effect due to water is amplified, making it easy to generate junkers (voids) around the coarse aggregate and between the concrete layer and the mortar layer, reducing the strength and impact resistance (pile) of centrifugal concrete products and water tightness ( There is a concern about the decline of Hume tube).

また、高強度混和材として一般的に使用されている石膏類は水和初期に結晶水を多く保有するエトリンガイトを生成させるために、低水セメント比ではスランプロスを生じさせ易く、端部までコンクリートが詰らないという現象を助長する。また、シリカフュームを用いると粒子形状が球状の超微粉末であるためにボールベアリング効果によってコンクリートの流動性が大きくなり、同一スランプでは単位水量が低減され、強度的には良い影響となって現れるが、同時に接着剤のような粘着性も出るので、遠心力成形においては盛り込んだ又はポンプ注入されたコンクリートは型枠に付着して遠心力を掛けても軸方向には移動し難く、端部にコンクリートが詰まらないというだけでなく、遠心力コンクリート製品表面に痘痕のように空気泡が残り(蜂の巣という)、甚だしいときは盛り込んだ状態のまま、全く遠心力成形されない状態となるなどの課題が示される。   In addition, gypsum, which is generally used as a high-strength admixture, produces ettringite that contains a large amount of crystal water at the initial stage of hydration. It helps the phenomenon that does not clog. In addition, when silica fume is used, since the particle shape is a spherical ultrafine powder, the fluidity of the concrete increases due to the ball bearing effect, and the unit water volume is reduced in the same slump. At the same time, since adhesive such as adhesive also appears, the concrete poured or pumped in the centrifugal molding adheres to the mold and does not move in the axial direction even when centrifugal force is applied, In addition to the fact that the concrete does not clog, air bubbles remain on the surface of the centrifugal force concrete product like a scar (called a honeycomb), and when it is severe, it remains in a state where it is filled and not subjected to centrifugal force molding at all. It is.

さらに、通常、フライアッシュは微粉炭焚きの火力発電所から副生する100μm以下の中空粒子を含む球形粒子の石炭灰であり、そのポゾラン活性は低いものの長期的に反応して水密性などを高めるのでフライアッシュセメントとして多用されているが、これを20μm又は10μm以下に分級することによって大きな中空の粒子が取り除かれ、良球形で、中空でない粒子となり、そのボールベアリング作用によって高性能減水剤や高性能AE減水剤と組み合わせると、特にコンクリートスランプ又はスランプフローを増大させて強い粘ちょう性を発揮し、同一スランプやスランプフローとした場合、無混和のコンクリートよりも減水した分の強度を高めることも知られている(特許文献1参照)が、ポゾラン反応による強度の増進は蒸気養生しても短期材齢では期待できない。
なお、分級フライアッシュとシリカフュームの流動性の向上作用は同じでもコンクリートの状態は全く異なり、シリカフュームは軽く扱い易いが、付着力が強く、遠心力成形では延展性に乏しくなる。分級フライアッシュは重く粘ちょう性の強い、扱い難いコンクリートとなるので分級フライアッシュ単独添加では添加量を多くすると盛り込みやポンプ打ちなどの作業が困難となり、遠心力成形性も悪くなる課題を有する。
特公平2−49264号公報
In addition, fly ash is usually spherical coal ash containing hollow particles of 100 μm or less that are by-produced from a pulverized coal-fired thermal power plant. Although its pozzolanic activity is low, it reacts in the long term to improve water tightness and the like. Therefore, it is widely used as fly ash cement, but by classifying it to 20 μm or 10 μm or less, large hollow particles are removed, resulting in fine spherical and non-hollow particles. When combined with a performance AE water reducing agent, it increases concrete slump or slump flow and exhibits strong consistency, and when the same slump or slump flow is used, it can increase the strength of the reduced water compared to non-mixed concrete. As is known (see Patent Document 1), the enhancement of strength by pozzolanic reaction is caused by steam nourishment. Can not be expected in the short-term material age be.
In addition, although the action of improving the fluidity of classified fly ash and silica fume is the same, the state of the concrete is completely different. Silica fume is light and easy to handle, but has strong adhesion, and centrifugal molding does not have good extensibility. Since classified fly ash is heavy, highly viscous, and difficult to handle, the addition of classified fly ash alone increases the amount of addition, making it difficult to perform loading and pumping, and has a problem that the centrifugal force formability also deteriorates.
Japanese Examined Patent Publication No. 2-49264

また、水密コンクリート用セメント組成物としてシリカフュームと分級フライアッシュを併用することも知られている。これは超微粉のシリカフュームはコンクリート中に分散し難く部分的に凝集する。その凝集部分に分級フライアッシュが入るとシリカフュームの占める凝集空間が小さくなり、結果的に空隙が充填されるので水密性が高まるというものである(特許文献2参照)。しかしながら遠心力成形の延展性の改善や端部の詰まりの改善、ジャンカ、蜂の巣の改善についての記載や示唆はなく、かつ、分級フライアッシュの配合量はセメントに対して10〜30質量%(内割り添加)の使用例のみが示されているが、遠心力成形においては10質量%以上の使用量では多すぎて、粘ちょう性が強くなり過ぎて、作業性や延展性が悪くなるという課題が示される。
特許第2930215号公報
It is also known to use silica fume and classified fly ash in combination as a cement composition for watertight concrete. This is because ultrafine silica fume is difficult to disperse in the concrete and partially agglomerates. When classified fly ash enters the agglomerated portion, the agglomerated space occupied by the silica fume is reduced, and as a result, voids are filled, so that watertightness is increased (see Patent Document 2). However, there is no description or suggestion about the improvement of the spreadability of centrifugal force molding, the improvement of clogging at the end, the improvement of junka and honeycomb, and the blending amount of classified fly ash is 10 to 30% by mass (inside Only the usage example of split addition is shown, but in centrifugal molding, the use amount of 10% by mass or more is too much, the viscosity becomes too strong, and workability and extensibility deteriorate. Is shown.
Japanese Patent No. 2930215

本発明が解決しようとする課題は、シリカフューム及び/又は石膏類などの高強度混和材を使用した遠心力コンクリート製品及びその製造方法において、コンクリートの作業性の改善及び遠心力成形時の延展性の改善や端部の詰まりの改善、ジャンカ、蜂の巣などの改善を提供し、合わせて高品質な遠心力成形製品を提供するものであり、上記高強度混和材に20μm以下に分級したフライアッシュを適量併用することで可能となることを知見し、本発明を完成させた。   The problem to be solved by the present invention is to improve the workability of concrete in the centrifugal concrete product using a high-strength admixture such as silica fume and / or gypsum and its manufacturing method, and to improve the ductility at the time of centrifugal molding. It provides improvement, improvement of clogging at the end, improvement of jumper, honeycomb, etc., and also provides high quality centrifugal molded products. Appropriate amount of fly ash classified to 20μm or less to the above high strength admixture The present invention has been completed by finding out that it is possible to use in combination.

本発明は、上記の課題を解決するために以下の手段を採用する。
(1)結合材、細骨材、粗骨材並びに高性能減水剤若しくは高性能AE減水剤から構成される遠心力コンクリート製品において、前記結合材が、セメント、並びにセメント100質量部に対して、シリカフュームを2〜15質量部及び/又は石膏類を無水物換算で多くても10質量部と、20μm以下に分級したフライアッシュを0.5〜8質量部としたものであり、かつ、単位結合材量を400〜650kg/m3、結合材水比を35質量%以下としたことを特徴とする遠心力コンクリート製品である。
(2)セメント100質量部に対して、シリカフュームを3〜12質量部及び/又は無水石膏を1〜8質量部と、20μm以下に分級したフライアッシュを1〜6質量部としたことを特徴とする前記(1)の遠心力コンクリート製品である。
(3)単位結合材量を430〜600kg/m3、結合材水比を30〜16質量%としたことを特徴とする前記(1)又は(2)の遠心力コンクリート製品である。
(4)結合材、細骨材、粗骨材並びに高性能減水剤若しくは高性能AE減水剤から構成されるコンクリートを遠心力成形して、保温又は常圧蒸気養生を行う遠心力コンクリート製品の製造方法において、前記結合材が、セメント、並びにセメント100質量部に対して、シリカフュームを2〜15質量部及び/又は石膏類を無水物換算で多くても10質量部と、20μm以下に分級したフライアッシュを0.5〜8質量部としたものであり、かつ、単位結合材量を400〜650kg/m3、結合材水比を35質量%以下としたことを特徴とする遠心力コンクリート製品の製造方法である。
(5)セメント100質量部に対して、シリカフュームを3〜12質量部及び/又は無水石膏を1〜8質量部と、20μm以下に分級したフライアッシュを1〜6質量部としたことを特徴とする前記(4)の遠心力コンクリート製品である。
(6)単位結合材量を430〜600kg/m3、結合材水比を30〜16質量%としたことを特徴とする前記(4)又は(5)の遠心力コンクリート製品である。
The present invention employs the following means in order to solve the above problems.
(1) In a centrifugal concrete product composed of a binder, a fine aggregate, a coarse aggregate, and a high-performance water reducing agent or a high-performance AE water reducing agent, the binding material is used for cement and 100 parts by mass of cement. 2 to 15 parts by mass of silica fume and / or 10 parts by mass at most of gypsum in terms of anhydride and 0.5 to 8 parts by mass of fly ash classified to 20 μm or less, and unit bonding The centrifugal concrete product is characterized in that the material amount is 400 to 650 kg / m 3 , and the binder water ratio is 35% by mass or less.
(2) 3 to 12 parts by mass of silica fume and / or 1 to 8 parts by mass of anhydrous gypsum and 1 to 6 parts by mass of fly ash classified to 20 μm or less with respect to 100 parts by mass of cement The centrifugal concrete product according to (1) above.
(3) The centrifugal concrete product according to (1) or (2) above, wherein the unit binder amount is 430 to 600 kg / m 3 and the binder water ratio is 30 to 16% by mass.
(4) Centrifugal force molding of concrete composed of binders, fine aggregates, coarse aggregates, and high-performance water reducing agents or high-performance AE water reducing agents, and manufacture of centrifugal force concrete products for heat retention or atmospheric pressure steam curing In the method, the binder is a cement and a fly in which silica fume is classified into 2 to 15 parts by mass and / or gypsum at most 10 parts by mass and 20 μm or less with respect to 100 parts by mass of cement. A centrifugal concrete product characterized in that the ash is 0.5 to 8 parts by mass, the unit binder amount is 400 to 650 kg / m 3 , and the binder water ratio is 35% by mass or less. It is a manufacturing method.
(5) 3 to 12 parts by mass of silica fume and / or 1 to 8 parts by mass of anhydrous gypsum and 1 to 6 parts by mass of fly ash classified to 20 μm or less with respect to 100 parts by mass of cement The centrifugal concrete product of (4).
(6) The centrifugal concrete product according to (4) or (5) above, wherein the unit binder amount is 430 to 600 kg / m 3 , and the binder water ratio is 30 to 16% by mass.

本発明の効果を以下に示す。
(a)遠心力コンクリート製品の製造時の盛り込み性などの作業性を改善し、作業効率を高める。
(b)遠心力成形性を改善し、端部の詰まり、ジャンカ、蜂の巣の発生を抑え不良率の発生を抑える。
(c)高強度で耐久性の高い、高品質の遠心力コンクリート製品が製造できる。
The effect of this invention is shown below.
(A) Improve workability such as embedding during manufacture of centrifugal concrete products and increase work efficiency.
(B) Improve centrifugal moldability, suppress clogging of edges, jumpers and honeycombs, and reduce the occurrence of defects.
(C) A high-quality centrifugal concrete product having high strength and high durability can be produced.

以下、本発明を詳しく説明する。
なお、本発明で使用する配合割合や添加量を示す質量部や%は質量単位である。
本発明の結合材として使用するセメントは各種ポルトランドセメント及びシリカ粉末や高炉スラグを配合した混合セメントである。また、これらを任意量を混合したセメントでもよいが、早強ポルトランドセメントなどの水硬性の高いセメントは保温養生程度で容易に高い強度が得られるので、特に、好ましい。
Hereinafter, the present invention will be described in detail.
In addition, the mass part and% which show the mixture ratio and addition amount which are used by this invention are a mass unit.
The cement used as the binder of the present invention is a mixed cement containing various Portland cements, silica powder and blast furnace slag. Cements in which these are mixed in any amount may be used, but cements with high hydraulic properties such as early-strength Portland cement are particularly preferable because high strength can be easily obtained at a heat-curing level.

本発明で使用するシリカフュームは金属シリコンやフェロシリコンなどのシリコンアロイを電気炉で製造する際やジルコニアを製造する際に副生する球形の直径が1μm以下の超微粒子で、主成分は非晶質で反応性の高いSiO2であり、添加量に応じてスランプ(流動性)や強度は順次高く(大きく)なるが、粘着性も大きくなってくるので遠心力成形における延展性は逆に順次低下してくる。
本発明では、シリカフュームは強度と延展性よりセメント100質量部に対して2〜15質量部が使用され、2質量部未満では延展性は問題ないが強度増進効果が小さく、15質量部を超えて添加すると強度的にも頭打ちになると同時に、分級フライアッシュを併用しても延展性の改善できなくなり、好ましくない。好ましくは3〜12質量部である。
The silica fume used in the present invention is an ultrafine particle having a spherical diameter of 1 μm or less that is produced as a by-product when silicon alloys such as metal silicon and ferrosilicon are produced in an electric furnace or zirconia, and the main component is amorphous. Reactive SiO 2 and slump (fluidity) and strength gradually increase (increase) depending on the amount added, but the adhesiveness also increases, so the extensibility in centrifugal force molding decreases gradually. Come on.
In the present invention, the silica fume is used in an amount of 2 to 15 parts by mass with respect to 100 parts by mass of the cement due to strength and extensibility. If the amount is less than 2 parts by mass, there is no problem in the extensibility, but the strength enhancement effect is small, exceeding 15 parts by mass. When added, the strength becomes flat, and at the same time, the combined use of classified fly ash makes it impossible to improve the spreadability. Preferably it is 3-12 mass parts.

本発明で使用する石膏類とは、二水石膏、半水石膏、可溶性無水石膏(III型)、不溶性無水石膏(II型)の各種形態の石膏であるが、より好ましくは無水石膏と二水石膏である。石膏類は前記したように高強度混和材として使用されており、強度は添加量に応じて順次高くなるが、水結合材比が小さくなるとスランプロスは大きくなる傾向にあり、延展性は順次低下してくる。このスランプロスは減水剤本来の粘性を低減してプラスチック性(減水剤が少ない状態)へと変化させるが、この状態に分級フライアッシュの粘ちょう性が加わると適度に振動による流動性が改善され、延展性などの遠心力成形性が良好となる。本発明では強度と延展性よりセメント100質量部に対して多くても10質量部が使用され、好ましくは1〜8質量部である。   The gypsum used in the present invention is gypsum in various forms such as dihydrate gypsum, hemihydrate gypsum, soluble anhydrous gypsum (type III), and insoluble anhydrous gypsum (type II), more preferably anhydrous gypsum and dihydrate. It is plaster. As mentioned above, gypsum is used as a high-strength admixture, and the strength gradually increases according to the amount added, but the slump loss tends to increase as the water binder ratio decreases, and the ductility decreases gradually. Come on. This slump loss reduces the inherent viscosity of the water reducing agent and changes it to plastic (with little water reducing agent). However, if the viscosity of the classification fly ash is added to this state, the fluidity due to vibration is moderately improved. , Centrifugal formability such as spreadability is improved. In the present invention, at most 10 parts by mass is used with respect to 100 parts by mass of cement because of strength and spreadability, and preferably 1 to 8 parts by mass.

本発明で使用する分級フライアッシュとは、前記したように微粉炭焚の火力発電所から副生する球形粒子の石炭灰を20μm以下に、粉砕ではなく分級したものを使用することが必須条件であり、分級しないフライアッシュでは本発明の効果は得られない。分級フライアッシュの市販品としては20μm以下に分級したものと10μm以下に分級したものの二種類があり、これらが使用される。
分級フライアッシュは単独添加では、その添加量が少ない場合は延展性を改善する傾向を示すが、添加量が多くなると逆に遠心力成形性を害するようになり、かつ、添加量の多少に関わらず強度増進などの効果は期待できない。
分級フライアッシュとシリカフュームを併用すると、シリカフュームの接着するような粘性を延展・流動するように改善し、作業性や遠心力成形性を改善するが、セメント100質量部に対して0.5〜8質量部の割合で配合する。分級フライアッシュが0.5質量部未満ではシリカフュームの添加量が少なくても遠心力成形性などの改善効果は小さく、8質量部を超えて添加するとシリカフュームが多くても分級フライアッシュ特有の粘ちょう性の強くて重いコンクリートとなり、作業性や遠心力成形性は、より悪くなるものである。
また、石膏類との併用では、石膏類の添加量が多くても分級フライアッシュは少ない量で遠心力成形性を改善される。
以上から、分級フライアッシュの好ましい量はセメント100質量部に対して1〜6質量部である。
As described above, the classification fly ash used in the present invention is required to use spherical particles of coal ash produced as a by-product from a pulverized coal fired thermal power plant to 20 μm or less instead of pulverization. In addition, the effect of the present invention cannot be obtained with fly ash that is not classified. There are two types of commercially available classified fly ash: those classified to 20 μm or less and those classified to 10 μm or less, and these are used.
Classification fly ash, when added alone, tends to improve spreadability when the addition amount is small, but when the addition amount increases, centrifugal force formability is adversely affected, and the addition amount is somewhat related. The effect such as strength enhancement cannot be expected.
The combined use of classified fly ash and silica fume improves the viscosity of silica fume to adhere and flow, and improves workability and centrifugal formability. It mix | blends in the ratio of a mass part. If the amount of classified fly ash is less than 0.5 parts by mass, the effect of improving the centrifugal force formability is small even if the amount of silica fume added is small, and if added over 8 parts by mass, the viscosity specific to classified fly ash is high even if the amount of silica fume is large. It becomes strong and heavy concrete, and workability and centrifugal force formability are worsened.
In combination with gypsum, centrifugal formability is improved with a small amount of classified fly ash even if the amount of gypsum added is large.
From the above, the preferred amount of classified fly ash is 1 to 6 parts by mass with respect to 100 parts by mass of cement.

本発明においては、セメント及びセメント混和材(シリカフューム及び/又は石膏類と、20μm以下に分級したフライアッシュ)を合計した結合材の単位結合材量を400〜650kg/m3とする。単位結合材量が400kg/m3未満では高性能減水剤などを最大限添加するとスランプが小さくても材料分離が生ずるので、むやみに多くできないし、従来から認可されているパイルの80〜85N/mm2の設計強度は得にくいと同時に脱水性が大きくなりすぎてジャンカの生成が軽減できないので好ましくない。また、単位結合材量が650kg/m3を超えると分級フライアッシュが適量添加されていても作業性や遠心力成形性は改善できなく、特に、延展性が悪くなり好ましくない。好ましい単位結合材量は430〜600kg/m3である。 In the present invention, the unit binder amount of the binder obtained by adding the cement and cement admixture (silica fume and / or gypsum and fly ash classified to 20 μm or less) is 400 to 650 kg / m 3 . If the amount of unit binder is less than 400 kg / m 3 , the maximum amount of high-performance water reducing agent added will cause material separation even if the slump is small, so it cannot be increased unnecessarily, and the conventionally approved pile of 80 to 85 N / The design strength of mm 2 is difficult to obtain, and at the same time, the dehydration property becomes too large, and the formation of junkers cannot be reduced. On the other hand, when the amount of the unit binder exceeds 650 kg / m 3 , workability and centrifugal force formability cannot be improved even if an appropriate amount of classified fly ash is added, and the spreadability is deteriorated. A preferable unit binder amount is 430 to 600 kg / m 3 .

また、本発明では、水結合材比を35質量%以下とする。水結合材比が35質量%を超えて高くなるとシリカフュームや石膏類などの高強度混和材が適量配合されていても従来から認可されているパイルの80〜85N/mm2の設計強度も得にくくなるので好ましくなく、好ましくは30質量%〜16質量%程度までである。16質量%未満では遠心力成形によって内面に分離してくるセメントペーストが張り付かないで、遠心力成形を停止したときに流れるようになり、好ましくない。 In the present invention, the water binder ratio is 35% by mass or less. When the water binder ratio exceeds 35% by mass, even if an appropriate amount of high-strength admixture such as silica fume and gypsum is blended in an appropriate amount, it is difficult to obtain a design strength of 80 to 85 N / mm 2 of a conventionally approved pile. Therefore, it is not preferable, and preferably about 30% by mass to 16% by mass. If it is less than 16% by mass, the cement paste separated on the inner surface by centrifugal force molding will not stick and flow when centrifugal force molding is stopped, which is not preferable.

本発明においては、高性能減水剤や高性能AE減水剤を適量を併用する。
高性能減水剤は、ポリアルキルアリルスルホン酸塩系、芳香族アミノスルホン酸塩系、メラミンホルマリン樹脂スルホン酸塩系のいずれかを主成分とするものであり、これらの一種又は二種以上が使用されるものである。ポリアルキルアリルスルホン酸塩系高性能減水剤にはメチルナフタレンスルホン酸ホルマリン縮合物、ナフタレンスルホン酸ホルマリン縮合物、アントラセンスルホン酸ホルマリン縮合物などがあり、市販品としては電気化学工業(株)社商品名「FT-500」とそのシリーズ,花王(株)社商品名「マイティ-100(粉末)」や「マイティ-150」とそのシリーズ,第一工業製薬(株)社商品名「セルフロー110P(粉末)」,竹本油脂(株)社商品名「ポールファイン510N」等、(株)フローリック社商品名「フローリックPS」とそのシリーズなどが代表的である。芳香族アミノスルホン酸塩系高性能減水剤としては(株)フローリック社商品名「フローリックVP200」とそのシリーズがあり、メラミンホルマリン樹脂スルホン酸塩系高性能減水剤にはグレースケミカルズ社商品名「FT-3S」、昭和電工(株)社商品名「モルマスターF-10(粉末)」や「モルマスターF-20(粉末)」が挙げられる。
高性能AE減水剤は、通常、ポリカルボン酸塩系減水剤と呼称され、不飽和カルボン酸モノマーを一成分として含む共重合体又はその塩であり、例えばポリアルキレングリコールモノアクリル酸エステル、ポリアルキレングリコールモノメタクリル酸エステル、無水マレイン酸及びスチレンの共重合体やアクリル酸やメタクリル酸塩の共重合体及びこれらの単量体と共重合可能な単量体から導かれた共重合体などを挙げることが出来、(株)エヌエムビー社商品名「レオビルドSP8N」シリーズ、(株)フローリック社商品名「フローリックSF500HU,フローリックSF500S,フローリックSV10」、竹本油脂(株)社商品名「チュポールHP8,11」シリーズ、グレースケミカルズ(株)社商品名「ダーレックススーパー100,200,300,1000」シリーズ、その他が市販されている。
これら高性能減水剤や高性能AE減水剤の結合材に対する添加量は硬化不良などの異常現象のない範囲で添加されるが、結合材100質量部に対して、概ね、市販品の形態で0.5〜4質量部の範囲である。
In the present invention, an appropriate amount of a high performance water reducing agent or a high performance AE water reducing agent is used in combination.
The high-performance water reducing agent is mainly composed of polyalkylallylsulfonate, aromatic aminosulfonate, or melamine formalin sulfonate, and one or more of these are used. It is what is done. Polyalkylallyl sulfonate-based high-performance water reducing agents include methyl naphthalene sulfonic acid formalin condensate, naphthalene sulfonic acid formalin condensate and anthracene sulfonic acid formalin condensate. Name “FT-500” and its series, Kao Corporation product name “Mighty-100 (powder)” and “Mighty-150” and its series, Daiichi Kogyo Seiyaku Co., Ltd. product name “Selflow 110P (powder) ) ”, Takemoto Yushi Co., Ltd., trade name“ Pole Fine 510N ”, and Floric Corporation trade name“ Floric PS ”and its series are typical. Aromatic aminosulfonate-based high-performance water reducing agents include the product name “Floric VP200” and its series, manufactured by Floric Co., Ltd. The melamine formalin resin sulfonate-based high-performance water reducing agent is the product name of Grace Chemicals. “FT-3S”, trade name “Molmaster F-10 (powder)” and “Molmaster F-20 (powder)” of Showa Denko K.K.
The high-performance AE water reducing agent is usually called a polycarboxylate-based water reducing agent, and is a copolymer or a salt thereof containing an unsaturated carboxylic acid monomer as one component, such as polyalkylene glycol monoacrylate, polyalkylene Examples include copolymers of glycol monomethacrylate, maleic anhydride and styrene, copolymers of acrylic acid and methacrylate, and copolymers derived from monomers copolymerizable with these monomers. NMB Co., Ltd. product name “Leo Build SP8N” series, Floric Co., Ltd. product name “Floric SF500HU, Floric SF500S, Floric SV10”, Takemoto Yushi Co., Ltd. product name “Tupor HP8” , 11 "series, Grace Chemicals Co., Ltd. trade name" Darlex Super 100,200,300,1000 "series, and others To have.
The amount of these high-performance water-reducing agent and high-performance AE water-reducing agent added to the binder is within a range where there is no abnormal phenomenon such as poor curing, but is generally 0 in the form of a commercial product with respect to 100 parts by mass of the binder. It is the range of 5-4 mass parts.

本発明では、適量の、一般に使用されている川砂や砕砂、砂利や砕石などの天然産及び各種スラグ骨材などの人工の細骨材及び粗骨材が使用されるが、粗骨材の最大骨材寸法は20mm以下が好ましく、その単位量は最大寸法が20mmの場合は1250〜1350kg/m3、最大寸法が10〜15mmの場合は1100〜1250kg/m3が、作業性、遠心力成形性及び強度の改善性から好ましい。但し、スクイズポンプでコンクリートを注入する方式のコンクリートパイル、ポール、鋼管・コンクリート複合パイルでは前記粗骨材の単位量では多すぎるので、ポンプ打ち出来る範囲で粗骨材量は少なくすることが好ましい。ヒューム管などのスクリューポンプでは前記粗骨材の単位量でも問題はない。 In the present invention, an appropriate amount of generally used river sand, crushed sand, natural products such as gravel and crushed stone, and artificial fine aggregates and coarse aggregates such as various slag aggregates are used. aggregate size is preferably 20mm or less, the unit amount if the maximum dimension of 20mm 1250~1350kg / m 3, if the maximum dimension of 10~15mm is 1100~1250kg / m 3, workability, centrifugal molding It is preferable from the viewpoint of improvement in properties and strength. However, in the case of concrete piles, poles, steel pipe / concrete composite piles in which concrete is injected with a squeeze pump, the amount of the coarse aggregate is too large, so it is preferable to reduce the amount of coarse aggregate within the pumpable range. In the case of a screw pump such as a fume pipe, there is no problem with the unit amount of the coarse aggregate.

また、本発明の遠心力コンクリート製品は、遠心力成形後、常法通り数時間前置き養生された後、30〜45℃の保温養生又は45℃を超えて90℃程度で常圧蒸気養生を所定の時間行う。180℃の高温で行うオートクレーブ養生は静的強度は充分発現するが、その冷却中に、乾燥により視認できないほどの微細なひびわれがコンクリート製品内外部に発生させることになり、耐凍害性や繰り返し疲労試験による耐久性が悪くなるなどの課題を残すために好ましくない。   In addition, the centrifugal concrete product of the present invention is cured for several hours in advance in a conventional manner after centrifugal forming, and then is subjected to a thermal curing at 30 to 45 ° C. or a normal pressure steam curing at about 90 ° C. exceeding 45 ° C. Do the time. Autoclave curing carried out at a high temperature of 180 ° C exhibits sufficient static strength, but during its cooling, fine cracks that cannot be seen due to drying are generated inside and outside the concrete product, resulting in frost resistance and repeated fatigue. This is not preferable because problems such as poor durability due to tests remain.

本発明のコンクリートを練混ぜは常法通りで良く、結合材中のセメント以外の混和材の添加方法は特に制限されない。
また、遠心力成形方法も遠心力コンクリート製品の種類や所有する遠心力成形機によって、初速、低速、中速、高速への移行及び各段階の遠心力の大きさと回転時間は、それぞれ工夫して行われているが、そのまま適用可能である。
The concrete of the present invention may be kneaded as usual, and the method of adding an admixture other than cement in the binder is not particularly limited.
In addition, the centrifugal force forming method is devised according to the type of centrifugal force concrete product and the centrifugal force forming machine that is used, the transition to initial speed, low speed, medium speed, and high speed, and the magnitude and rotation time of each stage of centrifugal force. Although it is done, it can be applied as it is.

本発明を実施するための最良の形態をまとめると、結合材は、普通又は早強ポルトランドセメント100質量部に対して、シリカフュームを3〜12質量部及び/又は無水石膏を1〜8質量部、分級フライアッシュを1〜6質量部とし、結合材量は430〜600kg/m3、水結合材比は30〜16質量%、高性能減水剤又は高性能AE減水剤を結合材量に対して0.5〜4質量%(市販品の形態で)使用し、適量の細骨材と粗骨材量を使用したコンクリートを常法により練混ぜて、常法による遠心力成形及び常法による保温又は蒸気養生により製造するものである。 Summarizing the best mode for carrying out the present invention, the binder is 3 to 12 parts by mass of silica fume and / or 1 to 8 parts by mass of anhydrous gypsum with respect to 100 parts by mass of ordinary or early-strength Portland cement. The classification fly ash is 1 to 6 parts by mass, the binder amount is 430 to 600 kg / m 3 , the water binder ratio is 30 to 16% by mass, and the high-performance water reducing agent or the high-performance AE water reducing agent is based on the binder amount. Use 0.5-4% by mass (in the form of a commercial product), knead concrete with appropriate amount of fine aggregate and coarse aggregate amount by ordinary method, centrifugal forming by conventional method and heat retention by conventional method Or it is manufactured by steam curing.

以下、本発明を実施例にて詳細に説明するが、これらに限られるものではない。
実施例で使用する材料と試験項目とその方法を以下にまとめて示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, it is not restricted to these.
The materials, test items, and methods used in the examples are summarized below.

<使用材料>
(1)セメント:電気化学工業(株)社製 普通ポルトランドセメント、密度3.16g/cm3
電気化学工業(株)社製 早強ポルトランドセメント、密度3.12g/cm3
(2)細骨材 :新潟県姫川産川砂(5mm下)、密度2.62g/cm3
(3)粗骨材 :新潟県姫川産砕石(13〜5mm)、密度2.64g/cm3
(4)シリカフューム:ロシア産、顆粒状にしたもの(SFと略す)、密度2.44g/cm3
(5)石膏:不溶性無水石膏(天然産、密度2.92g/cm3)
(6)フライアッシュ:四国電力(株)社製(20μm以下に分級したもの及び比較のために 分級しないフライアッシュ(FA20及びFAと略す)、密度2.44g/cm3
(7)減水剤:高性能減水剤(WRA1)、花王(株)社製「マイティ150」
:超高性能AE減水剤(WRA2)、グレースケミカルズ(株)社製「ダーレックス スーパー1000N」
<Materials used>
(1) Cement: Ordinary Portland cement manufactured by Denki Kagaku Kogyo Co., Ltd., density 3.16g / cm 3
Early strong Portland cement manufactured by Denki Kagaku Kogyo Co., Ltd., density 3.12 g / cm 3
(2) Fine aggregate: River sand from Himekawa, Niigata (5mm below), density 2.62g / cm 3
(3) Coarse aggregate: Crushed stone from Himekawa, Niigata (13-5mm), density 2.64g / cm 3
(4) Silica fume: Russian, granulated (abbreviated as SF), density 2.44 g / cm 3
(5) Gypsum: Insoluble anhydrous gypsum (naturally produced, density 2.92 g / cm 3 )
(6) Fly ash: manufactured by Shikoku Electric Power Co., Inc. (classified to 20 μm or less and fly ash not classified for comparison (FA20 and FA)), density 2.44 g / cm 3
(7) Water reducing agent: High performance water reducing agent (WRA1), “Mighty 150” manufactured by Kao Corporation
: Super high performance AE water reducing agent (WRA2), “Darlex Super 1000N” manufactured by Grace Chemicals

<試験項目とその方法>
(1)試験室でのコンクリートの練混ぜ方法
コンクリートの練混ぜは、セメント、混和材の各成分、細骨材、粗骨材を30秒間空練りした後、水に減水剤を溶解した練混ぜ水を添加して2分間オムニミキサで練混ぜた。
(2)コンクリートのスランプ試験方法
JIS A 1101に準処する。
(3)供試体の成形方法と養生方法
遠心力供試体は、外径20cm×長さ30cmの円筒型枠にコンクリートを16.0kg詰めて両端の中空部にゴム栓をしてから、初速1.5G×2分間、低速3G×3分、中速I 8G×3分 中速II 15G×2分、高速30G×3分の条件で遠心力成形してノロを排出し、再度ゴム栓をして、4時間前置き養生後、15℃/hrの速度で75℃まで上げて5時間保持してから蒸気バルブを止め、そのまま翌日まで養生槽の中で徐冷して翌日脱型した。なお、脱型後は供試体の外面や内面及び両端部の状態を観察し、その後、室内気乾養生して材齢7日強度を測定する。また、比較の振動成型供試体はφ10×20cmのシリンダー型枠に棒状バイブレータで成型し、遠心力成形供試体と同様の養生を行い、室内気乾養生の材齢7日強度を測定する。
(4)供試体の圧縮強度の測定
JIS A 1136に準処して測定する。
(5)実機によるψ400mm、長さ8mのC種仕様の配筋によるパイルの製造・試験方法
コンクリートの練混ぜは、セメント、混和材の各成分、細骨材、粗骨材、水に減水剤を溶解した練混ぜ水を順次投入してから、3分間、二軸ミキサで1m3分のコンクリートを練混ぜた。
遠心力成形方法は、型枠にコンクリートを所定量盛り込んでから、上蓋をして、プレストレス導入後、初速1.5G×2分間、中速I 8G×4分 中速II 15G×2分、高速30G×3分の条件で遠心力成形してノロを排出し、4時間前置き養生後、15℃/hrの速度で75℃まで上げて5時間保持してから蒸気バルブを止め、そのまま翌日まで養生槽の中で徐冷して翌日脱型し、屋外曝露養生した。そして遠心力成形したパイルの外観や内面の状態及び端部のボルト穴の詰まりを観察すると共に材齢7日で静曲げ強度を測定した。
(6)コンクリートの基本配合
コンクリートの基本配合を表1に示す。シリカフューム、石膏、分級フライアッシュ等の混和材はセメントに置き換えて配合し、混和材を配合しても水結合材比は変えないようにした。混和材によりスランプが変動する場合は減水剤量を調整(水に内割り添加)して合わせるようにした。
<Test items and methods>
(1) Mixing method of concrete in the laboratory Mixing of concrete involves mixing cement, each component of admixture, fine aggregate and coarse aggregate for 30 seconds, and then mixing water reducing agent in water. Water was added and mixed with an omnimixer for 2 minutes.
(2) Concrete slump test method
Semi-compliant with JIS A 1101.
(3) Molding method and curing method of specimens Centrifugal force specimens were filled with 16.0 kg of concrete in a cylindrical frame with an outer diameter of 20 cm × length of 30 cm, and rubber plugs were inserted into the hollow portions at both ends, and then an initial speed of 1.5 G × 2 minutes, Low speed 3G × 3 minutes, Medium speed I 8G × 3 minutes Medium speed II 15G × 2 minutes, High speed 30G × 3 minutes After pre-curing for 4 hours, the temperature was raised to 75 ° C. at a rate of 15 ° C./hr and maintained for 5 hours, and then the steam valve was stopped, and then gradually cooled in the curing tank until the next day and demolded the next day. In addition, after demolding, the state of the outer surface, inner surface, and both end portions of the specimen is observed, and then the room is air-dried and the strength at 7 days of age is measured. In addition, the comparative vibration molded specimen is molded into a φ10 × 20 cm cylinder form with a rod-shaped vibrator, and cured in the same manner as the centrifugal molded specimen, and the strength of the indoor air-dried curing material is measured for 7 days.
(4) Measurement of compressive strength of specimen
Measure according to JIS A 1136.
(5) Pile production and test method using C type reinforcement with ψ400mm and length of 8m using actual machine. Mixing of concrete is cement, each component of admixture, fine aggregate, coarse aggregate, water reducing agent After sequentially adding the kneaded water in which was dissolved, concrete was mixed for 3 minutes with a twin-screw mixer for 1 m 3 minutes.
Centrifugal force molding method is to put a certain amount of concrete into the mold, cover it, and after prestressing, initial speed 1.5G x 2 minutes, medium speed I 8G x 4 minutes, medium speed II 15G x 2 minutes, high speed Centrifuge at 30G x 3 minutes to discharge the paste, and after curing for 4 hours, raise to 75 ° C at a rate of 15 ° C / hr and hold for 5 hours, then stop the steam valve and continue curing until the next day It was gradually cooled in the tank, demolded the next day, and cured outdoors. Then, the appearance of the pile formed by centrifugal force, the state of the inner surface and the clogging of the bolt holes at the ends were observed, and the static bending strength was measured at a material age of 7 days.
(6) Basic mix of concrete Table 1 shows the basic mix of concrete. Admixtures such as silica fume, gypsum, and classified fly ash were replaced with cement and blended so that the water binder ratio was not changed even when blended. When the slump fluctuates depending on the admixture, the amount of water reducing agent was adjusted (added into the water) and adjusted.

Figure 2007076955
Figure 2007076955

コンクリート配合No.6を用いて、シリカフューム及び/又は石膏、分級フライアッシュ及び分級しないフライアッシュの添加量を変えて遠心力成形供試体を成形し、蒸気養生後脱型し、遠心力成形の内外面と両端部を観察して脱型時強度を測定した。結果を表2に示す。なお、表中のセメントに対するシリカフューム及び/又は石膏、分級フライアッシュ及び分級しないフライアッシュなどの混和材量は、セメントに対して外割換算で示したが、結合材全体量は550kg/m3である。混和材を添加しない場合はセメントのみ550kg/m3となる。 Using concrete mix No.6, change the addition amount of silica fume and / or gypsum, classified fly ash and unclassified fly ash to form a centrifugal force molded specimen, demold after steam curing, The strength at the time of demolding was measured by observing the outer surface and both ends. The results are shown in Table 2. In addition, although the amount of admixtures such as silica fume and / or gypsum, classified fly ash and unclassified fly ash with respect to the cements in the table is shown in terms of external ratio to the cement, the total amount of the binder is 550 kg / m 3 . is there. When no admixture is added, only cement is 550 kg / m 3 .

Figure 2007076955
Figure 2007076955

表2において、また、比較例、発明例を問わず全部の遠心力成形供試体にノロの発生は認められなく、滑らかな中空断面が得られた。
また、シリカフューム、石膏、フライアッシュなどの混和材を添加しない場合やそれぞれを単独で添加した場合は、コンクリートの軸方向への延びは分級フライアッシュの3質量%の少量では多少改善する傾向を示しているが、その他はコンクリートの軸方向への延びが悪くなる。そして、両端部までコンクリートが充分届いていない状態であり、強度測定も出来ない状態である。特に、シリカフューム単独添加はコンクリートの一部が盛り込んだ状態から型枠に付着したまま動いていなく、供試体表面(外面)に空気泡も生成している(実験No.1-1〜No.1-5)。
In Table 2, no occurrence of noro was observed in all the centrifugal force molded specimens regardless of the comparative example and the inventive example, and a smooth hollow cross section was obtained.
When admixtures such as silica fume, gypsum and fly ash are not added, or when each is added alone, the elongation in the axial direction of the concrete tends to improve somewhat with a small amount of 3% by mass of classified fly ash. However, in other cases, the extension of the concrete in the axial direction becomes worse. And it is in a state where the concrete has not sufficiently reached both ends, and the strength cannot be measured. In particular, the addition of silica fume alone does not move while adhering to the mold from a state in which a part of the concrete is included, and air bubbles are also generated on the specimen surface (outer surface) (Experiment No. 1-1 to No. 1). -Five).

分級フライアッシュの遠心力成形性の改善効果は、シリカフュームと併用した場合、シリカフュームの添加量が少ないと0.5質量部から示される。また、シリカフュームの添加量が多い場合は8質量部を超えて添加しても逆に延展性は悪くなる。そして好ましい添加量は1〜6質量部であることが示される。また、シリカフュームの添加量を多くしていくと圧縮強度は向上し、2質量部から顕著となり、12質量部で頭打ちとなる傾向が示され、15質量部を超えて添加してもそれ以上の強度増進効果は期待できない。したがって、シリカフュームはセメント100質量部に対して2〜15質量部、好ましくは3〜12質量部である(実験No.1-6〜No.1-15)。分級フライアッシュと石膏を併用したときの分級フライアッシュの遠心力成形性の改善効果は、石膏添加量が多くても0.5質量部と少ない量で改善効果が示される。また。石膏は添加量が多くなるほど強度は高くなるが1質量部から顕著となり、10質量部前後で頭打ちとなる傾向が示される。したがって石膏の添加量は10質量部以下で1〜8質量部が好ましい(実験No.1-16〜No.1-21)。
シリカフュームと石膏を併用すると圧縮強度は相乗的に高くなるが、遠心力成形性はより悪くなる(実験No.1-22)。しかしながら分級フライアッシュを併用した本発明例では遠心力成形性が改善され、かつ、圧縮強度のより高い遠心力成形体が得られる(実験No.1-23〜No.1-27)。
The improvement effect of centrifugal force formability of classified fly ash is shown from 0.5 parts by mass when the amount of silica fume added is small when used together with silica fume. On the other hand, when the amount of silica fume added is large, even if the amount exceeds 8 parts by mass, the spreadability deteriorates. And it is shown that a preferable addition amount is 1 to 6 parts by mass. Further, when the amount of silica fume added is increased, the compressive strength is improved and becomes prominent from 2 parts by mass, and tends to reach a peak at 12 parts by mass. Strength enhancement effect cannot be expected. Therefore, the silica fume is 2 to 15 parts by mass, preferably 3 to 12 parts by mass with respect to 100 parts by mass of cement (Experiment No. 1-6 to No. 1-15). The improvement effect of the centrifugal formability of classified fly ash when combined with classified fly ash and gypsum is shown as small as 0.5 parts by mass even when the amount of gypsum added is large. Also. As the amount of gypsum increases, the strength increases, but becomes prominent from 1 part by mass, and tends to reach a peak at around 10 parts by mass. Therefore, the addition amount of gypsum is preferably 10 parts by mass or less and preferably 1 to 8 parts by mass (Experiment No. 1-16 to No. 1-21).
When silica fume and gypsum are used in combination, the compressive strength is synergistically increased, but centrifugal moldability is worse (Experiment No. 1-22). However, in the example of the present invention used in combination with classified fly ash, centrifugal force formability is improved and a centrifugal force molded body with higher compressive strength is obtained (Experiment No. 1-23 to No. 1-27).

コンクリート配合No.1〜5、No.7〜10を用いて、混和材無添加の場合と、シリカフューム、石膏、分級フライアッシュなどの混和材を、任意量組み合わせた場合について実施例1と同様の試験を行った。その結果を表3に示す。   The same as in Example 1 with respect to the case where the admixture was not added and the admixture such as silica fume, gypsum, and classified fly ash was combined in an arbitrary amount using the concrete blending Nos. 1 to 5 and Nos. 7 to 10. A test was conducted. The results are shown in Table 3.

Figure 2007076955
Figure 2007076955

表3において、混和材の有無に拘わらず、コンクリート配合No.1〜4まではノロの発生があり、水結合材比が高いほど発生量は多く、かつ、固形分濃度の小さい水状のノロが発生した。また、No.1とNo.2の混和材を添加しない比較例は脱水が良すぎて端部のコンクリート層とペースト層の間に、ザラついたジャンカ(ペーストが流出して細骨材が洗われている)が顕れた。また、No.7とNo.8の混和材を添加しない比較例は遠心力成形できなく、No.5〜8の混和材を添加した発明例はペースト層が張り付いた状態であり、No.5とNo.8は少しダレを生じたが、No.7は滑らかな中空断面が得られた。また、No.9の混和材を添加しない比較例ではペーストが全て流れ出て粗骨材が内面に露出した。   In Table 3, regardless of the presence or absence of admixtures, nobles are generated in concrete mix Nos. 1 to 4, and the higher the water binder ratio, the larger the amount generated and the smaller the solid content concentration There has occurred. In the comparative example in which the No. 1 and No. 2 admixtures were not added, the dehydration was too good, and there was a rough junker (the paste flowed out and the fine aggregate was washed between the concrete layer and the paste layer at the end. Appears). In addition, the comparative example in which the No. 7 and No. 8 admixtures are not added cannot be subjected to centrifugal force molding, and the invention examples in which the No. 5 to 8 admixtures are added are in a state in which the paste layer is adhered. No. 5 and No. 8 were slightly sagging, but No. 7 had a smooth hollow cross section. Further, in the comparative example in which the No. 9 admixture was not added, all the paste flowed out and the coarse aggregate was exposed on the inner surface.

コンクリート配合No.1〜No.5の混和材無添加では(水結合材比38質量%〜25質量%)では遠心力成形は可能であるが、圧縮強度が80N/mm2を超えないことが示され、No.7〜9の混和材無添加では全く遠心力成形ができない状態となった。 Centrifugal molding is possible without adding concrete admixtures No. 1 to No. 5 (water binder ratio 38 mass% to 25 mass%), but the compressive strength may not exceed 80 N / mm 2 It was shown that no centrifugal force molding was possible when no admixtures No. 7 to 9 were added.

シリカフュームなどの混和材を多く添加しても配合No.1の水結合材比38質量%では単位結合材量が380kg/m3と少ないこともあって圧縮強度が80N/mm2を超えないので好ましくない(実験No.2-2)。配合No.2の水結合材比が35質量%(単位結合材量が400kg/m3)ではシリカフュームなどの混和材を少なく添加しても圧縮強度が80N/mm2を超えることが示される(実験No.2-4〜No.2-6)。 Even if a large amount of an admixture such as silica fume is added, the compressive strength does not exceed 80 N / mm 2 because the unit binder amount is as small as 380 kg / m 3 at the water binder ratio of 38% by weight of the formulation No. 1. Not preferable (Experiment No. 2-2). When the water binder ratio of the blend No. 2 is 35% by mass (the unit binder amount is 400 kg / m 3 ), even if a small amount of admixture such as silica fume is added, the compressive strength exceeds 80 N / mm 2 ( Experiment No.2-4 to No.2-6).

反対に、配合No.9の混和材を添加した水結合材比15質量%(単位結合材量が680kg/m3)では遠心力成形時にペーストが内面に張り付かなく成形できないことが示された。
そして、混和材を添加して遠心力成形性がよく、かつ、圧縮強度が80N/mm2を超える配合条件は、水結合材比35〜16質量%、単位結合材量400〜650kg/m3であることが示される(実験No.2-4〜2-6,No.2-8,No.2-10,No.2-12,No.2-14,No.2-16)。また、特に好ましい範囲は、水結合材比30〜16質量%、単位結合材量430〜600kg/m3であることが分かる(実験No.2-8,No.2-10,No.2-12,No.2-14)。また、普通セメントを使用した実験No.1-24と早強セメントを用いた実験No.2-20の比較では圧縮強度が早強セメントの方が高くなることが示される。
On the contrary, it was shown that the paste could not be molded without sticking to the inner surface at the time of centrifugal force molding at a water binder ratio of 15% by mass (unit binder amount: 680 kg / m 3 ) with the admixture of No. 9 added. .
Then, the admixture is added so that the centrifugal formability is good, and the compounding conditions in which the compressive strength exceeds 80 N / mm 2 are a water binder ratio of 35 to 16% by mass and a unit binder quantity of 400 to 650 kg / m 3. (Experiment Nos. 2-4 to 2-6, No. 2-8, No. 2-10, No. 2-12, No. 2-14, No. 2-16). Further, it is found that particularly preferable ranges are a water binder ratio of 30 to 16% by mass and a unit binder amount of 430 to 600 kg / m 3 (Experiment No. 2-8, No. 2-10, No. 2- 12, No.2-14). In addition, comparison between Experiment No. 1-24 using ordinary cement and Experiment No. 2-20 using early-strength cement shows that the early-strength cement has higher compressive strength.

実験No.1-1、No.1-24、実験No.2-14、No.2-16、No.2-20のコンクリートを使用して実際にパイルを製造した。脱型後のパイルの内外面及び端部のボルト穴の詰まりの観察結果と、材齢7日の静曲げ強度試験した結果を表4に示す。   Pile was actually manufactured using the concrete of Experiment No.1-1, No.1-24, Experiment No.2-14, No.2-16, No.2-20. Table 4 shows the observation results of the clogging of the bolt holes at the inner and outer surfaces and ends of the pile after demolding, and the results of a static bending strength test on a material age of 7 days.

Figure 2007076955
Figure 2007076955

表4より、比較例では両端部のボルト穴全部にコンクリートが詰まっていない状態であったが、曲げ強度は規格値をクリアーした。遠心力成形性不良は両端部のみと推察される。
発明例では、全ボルト穴までコンクリート(モルタル)が充填され、また、圧縮強度が高くなることによってコンクリート自身の曲げ強度の増加と、ノロが発生しないのでモルタルと粗骨材及びモルタルとPC鋼棒の溝との付着力が強くなって、ひびわれ荷重及び破壊荷重まで高くなり、高品質のパイルの製造が可能となることが示される。
According to Table 4, in the comparative example, the concrete was not clogged in all the bolt holes at both ends, but the bending strength cleared the standard value. Centrifugal formability is inferred only at both ends.
In the invention example, concrete (mortar) is filled up to all bolt holes, and since the compressive strength is increased, the bending strength of the concrete itself is not increased, and no rotting occurs, so mortar and coarse aggregate and mortar and PC steel bar It is shown that the adhesive strength with the groove increases, cracking load and breaking load increase, and high quality piles can be manufactured.

Claims (6)

結合材、細骨材、粗骨材並びに高性能減水剤若しくは高性能AE減水剤から構成される遠心力コンクリート製品において、前記結合材が、セメント、並びにセメント100質量部に対して、シリカフュームを2〜15質量部及び/又は石膏類を無水物換算で多くても10質量部と、20μm以下に分級したフライアッシュを0.5〜8質量部としたものであり、かつ、単位結合材量を400〜650kg/m3、結合材水比を35質量%以下としたことを特徴とする遠心力コンクリート製品。 In a centrifugal concrete product composed of a binder, fine aggregate, coarse aggregate and a high-performance water reducing agent or a high-performance AE water reducing agent, the binding material contains 2 fume of silica per 100 parts by mass of cement and cement. 15 to 15 parts by mass and / or gypsum at most 10 parts by mass and fly ash classified to 20 μm or less is 0.5 to 8 parts by mass, and the amount of unit binder is Centrifugal concrete product characterized by 400 to 650 kg / m 3 and a binder water ratio of 35% by mass or less. セメント100質量部に対して、シリカフュームを3〜12質量部及び/又は無水石膏を1〜8質量部と、20μm以下に分級したフライアッシュを1〜6質量部としたことを特徴とする請求項1に記載の遠心力コンクリート製品。   The fly ash classified into 3 to 12 parts by mass of silica fume and / or 1 to 8 parts by mass of anhydrous gypsum and 1 to 6 parts by mass of fly ash classified to 20 µm or less with respect to 100 parts by mass of cement. The centrifugal concrete product according to 1. 単位結合材量を430〜600kg/m3、結合材水比を30〜16質量%としたことを特徴とする請求項1又は2に記載の遠心力コンクリート製品。 Centrifugal force concrete products according to the unit binder amount 430~600kg / m 3, to claim 1 or 2, characterized in that the binder water ratio 30-16 wt%. 結合材、細骨材、粗骨材並びに高性能減水剤若しくは高性能AE減水剤から構成されるコンクリートを遠心力成形して、保温又は常圧蒸気養生を行う遠心力コンクリート製品の製造方法において、前記結合材が、セメント、並びにセメント100質量部に対して、シリカフュームを2〜15質量部及び/又は石膏類を無水物換算で多くても10質量部と、20μm以下に分級したフライアッシュを0.5〜8質量部としたものであり、かつ、単位結合材量を400〜650kg/m3、結合材水比を35質量%以下としたことを特徴とする遠心力コンクリート製品の製造方法。 In a method for producing a centrifugal concrete product in which a concrete composed of a binder, a fine aggregate, a coarse aggregate, and a high-performance water reducing agent or a high-performance AE water reducing agent is subjected to centrifugal force molding, and heat insulation or atmospheric pressure steam curing is performed. The binder is 2 to 15 parts by mass of silica fume and / or 10 parts by mass of an amount of gypsum in terms of anhydride and 20 μm or less fly ash with respect to 100 parts by mass of cement and cement. A method for producing a centrifugal concrete product, characterized in that the amount is 5 to 8 parts by mass, the unit binder amount is 400 to 650 kg / m 3 , and the binder water ratio is 35% by mass or less. セメント100質量部に対して、シリカフュームを3〜12質量部及び/又は無水石膏を1〜8質量部と、20μm以下に分級したフライアッシュを1〜6質量部としたことを特徴とする請求項4に記載の遠心力コンクリート製品の製造方法。   The fly ash classified into 3 to 12 parts by mass of silica fume and / or 1 to 8 parts by mass of anhydrous gypsum and 1 to 6 parts by mass of fly ash classified to 20 µm or less with respect to 100 parts by mass of cement. 4. A method for producing a centrifugal concrete product according to 4. 単位結合材量を430〜600kg/m3、結合材水比を30〜16質量%としたことを特徴とする請求項4又は5に記載の遠心力コンクリート製品の製造方法。
6. The method for producing a centrifugal concrete product according to claim 4, wherein the unit binder amount is 430 to 600 kg / m 3 , and the binder water ratio is 30 to 16% by mass.
JP2005267394A 2005-09-14 2005-09-14 Centrifugal concrete product and manufacturing method thereof Active JP4593412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005267394A JP4593412B2 (en) 2005-09-14 2005-09-14 Centrifugal concrete product and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005267394A JP4593412B2 (en) 2005-09-14 2005-09-14 Centrifugal concrete product and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007076955A true JP2007076955A (en) 2007-03-29
JP4593412B2 JP4593412B2 (en) 2010-12-08

Family

ID=37937625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005267394A Active JP4593412B2 (en) 2005-09-14 2005-09-14 Centrifugal concrete product and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4593412B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247709A (en) * 2007-03-30 2008-10-16 Sumitomo Osaka Cement Co Ltd Centrifugally formed concrete product
JP2009073700A (en) * 2007-09-21 2009-04-09 Ube Ind Ltd High-strength concrete composition for centrifugal force molding and its manufacturing method
JP2009073697A (en) * 2007-09-21 2009-04-09 Ube Ind Ltd High-strength concrete composition for centrifugal force molding and its manufacturing method
JP2009073698A (en) * 2007-09-21 2009-04-09 Ube Ind Ltd High-strength concrete composition for centrifugal force molding and its manufacturing method
JP2009120433A (en) * 2007-11-14 2009-06-04 Ube Ind Ltd Sulphate-resisting concrete composition for centrifugal forming
JP2009234890A (en) * 2008-03-28 2009-10-15 Denki Kagaku Kogyo Kk Cement composition and mortar or concrete produced by using the same
JP2010143805A (en) * 2008-12-19 2010-07-01 Makoto Ichitsubo Method and apparatus for manufacturing colored solidified body, and the colored solidified body
JP2010143804A (en) * 2008-12-19 2010-07-01 Makoto Ichitsubo Method and apparatus for manufacturing solidified body, and the solidified body
JP2013053069A (en) * 2012-12-20 2013-03-21 Denki Kagaku Kogyo Kk Cement composition and mortar or concrete produced by using the same
CN103922669A (en) * 2014-03-27 2014-07-16 东南大学 Concrete for preparing prestress high-intensity concrete pipe pile and method for preparing pipe pile
CN104261782A (en) * 2014-09-18 2015-01-07 安徽芜湖飞琪水泥制品有限公司 Tubular pile cement and preparation method thereof and cement tubular pile and preparation method of cement tubular pile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907629B (en) * 2019-10-21 2020-10-13 武汉大学 Test method for calibrating constraint force and ultrasonic wave of concrete filled steel tubular column

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340947A (en) * 1989-07-07 1991-02-21 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JPH042642A (en) * 1990-04-17 1992-01-07 Shikoku Sogo Kenkyusho:Kk Cement composition for watertight concrete and production thereof
JPH04124054A (en) * 1990-09-14 1992-04-24 Jdc Corp Superhigh-strength concrete
JPH06157115A (en) * 1992-05-27 1994-06-03 Showa Denko Kk Extrusion molding method of inorganic molded body
JPH0920545A (en) * 1995-07-05 1997-01-21 Denki Kagaku Kogyo Kk Cement composition, cement cured material using the same and its production
JPH0940450A (en) * 1995-07-27 1997-02-10 Denki Kagaku Kogyo Kk Method for mixing concrete for centrifugal casting
JPH1160310A (en) * 1997-08-12 1999-03-02 Kawasaki Steel Corp Cement composition for centrifugal molding and centrifugally molded body using the same
JP2000280223A (en) * 1999-03-31 2000-10-10 Denki Kagaku Kogyo Kk Inner face-finishing material for manufacture of concrete pipe body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340947A (en) * 1989-07-07 1991-02-21 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JPH042642A (en) * 1990-04-17 1992-01-07 Shikoku Sogo Kenkyusho:Kk Cement composition for watertight concrete and production thereof
JPH04124054A (en) * 1990-09-14 1992-04-24 Jdc Corp Superhigh-strength concrete
JPH06157115A (en) * 1992-05-27 1994-06-03 Showa Denko Kk Extrusion molding method of inorganic molded body
JPH0920545A (en) * 1995-07-05 1997-01-21 Denki Kagaku Kogyo Kk Cement composition, cement cured material using the same and its production
JPH0940450A (en) * 1995-07-27 1997-02-10 Denki Kagaku Kogyo Kk Method for mixing concrete for centrifugal casting
JPH1160310A (en) * 1997-08-12 1999-03-02 Kawasaki Steel Corp Cement composition for centrifugal molding and centrifugally molded body using the same
JP2000280223A (en) * 1999-03-31 2000-10-10 Denki Kagaku Kogyo Kk Inner face-finishing material for manufacture of concrete pipe body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247709A (en) * 2007-03-30 2008-10-16 Sumitomo Osaka Cement Co Ltd Centrifugally formed concrete product
JP2009073700A (en) * 2007-09-21 2009-04-09 Ube Ind Ltd High-strength concrete composition for centrifugal force molding and its manufacturing method
JP2009073697A (en) * 2007-09-21 2009-04-09 Ube Ind Ltd High-strength concrete composition for centrifugal force molding and its manufacturing method
JP2009073698A (en) * 2007-09-21 2009-04-09 Ube Ind Ltd High-strength concrete composition for centrifugal force molding and its manufacturing method
JP2009120433A (en) * 2007-11-14 2009-06-04 Ube Ind Ltd Sulphate-resisting concrete composition for centrifugal forming
JP2009234890A (en) * 2008-03-28 2009-10-15 Denki Kagaku Kogyo Kk Cement composition and mortar or concrete produced by using the same
JP2010143805A (en) * 2008-12-19 2010-07-01 Makoto Ichitsubo Method and apparatus for manufacturing colored solidified body, and the colored solidified body
JP2010143804A (en) * 2008-12-19 2010-07-01 Makoto Ichitsubo Method and apparatus for manufacturing solidified body, and the solidified body
JP2013053069A (en) * 2012-12-20 2013-03-21 Denki Kagaku Kogyo Kk Cement composition and mortar or concrete produced by using the same
CN103922669A (en) * 2014-03-27 2014-07-16 东南大学 Concrete for preparing prestress high-intensity concrete pipe pile and method for preparing pipe pile
CN104261782A (en) * 2014-09-18 2015-01-07 安徽芜湖飞琪水泥制品有限公司 Tubular pile cement and preparation method thereof and cement tubular pile and preparation method of cement tubular pile

Also Published As

Publication number Publication date
JP4593412B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP4593412B2 (en) Centrifugal concrete product and manufacturing method thereof
Sharma et al. A comprehensive review on effects of mineral admixtures and fibers on engineering properties of ultra-high-performance concrete
JP4558569B2 (en) Ultra high strength fiber reinforced cement composition, ultra high strength fiber reinforced mortar or concrete, and ultra high strength cement admixture
JP5051579B2 (en) High fluidity super early strength admixture and high fluidity super early strength concrete
JP5713540B2 (en) Spraying method of ultra high strength fiber reinforced mortar and cured mortar
EP3307690A1 (en) Advanced fiber reinforced concrete mix designs
JP4620554B2 (en) Abrasion resistant concrete product and manufacturing method thereof
JP2010149402A (en) Manufacturing method of concrete composition and concrete molding
Sounthararajan et al. Research Article Micro Filler Effects of Silica-Fume on the Setting and Hardened Properties of Concrete
JP2009221053A (en) Cement composition
JP2566099B2 (en) Grout material for repairing concrete section
JP5378754B2 (en) Polymer cement composition
JP2001220201A (en) Fiber reinforced concrete
JP4376409B2 (en) Joint joint material for post tension prestressed concrete plate
JP4540161B2 (en) Water conduit / pipe
JP4167787B2 (en) Composite material
JP2005289657A (en) Method for producing high-strength centrifugally molded article and high-strength centrifugally molded article produced thereby
JP4165992B2 (en) Hydraulic composition
JP5169368B2 (en) Self-healing hydrated cured product and low-reactivity active cement material
JP2009227558A (en) Self-restorable high strength hydration hardened material
JP2007063103A (en) Quick hardening type high toughness fiber-reinforced ceramic material and method of formulating the same
JP2001226958A (en) Steel pipe concrete pile
JP2001207442A (en) Sheet pile
JP2001207577A (en) Embedded form
JP4113144B2 (en) Hume tube manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4593412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250