JP2007063103A - Quick hardening type high toughness fiber-reinforced ceramic material and method of formulating the same - Google Patents

Quick hardening type high toughness fiber-reinforced ceramic material and method of formulating the same Download PDF

Info

Publication number
JP2007063103A
JP2007063103A JP2005254871A JP2005254871A JP2007063103A JP 2007063103 A JP2007063103 A JP 2007063103A JP 2005254871 A JP2005254871 A JP 2005254871A JP 2005254871 A JP2005254871 A JP 2005254871A JP 2007063103 A JP2007063103 A JP 2007063103A
Authority
JP
Japan
Prior art keywords
quick
high toughness
toughness frc
cement
hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005254871A
Other languages
Japanese (ja)
Inventor
Shiro Tomoe
史郎 巴
Noboru Sakata
昇 坂田
Tetsushi Kanda
徹志 閑田
Yoshiki Hiraishi
剛紀 平石
Ichiro Fukuda
一郎 福田
Fumitoshi Sakuramoto
文敏 桜本
Takeyoshi Hishiki
剛啓 日紫喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2005254871A priority Critical patent/JP2007063103A/en
Publication of JP2007063103A publication Critical patent/JP2007063103A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To establish a technique for a repairing and reinforcement process by placing or spraying which is capable of attaining a prescribed effect with minimum curing to early develop the performance of high toughness fiber-reinforced ceramic (FRC) and is effective for reinforced stiffness, the suppression of the occurrence of crack and the improvement of the durability of an existing structure by virtue of the micronization of crack. <P>SOLUTION: In the crack dispersion type high toughness FRC material obtained by blending PVA short fibers to a cement-based formulation material and showing ≥0.2% tensile strain in the tensile test, the tensile strain in a material age of 1-5 days satisfies a required value of ≥0.2% by adding a hardening accelerator consisting essentially of anhydrous gypsum in a ratio by weight of 1/1000-1/3 to cement to be used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、土木及び建築分野において、補修・補強用材料及び構造材料として用いられる急硬型高靭性FRC材料ならびにその調合方法に関するものである。   The present invention relates to a rapid-hardening type high-toughness FRC material used as a repair / reinforcing material and a structural material in the field of civil engineering and architecture, and a blending method thereof.

出願人は先に、短繊維を配合し、コンクリート、モルタル等を練り混ぜ、3次元ランダム配向させることにより、引張強度、曲げ強度を向上させる一般的にHPFRCやECCと呼ばれるPVA繊維補強セメント複合材料を下記特許文献に示すように出願した。
特開平200−7395号公報
The applicant first blended short fibers, kneaded concrete, mortar, etc., and made three-dimensional random orientation to improve tensile strength and bending strength. PVA fiber reinforced cement composite material generally called HPFRC or ECC Was filed as shown in the following patent document.
Japanese Patent Laid-Open No. 200-7395

この特許文献1は、引張試験において。0.2%以上の引張ひずみを示すひびわれ分散型の高靭性FRC材料ならびにその製造方法に関するものである。   This patent document 1 is in a tensile test. The present invention relates to a crack-dispersed high toughness FRC material exhibiting a tensile strain of 0.2% or more and a method for producing the same.

前記FRC材料は、配合するPVA繊維の強度、寸法および配合量とセメント系マトリックスの材料配合とを適切に組み合わせることにより、硬化体にひびわれが生じても、繊維により架橋された微細なひびわれが順次発生するというメカニズムによって、見かけ上は非常に大きいひずみが生じても、荷重に耐えることができる。   In the FRC material, by properly combining the strength, dimensions and blending amount of the PVA fiber to be blended with the material composition of the cementitious matrix, fine cracks cross-linked by the fiber are sequentially formed even if the hardened body is cracked. Due to the mechanism of generation, even if an apparently large strain occurs, it can withstand the load.

このようなひびわれ分散型のPVA繊維補強セメント複合材料を「高靱性FRC材料」と称する。この高靱性FRC材料はその大きな変形性能やひびわれが微細に分散する特徴を活かして、道路床版の補強や構造部材および補修材等に広く利用が見込まれている。   Such a crack-dispersed PVA fiber reinforced cement composite is referred to as a “high toughness FRC material”. This high toughness FRC material is expected to be widely used for reinforcement of road slabs, structural members, repair materials, and the like, taking advantage of its large deformation performance and the feature that cracks are finely dispersed.

高靭性FRC材料の引張性能を発揮させるためには、十分な硬化時間と養生期間が必要であることが分かっており、特に養生不足や硬化が不十分な状態においては、引張性能が発揮できないことが知られている。   It is known that sufficient curing time and curing period are necessary to demonstrate the tensile performance of high toughness FRC material, especially when the curing performance is insufficient or the curing is insufficient. It has been known.

実際、新設の実橋にて、施工を行った時は2週間の養生期間を必要とした。   In fact, when construction was performed on a new bridge, a two-week curing period was required.

吹付施工の高靭性FRCでは、養生剤を塗布する等の処置が必要不可欠であり、高靭性FRC材料が性能を発揮するまでの間は外力や衝撃が加わらない様十分な配慮が必要である。   In high-toughness FRC of spray construction, treatment such as application of a curing agent is indispensable, and sufficient consideration is necessary so that external force and impact are not applied until the high-toughness FRC material exhibits its performance.

それに加えて、高靭性FRC材料は繊維の補強効果を得るためや乾燥収縮を抑えるために種々の混和剤を使用している。これら種々の混和剤の影響により凝結始発時間や終結時間が一般のモルタルに比較して、遅延する傾向が認められた。このことは、硬化するために十分な養生時間が必要であることを意味している。   In addition, high toughness FRC materials use various admixtures to obtain fiber reinforcing effects and to suppress drying shrinkage. Due to the influence of these various admixtures, a tendency to delay the initial setting time and the final setting time was observed as compared with general mortar. This means that sufficient curing time is required to cure.

一方、高靱性FRC材料を用いる補修・補強工法は、高靱性FRC材料の変形能力及びひび割れの分散性能を活かした補修・補強工法であり、剛性の向上、ひびわれの抑制、ひびわれの微細化による中性化の抑制による耐久性向上の効果が考えられる。   On the other hand, the repair / reinforcement method using high-toughness FRC material is a repair / reinforcement method that takes advantage of the deformability of high-toughness FRC material and the ability to disperse cracks. The effect of improving the durability due to the suppression of sexualization is considered.

高靭性FRC材料を用いる補修・補強工法には、施工する部位により、主に床版に用いられる打込み工法と壁面等に用いられる吹付工法が考えられる。   As repair / reinforcement methods using high-toughness FRC materials, there are a driving method mainly used for floor slabs and a spraying method used for wall surfaces depending on the construction site.

しかし、現在使用中の構造物の補修・補強等に高靭性FRC材料を適用するには、施工箇所によっては養生期間中その構造体の使用を中断する必要があるため十分な養生時間をとる事ができない場合があり、高靱性FRCの使用が効果的であっても、この事情のため補修・補強材として適用範囲が限られてしまっている。   However, in order to apply high-toughness FRC material to repair and reinforcement of structures currently in use, depending on the construction site, it is necessary to interrupt the use of the structure during the curing period, so take sufficient curing time. However, even if the use of high-toughness FRC is effective, the scope of application as a repair / reinforcement material is limited due to this situation.

なお、養生期間を短縮するために、単に従来の高靱性FRC材料に多くの急硬材を添加したのでは、材料がすぐに硬化を初めてしまい、施工することが不可能となる。   In order to shorten the curing period, simply adding many rapid hardening materials to the conventional high-toughness FRC material will cause the material to harden immediately, making it impossible to construct.

また、高靱性FRCは単純に硬化が速く進行すればいいだけではなく、その引張に対する変形性能が重要であるので、引張性能を発現させる必要がある。   In addition, the high toughness FRC is not only required to cure rapidly, but also the deformation performance with respect to the tension is important, so that it is necessary to develop the tensile performance.

本発明の目的は前記不都合を解決し、セメント系調合材料にPVAの短繊維を配合し、引張試験において0.2%以上の引張ひずみを示すひびわれ分散型の高靱性FRC材料において、養生期間を短縮化、すなわち、1日〜5日の短時間で硬化させると同時に所要の引張性能を発揮させることができる急硬型高靭性FRC材料ならびにその調合方法を提供することにある。   The object of the present invention is to solve the above-mentioned inconveniences, in which a short dispersion fiber of PVA is blended in a cementitious compound material, and in a crack-dispersed high toughness FRC material that exhibits a tensile strain of 0.2% or more in a tensile test, An object of the present invention is to provide a rapid hardening type high toughness FRC material that can be shortened, that is, cured in a short time of 1 to 5 days, and at the same time, can exhibit a required tensile performance, and a blending method thereof.

本発明は前記目的を達成するため、急硬型高靭性FRC材料としては、セメント系調合材料にPVAの短繊維を配合し、引張試験において0.2%以上の引張ひずみを示すひびわれ分散型の高靱性FRC材料において、使用するセメントに対して、カルシウムアルミネートと無水せっこうを主成分とする急硬材を重量比で1/1000〜1/3を加え、材齢1日〜5日にて引張ひずみが前記引張試験において0.2%以上という前記所要値を満たすこととしたことを要旨とするものである。   In order to achieve the above-described object, the present invention provides a rapid-hardening high-toughness FRC material in which a short dispersion fiber of PVA is blended in a cement-based compounding material and a crack dispersion type that exhibits a tensile strain of 0.2% or more in a tensile test. In high toughness FRC material, add 1/1000 to 1/3 by weight ratio of quick hardwood mainly composed of calcium aluminate and anhydrous gypsum to cement used, and age 1-5 Thus, the gist is that the tensile strain satisfies the required value of 0.2% or more in the tensile test.

また、急硬型高靭性FRC材料の調合方法としては、第1に、セメント系調合材料にPVAの短繊維を配合し、引張試験において0.2%以上の引張ひずみを示すひびわれ分散型の高靱性FRC材料において、使用するセメントに対して、カルシウムアルミネートと無水せっこうを主成分とする急硬材を重量比で1/1000〜1/3を添加するに際し、ミキサーに、まず、結合材、骨材、急硬材とともに凝結遅延剤および配合水を投入して練り混ぜること、または、ミキサーに、まず、結合材、骨材および配合水を投入して練り混ぜ、その後、練上り直前や繊維投入前に急硬材を添加とすること、第2に、セメント系調合材料にPVAの短繊維を配合し、引張試験において0.2%以上の引張ひずみを示すひびわれ分散型の高靱性FRC材料において、使用するセメントに対して、カルシウムアルミネートと無水せっこうを主成分とする急硬材を重量比で1/1000〜1/3を添加し急硬材とともに凝結遅延剤を添加することを要旨とするものである。   In addition, as a method of blending the rapid hardening type high toughness FRC material, first, a short fiber of PVA is blended in a cement-based blended material, and a crack-dispersed type high strength which exhibits a tensile strain of 0.2% or more in a tensile test. In the toughness FRC material, when adding 1/1000 to 1/3 by weight ratio of a rapid hardening material mainly composed of calcium aluminate and anhydrous gypsum with respect to the cement to be used, first, a binder is added to the mixer. , Add a setting retarder and blended water together with aggregate and rapid hardener, or knead, or first add binder, aggregate and blended water to mixer and knead. Addition of rapid hardening material before fiber is added. Secondly, cracked dispersion type high toughness FRC, in which short fiber of PVA is blended in cementitious compounding material and tensile strain of 0.2% or more is shown in tensile test. Material In addition, to the cement to be used, 1/1000 to 1/3 by weight ratio of a rapid hardening material mainly composed of calcium aluminate and anhydrous gypsum is added and a setting retarder is added together with the rapid hardening material. It is a summary.

本発明は、単に従来の高靱性FRC材料に急硬材を添加するだけでは、材料がすぐに硬化を初めてしまい、施工することが不可能となるので、施工時間を確保するためには急硬材の種類、急硬材の割合、凝結遅延剤の選択及び製造法を総合的に検討し、工夫を凝らしたものである。   In the present invention, simply adding a hard material to a conventional high-toughness FRC material causes the material to harden immediately and cannot be applied. It has been devised by comprehensively examining the types of materials, the ratio of hardened materials, the selection of setting retarders and the production method.

また、高靱性FRCはその引張に対する変形性能が重要であるので、単純に硬化が速く進行すればいいだけではなく、引張性能を発現させる必要があり、そのためには、材料の選択、製造方法、施工方法等検討に工夫を凝らしてものである。   Moreover, since the deformation performance with respect to the tension is important for the high toughness FRC, it is not only necessary for the curing to proceed rapidly, but also it is necessary to develop the tensile performance. It is something that has been devised to examine the construction method.

請求項1記載の本発明によれば、セメント系調合材料にPVAの短繊維を配合し、引張試験において0.2%以上の引張ひずみを示すひびわれ分散型の高靱性FRC材料において、使用するセメントに対して、カルシウムアルミネートと無水せっこうを主成分とする急硬材を重量比で1/1000〜1/3を加えることで、施工条件に応じて1日〜5日の材齢において前記引張ひずみが0.2%以上を示すものを得ることができる。   According to the first aspect of the present invention, a cement to be used in a crack-dispersion type high toughness FRC material in which a short fiber of PVA is blended in a cementitious compound material and exhibits a tensile strain of 0.2% or more in a tensile test. On the other hand, by adding 1/1000 to 1/3 by weight ratio of a hardened material mainly composed of calcium aluminate and anhydrous gypsum, the material age is 1 to 5 days depending on the construction conditions. A material having a tensile strain of 0.2% or more can be obtained.

請求項2および請求項3記載の本発明によれば、材料がすぐに硬化を初めてしまい、施工することが不可能となることを防止できるもので、施工時間を確保することができる。施工時においては、ミキサー中にて硬化してしまわず、打込み並びに吹付けのそれぞれの施工法に対応した施工可能時間を確保できる。   According to the second and third aspects of the present invention, it is possible to prevent the material from being hardened for the first time and making it impossible to perform the construction, and the construction time can be secured. At the time of construction, it does not harden in the mixer, and it is possible to secure a workable time corresponding to each construction method of driving and spraying.

以上述べたように本発明の急硬型高靭性FRC材料ならびにその調合方法は、最小限の養生にて、所定の効を得ることができ、その結果、早期の高靭性FRCの性能発揮を可能とし、剛性補強やひびわれ抑制、ひびわれの微細化による既存構造体の耐久性の向上に効果のある打込みまたは吹付けによる補修・補強工法に関する技術の確立を可能とするものである。   As described above, the rapid hardening type high toughness FRC material of the present invention and the blending method thereof can obtain a predetermined effect with the minimum curing, and as a result, the performance of the early high toughness FRC can be exhibited. Therefore, it is possible to establish a technique related to repair / reinforcement method by driving or spraying, which is effective for improving the durability of existing structures by reinforcing the rigidity, suppressing cracks, and miniaturizing cracks.

以下、本発明の実施の形態を詳細に説明する。本発明において、高靭性FRC材料を得るための材料配合は、基本的に特許文献1に記載されたものが適用されるが、これに加えて、各種の混和剤、混和材、骨材成分等を配合する。   Hereinafter, embodiments of the present invention will be described in detail. In the present invention, the material composition for obtaining the high toughness FRC material is basically the one described in Patent Document 1, but in addition to this, various admixtures, admixtures, aggregate components, etc. Is blended.

基本的には、下記〔M1〕の条件を満たすセメント調合材料に下記〔F1〕の条件を満たすPVA短繊維(ビニロン繊維)を1〜3VOL.%(重量換算で13〜39kg/m3)の配合量で配合するが、それに対して、セメント調合材料のポルトランドセメントの重量比1から25%を急硬材等に置き換え、すなわち、急硬材をセメント重量比で1/1000〜1/3の範囲で添加する。   Basically, PVA short fibers (vinylon fibers) satisfying the following [F1] are added to 1 to 3 VOL. % (13 to 39 kg / m3 in terms of weight), but the weight ratio 1 to 25% of the Portland cement as a cement preparation material is replaced with a hardened material or the like, that is, Add in the range of 1/1000 to 1/3 by cement weight ratio.

〔M1〕〈セメント系調合材料)
水結合材比:25%以上80%以下
骨材成分と結合材の重量比:1.5以下(0を含む)
シリカ分とセメントの重量比:0.5以下(0を含む)
単位水量:250〜450kg/m
高性能AE減水剤量30kg/m以下
[急硬材]
急硬材とセメントの重量比:1/1000〜1/3(置換比率0.1%〜25%)
〔F1〕(ビニロン繊維)
繊維径:50μm以下
繊維長:5〜20mm
繊維引張強度:1500〜2400MPa
[M1] <Cement-based compounding material)
Water binder ratio: 25% or more and 80% or less Weight ratio of aggregate component and binder: 1.5 or less (including 0)
Silica content and cement weight ratio: 0.5 or less (including 0)
Unit water volume: 250-450 kg / m 3
High performance AE water reducing agent amount 30kg / m 3 or less [quickly hardwood]
Rapid hardwood to cement weight ratio: 1/1000 to 1/3 (replacement ratio 0.1% to 25%)
[F1] (Vinylon fiber)
Fiber diameter: 50 μm or less Fiber length: 5-20 mm
Fiber tensile strength: 1500-2400 MPa

ここで、〔M1〕のセメント系調合材料のうち、結合材としては普通ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、早強ポルトランドセメント等を使用することができる。これらポルトランドセメントに加えてシリカ系粉末(人工ポゾラン)を使用することができる。シリカ系粉末としては、シリカフューム、フライアッシュ、各スラグ粉などが適用できる。したがって、前記〔M1〕において、水結合材≧25%、骨材成分と結合材比≦1.5と規定する「結合材」とはシリカ系微粉末を含む場合には「ポルトランドセメント+シリカ系微粉+急硬材」を意味する。引張り伸び性能を重視するなら、水結合材比は高い程よく、圧縮強度を重視するなら水結合材比は低い方が良い。両者のバランスをとるためには、中間値の40%以上が良い。   Here, among the cement-based mixed materials of [M1], normal Portland cement, moderately hot Portland cement, low heat Portland cement, early strong Portland cement and the like can be used as the binder. In addition to these Portland cements, silica-based powders (artificial pozzolans) can be used. Silica fume, fly ash, each slag powder, etc. can be applied as the silica-based powder. Therefore, in the above [M1], the “binding material” defined as water binder ≧ 25%, aggregate component and binder ratio ≦ 1.5 includes “Portland cement + silica system” when silica-based fine powder is included. It means “fine powder + quick-hardening material”. The higher the water binder ratio, the better the tensile elongation performance, and the lower the water binder ratio, the compressive strength. In order to balance both, 40% or more of the intermediate value is good.

セメントを早期に凝結させる材料には、瞬時に凝結させる吹付用途に使用する急結剤が知られているがそれより凝結開始時間の長い一般に急硬材(剤)と呼ばれる材料で、主成分がカルシウムアルミネートと無水せっこうのものが使用できる。このような急硬材としては、例えば電気化学工業株式会社の商品名「ビフォーム」が高靱性FRC材料の早期の強度発現性に優れており、セメント重量比で1/1000〜1/3の範囲にて配合する。   For materials that cause cement to set early, quick setting agents used for spraying applications that cause immediate setting are known, but materials that are generally called quick-hardening materials (agents) that have a longer setting start time are the main components. Calcium aluminate and anhydrous gypsum can be used. As such a quick hard material, for example, the trade name “Bifoam” of Denki Kagaku Kogyo Co., Ltd. is excellent in the early strength development of the high toughness FRC material, and is 1/1000 to 1/3 in terms of cement weight ratio. Mix in the range.

急硬材の量は圧縮強度の早期発現に関係し、量が増えるほど圧縮強度が大きくなる。圧縮強度が大きくなると高靱性FRC材料の特徴である微細なひび割れが入りにくくなるため、急硬材(剤)は1/1000〜1/3が効果的である。条件を満たす急硬材(剤)の添加量は150g/m〜600kg/mである。 The amount of the hardened material is related to the early development of the compressive strength, and the compressive strength increases as the amount increases. As the compressive strength increases, fine cracks, which are the characteristics of the high toughness FRC material, are difficult to enter. Therefore, 1/1000 to 1/3 is effective for the hardened material (agent). The amount of the quick hard material (agent) that satisfies the condition is 150 g / m 3 to 600 kg / m 3 .

骨材成分としては、最大粒径0.8mmの細粒体を使用するのが好ましく、特に平均粒径が0.4mm以下のものが良い。この条件を満たす細粒体であれば硅砂や石灰石粉等の任意のものを骨材成分として使用できる。この細粒体と結合材との重量比(S/C)が1.5以下となるようにこれらを配合するのが良い。   As the aggregate component, it is preferable to use fine particles having a maximum particle size of 0.8 mm, and those having an average particle size of 0.4 mm or less are particularly preferable. Any fine granule satisfying this condition can be used as an aggregate component such as cinnabar and limestone powder. These are preferably blended so that the weight ratio (S / C) between the fine particles and the binder is 1.5 or less.

混和剤としては、高性能AE減水剤、増粘剤、収縮低減剤などが使用できる。高性能AE減水剤としては、ポリカルボン酸系、ポリエーテル系、ナフタレン系、メラミン系、アミノスルホン酸系等のものが使用できる。この中でもポリカルボン酸系またはポリエーテル系のものが好ましく、実績もある。増粘剤は公知の水溶性高分子系のものが使用できる。特に微生物醗酵によるバイオサッカライド系の増粘剤の使用が好ましい。収縮低減剤や膨張剤を添加することで乾燥収縮量を小さく抑えることが可能となる。   As the admixture, a high performance AE water reducing agent, a thickening agent, a shrinkage reducing agent and the like can be used. As the high performance AE water reducing agent, polycarboxylic acid type, polyether type, naphthalene type, melamine type, aminosulfonic acid type and the like can be used. Of these, polycarboxylic acid-based or polyether-based ones are preferable and have a track record. A known water-soluble polymer type thickener can be used. In particular, the use of a biosaccharide thickener by microbial fermentation is preferred. By adding a shrinkage reducing agent or a swelling agent, the amount of drying shrinkage can be kept small.

〔F1〕の条件を満たすPVA短繊維としては、ポリビニールアルコール樹脂を原料として製造されたコンクリートと同等以上の弾性係数を有する短繊維であることが好ましい。PVA短繊維の配合量が1VOL%未満では、ひびわれ発生後の耐力が十分ではない。他方PVA短繊維の配合量が3.0VOL%を超えるような多量となると、施工上必要な流動性を満たすことが困難となる。単位重量でのPVA短繊維の配合量としては13kg〜39kgの範囲とすればよい。   PVA short fibers that satisfy the condition [F1] are preferably short fibers having an elastic modulus equal to or greater than that of concrete produced using polyvinyl alcohol resin as a raw material. When the blending amount of the PVA short fibers is less than 1 VOL%, the yield strength after cracking is not sufficient. On the other hand, when the amount of the PVA short fibers exceeds 3.0 VOL%, it becomes difficult to satisfy the fluidity necessary for construction. What is necessary is just to set it as the range of 13 kg-39 kg as a compounding quantity of the PVA short fiber in unit weight.

〔M1〕の条件を満たすセメント系調合材料と〔F1〕の条件を満たすPVA短繊維とを混練を行い、急硬型の高靱性FRCを製造する。   The cement-based compounded material satisfying the condition of [M1] and the PVA short fiber satisfying the condition of [F1] are kneaded to produce a rapid hardening type high toughness FRC.

例えば、下記(1)〜(4)および(5)の手順を経て練り混ぜを行った場合に、材齢1日から5日間にて、目標とする引張ひずみ0.2%以上のひびわれ分散型の高靱性FRC材料が得られることが分かった。   For example, when kneading is carried out through the following procedures (1) to (4) and (5), the crack dispersion type having a target tensile strain of 0.2% or more in the material age from 1 day to 5 days It was found that a high toughness FRC material was obtained.

(1)結合材、急硬材、骨材および配合水を練り混ぜる。
ただし施工時間を調整するために(2)と(3)の間や(5)のタイミングで急硬材を添加する。施工条件に応じてさらに凝結遅延剤を添加することで施工時間を確保する。
(2)高性能AE減水剤を添加して練り混ぜる。
(3)増粘剤を添加して練り混ぜる。
(4)PVA短繊維を添加して練り混ぜる。
さらに、必要に応じて
(5)AE高性能減水剤および急硬材を添加する。
(1) Knead the binder, the hardened material, the aggregate and the mixed water.
However, in order to adjust the construction time, the hardened material is added between (2) and (3) or at the timing of (5). The construction time is secured by adding a setting retarder according to the construction conditions.
(2) Add high-performance AE water reducing agent and mix.
(3) Add a thickener and mix.
(4) Add PVA short fibers and knead.
Furthermore, (5) AE high-performance water reducing agent and rapid hardening material are added as necessary.

すなわち、ミキサーにまず(1)結合材、急硬材、骨材および配合水を投入して練り混ぜる。このとき急硬材は注水後に急速に硬化が進行するため、必要に応じて凝結遅延剤を使用し施工可能時間を確保したり、急硬材の添加タイミングを練上り直前や繊維投入前に変更することにより施工可能時間を確保する。   That is, first, (1) a binder, a hardened material, an aggregate, and mixed water are put into a mixer and kneaded. At this time, the hardened material hardens rapidly after pouring, so if necessary, use a setting retarder to ensure the workable time, or change the addition timing of the hardened material immediately before finishing or before adding the fiber By doing this, the workable time will be secured.

手順(2)のAE減水剤は、モルタルを所定の状態にするために添加する。   The AE water reducing agent in the procedure (2) is added to bring the mortar into a predetermined state.

増粘剤およびPVA短繊維を添加して混練すれば、繊維が均一に分散した混練物を得ることができる。しかし、増粘剤を添加して混練した後、繊維を添加して混練を行うことがより、望ましい。これは、増粘剤の粘性が繊維の分散に寄与しているためであり、順序が逆の場合には、繊維の分散性が前者より劣るようになる。まず手順(3)により増粘剤を添加して練り混ぜ、ついで、手順(4)によりPVA繊維を練り混ぜするのがよい。手順(5)は、施工条件に応じて決定される。施工時間をできるだけ長く取るために急硬性の高い材料の急硬材の場合には、繊維を分散させた後添加し、ただちに打込みや吹付け等の施工を行う。手順(5)において投入するAE減水剤は、所定のワーカビリティを得るために添加するもので、必要条件に応じて添加する   If a thickener and PVA short fibers are added and kneaded, a kneaded product in which fibers are uniformly dispersed can be obtained. However, it is more desirable to add fibers and knead after adding a thickener. This is because the viscosity of the thickener contributes to fiber dispersion. When the order is reversed, the dispersibility of the fiber becomes inferior to that of the former. First, the thickener is added and kneaded according to the procedure (3), and then the PVA fiber is kneaded according to the procedure (4). Procedure (5) is determined according to the construction conditions. In order to make the construction time as long as possible, in the case of a quick-hardened material having a high hardenability, it is added after the fibers are dispersed, and construction such as driving or spraying is performed immediately. The AE water reducing agent to be added in the procedure (5) is added in order to obtain a predetermined workability, and is added according to necessary conditions.

凝結遅延剤は施工時間を確保するために添加する。使用量はセメント+急硬材量に対して重量比0〜5%の範囲で添加する。凝結遅延剤は使用する急硬材により所定の凝結遅延剤を使用する。炭酸カリウム、酒石酸、クエン酸を主成分としたものが使用できる。例えば電気化学工業株式会社製の「D-300」が使用できる。凝結遅延剤は急硬材と同時に添加することを基本とする。   A setting retarder is added to secure the construction time. The amount to be used is added in a range of 0 to 5% by weight with respect to the amount of cement and rapid hardening material. As the setting retarder, a predetermined setting retarder is used depending on the rapid hardening material to be used. What has potassium carbonate, tartaric acid, and citric acid as a main component can be used. For example, “D-300” manufactured by Denki Kagaku Kogyo Co., Ltd. can be used. The setting retarder is basically added at the same time as the rapid hardening material.

以上の手順により、急硬材の影響により、早期に引張ひずみ性能も0.2%以上を発揮する急硬型高靱性FRC材料の製造が施工時間を確保しながら可能となる。   According to the above procedure, due to the influence of the hardened material, it becomes possible to manufacture a quick-hardened high-toughness FRC material that exhibits a tensile strain performance of 0.2% or more at an early stage while securing the construction time.

施工を行なうには、打込施工と吹付施工のいずれも可能である。施工方法により、確保すべき施工時間が異なる。   To perform the construction, either driving construction or spraying construction is possible. The construction time to be secured varies depending on the construction method.

本発明の急硬型高靭性FRCは練上がり後ただちに打込み施工を行う。   The rapid-hardening type high toughness FRC of the present invention is driven in immediately after being kneaded.

吹付施工は主に柱面や壁面等の垂直面、梁底やスラブ底のような見上げ面に適用する。急硬型高靱性FRC材料が練上り後ただちに吹付施工を行う。   Spray construction is mainly applied to vertical surfaces such as column surfaces and wall surfaces, and looking up surfaces such as beam bottoms and slab bottoms. Immediately after the rapid hardening type high toughness FRC material is prepared, spraying is performed.

1日から5日で引張性能を発現する急硬型高靱性FRCを使用した以上のような施工によって、既存構造物に対してわずかな養生期間にて、高靱性FRC材料の優れた性質を活かした補修・補強工法が可能となる。   By using the rapid-hardening high-toughness FRC that exhibits tensile performance in 1 to 5 days, the excellent properties of the high-toughness FRC material can be applied to existing structures in a short curing period. Repair and reinforcement methods are possible.

(試験結果例)
急硬型高靱性FRCの配合は打ち込み用にセメント量の1/3から1/999の量の急硬材を添加したもので下記表2にその配合を示す。製造法の(1)から(4)の手順にて製造したものである。
(Example of test results)
The quick hardening type high toughness FRC is prepared by adding a hardened material in an amount of 1/3 to 1/999 of cement for driving. Table 2 shows the composition. It is manufactured by the procedures (1) to (4) of the manufacturing method.

Figure 2007063103
Figure 2007063103

図1に示したものは、表1における急硬材を添加した急硬型高靱性FRCの材齢1日の引張性能と従来型の高靱性複合材料の引張り性能を比較したものである。この表2は従来型と急硬型のA配合、B配合の引張り性能をの比較を表したものである   FIG. 1 shows a comparison of the tensile performance of a quick-hardening high-toughness FRC with the addition of the quick-hardening material in Table 1 on the basis of the age of one day and that of a conventional high-toughness composite material. Table 2 shows a comparison of the tensile performance of the conventional and quick-hardening type A blends and B blends.

Figure 2007063103
Figure 2007063103

図1は、図2に示すようなダンベル型の試験片を作製しそれを直接に引張りその時の試験片のひずみと断面にかかる応力を示したものである。   FIG. 1 shows a dumbbell-type test piece as shown in FIG. 2, which is directly pulled and shows the strain of the test piece and the stress applied to the cross section at that time.

図1のグラフの描く図形とX軸とで囲まれた面積が大きいほど変形性能や靱性が高い。引張り性能は降伏点より大きなひずみとなる領域で、引張降伏強度と同じ値に達した点を終局ひずみとし、その大きさが大きいほど引張変形性能に優れていると判断し、その目標値は0.2%以上である。終局ひずみは材齢1日でA配合8.2%およびB配合7.6%であり、非常に優れた値を示した。   The larger the area surrounded by the figure drawn by the graph of FIG. 1 and the X axis, the higher the deformation performance and toughness. Tensile performance is a region where the strain is larger than the yield point. The ultimate strain is the point where the tensile yield strength reaches the same value. The larger the value, the better the tensile deformation performance. The target value is 0. .2% or more. The ultimate strain was 8.2% for the A composition and 7.6% for the B composition at a material age of 1 day, indicating a very excellent value.

A配合の凝結遅延剤の量を0.2%(対単位セメント量)増量した急硬型高靱性FRC材料(以下C配合とする)とA配合の高靱性FRC材料の練上り後の経時とその性状をまとめたものが下記表3である。   The time after post-processing of the rapid hardening type high toughness FRC material (hereinafter referred to as “C”) increased by 0.2% (the amount of cement per unit amount) of the setting retarder of “A” and the high toughness FRC material of “A” Table 3 below summarizes the properties.

Figure 2007063103
Figure 2007063103

この表3に示すように施工時間を10分延長することが可能となり、凝結遅延剤での施工時間の確保が可能である。   As shown in Table 3, the construction time can be extended by 10 minutes, and the construction time can be secured with a setting retarder.

図3は、従来型の高靱性FRCとA配合の急硬型高靱性FRCとの凝結始発および終結時間を示した例である。   FIG. 3 is an example showing the initial and final setting times of a conventional high toughness FRC and a rapid hardening high toughness FRC containing A.

この図3から知見できるように、従来の高靱性FRCは添加混和剤が多いため、硬化が遅く1日では脱型ができない場合が多い。従来型の高靱性FRCでは性能を発現するために十分な養生時間が必要である。   As can be seen from FIG. 3, the conventional high toughness FRC has a large amount of additive admixture, so that it is often hard to demold in one day. In the conventional high toughness FRC, sufficient curing time is required to exhibit performance.

図4、図5、図6は、更に急硬材の添加量を減少させて急硬材の添加量を重量比でセメントに対して1/999にしたとき(D配合)の急硬型の高靱性FRCと従来型の高靱性FRCとの性状を比較したものである。   4, 5, and 6 show the rapid hardening type when the addition amount of the rapid hardening material is further reduced to 1/999 of the rapid hardening material with respect to the cement (weight ratio D). The properties of the high toughness FRC and the conventional high toughness FRC are compared.

図4は、フレッシュ時の性状としてスランプフローの値と経時変化を示したものである。図5は、D配合の硬化後の性状として材齢1、2、3日での圧縮試験結果と引張性能の一例を示したものである。材齢1日で引張り降伏強度において大きな差異が認められないが、引張りひずみに対して効果が認められた。また、圧縮強度に対しても効果が認められた。   FIG. 4 shows the slump flow value and changes with time as the properties at the time of fresh. FIG. 5 shows an example of compression test results and tensile performance at ages 1, 2, and 3 days as properties after curing of the D blend. There was no significant difference in tensile yield strength at one day of age, but an effect on tensile strain was observed. Moreover, the effect was recognized also with respect to compressive strength.

急硬型高靱性FRCの材齢1日の引張性能と従来型の高靱性複合材料の引張り性能を比較したグラフである。It is the graph which compared the tensile performance of the quick hardening type high toughness FRC material age 1 day, and the tensile performance of the conventional high toughness composite material. 引張試験方法を示す説明図である。It is explanatory drawing which shows a tension test method. 従来型の高靱性FRCとA配合の急硬型高靱性FRCとの凝結始発および終結時間を示したグラフである。表1はA配合、B配合の練上りからの経過時間とその時の材料の性状を表したものであるIt is the graph which showed the setting start time and the end time of the conventional high toughness FRC and the rapid hardening type high toughness FRC of A composition. Table 1 shows the elapsed time from the blending of A blend and B blend and the properties of the material at that time. 急硬材の添加量を減少させて急硬材の添加量を重量比でセメントに対して1/999にしたとき(D配合)の急硬型の高靱性FRCと従来型の高靱性FRCとの性状を比較したもので、フレッシュ時の性状としてスランプフローの値と経時変化を示したグラフである。When the addition amount of the rapid hardening material is reduced so that the addition amount of the rapid hardening material is 1/999 with respect to the cement (weight ratio D), the rapid hardening type high toughness FRC and the conventional high toughness FRC FIG. 6 is a graph showing the slump flow value and the change over time as the fresh properties. 急硬材の添加量を減少させて急硬材の添加量を重量比でセメントに対して1/999にしたとき(D配合)の急硬型の高靱性FRCと従来型の高靱性FRCとの性状を比較したもので、材齢1、2、3日での圧縮試験結果を示すグラフである。When the addition amount of the rapid hardening material is reduced so that the addition amount of the rapid hardening material is 1/999 with respect to the cement (weight ratio D), the rapid hardening type high toughness FRC and the conventional high toughness FRC It is a graph which shows the compression test result in material age 1, 2, and 3 days. 急硬材の添加量を減少させて急硬材の添加量を重量比でセメントに対して1/999にしたとき(D配合)の急硬型の高靱性FRCと従来型の高靱性FRCとの性状を比較したもので、材齢1日での引張性能を示したグラフである。When the addition amount of the rapid hardening material is reduced so that the addition amount of the rapid hardening material is 1/999 with respect to the cement (weight ratio D), the rapid hardening type high toughness FRC and the conventional high toughness FRC It is the graph which compared the property of, and showed the tensile performance in material age 1 day.

Claims (3)

セメント系調合材料にPVAの短繊維を配合し、引張試験において0.2%以上の引張ひずみを示すひびわれ分散型の高靱性FRC材料において、使用するセメントに対して、カルシウムアルミネートと無水せっこうを主成分とする急硬材を重量比で1/1000〜1/3を加え、材齢1日〜5日にて引張ひずみが前記引張試験において0.2%以上という前記所要値を満たすこととしたことを特徴とする急硬型高靭性FRC材料。   Calcium aluminate and anhydrous gypsum for the cement to be used in the cracked dispersion type high toughness FRC material in which short fiber of PVA is blended in cementitious compounding material and shows tensile strain of 0.2% or more in tensile test Add 1/1000 to 1/3 by weight ratio of the quick-hardened material containing as a main component, and satisfy the required value of tensile strain of 0.2% or more in the tensile test at the age of 1 to 5 days. A quick-hardening high-toughness FRC material characterized by セメント系調合材料にPVAの短繊維を配合し、引張試験において0.2%以上の引張ひずみを示すひびわれ分散型の高靱性FRC材料において、使用するセメントに対して、カルシウムアルミネートと無水せっこうを主成分とする急硬材を重量比で1/1000〜1/3を添加するに際し、ミキサーに、まず、結合材、骨材、急硬材とともに凝結遅延剤および配合水を投入して練り混ぜること、または、ミキサーに、まず、結合材、骨材および配合水を投入して練り混ぜ、その後、練上り直前や繊維投入前に急硬材を添加とすることを特徴とする急硬型高靭性FRC材料の製造方法。   Calcium aluminate and anhydrous gypsum for the cement to be used in the cracked dispersion type high toughness FRC material in which short fiber of PVA is blended in cementitious compounding material and shows tensile strain of 0.2% or more in tensile test When adding 1/1000 to 1/3 by weight ratio of the quick-hardening material containing as a main component, first, a setting retarder and blended water are added to the mixer together with the binder, aggregate, and quick-hardening material. A quick-hardening type characterized by mixing or mixing with a mixer, aggregate and blended water in a mixer, and then adding a quick-hardening material immediately before kneading and before adding fibers Manufacturing method of high toughness FRC material. セメント系調合材料にPVAの短繊維を配合し、引張試験において0.2%以上の引張ひずみを示すひびわれ分散型の高靱性FRC材料において、使用するセメントに対して、カルシウムアルミネートと無水せっこうを主成分とする急硬材を重量比で1/1000〜1/3を添加し急硬材とともに凝結遅延剤を添加することを特徴とする急硬型高靭性FRC材料の調合方法。   Calcium aluminate and anhydrous gypsum for the cement to be used in the cracked dispersion type high toughness FRC material in which short fiber of PVA is blended in cementitious compounding material and shows tensile strain of 0.2% or more in tensile test A method for preparing a quick-hardening high-toughness FRC material, comprising adding 1/1000 to 1/3 by weight ratio of a quick-hardening material containing as a main component and adding a setting retarder together with the quick-hardening material.
JP2005254871A 2005-09-02 2005-09-02 Quick hardening type high toughness fiber-reinforced ceramic material and method of formulating the same Pending JP2007063103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254871A JP2007063103A (en) 2005-09-02 2005-09-02 Quick hardening type high toughness fiber-reinforced ceramic material and method of formulating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254871A JP2007063103A (en) 2005-09-02 2005-09-02 Quick hardening type high toughness fiber-reinforced ceramic material and method of formulating the same

Publications (1)

Publication Number Publication Date
JP2007063103A true JP2007063103A (en) 2007-03-15

Family

ID=37925704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254871A Pending JP2007063103A (en) 2005-09-02 2005-09-02 Quick hardening type high toughness fiber-reinforced ceramic material and method of formulating the same

Country Status (1)

Country Link
JP (1) JP2007063103A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065393A (en) * 2008-09-08 2010-03-25 Kajima Corp Method for placing concrete while dispersing crack caused by temperature stress
JP2016121030A (en) * 2014-12-24 2016-07-07 太平洋マテリアル株式会社 Fiber-reinforced cement composite material and method of producing the same
JP2019011233A (en) * 2017-06-29 2019-01-24 国立研究開発法人 海上・港湾・航空技術研究所 High pulverization resistant backfill grout and backfill grout material thereof

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101342A (en) * 1996-06-13 1998-01-06 Denki Kagaku Kogyo Kk Spraying material and spraying method using the same
JPH1059760A (en) * 1996-08-21 1998-03-03 Denki Kagaku Kogyo Kk Spray material and spraying method using the same
JPH10265247A (en) * 1997-03-27 1998-10-06 Denki Kagaku Kogyo Kk Quickly settable spraying cement concrete
JPH10324553A (en) * 1997-05-21 1998-12-08 Denki Kagaku Kogyo Kk Spraying material and spraying method using the material
JPH11130497A (en) * 1997-10-27 1999-05-18 Denki Kagaku Kogyo Kk Accelerating material and accelerated spraying cement concrete
JPH11199287A (en) * 1997-10-17 1999-07-27 Denki Kagaku Kogyo Kk Setting accelerator and quick-setting spray cement concrete
JP2000109353A (en) * 1998-10-07 2000-04-18 Denki Kagaku Kogyo Kk Quick setting spray cement concrete and spraying method using the same
JP2000264698A (en) * 1999-03-17 2000-09-26 Denki Kagaku Kogyo Kk Spraying material and spraying engineering
JP2001288899A (en) * 2000-04-04 2001-10-19 Kajima Corp Cross section repairing method for structural member
JP2001302323A (en) * 2000-04-27 2001-10-31 Denki Kagaku Kogyo Kk Shotcrete material and shotcrete method
JP2002029800A (en) * 2000-07-21 2002-01-29 Denki Kagaku Kogyo Kk Powdery quick setting agent
JP2002193653A (en) * 2000-12-25 2002-07-10 Kajima Corp Sprayable material for repair work
JP2003192421A (en) * 2001-12-21 2003-07-09 Kajima Corp Stain hardening type cement based composite material having self-compacting property and low shrinkability
JP2004156242A (en) * 2002-11-05 2004-06-03 Kajima Corp Tunnel reinforcing method
JP2004324285A (en) * 2003-04-25 2004-11-18 Kajima Corp Surface protection method for skeleton concrete
JP2005001965A (en) * 2003-06-13 2005-01-06 Kajima Corp Strain hardening type cement-based composite material having self-compacting property and low shrinkability
JP2005008501A (en) * 2003-06-23 2005-01-13 Denki Kagaku Kogyo Kk Composition for cement mortar

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101342A (en) * 1996-06-13 1998-01-06 Denki Kagaku Kogyo Kk Spraying material and spraying method using the same
JPH1059760A (en) * 1996-08-21 1998-03-03 Denki Kagaku Kogyo Kk Spray material and spraying method using the same
JPH10265247A (en) * 1997-03-27 1998-10-06 Denki Kagaku Kogyo Kk Quickly settable spraying cement concrete
JPH10324553A (en) * 1997-05-21 1998-12-08 Denki Kagaku Kogyo Kk Spraying material and spraying method using the material
JPH11199287A (en) * 1997-10-17 1999-07-27 Denki Kagaku Kogyo Kk Setting accelerator and quick-setting spray cement concrete
JPH11130497A (en) * 1997-10-27 1999-05-18 Denki Kagaku Kogyo Kk Accelerating material and accelerated spraying cement concrete
JP2000109353A (en) * 1998-10-07 2000-04-18 Denki Kagaku Kogyo Kk Quick setting spray cement concrete and spraying method using the same
JP2000264698A (en) * 1999-03-17 2000-09-26 Denki Kagaku Kogyo Kk Spraying material and spraying engineering
JP2001288899A (en) * 2000-04-04 2001-10-19 Kajima Corp Cross section repairing method for structural member
JP2001302323A (en) * 2000-04-27 2001-10-31 Denki Kagaku Kogyo Kk Shotcrete material and shotcrete method
JP2002029800A (en) * 2000-07-21 2002-01-29 Denki Kagaku Kogyo Kk Powdery quick setting agent
JP2002193653A (en) * 2000-12-25 2002-07-10 Kajima Corp Sprayable material for repair work
JP2003192421A (en) * 2001-12-21 2003-07-09 Kajima Corp Stain hardening type cement based composite material having self-compacting property and low shrinkability
JP2004156242A (en) * 2002-11-05 2004-06-03 Kajima Corp Tunnel reinforcing method
JP2004324285A (en) * 2003-04-25 2004-11-18 Kajima Corp Surface protection method for skeleton concrete
JP2005001965A (en) * 2003-06-13 2005-01-06 Kajima Corp Strain hardening type cement-based composite material having self-compacting property and low shrinkability
JP2005008501A (en) * 2003-06-23 2005-01-13 Denki Kagaku Kogyo Kk Composition for cement mortar

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065393A (en) * 2008-09-08 2010-03-25 Kajima Corp Method for placing concrete while dispersing crack caused by temperature stress
JP2016121030A (en) * 2014-12-24 2016-07-07 太平洋マテリアル株式会社 Fiber-reinforced cement composite material and method of producing the same
JP2019011233A (en) * 2017-06-29 2019-01-24 国立研究開発法人 海上・港湾・航空技術研究所 High pulverization resistant backfill grout and backfill grout material thereof
JP7054109B2 (en) 2017-06-29 2022-04-13 国立研究開発法人 海上・港湾・航空技術研究所 Highly powder-resistant backfill grout and its backfill grout material

Similar Documents

Publication Publication Date Title
JP4558569B2 (en) Ultra high strength fiber reinforced cement composition, ultra high strength fiber reinforced mortar or concrete, and ultra high strength cement admixture
KR100893495B1 (en) The manufacturing method and composition of low-heat, high-strength concrete for self compaction
KR102102814B1 (en) High Early Strength-Ultra High Performance Concrete, Manufacturing Method thereof, and Premixing Binder therefor
JP4593412B2 (en) Centrifugal concrete product and manufacturing method thereof
JP6732404B2 (en) Fiber-reinforced cement composite material and manufacturing method thereof
KR20040007616A (en) Hydraulic Composition
JP4709677B2 (en) Premix high toughness polymer cement mortar material and high toughness polymer cement mortar
KR20060123031A (en) Cement admixture, cement composition, mortar and concrete
JP7166827B2 (en) Grout mortar composition, grout mortar, concrete structure and method for producing the same
JP2007063103A (en) Quick hardening type high toughness fiber-reinforced ceramic material and method of formulating the same
JP4039801B2 (en) Hydraulic composition
JP4451083B2 (en) Mortar manufacturing method
JP5227161B2 (en) Cement admixture and cement composition
JP5378754B2 (en) Polymer cement composition
JP2006282435A (en) High strength concrete
JP4681359B2 (en) High-strength mortar, high-strength concrete, method for producing high-strength mortar hardened body, method for improving durability of structure, and premix material for high-strength mortar
JP2014189437A (en) Cracking-reduced type blast furnace cement composition and production method thereof
JP5863296B2 (en) Method for producing ultra-high-strength cement-based hardened body
JP4167787B2 (en) Composite material
JP2005289657A (en) Method for producing high-strength centrifugally molded article and high-strength centrifugally molded article produced thereby
JP4137072B2 (en) Cement composition
JP2009227558A (en) Self-restorable high strength hydration hardened material
JP4165992B2 (en) Hydraulic composition
JP2006232625A (en) Concrete base material for placing at cold time, concrete structure using the base material and method of manufacturing the same
JP2016223066A (en) Construction method of concrete floor-like structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Effective date: 20101020

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A02 Decision of refusal

Effective date: 20120207

Free format text: JAPANESE INTERMEDIATE CODE: A02