JP2004156242A - Tunnel reinforcing method - Google Patents

Tunnel reinforcing method Download PDF

Info

Publication number
JP2004156242A
JP2004156242A JP2002321204A JP2002321204A JP2004156242A JP 2004156242 A JP2004156242 A JP 2004156242A JP 2002321204 A JP2002321204 A JP 2002321204A JP 2002321204 A JP2002321204 A JP 2002321204A JP 2004156242 A JP2004156242 A JP 2004156242A
Authority
JP
Japan
Prior art keywords
tunnel
fiber
lining concrete
reinforcing
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002321204A
Other languages
Japanese (ja)
Other versions
JP4083537B2 (en
Inventor
Noboru Sakata
昇 坂田
Yoshiki Hiraishi
剛紀 平石
Masato Yamamura
正人 山村
Takuji Yamamoto
拓治 山本
Ichiro Fukuda
一郎 福田
Komei Matsubara
功明 松原
Keisuke Hibiya
啓介 日比谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002321204A priority Critical patent/JP4083537B2/en
Publication of JP2004156242A publication Critical patent/JP2004156242A/en
Application granted granted Critical
Publication of JP4083537B2 publication Critical patent/JP4083537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To construct a sufficiently load-resistant reinforcing layer without lessening the hollow section, namely by using only a thin thickness when an existing lining concrete of a tunnel deteriotates and cracks or the like generates. <P>SOLUTION: In the tunnel reinforcing construction method, when reinforcing a tunnel lining concrete, the surface of the lining concrete is covered with steel sheets or the surface of the lining concrete is internally wound with steel wires in mutual distances and a crack dispersion type fiber reinforced cement composite material is sprayed thereon. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は,薄い厚みで強力な補強を行うトンネル補強工法に関する。
【0002】
【従来の技術】
従来より,変状が発生したトンネルの圧縮力に対する補強工法として,裏込め注入・ロックボルトなどの地山の安定性改善を目的とした補強法と,内巻きコンクリート・打替えコンクリート等のよる覆工コンクリート自体の耐力向上を目的とした補強法が主として採用されている。
【0003】
前者の場合には,覆工コンクリートへの負荷を低減できるが,覆工コンクリート自体の劣化に対しては補強効果は期待できない。したがって,変状により覆工コンクリートが要求性能を満足できない場合には,後者の内巻きコンクリート・打替えコンクリート工法などによって覆工コンクリート自体の耐力を向上させることが有効となる。
【0004】
図1に示すように,既設の一次覆工コンクリート1が劣化しひび割れなどが発生した場合の補強として,内巻きコンクリート2を施工する場合には,内巻きコンクリート2に二次覆工の耐力を期待することになるので,この内巻きコンクリート2の厚さを一次覆工コンクリート1と同等の300mm以上とすることが必要である。このため,内空断面を十分に確保できない場合が生じる。図1で破線で示す建築限界を超えてまで内巻きコンクリート2を施工することはできないので,内空断面に余裕がない場合には,内巻きコンクリートの施工は制約を受けることになる。
【0005】
一次覆工コンクリートを除去する打替え法によれば,内空断面を確保することはできるが,既設コンクリートの撤去等に多大の労力と費用を覚悟しなければならない。加えて打替えコンクリートでは十分な補強効果が達成できないこともある。
【0006】
補強効果を高めるために,特にせん断や曲げに対する補強効果を併せて期待する場合には,炭素繊維配合のシートや鋼板を用いた接着工法が適用されたりするが,この場合にも多大の労力と費用を覚悟しなければならない。
【0007】
特許文献1には,旧覆工コンクリートと吹付けコンクリートとの付着力を高めるために旧覆工コンクリートにせん断ボルトをその頭部が突出した状態で打ち込んだうえで,吹付けコンクリートを施工するトンネルライニングの補修ないし補強法が記載されている。特許文献2には,クラック分散型の繊維補強セメント複合材料が記載されており,特許文献3には,PVA短繊維を配合したモルタル吹付材料が記載され,このものは材齢28日の硬化体の引張試験にて引張ひずみ1%以上を示す。
【0008】
【特許文献1】特公平4−72038号公報
【特許文献2】特開2000−7395号公報
【特許文献3】特開2002−193653号公報
【0009】
【発明が解決しようとする課題】
打巻きコンクリートの厚みを増大させないで十分な補強を行うには,例えば特許文献2のような繊維補強吹付け材料を使用して打巻きコンクリート自身に高い強度を期待し且つ特許文献1のように旧覆工コンクリートとの接着力を高めることが有効であるが,特許文献1のようにせん断ボルトを打ち込むと旧覆工コンクリートにクラックを誘発する原因ともなりかねず,また特許文献3の繊維補強材料を内巻きしても,それだけで,変状が発生したトンネルの圧縮力に耐える耐力を期待することは困難な場合が多い。
【0010】
したがって,本発明の課題は,300mm以上の厚みを必要としていた従来の打巻きコンクリートと同等の強度を,厚み100mm以下,場合によっては70mm以下の状態でも安定して発現できるようなトンネル補強工法を実現することにある。
【0011】
【課題を解決するための手段】
本発明によれば,トンネル覆工コンクリートの補強を行うにさいし,該覆工コンクリートの表面を鋼板で覆ったうえ,その鋼板表面をクラック分散型の繊維補強セメント複合材料を吹付け施工することを特徴とするトンネル補強工法を提供する。
【0012】
また本発明によれば,トンネル覆工コンクリートの補強を行うにさいし,該覆工コンクリートの表面に条鋼を互いに間隔をあけて内巻きし,その上から,クラック分散型の繊維補強セメント複合材料を吹付け施工することを特徴とするトンネル補強工法を提供する。
【0013】
【発明の実施の形態】
本発明は,クラック分散型の繊維補強セメント複合材料が有する特有の強度特性と鋼の強度を組合せることによって,覆工厚みが100mm以下,場合によっては70mm以下でも,従来の内巻きコンクリート300mmの場合と同等の圧縮力に対する耐荷力を確保するものであり,これによって,トンネル補強時に内空断面が減少するのをできるだけ防止する。
【0014】
すなわち,図2に示したように,既設の一次覆工コンクリート1が劣化しひび割れ等が発生した場合において,鋼板3でその表面を覆い,ついでクラック分散型の繊維補強セメント複合材料の層(以下,高靭性FRC材料層という)4で覆工する。鋼板3と高靭性FRC材料層4との合計の厚みは,100mm以下,場合によっては70mm以下であり,この厚みで図1の内巻きコンクリート2と同等以上の耐荷力を確保する。これにより,図1では破線で示す建築限界を超えることになっても,図2ではこれを回避できる。
【0015】
図3は図2のA部拡大図である。図示のように,一次覆工コンクリート1と高靭性FRC材料層4と間に鋼板3を介装させるが,鋼板3の施工は,必要に応じて,一次覆工コンクリート1もしくは岩盤5までに貫通するアンカー(図示せず)を用いて固定する。鋼板3の背面に無視できないような隙間が発生する場合には,接着材をその隙間に充填する。また漏水が多い場合には遮水シートを背面に施設する。
【0016】
図4は,図2のX−X線矢視拡大断面図であり,鋼板3の内面に,トンネル断面に沿ったリブ6を備えている状態を示す。リブ6は一方の側壁下端から他方の側壁下端までトンネル断面に沿って連続した状態で鋼板3に取付けられるのが好ましく,このリブ6をトンネル方向に所定の間隔をあけて連設することにより,鋼板3の耐荷力をさらに増強することができる。高靭性FRC材料層4はリブ6との間および鋼板3との間で隙間が発生しないように,且つリブ3を覆うように敷設されることにより,変状が発生したトンネルの圧縮力に十分に耐えるようになる。
【0017】
図5は,鋼板3に代えて,条鋼7を用いた以外は,図4のものと同じ本発明の補強工法を示す。図5の例では,条鋼7としてI型鋼を使用し,これを覆工コンクリート1の表面に対して一方の側壁下端から他方の側壁下端までトンネル断面に沿って連続した状態で内巻きし,これをトンネル方向に所定の間隔をあけて連設する。そして,敷設されたI型鋼を包み込むようにして高靭性FRC材料層4を吹付けによって形成したものである。I型鋼に代えてL型鋼やその他の異形断面鋼を使用することもできる。いずれにしても,この条鋼7の内巻きと高靭性FRC材料層4によって,変状が発生したトンネルの圧縮力に十分に耐えることができる。
【0018】
いずれの態様においても,本発明で使用する高靭性FRC材料としては,例えば特開2000−7395号公報に記載された高靭性FRC材料を吹付け用に改良したものを使用する。すなわち,本発明においては,下記〔M1〕の条件を満たすセメント調合マトリクスに,下記〔F1〕の条件を満たすPVA( Poly Vinyl Alcohol ) 短繊維を1vol.%以上3vol.%以下の配合量で配合したクラック分散型の繊維補強セメント複合材料を吹付け施工する。
〔M1〕
水結合材の重量百分比(W/C):25%以上
細骨材と結合材の重量比(S/C):1.5以下
単位水量:250〜450Kg/m
練り上がり直後の空気量:3.5〜20%
高性能AE減水剤:30Kg/m未満
〔F1〕
繊維径:0.05mm以下
繊維長:5〜20mm
繊維引張強度:1500〜2400MPa
【0019】
〔F1〕の条件を満たすビニロン短繊維としては,ポリビニールアルコール樹脂を原料として製造されたコンクリートと同等以上の弾性係数を有する短繊維であるのが好ましく,代表的なものとして,引張強度が90kgf/cm 級,弾性係数(ヤング率)が2900kgf/mm 級で,比重が約 1.3で形状が0.66mmφ×30mmの公知のもの(株式会社クラレ製)が使用できる。ビニロン短繊維の配合量が1vol.%未満では割れ発生後の耐力が十分ではなく剥落防止の目的が十分に達成できない。他方,ビニロン短繊維の配合量が3.0vol.%を超えるような多量となると,施工上必要な流動性を満たすことが困難なる。
【0020】
また,高靭性FRC材料で使用する高性能AE減水剤としては,ポリカルボン酸系,ポリエーテル系,ナフタレン系,メラミン系,アミノスルホン酸系等のものが使用できる。この中でもポリカルボン酸系またはポリエーテル系のものが好ましい。
【0021】
この高靭性FRC材料の吹付を実施するには,練混ぜ直後のモルタルフロー値が165mm以上,好ましくは170〜180mmであるのがよい。165mm未満であると吹付のガン先で材料が適当に分散せず,吹付面に均一に付着できなくなることがある。しかし,あまりフロー値が高いとポンプ圧送時に材料分離を起こし,繊維が凝集してフアイバーボールを生ずることがあるので180mm以下であるのがよい。このようなモルタルフロー値を安定して確保するには,30Kg/m未満の高性能AE減水剤を配合し,練混ぜ直後の空気量を3.5〜20%好ましくは10〜20%とするのがよい。さらにこのような流動性を維持しながら材料分離抵抗を高めるために増粘剤を添加することが好ましい。とくにウエランガムなどの微生物発酵のバイオポリマーの使用(単位水量に対して0.01〜0.2%程度を配合する)が有益である。
【0022】
なお,適度な粒度の粉体量を確保するために,セメントの一部をフライアッシュや高炉スラグ等の混和材で代替し,また骨材としては最大粒径が0.8mm以下,平均粒径が0.4mm以下の細骨材を使用するのが好ましい。したがって,前記〔M1〕の条件として,さらに,細骨材粒径:最大粒径0.8mm以下,平均粒径0.4mm以下という要件を加えるのが好ましい。そして,この細骨材と結合材の重量比(S/C)が1.5以下となるように配合するのがよい。水結合材比(W/C)については,吹付け作業性を良好にするには25%以上とすることが必要である。
【0023】
このようにして吹付け施工した高靭性FRC材料層4は前記の〔F1〕および〔M1〕の条件を満たす限りにおいて,材齢28日の硬化体の引張試験にて引張ひずみ1%以上を示すクラック分散型の高靭性FRC材料層となる。このため,トンネル覆工に適用した場合の割れ発生のメカニズムが,前記のように,微小な割れが無数に生じたものとなり,幅の大きな割れには至らない。
【0024】
一次覆工コンクリート2に対して鋼板3または条鋼7を施工したあとに,この高靭性FRC材料層4で覆工すると,鋼板3または条鋼7による優れた耐荷力に加えて(鋼板はコンクリート強度の10倍以上の耐荷力を有する),高靭性FRC材料4が高い曲げ強度(通常10MPa程度)を有するので断面中に引張応力を許容できる結果,通常の覆工コンクリートに比べて断面厚さを相当薄くしても同等の覆工性能を発揮できることのほか,岩盤に変形が生じた場合でも,その変形を吸収することができる。
【0025】
【発明の効果】
以上説明したように,本発明によれば,既設の覆工コンクリート層が劣化してひび割れなどが発生した場合に,内巻きコンクリートに比べてその厚みを1/3以下にまで低減しても同等以上の耐荷力を確保できるので,内空断面に余裕がない場合でも,施工できる。また,本発明の補強工法は鋼材の強度特性と高靭性FRC材料特有の強度特性によりせん断や曲げに対する補強効果に優れる。
【図面の簡単な説明】
【図1】内巻きコンクリートによる従来のトンネル補強工法を図解した略断面図である。
【図2】本発明によるトンネル補強工法を図解した略断面図である。
【図3】図2のB部拡大図である。
【図4】図2のX−X線矢視断面図である。
【図5】本発明によるトンネル補強工法の他の例を示す図4と同様の断面図である。
【符号の説明】
1 既設の一次覆工コンクリート
2 内巻きコンクリート
3 鋼板
4 高靭性FRC材料層
5 岩盤
6 リブ
7 I型鋼
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a tunnel reinforcing method for performing strong reinforcement with a small thickness.
[0002]
[Prior art]
Conventionally, as a method of reinforcing the compressive force of a deformed tunnel, a reinforcing method for improving the stability of the ground, such as backfilling and rock bolts, and a covering method such as inwardly wrapped concrete or reinforced concrete, etc. Reinforcement methods for the purpose of improving the proof strength of concrete in itself are mainly employed.
[0003]
In the former case, the load on the lining concrete can be reduced, but no reinforcing effect can be expected on the deterioration of the lining concrete itself. Therefore, when the required performance of the lining concrete cannot be satisfied due to the deformation, it is effective to improve the proof strength of the lining concrete itself by the latter method, such as the inner winding concrete or the replacement concrete method.
[0004]
As shown in FIG. 1, when the inner wrapping concrete 2 is applied as a reinforcement when the existing primary lining concrete 1 is deteriorated and cracks are generated, the strength of the secondary lining is applied to the inner lining concrete 2. Since it is expected, it is necessary that the thickness of the inner wrapping concrete 2 be 300 mm or more, which is equivalent to the thickness of the primary lining concrete 1. For this reason, there may be a case where the inner cross section cannot be sufficiently secured. Since it is not possible to construct the inner concrete 2 beyond the architectural limit shown by the broken line in FIG. 1, the construction of the inner concrete is restricted if there is no room in the inner space section.
[0005]
According to the replacement method for removing the primary lining concrete, it is possible to secure the inner cross section, but it is necessary to prepare a great deal of labor and cost for removing the existing concrete. In addition, refillable concrete may not be able to achieve a sufficient reinforcing effect.
[0006]
In order to enhance the reinforcing effect, especially when a reinforcing effect against shearing or bending is also expected, an adhesive method using a sheet or steel sheet containing carbon fiber is applied, but in this case too much labor and labor are required. You have to be prepared for the cost.
[0007]
Patent Document 1 discloses a tunnel in which a shear bolt is driven into an old lining concrete with its head protruding in order to enhance the adhesion between the old lining concrete and the shotcrete, and then the shotcrete is constructed. It describes how to repair or reinforce the lining. Patent Literature 2 describes a crack-dispersed fiber-reinforced cement composite material, and Patent Literature 3 describes a mortar spray material containing PVA short fibers, which is a 28-year-old hardened material Shows a tensile strain of 1% or more in the tensile test.
[0008]
[Patent Document 1] Japanese Patent Publication No. 4-72038 [Patent Document 2] Japanese Patent Application Laid-Open No. 2000-7395 [Patent Document 3] Japanese Patent Application Laid-Open No. 2002-193653 [0009]
[Problems to be solved by the invention]
In order to provide sufficient reinforcement without increasing the thickness of the cast concrete, for example, a fiber reinforced spraying material as disclosed in Patent Document 2 is used to expect a high strength of the cast concrete itself. Although it is effective to increase the adhesive strength with the old lining concrete, the driving of the shear bolt as in Patent Document 1 may cause cracks in the old lining concrete, and the fiber reinforcement disclosed in Patent Document 3 Even if the material is wrapped inside, it is often difficult to expect the proof stress to withstand the compressive force of the deformed tunnel by itself.
[0010]
Accordingly, an object of the present invention is to provide a tunnel reinforcement method capable of stably exhibiting strength equivalent to that of the conventional cast-in-place concrete requiring a thickness of 300 mm or more, even in a state of a thickness of 100 mm or less, and in some cases even 70 mm or less. Is to make it happen.
[0011]
[Means for Solving the Problems]
According to the present invention, when reinforcing the tunnel lining concrete, the surface of the lining concrete is covered with a steel plate, and the surface of the steel plate is sprayed with a crack-dispersed fiber reinforced cement composite material. Provide a unique tunnel reinforcement method.
[0012]
Further, according to the present invention, when reinforcing the tunnel lining concrete, a steel strip is wound around the surface of the lining concrete at intervals, and a crack-dispersed fiber-reinforced cement composite material is formed thereon. A tunnel reinforcement method characterized by spraying is provided.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention combines the strength characteristics of steel with the specific strength characteristics of a fiber reinforced cement composite material of the crack dispersion type, so that even if the lining thickness is 100 mm or less, and even 70 mm or less, the conventional inner-rolled concrete 300 mm This ensures the same load-bearing capacity with respect to the compressive force as in the case, and thereby prevents the inner space section from decreasing as much as possible when reinforcing the tunnel.
[0014]
That is, as shown in FIG. 2, when the existing primary lining concrete 1 is deteriorated and cracks or the like occur, its surface is covered with a steel plate 3 and then a layer of a crack-dispersed fiber-reinforced cement composite material (hereinafter referred to as a layer). , A high toughness FRC material layer) 4. The total thickness of the steel sheet 3 and the high-toughness FRC material layer 4 is 100 mm or less, and in some cases, 70 mm or less. With this thickness, the load carrying capacity equal to or more than that of the inner-wound concrete 2 in FIG. 1 is secured. Thereby, even if it exceeds the building limit indicated by the broken line in FIG. 1, this can be avoided in FIG.
[0015]
FIG. 3 is an enlarged view of a portion A in FIG. As shown in the figure, the steel plate 3 is interposed between the primary lining concrete 1 and the high toughness FRC material layer 4, but the steel plate 3 may be penetrated to the primary lining concrete 1 or the rock 5 as necessary. Using an anchor (not shown). When a gap that cannot be ignored is generated on the back surface of the steel plate 3, the gap is filled with an adhesive. If there is a lot of water leakage, a waterproof sheet will be installed on the back.
[0016]
FIG. 4 is an enlarged cross-sectional view taken along line XX of FIG. 2, and shows a state in which a rib 6 is provided on the inner surface of the steel plate 3 along the tunnel cross section. The ribs 6 are preferably attached to the steel plate 3 so as to be continuous along the cross section of the tunnel from the lower end of one side wall to the lower end of the other side wall. By arranging the ribs 6 at predetermined intervals in the tunnel direction, The load carrying capacity of the steel plate 3 can be further enhanced. The high-toughness FRC material layer 4 is laid so as not to generate a gap between the rib 6 and the steel plate 3 and to cover the rib 3, so that it is sufficient for the compressive force of the tunnel in which the deformation has occurred. To endure.
[0017]
FIG. 5 shows the same reinforcing method of the present invention as that of FIG. 4 except that a steel bar 3 is used instead of the steel plate 3. In the example of FIG. 5, an I-type steel is used as the bar steel 7, and this is internally wound along the tunnel section from the lower end of one side wall to the lower end of the other side wall with respect to the surface of the lining concrete 1. Are continuously arranged at predetermined intervals in the tunnel direction. Then, the high toughness FRC material layer 4 is formed by spraying so as to surround the laid I-type steel. In place of the I-beam, an L-beam or another deformed steel may be used. In any case, the inner winding of the steel bar 7 and the high-toughness FRC material layer 4 can sufficiently withstand the compressive force of the deformed tunnel.
[0018]
In any of the embodiments, as the high toughness FRC material used in the present invention, for example, a high toughness FRC material described in JP-A-2000-7395, which is improved for spraying, is used. That is, in the present invention, 1 vol. Of PVA (Poly Vinyl Alcohol) short fiber satisfying the following condition [F1] is added to a cement mixture matrix satisfying the following condition [M1]. % Or more and 3 vol. % Of a crack-dispersed fiber-reinforced cement composite material compounded in an amount of not more than 0.1%.
[M1]
Weight percentage of water binder (W / C): 25% or more Weight ratio of fine aggregate and binder (S / C): 1.5 or less Unit water amount: 250 to 450 kg / m 3
Air volume immediately after kneading: 3.5 to 20%
High-performance AE water reducing agent: 30Kg / m less than 3 [F1]
Fiber diameter: 0.05mm or less Fiber length: 5-20mm
Fiber tensile strength: 1500-2400MPa
[0019]
The vinylon staple fiber satisfying the condition [F1] is preferably a staple fiber having an elastic coefficient equal to or higher than that of concrete manufactured from a polyvinyl alcohol resin, and typically has a tensile strength of 90 kgf. / Cm 2 class, a modulus of elasticity (Young's modulus) of 2900 kgf / mm 2 class, a specific gravity of about 1.3 and a shape of 0.66 mmφ × 30 mm (Kuraray Co., Ltd.) can be used. When the blending amount of vinylon short fiber is 1 vol. %, The yield strength after cracking is not sufficient, and the purpose of preventing spalling cannot be sufficiently achieved. On the other hand, when the blending amount of vinylon short fiber is 3.0 vol. %, It becomes difficult to satisfy the fluidity required for construction.
[0020]
As the high-performance AE water reducing agent used in the high toughness FRC material, a polycarboxylic acid type, a polyether type, a naphthalene type, a melamine type, an aminosulfonic acid type or the like can be used. Among them, polycarboxylic acid type or polyether type is preferable.
[0021]
In order to spray the high toughness FRC material, the mortar flow value immediately after mixing is 165 mm or more, preferably 170 to 180 mm. If it is less than 165 mm, the material may not be properly dispersed at the spray gun tip and may not be uniformly attached to the spray surface. However, if the flow value is too high, material separation occurs at the time of pumping, and fibers may aggregate to produce fiber balls. Therefore, the flow rate is preferably 180 mm or less. In order to stably secure such a mortar flow value, a high-performance AE water reducing agent of less than 30 kg / m 3 is blended, and the air amount immediately after kneading is 3.5 to 20%, preferably 10 to 20%. Good to do. Further, it is preferable to add a thickener in order to increase the material separation resistance while maintaining such fluidity. In particular, use of a biopolymer for microbial fermentation such as welan gum (about 0.01 to 0.2% based on unit water amount) is useful.
[0022]
In addition, in order to secure an appropriate amount of powder with a proper particle size, part of the cement is replaced with admixtures such as fly ash and blast furnace slag, and the maximum particle size of the aggregate is 0.8 mm or less. It is preferable to use fine aggregate having a diameter of 0.4 mm or less. Therefore, it is preferable to further add, as the condition [M1], a requirement that the fine aggregate has a maximum particle diameter of 0.8 mm or less and an average particle diameter of 0.4 mm or less. The fine aggregate and the binder are preferably blended so that the weight ratio (S / C) is 1.5 or less. The water binder ratio (W / C) needs to be 25% or more to improve the spraying workability.
[0023]
The high-toughness FRC material layer 4 sprayed in this manner exhibits a tensile strain of 1% or more in a tensile test of a 28-day-old hardened body as long as the conditions of [F1] and [M1] are satisfied. It becomes a crack-dispersed high toughness FRC material layer. For this reason, as described above, the mechanism of crack generation when applied to tunnel lining is that countless minute cracks are generated, and a large width crack is not reached.
[0024]
After the steel plate 3 or the bar steel 7 is applied to the primary lining concrete 2 and then reinforced with the high toughness FRC material layer 4, in addition to the excellent load-bearing capacity of the steel plate 3 or the bar steel 7, 10 times or more load-bearing capacity), high toughness FRC material 4 has high bending strength (usually about 10 MPa), so that tensile stress can be tolerated in the cross section, resulting in equivalent cross-sectional thickness compared to normal lining concrete In addition to being able to demonstrate the same lining performance even when thin, it can absorb the deformation even if the rock is deformed.
[0025]
【The invention's effect】
As described above, according to the present invention, when the existing lining concrete layer is deteriorated and cracks or the like occur, the thickness is reduced even to 1/3 or less of the inner wrapping concrete. Since the above load capacity can be ensured, construction can be performed even when there is no room in the inner space section. Further, the reinforcing method of the present invention is excellent in the effect of reinforcing against shearing and bending due to the strength characteristics of the steel material and the strength characteristics peculiar to the high toughness FRC material.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view illustrating a conventional tunnel reinforcing method using inner winding concrete.
FIG. 2 is a schematic sectional view illustrating a tunnel reinforcing method according to the present invention.
FIG. 3 is an enlarged view of a portion B in FIG. 2;
FIG. 4 is a sectional view taken along line XX of FIG. 2;
FIG. 5 is a sectional view similar to FIG. 4, showing another example of the tunnel reinforcing method according to the present invention.
[Explanation of symbols]
1 Existing primary lining concrete 2 Inner winding concrete 3 Steel plate 4 High toughness FRC material layer 5 Rock 6 Rib 7 I-type steel

Claims (4)

トンネル覆工コンクリートの補強を行うにさいし,該覆工コンクリートの表面を鋼板で覆ったうえ,その鋼板表面をクラック分散型の繊維補強セメント複合材料を吹付け施工することを特徴とするトンネル補強工法。A method for reinforcing a tunnel lining concrete, wherein the surface of the lining concrete is covered with a steel plate, and the steel plate surface is sprayed with a crack-dispersed fiber reinforced cement composite material. . トンネル覆工コンクリートの補強を行うにさいし,該覆工コンクリートの表面に条鋼を互いに間隔をあけて内巻きし,その上から,クラック分散型の繊維補強セメント複合材料を吹付け施工することを特徴とするトンネル補強工法。When reinforcing tunnel lining concrete, a steel bar is wound around the surface of the lining concrete at intervals and sprayed with crack-dispersed fiber-reinforced cement composite material. Tunnel reinforcement method. クラック分散型の繊維補強セメント複合材料は,材齢28日の硬化体の引張試験にて引張ひずみ1%以上を示すものである請求項1または2に記載のトンネル補強工法。The tunnel reinforcing method according to claim 1 or 2, wherein the crack-dispersed fiber-reinforced cement composite material exhibits a tensile strain of 1% or more in a tensile test of a hardened body of 28 days of age. クラック分散型の繊維補強セメント複合材料は,下記〔M1〕の条件を満たすセメント調合マトリクスに,下記〔F1〕の条件を満たすPVA( Poly Vinyl Alcohol ) 短繊維を1vol.%以上3vol.%以下の配合量で配合したものである請求項1に記載のトンネル覆工構造。
〔M1〕
水結合材の重量百分比(W/C):25%以上
細骨材と結合材の重量比(S/C):1.5以下
単位水量:250〜450Kg/m
練り上がり直後の空気量:3.5〜20%
高性能AE減水剤:30Kg/m未満
〔F1〕
繊維径:0.05mm以下
繊維長:5〜20mm
繊維引張強度:1500〜2400MPa
The crack-dispersed fiber-reinforced cement composite material is prepared by mixing 1 vol. Of PVA (Poly Vinyl Alcohol) short fiber satisfying the following condition [F1] in a cement mixture matrix satisfying the following condition [M1]. % Or more and 3 vol. The tunnel lining structure according to claim 1, wherein the tunnel lining structure is blended in a blending amount of not more than%.
[M1]
Weight percentage of water binder (W / C): 25% or more Weight ratio of fine aggregate and binder (S / C): 1.5 or less Unit water amount: 250 to 450 kg / m 3
Air volume immediately after kneading: 3.5 to 20%
High-performance AE water reducing agent: 30Kg / m less than 3 [F1]
Fiber diameter: 0.05mm or less Fiber length: 5-20mm
Fiber tensile strength: 1500-2400MPa
JP2002321204A 2002-11-05 2002-11-05 Tunnel reinforcement method Expired - Fee Related JP4083537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321204A JP4083537B2 (en) 2002-11-05 2002-11-05 Tunnel reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321204A JP4083537B2 (en) 2002-11-05 2002-11-05 Tunnel reinforcement method

Publications (2)

Publication Number Publication Date
JP2004156242A true JP2004156242A (en) 2004-06-03
JP4083537B2 JP4083537B2 (en) 2008-04-30

Family

ID=32801832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321204A Expired - Fee Related JP4083537B2 (en) 2002-11-05 2002-11-05 Tunnel reinforcement method

Country Status (1)

Country Link
JP (1) JP4083537B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225906A (en) * 2005-02-16 2006-08-31 Public Works Research Institute Method for reinforcing tunnel lining concrete
JP2007063103A (en) * 2005-09-02 2007-03-15 Kajima Corp Quick hardening type high toughness fiber-reinforced ceramic material and method of formulating the same
ES2347035A1 (en) * 2009-04-21 2010-10-22 Consejo Superior De Investigaciones Cientificas (Csic) Pre-fabricated cement-based hybrid section and method for the production thereof
CN102562091A (en) * 2012-01-30 2012-07-11 中铁七局集团有限公司 Foam concrete shock absorbing structure of tunnel and construction method of foam concrete shock absorbing structure
CN104481557A (en) * 2014-12-04 2015-04-01 中国水利水电第十四工程局有限公司 Tunnel shotcrete non-dismantling formwork and construction method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104405418A (en) * 2014-04-28 2015-03-11 中铁二院工程集团有限责任公司 Novel steel frame for preliminary support of tunnel
CN105201530A (en) * 2015-10-28 2015-12-30 北京工业大学 Repairing and strengthening method for large cracks on rock tunnel lining
CN105422134A (en) * 2015-11-30 2016-03-23 武汉大学 Prestress lining structure of high-internal-pressure water conveying tunnel
CN105781573B (en) * 2016-03-18 2019-03-01 中铁九局集团第六工程有限公司 The two-tube canopy pipe-following drilling construction method of vcehicular tunnel bilayer sleeve reinforcement is worn under railway
CN105971639B (en) * 2016-06-24 2018-08-28 中铁第四勘察设计院集团有限公司 A kind of extension tunnel reinforced concrete lining cutting service life structures and methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225906A (en) * 2005-02-16 2006-08-31 Public Works Research Institute Method for reinforcing tunnel lining concrete
JP2007063103A (en) * 2005-09-02 2007-03-15 Kajima Corp Quick hardening type high toughness fiber-reinforced ceramic material and method of formulating the same
ES2347035A1 (en) * 2009-04-21 2010-10-22 Consejo Superior De Investigaciones Cientificas (Csic) Pre-fabricated cement-based hybrid section and method for the production thereof
WO2010122201A2 (en) * 2009-04-21 2010-10-28 Consejo Superior De Investigaciones Científicas (Csic) Pre-fabricated cement-based hybrid section and method for the production thereof
WO2010122201A3 (en) * 2009-04-21 2012-12-27 Consejo Superior De Investigaciones Científicas (Csic) Pre-fabricated cement-based hybrid section and method for the production thereof
CN102562091A (en) * 2012-01-30 2012-07-11 中铁七局集团有限公司 Foam concrete shock absorbing structure of tunnel and construction method of foam concrete shock absorbing structure
CN104481557A (en) * 2014-12-04 2015-04-01 中国水利水电第十四工程局有限公司 Tunnel shotcrete non-dismantling formwork and construction method thereof

Also Published As

Publication number Publication date
JP4083537B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
EP1254087B1 (en) Lightweight wall construction
JP2009203106A (en) Polymer cement material of high toughness for reinforcing bending of concrete frame and method for reinforcing bending of concrete frame using polymer cement material of high toughness
JP2006225906A (en) Method for reinforcing tunnel lining concrete
CN103435308A (en) Composite board and manufacturing method thereof
JP2004156242A (en) Tunnel reinforcing method
JP5415015B2 (en) Spray repair method
JP3942385B2 (en) Tunnel lining structure
JP5615015B2 (en) Seismic reinforcement structure and seismic reinforcement method
JP4817304B2 (en) Fiber reinforced mortar or fiber reinforced concrete, and method for constructing a frame using the same
CN105174857A (en) Fiber concrete prefabrication member
JP6626539B2 (en) Manufacturing method of high strength fiber reinforced mortar
JP2009007925A (en) Floor slab for steel bridge
JP2011121832A (en) Kneaded material for cement composite material excellent in shear break resistance, composite material, and bridge beam member
JP5274322B2 (en) Concrete floor slab
JP3872288B2 (en) Spray repair material
JP4851428B2 (en) Tunnel segment
JP2558100B2 (en) Hybrid type fiber reinforced lightweight concrete structure
WO2021210619A1 (en) Panel structure
CN111677007A (en) Comprehensive pipe gallery adopting sprayed ultrahigh-toughness cement-based composite material and construction method thereof
CN219344705U (en) Super waterproof and anti-seismic civil air defense project
JP2007085037A (en) Floor slab remodeling method using buried form
JP4535421B2 (en) Slope concrete construction method
KR102626820B1 (en) Ultra high strength shotcrete composition and construction method using the same
JP2003192421A (en) Stain hardening type cement based composite material having self-compacting property and low shrinkability
CN212103669U (en) Structure for improving cracking resistance of hogging moment area of steel-concrete combined beam bridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees