JP5713540B2 - Spraying method of ultra high strength fiber reinforced mortar and cured mortar - Google Patents

Spraying method of ultra high strength fiber reinforced mortar and cured mortar Download PDF

Info

Publication number
JP5713540B2
JP5713540B2 JP2009025902A JP2009025902A JP5713540B2 JP 5713540 B2 JP5713540 B2 JP 5713540B2 JP 2009025902 A JP2009025902 A JP 2009025902A JP 2009025902 A JP2009025902 A JP 2009025902A JP 5713540 B2 JP5713540 B2 JP 5713540B2
Authority
JP
Japan
Prior art keywords
mortar
strength
parts
mass
silica fume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009025902A
Other languages
Japanese (ja)
Other versions
JP2010180106A (en
Inventor
荒木 昭俊
昭俊 荒木
芦田 公伸
公伸 芦田
芳春 渡辺
芳春 渡辺
渡辺 晃
晃 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009025902A priority Critical patent/JP5713540B2/en
Publication of JP2010180106A publication Critical patent/JP2010180106A/en
Application granted granted Critical
Publication of JP5713540B2 publication Critical patent/JP5713540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、主に、土木・建築業界で使用される、超高強度繊維補強モルタルの吹付け工法及びモルタル硬化体に関する。   The present invention mainly relates to a method for spraying ultra-high-strength fiber reinforced mortar and a mortar cured body used in the civil engineering and construction industries.

モルタルやコンクリートは、基本的に圧縮強度に比較して曲げ強度が小さいのが課題であり、圧縮強度を高くしても曲げ強度はそれほど大きくならない。従来、曲げ強度を高めるためにはPC鋼材によりプレストレスを導入する方法や、膨張材によりケミカルプレストレスを導入する方法、金属繊維により補強する方法、及び鋼管に高強度なモルタルやコンクリートを充填した複合構造とする方法などが実施されている。   The problem with mortar and concrete is that the bending strength is basically lower than the compressive strength, and even if the compressive strength is increased, the bending strength is not so high. Conventionally, in order to increase the bending strength, a method of introducing prestress with PC steel, a method of introducing chemical prestress with an expanding material, a method of reinforcing with metal fibers, and a steel tube filled with high-strength mortar or concrete A method of making a composite structure has been implemented.

金属繊維で補強した超高強度、高曲げを発現するセメント組成物やそれを用いたセメント系硬化体に関しては、例えば、セメント、平均粒径1.5μm未満のポゾラン物質、平均粒径1.5〜20μmの石英質粉末、骨材からなるセメント組成物と金属繊維を用いて圧縮強度1500kgf/cm(147N/mm)、曲げ強度150kgf/cm(14.7N/mm)以上のセメント系硬化体を得るものである(特許文献1参照)。
セメント、シリカフューム、石炭ガス化フライアッシュ、石膏、及び金属繊維を含有し、かつ、シリカフュームと石炭ガス化フライアッシュの割合が質量比で95〜50部:5〜50部である超高強度繊維補強セメント組成物や、このセメント組成物に細骨材を含有する超高強度繊維補強モルタル又はコンクリートに関するものも提案されている。(特許文献2参照)
引張強度等の機械的特性を改善することを目的とした材料としては,ビニロン短繊維を多量に配合してコンクリート又はモルタルを練り混ぜ,その短繊維を3次元ランダム配向させることで,引張強度および曲げ強度を向上させる材料も知られている(特許文献3〜8参照)。
With regard to a cement composition that is reinforced with metal fibers and exhibits a high bending strength and a cement-based cured body using the same, for example, cement, a pozzolanic material having an average particle size of less than 1.5 μm, an average particle size of 1.5 A cement having a compressive strength of 1500 kgf / cm 2 (147 N / mm 2 ) and a bending strength of 150 kgf / cm 2 (14.7 N / mm 2 ) or more using a cement composition composed of quartz powder of 20 μm and aggregate and metal fibers. A system hardening body is obtained (refer patent document 1).
Ultra high strength fiber reinforcement containing cement, silica fume, coal gasified fly ash, gypsum, and metal fibers, and the ratio of silica fume and coal gasified fly ash is 95-50 parts: 5-50 parts by mass ratio Proposals have also been made regarding cement compositions and ultrahigh strength fiber reinforced mortar or concrete containing fine aggregates in the cement composition. (See Patent Document 2)
Materials aimed at improving mechanical properties such as tensile strength include blending a large amount of vinylon short fibers, kneading concrete or mortar, and orienting the short fibers in a three-dimensional random orientation. Materials that improve the bending strength are also known (see Patent Documents 3 to 8).

石炭ガス化フライアッシュとは、ガス化石炭を用いて発電する際の副産物として排出されるものであり、その球形粒子は、通常の微粉炭焚きのフライアッシュと比べると平均粒径が小さい。さらに、石炭ガス化フライアッシュの球形粒子表面は滑らかであるため、通常のフライアッシュよりボールベアリング作用が優れており、低水結合材比において高流動性の高強度モルタル又はコンクリート用として利用できることも既に提案されている(特許文献9参照)。   Coal gasified fly ash is discharged as a by-product when power is generated using gasified coal, and the spherical particles have a smaller average particle size than ordinary pulverized coal-fired fly ash. Furthermore, since the spherical particle surface of coal gasification fly ash is smooth, it has better ball bearing action than ordinary fly ash, and it can be used for high strength mortar or concrete with high fluidity at a low water binder ratio. It has already been proposed (see Patent Document 9).

石膏類は蒸気養生の有無にかかわり無く、高強度混和材として多用され、シリカフュームと組み合わせることによって、より高い強度や耐久性が得られる混和材として提案されている(特許文献10参照)。   Gypsum is frequently used as a high-strength admixture regardless of the presence or absence of steam curing, and has been proposed as an admixture that can obtain higher strength and durability when combined with silica fume (see Patent Document 10).

特開平11−130508号公報JP-A-11-130508 特開2006−298679号公報JP 2006-298679 A 特開2000−7395号公報JP 2000-7395 A 特開2002−193653号公報JP 2002-193653 A 特開2005−238605号公報JP 2005-238605 A 特開2005−305682号公報Japanese Patent Laying-Open No. 2005-305682 特開2005−1965号公報JP 2005-1965 A 特開2006−214080号公報JP 2006-2104080 A 特開2001−19527号公報JP 2001-19527 A 特許第2581803号公報Japanese Patent No. 2581803

本発明は、従来知られているシリカフュームや石炭ガス化フライアッシュ及び石膏、繊維類を特定の範囲で組み合わせることで、吹付け工法により、現場養生のモルタル硬化体の圧縮強度が150N/mm以上、曲げ強度が20N/mm以上で、曲げ強度/圧縮強度比が1/9以上とするものである。 In the present invention, conventionally known silica fume, coal gasification fly ash, gypsum, and fibers are combined in a specific range, and the compressive strength of the mortar hardened body on-site curing is 150 N / mm 2 or more by the spraying method. The bending strength is 20 N / mm 2 or more, and the bending strength / compression strength ratio is 1/9 or more.

本発明は、(1)シリカフュームと石炭ガス化フライアッシュの配合割合がシリカフューム95〜50質量部に対し石炭ガス化フライアッシュ5〜50質量部であり、シリカフュームと石炭ガス化フライアッシュの合計量が結合材中5〜40質量%、石膏がセメント100質量部に対して無水物換算で0.5〜8質量部である、セメント、シリカフューム、石炭ガス化フライアッシュおよび石膏からなる結合材と、前記結合材100質量部に対して細骨材50〜200質量部と、前記結合材と細骨材と水からなるモルタル1mに対して0.5〜3容量%の長さ5〜30mmの繊維類と、水とを練り混ぜて得られる超高強度繊維補強モルタルをポンプ圧送し、コンプレッサーの空気圧力が0.4MPa以上で時間あたりの吐出するモルタル容量(m/hr)に対して40倍以上の空気流量(m/hr)である圧縮空気を用いて吹き付けて得られるモルタル硬化体の圧縮強度が150N/mm以上、曲げ強度が20N/mm以上で、曲げ強度/圧縮強度比が1/9以上であり、前記モルタル硬化体の圧縮強度が練り混ぜた前記超高強度繊維補強モルタルをJIS R 5201に準じて作製したモルタル硬化体の圧縮強度に対して圧縮強度比が1.0を超えることを特徴とする吹付け工法、(2)超高強度繊維補強モルタルをポンプ圧送し、途中で圧縮空気以外に硬化促進剤を合流混合して吹き付ける(1)の吹付け工法、である。 In the present invention, (1) the mixing ratio of silica fume and coal gasification fly ash is 5 to 50 parts by mass of coal gasification fly ash with respect to 95 to 50 parts by mass of silica fume, and the total amount of silica fume and coal gasification fly ash is A binder composed of cement, silica fume, coal gasified fly ash, and gypsum, in which the binder is 5 to 40% by mass, and gypsum is 0.5 to 8 parts by mass in terms of anhydride with respect to 100 parts by mass of cement; 50 to 200 parts by mass of fine aggregate with respect to 100 parts by mass of the binder, and fibers of 5 to 30 mm in length of 0.5 to 3% by volume with respect to 1 m 3 of mortar composed of the binder, fine aggregate and water. Mortar that pumps ultra-high-strength fiber reinforced mortar obtained by kneading water and water, and discharges per hour when the compressor air pressure is 0.4 MPa or more (M 3 / hr) compressive strength of the mortar cured body obtained by blowing using compressed air which is 40 times or more of the air flow rate (m 3 / hr) with respect to the 150 N / mm 2 or more, a bending strength of 20 N / in mm 2 or more, bending strength / compressive strength ratio Ri der 1/9 or more, mortar cured body of the ultra high strength fiber reinforced mortar compressive strength of the mortar cured body is kneaded to prepare in accordance with JIS R 5201 spraying method of compressive strength ratio to the compression strength is equal to or greater than 1.0, (2) ultra high strength fiber-reinforced mortar was pumped, merging mixing a curing accelerator other than the compressed air in the middle spraying method of the spraying in (1), it is.

本発明の超高強度繊維補強モルタルの吹付け工法に依れば、吹付け施工に適した流動性(作業性)を持ち、現場養生のモルタル硬化体の圧縮強度が150N/mm以上、曲げ強度が20N/mm以上で、曲げ強度/圧縮強度比が1/9以上で、かつ、練り混ぜた前記超高強度繊維補強モルタルをJIS R 5201に準じて作製したモルタル硬化体の圧縮強度に対して、圧縮強度比が1.0を超える超高強度繊維補強モルタル硬化体が得られる。 According to the spraying method of the ultra-high-strength fiber reinforced mortar of the present invention, it has fluidity (workability) suitable for spraying construction, the compressive strength of the cured mortar body is 150 N / mm 2 or more, bending The compressive strength of a cured mortar produced by applying the ultra-high strength fiber reinforced mortar having a strength of 20 N / mm 2 or more, a bending strength / compression strength ratio of 1/9 or more, and kneading according to JIS R 5201. On the other hand, an ultra-high strength fiber reinforced mortar cured body having a compressive strength ratio exceeding 1.0 is obtained.

以下、本発明を詳しく説明する。
なお、本発明における部や%は特に規定しない限り質量基準で示す。
The present invention will be described in detail below.
In the present invention, “parts” and “%” are based on mass unless otherwise specified.

本発明で使用するセメントは、普通、早強、中庸熱、低熱、耐硫酸塩性、及び白色等の各種ポルトランドセメント、高炉スラグや通常のフライアッシュをポルトランドセメントに混合した混合セメント、エコセメント、超早強セメントや急硬セメント等である。また、これらのセメントの複数を任意量混合したセメントも使用できる。なお、エトリンガイトを生成させるのに適した普通ポルトランドセメント、早強ポルトランドセメント、高炉スラグセメント等がより好ましい。   The cement used in the present invention is normal, early strong, moderate heat, low heat, sulfate resistance, white and other various Portland cements, mixed blast furnace slag and normal fly ash mixed with Portland cement, ecocement, These are super early-strength cement and quick-hardening cement. A cement obtained by mixing an arbitrary amount of a plurality of these cements can also be used. In addition, ordinary Portland cement, early-strength Portland cement, blast furnace slag cement and the like suitable for producing ettringite are more preferable.

本発明で使用するシリカフュームは、金属シリコンやフェロシリコン等のシリコンアロイを電気炉等で製造する際に副生する球形の超微粒子であり、主成分は非晶質SiOである。シリカフュームの添加により、セメント硬化体の圧縮強度は高くなるが、圧縮強度に対する曲げ強度の比率は無混和の場合よりも低下する場合もある。さらに、シリカフュームは球形の超微粒子であるので、高性能減水剤等と併用すると、セメント混練物に良好な流動性が得られる。 Silica fume used in the present invention is spherical ultrafine particles by-produced when a silicon alloy such as metallic silicon or ferrosilicon is produced in an electric furnace or the like, and the main component is amorphous SiO 2 . Addition of silica fume increases the compressive strength of the hardened cement body, but the ratio of the bending strength to the compressive strength may be lower than when it is not mixed. Furthermore, since silica fume is spherical ultrafine particles, when it is used in combination with a high-performance water reducing agent or the like, good fluidity can be obtained in the cement kneaded material.

本発明で使用する石炭ガス化フライアッシュ(Coal Gasification Fly Ash、以下CGFAと略す)は、上述したように、ガス化石炭を用いて発電する際の副産物として排出されるものであり、燃焼ガスと一緒にボイラーの煙道から廃棄され、集塵機で回収される最大粒子が5〜10μmの球形の微粒子である。また、通常の石炭焚きフライアッシュとは粒子径や粒子表面性状が異なると共にSiO含有量も高いという特徴がある。CGFAはシリカフュームと同様に粒径が球状であるので、高性能減水剤と併用すると流動性を高める効果を有するが、ポゾラン活性はシリカフュームより低いので強度増進効果は小さい。 As described above, the coal gasification fly ash (hereinafter abbreviated as CGFA) used in the present invention is discharged as a by-product when power is generated using gasified coal. The largest particles that are discarded together from the boiler flue and collected by the dust collector are spherical fine particles of 5 to 10 μm. In addition, it differs from ordinary coal-fired fly ash in that the particle diameter and particle surface properties are different and the SiO 2 content is high. Since CGFA has a spherical particle size like silica fume, it has an effect of enhancing fluidity when used in combination with a high-performance water reducing agent, but its strength enhancement effect is small because pozzolanic activity is lower than that of silica fume.

本発明では、シリカフューム95〜50部とCGFA5〜50部の割合で配合するのが好ましい。この特定割合で混合することによりセメント混練物の流動性やセメント硬化体の曲げ強度を相乗的に高めることが可能となる。
CGFAが5部未満では流動性や曲げ強度の改善効果は小さく、50部を超えると圧縮強度の低下を招くことになる。シリカフュームに対するCGFAの配合割合は、CGFAが増えるにつれて流動性も曲げ強度も改善効果が順次大きくなる。しかし、ピークの値を超えると、CGFA量が増えるにつれて、それらの改善効果が低下する。
したがって、シリカフュームとCGFAの配合割合のより好ましい範囲はシリカフューム90〜60部、CGFA10〜40部である。
特定の比率のシリカフュームとCGFAは合計量で、セメント100部に対して5〜40部添加される。5部未満では流動性の向上及び圧縮強度や曲げ強度に対する強度増進効果が小さく、40部を超えて添加した場合、流動性の低下をもたらすと同時に添加率に応じた強度増進効果が期待できないので、性能的にも経済的にも好ましくない。より好ましい範囲は7〜30部である。
In this invention, it is preferable to mix | blend in the ratio of 95-50 parts of silica fume and 5-50 parts of CGFA. By mixing at this specific ratio, it becomes possible to synergistically increase the fluidity of the cement kneaded material and the bending strength of the cemented body.
If the CGFA is less than 5 parts, the effect of improving the fluidity and bending strength is small, and if it exceeds 50 parts, the compressive strength is lowered. As for the blending ratio of CGFA to silica fume, as the CGFA increases, both the fluidity and the bending strength are improved. However, when the peak value is exceeded, the improvement effect decreases as the amount of CGFA increases.
Therefore, the more preferable ranges of the mixing ratio of silica fume and CGFA are 90-60 parts of silica fume and 10-40 parts of CGFA.
A specific ratio of silica fume and CGFA is added in a total amount of 5 to 40 parts per 100 parts of cement. If it is less than 5 parts, the improvement of fluidity and the effect of enhancing strength against compressive strength and bending strength are small, and if added over 40 parts, the fluidity is lowered and at the same time the effect of enhancing strength according to the addition rate cannot be expected. It is not preferable in terms of performance and economy. A more preferable range is 7 to 30 parts.

さらに、本発明で使用する石膏は、二水石膏、半水石膏、可溶性無水石膏(III型)、及び不溶性無水石膏(II型)等の各種形態の石膏が使用されるが、より好ましくは無水石膏である。石膏は、水和初期には一旦カルシウムアルミネートの水和を抑えて流動性を高め、その後、水和反応によって針状結晶のエトリンガイトを生成する。このエトリンガイトはセメント硬化体中の空隙を充填して密実化を促し、高強度化を可能とする。
石膏は、セメント100部に対して無水物換算で0.5〜8部配合され、0.5部未満では流動性や強度を高める作用は小さく、8部を超えて配合してもそれ以上強度の増進効果が期待できない。好ましくは1〜5部である。
Furthermore, the gypsum used in the present invention is gypsum in various forms such as dihydrate gypsum, hemihydrate gypsum, soluble anhydrous gypsum (type III), and insoluble anhydrous gypsum (type II), but more preferably anhydrous gypsum. It is plaster. In the initial stage of hydration, gypsum temporarily suppresses hydration of calcium aluminate to increase fluidity, and then generates ettringite in the form of needles by a hydration reaction. This ettringite fills the voids in the hardened cement body and promotes solidification, thereby enabling high strength.
Gypsum is blended in 0.5 to 8 parts in terms of anhydride with respect to 100 parts of cement. If it is less than 0.5 part, the effect of increasing fluidity and strength is small, and even if it exceeds 8 parts, it will be stronger. Can not be expected. Preferably it is 1-5 parts.

本発明で使用される細骨材は、生コン工場で用いられている川砂や砕砂が最も入手し易いので好ましいが、特に限定はされない。より高い強度を得るために高硬度の焼成ボーキサイトや鉄鉱石、石英へん岩、その他の細骨材を使用することには制限は受けないものである。また、最大骨材寸法を小さくするなどの特殊な粒度構成にする必要もないが、目的と用途によっては、最大骨材寸法を制限しても良い。通常は、土木学会や建築学会で規定している粒度構成のもので十分である。
細骨材はセメントとシリカフュームとCGFAと石膏の合計(以下、単に結合材という)100部に対して、50〜300部配合する。50部未満ではセメント硬化体が脆性的な性状を示し、曲げ強度が小さくなる場合がある。また、300部を超えると、高性能減水剤を最大限に活用しても150N/mm以上の圧縮強度を得ることが困難となる。より好ましい範囲は、60〜150部である。
さらに、任意量の粗骨材を併用することも可能である。粗骨材の品質も細骨材と同様に特に限定されるものではなく、生コン工場で用いられているものなどを使用することが可能である。
The fine aggregate used in the present invention is preferable because river sand and crushed sand used in ready-mix factories are most readily available, but is not particularly limited. There are no restrictions on the use of high-hardness calcined bauxite, iron ore, quartz porphyry or other fine aggregates to obtain higher strength. Further, it is not necessary to use a special particle size configuration such as reducing the maximum aggregate size, but the maximum aggregate size may be limited depending on the purpose and application. Usually, the grain size configuration prescribed by the Japan Society of Civil Engineers and Architectural Institute is sufficient.
The fine aggregate is blended in an amount of 50 to 300 parts with respect to 100 parts of cement, silica fume, CGFA and gypsum (hereinafter simply referred to as a binder). If it is less than 50 parts, the hardened cement body may show brittle properties and the bending strength may be reduced. If it exceeds 300 parts, it will be difficult to obtain a compressive strength of 150 N / mm 2 or more even if the high-performance water reducing agent is utilized to the maximum extent. A more preferable range is 60 to 150 parts.
Furthermore, any amount of coarse aggregate can be used in combination. The quality of the coarse aggregate is not particularly limited as in the case of the fine aggregate, and those used in the ready-mixed factory can be used.

本発明で使用される硬化促進剤とは、練り混ぜて得られるモルタルやコンクリートの硬化を促進するもの、可塑性を付与するものであり、圧送途中で添加し吹付けることで、厚付けができる効果を付与する。硬化促進剤を添加しないと、1回の吹付け厚みは、20mm前後であるが、硬化促進剤を添加することで、300mm前後まで厚付けが可能となる。
硬化促進剤の種類としては、セメントの凝結を促進するもので、圧縮強度が150N/mm以上、曲げ強度が20N/mm以上を確保できれば、特に限定するものではない。例えば、市販されているカルシウムアルミネート系促進剤、カルシウムサルホアルミネート系促進剤、アルミン酸塩系促進剤、硫酸アルミニウム系促進剤、ケイ酸塩系促進剤などが挙げられる。
また、可塑性を付与するものとしては、アクリル酸エステル系の高分子化合物や粘土鉱物なども使用できる。硬化促進剤は粉状および液状いずれも使用可能である。
硬化促進剤の使用量は、セメント100部に対して0.1〜10部が好ましく、0.5〜6部がより好ましい。0.1部未満では、厚付け性が発揮できない場合があり、10部を超えると強度発現性を阻害する場合がある。
The curing accelerator used in the present invention is an agent that accelerates the curing of mortar and concrete obtained by kneading, imparts plasticity, and can be thickened by adding and spraying in the middle of pumping. Is granted. If the curing accelerator is not added, the spraying thickness of one time is about 20 mm, but by adding the curing accelerator, the thickness can be increased to about 300 mm.
The type of the curing accelerator is not particularly limited as long as it accelerates the setting of cement and can secure a compressive strength of 150 N / mm 2 or more and a bending strength of 20 N / mm 2 or more. Examples thereof include commercially available calcium aluminate accelerators, calcium sulfoaluminate accelerators, aluminate accelerators, aluminum sulfate accelerators, and silicate accelerators.
In addition, as an agent for imparting plasticity, an acrylate polymer compound or a clay mineral can also be used. As the curing accelerator, both powder and liquid can be used.
0.1-10 parts are preferable with respect to 100 parts of cement, and, as for the usage-amount of a hardening accelerator, 0.5-6 parts are more preferable. If the amount is less than 0.1 part, the thickening property may not be exhibited. If the amount exceeds 10 parts, strength development may be inhibited.

本発明の超高強度繊維補強モルタルを製造する際に、結合材100部に対して、練り混ぜ水と高性能減水剤の合計量で15〜25部配合(以下、単に水比という)することが好ましい。ただし、この場合の高性能減水剤は固形分濃度に関係なく液体状態で市販されている減水剤を示す。粉末の状態で市販されている高性能減水剤を使用する場合は15〜25部の中には含めない。
練り混ぜ水が15部未満では、細骨材を少なくして高性能減水剤の減水率が最大となる質量を配合しても良好な流動性は得難く、25部を超えると目的とする高い強度は得られない。
本発明の超高強度繊維補強セメント組成物等に使用できる高性能減水剤には、単に高性能減水剤と称されるものや高性能AE減水剤と称されるものなどである。
高性能減水剤の種類や配合量は特に限定されるものではないが、いずれの種類の高性能減水剤でもセメント100部に対する使用量は多くても液体状態で5部であり、好ましくは4部である。5部を超える量を配合しても減水率を高めることができない場合が多い。粉末の場合は、多くても3部であり、好ましくは2部である。
When producing the ultra-high-strength fiber reinforced mortar of the present invention, 15 to 25 parts (hereinafter simply referred to as a water ratio) is blended with 100 parts of the binder in the total amount of the kneaded water and the high-performance water reducing agent. Is preferred. However, the high-performance water reducing agent in this case indicates a water reducing agent that is commercially available in a liquid state regardless of the solid content concentration. When using a high-performance water reducing agent marketed in powder form, it is not included in 15 to 25 parts.
If the mixing water is less than 15 parts, it is difficult to obtain good fluidity even if the amount of fine aggregate is reduced and the mass reduction ratio of the high-performance water reducing agent is maximized. Strength cannot be obtained.
Examples of the high-performance water reducing agent that can be used in the ultrahigh-strength fiber reinforced cement composition of the present invention include those referred to simply as high-performance water reducing agents and those referred to as high-performance AE water reducing agents.
The type and blending amount of the high-performance water reducing agent are not particularly limited, but any type of high-performance water reducing agent is used in a liquid state of 5 parts at most for 100 parts of cement, preferably 4 parts. It is. Even if the amount exceeds 5 parts, the water reduction rate cannot be increased in many cases. In the case of powder, it is at most 3 parts, preferably 2 parts.

高性能減水剤とは、ポリアルキルアリルスルホン酸塩系高性能減水剤、芳香族アミノスルホン酸塩系高性能減水剤、メラミンホルマリン樹脂スルホン酸塩系高性能減水剤、および、ポリカルボン酸塩系減水剤などのいずれかを主成分とするものであり、これらの一種又は二種以上が使用されるものである。ポリアルキルアリルスルホン酸塩系高性能減水剤には、メチルナフタレンスルホン酸ホルマリン縮合物、ナフタレンスルホン酸ホルマリン縮合物、及びアントラセンスルホン酸ホルマリン縮合物などがあり、減水率が大きくて空気連行性がなく、凝結遅延性も小さい特徴を有する反面、フローやスランプ保持性が小さいという課題を有する。
市販品としては、電気化学工業(株)社商品名「FT−500」とそのシリーズ、花王(株)社商品名「マイティー100(粉末)」や「マイティー150」とそのシリーズ、第一工業製薬(株)社商品名「セルフロー155」、竹本油脂(株)社商品名「ポールファインMF」等、及び(株)フローリック社商品名「フローリックPS」とそのシリーズなどが代表的である。芳香族アミノスルホン酸塩系高性能減水剤としては、(株)フローリック社商品名「フローリックVP200」とそのシリーズがあり、メラミンホルマリン樹脂スルホン酸塩系高性能減水剤には、グレースケミカルズ社商品名「ダーレックスFT−3S」、昭和電工建材(株)社商品名「モルマスターF−10(粉末)」や「モルマスターF−20(粉末)」が挙げられる。
高性能AE減水剤は、ポリアルキルアリルスルホン酸塩系高性能減水剤、芳香族アミノスルホン酸塩系高性能減水剤、メラミンホルマリン樹脂スルホン酸塩系の改良型もあるが、一般的にはポリカルボン酸塩系減水剤を意味する場合がある。ポリカルボン酸塩系減水剤は不飽和カルボン酸モノマーを成分として含む共重合体又はその塩であり、例えばポリアルキレングリコールモノアクリル酸エステル、ポリアルキレングリコールモノメタクリル酸エステル、無水マレイン酸及びスチレンの共重合体やアクリル酸やメタクリル酸塩の共重合体及びこれらの単量体と共重合可能な単量体から導かれた共重合体などが主流であり、高性能減水剤系よりも少ない添加量で減水率が大きい。一般に、空気連行性を有し、凝結硬化の遅延性も大きい反面、フローやスランプ保持性が良好であるという特徴を有する。
市販品としては、(株)エヌエムビー社商品名「レオビルドSP8N,8HU」シリーズ、フローリック(株)社商品名「フローリックSF500S」シリーズ、竹本油脂(株)社商品名「チュポールHP8」、「チュポールHP11」シリーズ、グレースケミカルズ(株)社商品名「ダーレックススーパー100」、「ダーレックススーパー200」、「ダーレックススーパー300」、「ダーレックススーパ1000」シリーズ、花王(株)社商品名「マイティー3000」、「マイティー21WH」、「マイティー21WH」シリーズ、その他が市販されている。
High performance water reducing agents are polyalkylallyl sulfonate high performance water reducing agents, aromatic amino sulfonate high performance water reducing agents, melamine formalin sulfonate high performance water reducing agents, and polycarboxylate salts. One of the water-reducing agents is used as a main component, and one or more of these are used. Polyalkylallyl sulfonate-based high-performance water reducing agents include methyl naphthalene sulfonic acid formalin condensate, naphthalene sulfonic acid formalin condensate, and anthracene sulfonic acid formalin condensate. Although it has the characteristic that the setting delay is small, it has a problem that the flow and slump retention are small.
As commercial products, trade name “FT-500” of Electrochemical Industry Co., Ltd. and its series, trade names “Mighty 100 (powder)” and “Mighty 150” and its series of Kao Corporation, Daiichi Kogyo Seiyaku Representative are the trade name “Cellflow 155”, the product name “Pole Fine MF”, and the product name “Flolic PS” and the series thereof. Aromatic amino sulfonate-based high-performance water reducing agents include the product name “Floric VP200” and its series of Floric Co., Ltd., and melamine formalin resin sulfonate-based high-performance water reducing agents include Grace Chemicals. Product names “Darlex FT-3S”, Showa Denko Construction Materials Co., Ltd. product names “Molmaster F-10 (powder)” and “Molmaster F-20 (powder)” may be mentioned.
High-performance AE water-reducing agents include polyalkylallyl sulfonate-based high-performance water-reducing agents, aromatic amino sulfonate-based high-performance water-reducing agents, and melamine formalin resin sulfonate-based improved types. It may mean a carboxylate-based water reducing agent. The polycarboxylate-based water reducing agent is a copolymer or a salt thereof containing an unsaturated carboxylic acid monomer as a component, for example, a copolymer of polyalkylene glycol monoacrylate, polyalkylene glycol monomethacrylate, maleic anhydride and styrene. Polymers, copolymers of acrylic acid and methacrylate, and copolymers derived from monomers copolymerizable with these monomers are the mainstream, and the amount added is lower than that of high-performance water reducing agents. The water reduction rate is large. In general, it has air entrainment properties and a large delay in setting and curing, but it has characteristics of good flow and slump retention.
Commercially available products include NM Co., Ltd. product name “Leo Build SP8N, 8HU” series, Floric Co., Ltd. product name “Flolic SF500S” series, Takemoto Yushi Co., Ltd. product names “Tupole HP8”, “Tupor” "HP11" series, Grace Chemicals Co., Ltd. trade names "Darlex Super 100", "Darlex Super 200", "Darlex Super 300", "Darlex Super 1000" series, Kao Corporation trade name "Mighty" 3000 "," Mighty 21WH "," Mighty 21WH "series and others are commercially available.

本発明の超高強度繊維補強モルタルに使用される繊維類は長さが5〜30mmで、直径が0.05〜1mmの繊維類であり、モルタル1m当たり0.5〜3容積%配合される。長さが30mmを超えるとモルタルの流動性が低下し、その結果として曲げ強度の向上が大きくない。また、5mm未満では細骨材の最大寸法より短くなるため、曲げ応力作用時の繊維補強効果が小さくなり、曲げ強度が低下する。好ましくは8〜20mmである。
繊維類の種類としては、ビニロン繊維、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ナイロン繊維、アラミド繊維、炭素繊維、ガラス繊維、鋼繊維等が挙げられる。強度の点で、ビニロン繊維、アラミド繊維、炭素繊維、金属繊維の使用が好ましい。
繊維類の直径は0.01mm未満では繊維そのものの強度が弱くなるので曲げ強度は向上し難い場合があり、1mmを超えると配合量を多くしても繊維類のモルタル中の単位体積あたりの本数が少なくなるので曲げ強度は向上しなくなる。
繊維類の配合量はモルタル1m中に0.5〜3容積%であり、0.5容積%未満では曲げ強度を向上させる効果は小さく、3容積%を超えて配合しても曲げ強度の配合率に応じた増加は大きくない。好ましくは0.7〜2.5容積%である。
The fibers used in the ultra-high-strength fiber reinforced mortar of the present invention are fibers having a length of 5 to 30 mm and a diameter of 0.05 to 1 mm, and are blended in an amount of 0.5 to 3% by volume per 1 m 3 of mortar. The When the length exceeds 30 mm, the fluidity of the mortar is lowered, and as a result, the improvement in bending strength is not great. Moreover, since it will become shorter than the maximum dimension of a fine aggregate if less than 5 mm, the fiber reinforcement effect at the time of a bending stress action will become small, and bending strength will fall. Preferably it is 8-20 mm.
Examples of the types of fibers include vinylon fibers, acrylic fibers, polyethylene fibers, polypropylene fibers, nylon fibers, aramid fibers, carbon fibers, glass fibers, and steel fibers. From the viewpoint of strength, it is preferable to use vinylon fiber, aramid fiber, carbon fiber, or metal fiber.
If the fiber diameter is less than 0.01 mm, the strength of the fiber itself becomes weak, so the bending strength may be difficult to improve. If the fiber diameter exceeds 1 mm, the number of fibers per unit volume in the mortar of the fiber even if the blending amount is increased. Therefore, the bending strength is not improved.
The blending amount of the fibers is 0.5 to 3% by volume in 1 m 3 of the mortar, and the effect of improving the bending strength is small if the amount is less than 0.5% by volume. The increase according to the mixing ratio is not large. Preferably it is 0.7-2.5 volume%.

本発明の超高強度繊維補強モルタルの練り混ぜ方法は、通常行われている練混ぜ方法で良い。なお、強制練り混ぜ型ミキサを使用する場合、繊維を添加するタイミングは、モルタルに流動性がでてきた時点でミキサに投入して、再度練り混ぜするのが好ましい。また、繊維類は予めドライのモルタルに分散混合させた状態のものを使用してもよい。   The mixing method of the ultra high strength fiber reinforced mortar of the present invention may be a conventional mixing method. In addition, when using a forced kneading type mixer, it is preferable to add the fiber to the mixer when fluidity appears in the mortar and knead again. Moreover, you may use the thing of the state disperse-mixed previously with dry mortar.

本発明では、高炉スラグ微粉末、高炉徐冷スラグ微粉末、膨張材、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、保水剤、顔料、高分子エマルジョン、ハイドロタルサイト等のアニオン交換体や各種添加剤、石灰石微粉末等からなる群のうちの1種又は2種以上を、本発明の目的を実質的に阻害しない範囲で併用することが可能である。   In the present invention, blast furnace slag fine powder, blast furnace slow-cooled slag fine powder, expansion material, antifoaming agent, thickener, rust inhibitor, antifreeze agent, shrinkage reducing agent, water retention agent, pigment, polymer emulsion, hydrotalcite It is possible to use together 1 type (s) or 2 or more types in the group which consists of anion exchangers, various additives, limestone fine powder, etc. in the range which does not inhibit the objective of this invention substantially.

本発明の吹付け工法は、特に限定されるものではなく、通常行われている設備が使用できる。例えば、練り混ぜたモルタルを圧送するポンプとしては、ピストンポンプ、スクイズポンプ、スネークポンプ等が使用できる。
圧送するためのホースは通常は2MPa以上の耐圧ホースを使用する。圧送距離は、特に限定するものではないが、ポンプの能力やホース径にもよるが、ホース内のロスや、閉塞時のトラブルを考慮すると50m程度が最大である。
吹付けノズルは、特に限定するものではなく、通常市販されているものが使用できる。硬化促進剤を併用する場合も通常市販されているものが使用できる。硬化促進剤を合流する場合は、液体であれば圧送ポンプを使用して圧送されてくるモルタルと合流させるが、ポンプの種類は特に限定するものではなく、スクイズポンプやプランジャーポンプが使用できる。加圧しながら圧送できることからプランジャーポンプの使用が好ましい。粉体の硬化促進剤を使用する場合は、粉体を空気搬送できる添加システムを使用すればよい。例えば、電気化学工業社製 粉体空気輸送装置「ナトムクリート」のようなシステムが挙げられる。硬化促進剤の添加方法としては、液体の場合、直接圧送されてくるモルタルに液を圧送し混合してもよく、モルタルに混合する手前で圧縮空気と合流させミスト状としたものを混合してもよい。粉体の場合は空気搬送方式であるため圧縮空気と粉体の硬化促進剤が混合される。
吹付け施工に使用する圧縮空気は、コンプレッサーの空気圧力が0.4MPa以上が好ましい。0.4MPaより小さいと、吹き付けたモルタルの圧縮強度比が1.0を下回る場合がある。吹付けに使用する圧縮空気の空気流量は、モルタルの吐出量によって変える必要がある。変えるときは、コンプレッサーの種類を変えたり、圧縮空気が圧送されてくるモルタルと合流する手前にバルブを設け、流量を調整することが可能である。概ね、時間あたりの吐出するモルタル容量(m/hr)に対して40倍以上の空気流量(m/hr)が好ましい。40倍を下回ると吹き付けたモルタルの圧縮強度比が1.0を下回る場合がある。
The spraying method of the present invention is not particularly limited, and a commonly used facility can be used. For example, a piston pump, a squeeze pump, a snake pump, or the like can be used as a pump for pumping the kneaded mortar.
A pressure hose of 2 MPa or more is usually used as a hose for pressure feeding. The pumping distance is not particularly limited, but it depends on the capacity of the pump and the diameter of the hose, but about 50 m is the maximum considering the loss in the hose and the trouble at the time of closing.
The spray nozzle is not particularly limited, and a commercially available one can be used. Even when a curing accelerator is used in combination, commercially available products can be used. When the curing accelerator is combined, if it is liquid, it is combined with the mortar that is pumped using a pump, but the type of the pump is not particularly limited, and a squeeze pump or a plunger pump can be used. The use of a plunger pump is preferred because it can be pumped while being pressurized. When using a powder hardening accelerator, an additive system capable of air-feeding the powder may be used. For example, there is a system such as “Natom Cleat”, a powder air transportation device manufactured by Denki Kagaku Kogyo. As a method of adding a curing accelerator, in the case of a liquid, the liquid may be pumped and mixed in a mortar that is directly pumped, or mixed with compressed air and mixed in a mist before mixing with the mortar. Also good. In the case of powder, since it is an air conveyance system, compressed air and powder hardening accelerator are mixed.
The compressed air used for the spray construction preferably has a compressor air pressure of 0.4 MPa or more. If it is less than 0.4 MPa, the compressive strength ratio of the sprayed mortar may be less than 1.0. It is necessary to change the air flow rate of the compressed air used for spraying according to the discharge amount of mortar. When changing, it is possible to adjust the flow rate by changing the type of the compressor or providing a valve before the compressed air joins with the mortar to which the compressed air is pumped. In general, an air flow rate (m 3 / hr) that is 40 times or more the mortar capacity (m 3 / hr) discharged per hour is preferable. If it is less than 40 times, the compression strength ratio of the sprayed mortar may be less than 1.0.

本発明の超高強度繊維モルタルの養生方法は限定されるものではなく、場所打ちでは通常の養生方法、製品工場では蒸気養生、オートクレーブ養生、及び温水養生等が可能である。   The curing method of the ultra-high-strength fiber mortar of the present invention is not limited, and a normal curing method can be used in place, a steam curing, an autoclave curing, a hot water curing, and the like in a product factory.

以下、本発明を実施例にて詳細に説明するが、これらに限られるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, it is not restricted to these.

実施例で使用する材料と試験項目とその方法を以下にまとめて示す。   The materials, test items, and methods used in the examples are summarized below.

(使用材料)
セメント:電気化学工業(株)社製、普通ポルトランドセメント、密度3.16g/cm
細骨材:新潟県姫川産川砂、5mm以下、密度2.62g/cm
SF:シリカフューム、エルケム社製、密度2.44g/cm
CGFA:オランダ産石炭ガス化フライアッシュ、密度2.44g/cc
石膏:不溶性無水石膏、天然産、密度2.82g/cm
高性能減水剤:ポリカルボン酸塩系減水剤、グレースケミカルズ(株)社製「スーパー1000N」
繊維A:直径0.2mm、長さ15mmの鋼製、引張強度2000N/mm、密度7.80g/cm
繊維B:直径0.2mm、長さ12mmのビニロン繊維、引張強度1600N/mm、密度1.3g/cm
繊維C:直径0.012mm、長さ12mmのアラミド繊維、引張強度3500N/mm、密度1.39g/cm
繊維D:直径0.05mm、長さ12mmの炭素繊維、引張強度4000N/mm、密度1.8g/cm
(Materials used)
Cement: manufactured by Denki Kagaku Kogyo KK, ordinary Portland cement, density 3.16 g / cm 3
Fine aggregate: River sand from Himekawa, Niigata Prefecture, 5mm or less, density 2.62g / cm 3
SF: Silica fume, manufactured by Elchem, density 2.44 g / cm 3
CGFA: Dutch coal gasification fly ash, density 2.44 g / cc
Gypsum: Insoluble anhydrous gypsum, natural product, density 2.82 g / cm 3
High performance water reducing agent: Polycarboxylate water reducing agent, "Super 1000N" manufactured by Grace Chemicals Co., Ltd.
Fiber A: Steel having a diameter of 0.2 mm and a length of 15 mm, tensile strength 2000 N / mm 2 , density 7.80 g / cm 3
Fiber B: Vinylon fiber having a diameter of 0.2 mm and a length of 12 mm, a tensile strength of 1600 N / mm 2 , and a density of 1.3 g / cm 3
Fiber C: aramid fiber having a diameter of 0.012 mm and a length of 12 mm, a tensile strength of 3500 N / mm 2 , and a density of 1.39 g / cm 3
Fiber D: Carbon fiber having a diameter of 0.05 mm and a length of 12 mm, a tensile strength of 4000 N / mm 2 , and a density of 1.8 g / cm 3

(試験方法)
モルタルの練り混ぜとフローの測定:JIS R 5201に準じた。フローは、抜き上げたときの静置フロー値(mm)とした。
圧送性:練り混ぜたモルタルをスクイズポンプで内径40mmの耐圧ホースで20mモルタルを吐出量0.5m/hrで圧送したとき、圧送圧力が2.5MPaを超えた場合は圧送負荷が大きいと判断し、それより小さければ圧送負荷が小さいと判断した。
モルタル強度の測定方法:曲げ強度および圧縮強度はJIS R 5201に準じて測定した。モルタルは直接4×4×16cmの三連型枠に吹付けて成型した。養生方法は、成形した超高強度繊維モルタル供試体は直ちに20℃恒温室内で型枠上面をビニールシートにより封緘養生後、翌日脱型し、20℃で水中養生し所定材齢で強度測定試験を実施した。
磨耗量:JIS K 7204の準拠して行った。磨耗試験用の試験体はφ10×1cm。養生方法は強度試験と同じ。磨耗条件は、荷重1000g、回転数1000rpm。
(Test method)
Mixing of mortar and measurement of flow: According to JIS R 5201. The flow was a static flow value (mm) when the flow was extracted.
Pumpability: When the mixed mortar is pumped with a squeeze pump with a pressure hose with an inner diameter of 40 mm and 20 m mortar with a discharge rate of 0.5 m 3 / hr, if the pumping pressure exceeds 2.5 MPa, the pumping load is judged to be large. However, if it was smaller than that, it was judged that the pressure load was small.
Method of measuring mortar strength: Bending strength and compressive strength were measured according to JIS R 5201. The mortar was molded by spraying directly onto a 4 × 4 × 16 cm triple form. The curing method is that the molded ultra-high-strength fiber mortar specimen is immediately sealed in a constant temperature room at 20 ° C with a vinyl sheet, then demolded the next day, cured at 20 ° C in water, and subjected to a strength measurement test at a specified age. Carried out.
Abrasion amount: Measured according to JIS K 7204. The specimen for the wear test is φ10 × 1 cm. The curing method is the same as the strength test. The wear conditions are a load of 1000 g and a rotation speed of 1000 rpm.

「実施例1」
セメント、シリカフューム、石炭ガス化フライアッシュおよび石膏からなる結合材100部に対して、細骨材100部、水(減水剤を結合材に対して1.5部を含む)19部、結合材と細骨材と水からなるモルタル1mに対して繊維Aの配合率を0.8容積%として、結合材の中のシリカフューム(SF)と石炭ガス化フライアッシュ(CGFA)の合計に対するそれぞれの配合割合(%)とそれらの合計量の結合材中の配合割合(%)、石膏の結合材中の配合割合(%)を任意に変えて超高強度繊維モルタルをダマカットミキサーで5分間練り混ぜ、スクイズポンプで内径40mmの耐圧ホースで20mモルタルを吐出量0.5m/hrで圧送した。ノズル出口手前で、空気圧0.7MPa、空気流量0.6m/minの圧縮空気を導入して吹付けてモルタル供試体を作製し、圧縮強度と曲げ強度を測定した。結果を表1に示す。なお、練り混ぜたモルタルを吹付けないで型枠に詰めて成型して作製したモルタル供試体についても測定した。
"Example 1"
100 parts of fine aggregate, 19 parts of water (including 1.5 parts of water reducing agent for the binder), 100 parts of binder, and 100 parts of binder made of cement, silica fume, coal gasified fly ash and gypsum Mixing ratio of fiber A to 0.8% by volume with respect to 1m 3 of mortar made of fine aggregate and water, each compounding to the total of silica fume (SF) and coal gasification fly ash (CGFA) in the binder The ratio (%) and the total amount of these ingredients in the binder (%) and the gypsum binder ratio (%) are arbitrarily changed, and ultra-high-strength fiber mortar is kneaded for 5 minutes with a Damacut mixer. Then, 20 m mortar was pumped at a discharge amount of 0.5 m 3 / hr with a pressure hose having an inner diameter of 40 mm with a squeeze pump. In front of the nozzle outlet, compressed air having an air pressure of 0.7 MPa and an air flow rate of 0.6 m 3 / min was introduced and sprayed to prepare a mortar specimen, and the compressive strength and bending strength were measured. The results are shown in Table 1. In addition, it measured also about the mortar test piece produced by packing and forming in the mold without spraying the mortar which kneaded.

Figure 0005713540
Figure 0005713540

「実施例2」
実施例1の実験No.1-16の配合のモルタルを圧送し、吹付けノズル手前で圧縮空気と、硬化促進剤をセメント100部に対して表2に示すように混合した。結果を表2に示す。
"Example 2"
The mortar having the composition of Experiment No. 1-16 of Example 1 was pumped, and compressed air and a curing accelerator were mixed with 100 parts of cement as shown in Table 2 before the spray nozzle. The results are shown in Table 2.

(使用材料)
硬化促進剤A:硫酸アルミニウム系液体硬化促進剤、主成分:硫酸アルミニウム、固形分22%
硬化促進剤B:カルシウムサルホアルミネート系粉体硬化促進剤、商品名:ナトミックT−10
硬化促進剤C:ケイ塩系液体硬化促進剤、ケイ酸リチウム水溶液、固形分20%
硬化促進剤D:アクリル酸エステル共重合体系エマルジョン液体硬化促進剤、固形分5%
(Materials used)
Curing accelerator A: Aluminum sulfate-based liquid curing accelerator, main component: aluminum sulfate, solid content 22%
Curing accelerator B: Calcium sulfoaluminate powder curing accelerator, trade name: Natomic T-10
Curing accelerator C: Silica salt-based liquid curing accelerator, lithium silicate aqueous solution, solid content 20%
Curing accelerator D: acrylate copolymer emulsion liquid curing accelerator, solid content 5%

(試験方法)
厚付け性:吹付け面コンクリート製の垂直面とし、ノズルと吹付け面の距離を30cmとして直角に固定して吹付けを実施した。吹き付けたモルタルが剥がれ落ちるまでの厚みを測定した。
(Test method)
Thickness: A vertical surface made of sprayed concrete was used, and the distance between the nozzle and the sprayed surface was set to 30 cm and fixed at a right angle for spraying. The thickness until the sprayed mortar peeled off was measured.

Figure 0005713540
Figure 0005713540

本発明の超高強度繊維補強モルタルの吹付け工法に依れば、吹付け施工に適した流動性(作業性)を持ち、現場養生のモルタル硬化体の圧縮強度が150N/mm以上、曲げ強度が20N/mm以上で、曲げ強度/圧縮強度比が1/9以上で、かつ、練り混ぜた前記超高強度繊維補強モルタルをJIS R 5201に準じて作製したモルタル硬化体の圧縮強度に対して、圧縮強度比が1.0を超える超高強度繊維補強モルタル硬化体が得られるので、橋梁用構造部材、橋梁用付属物、地下構造部材、ダム構造部材、海洋構造部材、建築構造部材、建築建材、土木建築資材や耐磨耗が要求される水利構造部材等に利用可能である。 According to the spraying method of the ultra-high-strength fiber reinforced mortar of the present invention, it has fluidity (workability) suitable for spraying construction, the compressive strength of the cured mortar body is 150 N / mm 2 or more, bending The compressive strength of a cured mortar produced by applying the ultra-high strength fiber reinforced mortar having a strength of 20 N / mm 2 or more, a bending strength / compression strength ratio of 1/9 or more, and kneading according to JIS R 5201. On the other hand, an ultra-high-strength fiber reinforced mortar hardened body having a compressive strength ratio exceeding 1.0 can be obtained, so structural members for bridges, bridge accessories, underground structural members, dam structural members, marine structural members, building structural members It can be used for building construction materials, civil engineering construction materials and water use structural members that require wear resistance.

Claims (2)

シリカフュームと石炭ガス化フライアッシュの配合割合がシリカフューム95〜50質量部に対し石炭ガス化フライアッシュ5〜50質量部であり、シリカフュームと石炭ガス化フライアッシュの合計量が結合材中5〜40質量%、石膏がセメント100質量部に対して無水物換算で0.5〜8質量部である、セメント、シリカフューム、石炭ガス化フライアッシュおよび石膏からなる結合材と、前記結合材100質量部に対して細骨材50〜200質量部と、前記結合材と細骨材と水からなるモルタル1mに対して0.5〜3容量%の長さ5〜30mmの繊維類と、水とを練り混ぜて得られる超高強度繊維補強モルタルをポンプ圧送し、空気圧力が0.4MPa以上で時間あたりの吐出するモルタル容量(m/hr)に対して40倍以上の空気流量(m/hr)である圧縮空気を用いて吹き付けて得られるモルタル硬化体の圧縮強度が150N/mm以上、曲げ強度が20N/mm以上で、曲げ強度/圧縮強度比が1/9以上であり、前記モルタル硬化体の圧縮強度が練り混ぜた前記超高強度繊維補強モルタルをJIS R 5201に準じて作製したモルタル硬化体の圧縮強度に対して圧縮強度比が1.0を超えることを特徴とする吹付け工法。 The blending ratio of silica fume and coal gasification fly ash is 5 to 50 parts by mass of coal gasification fly ash with respect to 95 to 50 parts by mass of silica fume, and the total amount of silica fume and coal gasification fly ash is 5 to 40 mass in the binder. %, Gypsum is 0.5 to 8 parts by mass in terms of anhydride with respect to 100 parts by mass of cement, and a binder composed of cement, silica fume, coal gasified fly ash and gypsum, and 100 parts by mass of the binder 50 to 200 parts by mass of fine aggregate, 0.5 to 3% by volume of fibers of 5 to 30% in length with respect to 1 m 3 of mortar composed of the binder, fine aggregate and water, and water. Pumping ultra-high-strength fiber reinforced mortar obtained by mixing, 40 times or less of mortar capacity (m 3 / hr) discharged per hour at an air pressure of 0.4 MPa or more The mortar hardened body obtained by spraying with compressed air having the above air flow rate (m 3 / hr) has a compressive strength of 150 N / mm 2 or more, a bending strength of 20 N / mm 2 or more, and a bending strength / compressive strength ratio. Ri der but 1/9 or more, the compressive strength ratio to the compressive strength of the mortar cured body mortar cured body compressive strength of the ultra high strength fiber reinforced mortar kneading was prepared in accordance with JIS R 5201 of 1 A spraying method characterized by exceeding 0.0 . 超高強度繊維補強モルタルをポンプ圧送し、途中で圧縮空気以外に硬化促進剤を合流混合して吹き付けることを特徴とする請求項1記載の吹付け工法。 2. The spraying method according to claim 1, wherein the ultra-high-strength fiber reinforced mortar is pumped and the curing accelerator is mixed and sprayed in addition to the compressed air.
JP2009025902A 2009-02-06 2009-02-06 Spraying method of ultra high strength fiber reinforced mortar and cured mortar Active JP5713540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009025902A JP5713540B2 (en) 2009-02-06 2009-02-06 Spraying method of ultra high strength fiber reinforced mortar and cured mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009025902A JP5713540B2 (en) 2009-02-06 2009-02-06 Spraying method of ultra high strength fiber reinforced mortar and cured mortar

Publications (2)

Publication Number Publication Date
JP2010180106A JP2010180106A (en) 2010-08-19
JP5713540B2 true JP5713540B2 (en) 2015-05-07

Family

ID=42761930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009025902A Active JP5713540B2 (en) 2009-02-06 2009-02-06 Spraying method of ultra high strength fiber reinforced mortar and cured mortar

Country Status (1)

Country Link
JP (1) JP5713540B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276227B (en) * 2011-05-24 2013-04-17 南京臣功节能材料有限责任公司 Anti-sagging heat-insulation mortar based on beta-hemihydrated gypsum
CN102219468A (en) * 2011-05-24 2011-10-19 南京臣功节能材料有限责任公司 Anti-cracking heat insulation mortar
CN102190468A (en) * 2011-05-24 2011-09-21 南京臣功节能材料有限责任公司 Anti-sagging heat-insulation mortar based on silicate cement
KR101323238B1 (en) 2011-12-05 2013-10-30 한국건설기술연구원 Shocrete composition and construction method using the same
JP6264644B2 (en) * 2014-01-28 2018-01-24 住友大阪セメント株式会社 Admixture, cement composition and hardened cement
CN103922685A (en) * 2014-03-13 2014-07-16 安徽理工大学 Sprayed hybrid fiber desulfurized gypsum concrete for underground construction
JP2015189642A (en) * 2014-03-28 2015-11-02 株式会社大林組 Method of spraying ultrahigh strength fiber-reinforced mortar
JP6624438B2 (en) * 2015-04-28 2019-12-25 三菱マテリアル株式会社 High tensile strength mortar with excellent fatigue durability
JP6998811B2 (en) * 2018-03-28 2022-01-18 鹿島建設株式会社 Mortar composition, spraying method, and method for producing cured product
FR3086961B1 (en) * 2018-10-03 2023-02-10 Soletanche Freyssinet PROJECTION OF UHPFRC FOR REINFORCEMENT AND REGENERATION OF PRE-EXISTING STRUCTURES

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4558569B2 (en) * 2005-04-18 2010-10-06 電気化学工業株式会社 Ultra high strength fiber reinforced cement composition, ultra high strength fiber reinforced mortar or concrete, and ultra high strength cement admixture

Also Published As

Publication number Publication date
JP2010180106A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP5713540B2 (en) Spraying method of ultra high strength fiber reinforced mortar and cured mortar
JP4558569B2 (en) Ultra high strength fiber reinforced cement composition, ultra high strength fiber reinforced mortar or concrete, and ultra high strength cement admixture
JP4607161B2 (en) Low shrinkage ultra high strength fiber reinforced cement composition, low shrinkage ultra high strength fiber reinforced mortar or concrete, and low shrinkage ultra high strength cement admixture
JP4593412B2 (en) Centrifugal concrete product and manufacturing method thereof
US10259747B2 (en) Advanced fiber reinforced concrete mix designs and admixtures systems
JP4709677B2 (en) Premix high toughness polymer cement mortar material and high toughness polymer cement mortar
JP7395633B2 (en) polymer cement mortar
TW200602283A (en) Cement admixture, cement composition, mortar and concrete
JP6964548B2 (en) Mortar composition and its manufacturing method, and repair / reinforcement method for concrete structures
JP2009256121A (en) Spraying material and spray repairing method using the same
JP2566099B2 (en) Grout material for repairing concrete section
JP2023049713A (en) Cement admixture, quick curing mortar concrete material, quick curing mortar concrete composition, and cured body
JPH10139516A (en) One-powder type fiber reinforced mortar composition for coating and its production
JP4540161B2 (en) Water conduit / pipe
JP6998811B2 (en) Mortar composition, spraying method, and method for producing cured product
JP2001213661A (en) Composite material
JP2001206753A (en) Cement mixing agent, cement-containing concrete, method for manufacturing the concrete and construction method for spraying the concrete
JP2001207442A (en) Sheet pile
JP2001207577A (en) Embedded form
EP4214176A1 (en) Cementitious compositions with high compressive strength and uses thereof
JP2001207516A (en) Culvert
JP2001200576A (en) Side ditch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140516

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140528

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150310

R151 Written notification of patent or utility model registration

Ref document number: 5713540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250