TW200602283A - Cement admixture, cement composition, mortar and concrete - Google Patents

Cement admixture, cement composition, mortar and concrete Download PDF

Info

Publication number
TW200602283A
TW200602283A TW94108257A TW94108257A TW200602283A TW 200602283 A TW200602283 A TW 200602283A TW 94108257 A TW94108257 A TW 94108257A TW 94108257 A TW94108257 A TW 94108257A TW 200602283 A TW200602283 A TW 200602283A
Authority
TW
Taiwan
Prior art keywords
concrete
cement
mortar
experiment
strength
Prior art date
Application number
TW94108257A
Other languages
Chinese (zh)
Other versions
TWI336318B (en
Inventor
Watanabe Yoshiharu
Original Assignee
Denki Kagaku Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kk filed Critical Denki Kagaku Kogyo Kk
Publication of TW200602283A publication Critical patent/TW200602283A/en
Application granted granted Critical
Publication of TWI336318B publication Critical patent/TWI336318B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0042Powdery mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • C04B7/04Portland cement using raw materials containing gypsum, i.e. processes of the Mueller-Kuehne type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/26Cements from oil shales, residues or waste other than slag from raw materials containing flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

200602283 (1) 九、發明說明 【發明所屬之技術領域】 本發明係有關一種水泥摻和物,一種水泥組成物,和 使用該水泥組成物的砂漿與混凝土。更特定言之,本發明 係有關一種水泥摻和物,其包含矽灰(s i1 i C a f u m e )和經 篩分到20微米或更小的尺寸之飛灰(fly ash),及一種 水泥組成物,其中係將該水泥摻和物添加到水泥中。另外 φ ,本發明係有關經由使用該水泥組成物而增強彎曲強度的 砂漿和混凝土。 【先前技術】 砂漿或混凝土的問題在於其彎曲強度基本上低於其壓 縮強度,且甚至於當壓縮強度增加時,彎曲強度沒有同等 增加。因此,基於彎曲強度而設計的路面,小樑,大樑, 和許多種混凝土二次產品都易於造成過度調配的不經濟混 φ 凝土調配。另外,爲了增加抗彎曲強度,要將元件的橫截 面增厚,或經由PC鋼棒導入預應力(prestress )。於 Hume管件和類似者之中,係在混凝土中倂入膨脹性材料 以導入化學應力或化學預應力,藉此增加彼等的外壓力強 度。 另一方面,矽灰具有高凝硬活性,且用爲強度增強劑 。另外,矽灰與相當大量的高性能減水劑之組合可增加砂 漿流度、混凝土坍度或坍流度,而促成易於製造具有低水 /黏合材料比之砂漿或混凝土。所以其常以摻和物形式用 -4- 200602283 (2) 於高流性高強度砂漿或混凝土。 飛灰爲含有尺寸爲100微米或更小的空心粒子之球形 粒狀煤灰,其係由粉煤燃燒熱發電廠以副產物形式獲得者 。飛灰可長期地反應以增進水密性,不過其具有低凝硬活 性,使得其常被用爲飛灰水泥。如在專利文件1中所示者 ,飛灰係經篩分到20微米或更小或1 0微米或更小的尺寸 ,藉以移除大中空粒子以提供良好的球形中空性粒子。由 於其球軸承功能,當其與高性能減水劑或特別是高性能 AE減水劑混配時,砂漿流度,混凝土坍度或坍流度會增 加而展現強黏性。另外,已知即使流度或坍度相同,減水 所增加的強度會超過沒有摻和經篩分的飛灰之砂漿或混凝 土的情況。 此外,例如在專利文件2中所示者,常將石膏以高強 度摻和物形式使用,不論是否有實施蒸汽固化,而且也已 知石膏與矽灰的組合可提供更高的強度和耐久性。 再者,如專利文件3中所示者,傳統方法中有一種添 加金屬纖維作爲增進彎曲強度或韌性之方法。也已知的是 ,經由在水泥中添加矽灰和針狀或平細粒子並將最大骨材 尺寸限制到較小値,可以達到使用金屬纖維之韌性改良。200602283 (1) Description of the Invention [Technical Field] The present invention relates to a cement admixture, a cement composition, and a mortar and concrete using the cement composition. More particularly, the present invention relates to a cement admixture comprising s i1 i C afume and fly ash sized to a size of 20 microns or less, and a cement composition The cement blend is added to the cement. Further, φ, the present invention relates to mortar and concrete which enhance bending strength by using the cement composition. [Prior Art] A problem with mortar or concrete is that its bending strength is substantially lower than its compressive strength, and even when the compressive strength is increased, the bending strength is not increased equally. Therefore, pavements based on flexural strength, trabeculae, girders, and many types of concrete secondary products are prone to over-provisioning of uneconomical blends of φ. In addition, in order to increase the bending strength, the cross section of the element is thickened or prestressed via a PC steel bar. Among the Hume fittings and the like, the expansive material is inserted into the concrete to introduce chemical stress or chemical pre-stress, thereby increasing their external pressure strength. On the other hand, ash has a high condensing activity and is used as a strength enhancer. In addition, the combination of ash and a significant amount of high performance water reducer can increase mortar fluidity, concrete twist or turbulence, and facilitate the manufacture of mortar or concrete having a low water/bond ratio. Therefore, it is often used in the form of admixture -4- 200602283 (2) in high-flow high-strength mortar or concrete. Fly ash is a spherical granulated coal ash containing hollow particles having a size of 100 μm or less, which is obtained as a by-product from a pulverized coal combustion thermal power plant. Fly ash can react for a long time to enhance water tightness, but it has low solidification activity, making it often used as fly ash cement. As shown in Patent Document 1, the fly ash is sieved to a size of 20 μm or less or 10 μm or less to remove large hollow particles to provide good spherical hollow particles. Due to its ball bearing function, when it is mixed with a high performance water reducer or especially a high performance AE water reducer, the mortar fluidity, concrete twist or turbulence will increase and exhibit strong adhesion. Further, it is known that even if the fluidity or the twist is the same, the increased strength of the water reduction exceeds the case where the mortar or concrete of the sieved fly ash is not blended. Further, for example, as shown in Patent Document 2, gypsum is often used in the form of a high-strength blend, whether or not steam curing is carried out, and it is also known that a combination of gypsum and ash can provide higher strength and durability. . Further, as shown in Patent Document 3, there is a method of adding metal fibers as a method of improving bending strength or toughness in the conventional method. It is also known that the toughness improvement using metal fibers can be achieved by adding ash and needle or flat particles to the cement and limiting the maximum aggregate size to a smaller enthalpy.

專利文件1 : JP 63 — 8248APatent Document 1: JP 63 — 8248A

專利文件2 : JP 3 — 40947APatent Document 2: JP 3 — 40947A

專利文件 3 : JP 1 1 — 24625 5 A 不過,一種其中只摻合矽灰的通用技術可增加混凝土 的壓縮強度,但其有一項問題,亦即混凝土會變脆且其彎 -5- 200602283 (3) 曲強度對壓縮強度比例低於沒有摻和矽灰之情況。另外, 如專利文件1中所示者,由於經篩分到20微米或更小者 或1 〇微米或更小的尺寸之飛灰原本就具有低凝硬活性, 其強度會經由減水而增加。不過,即使實施蒸汽固化,其 強度增量在短期內,相對於沒有將經篩分飛灰於相同的低 水/黏合材料比例下摻和之情況,也幾乎不增加。 此外,如在專利文件2中所示者,單獨使用石膏或與 φ 矽灰組合,都容易展現高強度,且也可針對壓縮強度的增 加而增加彎曲強度。不過,仍有問題存在,亦即,其比例 不比習用混凝土好。如專利文件3中所示者,相對於在混 凝土混合工廠或混凝土產品工廠中所用的細骨材或砂漿或 混凝土爲5毫米或更小,於使用金屬纖維強化的方法中, 將最大骨材尺寸限制到2毫米或更小,或1毫米或更小, 已成爲不可或缺的要件。因此,此方法具有不能廣泛採用 之問題。 【發明內容】 (本發明要解決的問題) 本發明係經硏究以解決前述習用技術中的問題,且本 發明的一項目的爲提供壓縮強度和彎曲強度之絕對値及彎 曲強度對壓縮強度比例値都有增加的砂漿或混凝土。 本發明的另一目的爲提供一種水泥摻和物以實現上述 的砂漿或混凝土,及使用該水泥摻和物之水泥組成物。 本發明的又另一項目的爲提供由上述砂漿或混凝土所 -6 - 200602283 (4) 製得之水泥硬化產物。 [解決問題之手段] 現已發現經由使用迄今已知的矽灰,經篩分到2 0微 米或更小的尺寸之飛灰,和石膏,不是單獨而爲組合使用 者,相對於每一種單獨使用的情況,可以協同地增加彎曲 強度及彎曲強度對壓縮強度的比例。另外,經發現的事實 φ 爲,既然基質砂漿或混凝土本身的彎曲強度可獲得增加, 則即使使用普通可取得的用於砂漿或混凝土之細骨材,同 時使用金屬纖維可大幅地增加彎曲強度,因而導致本發明 的完成。 特定言之,本發明係有關下述水泥摻和物,水泥組成 物,砂漿,混凝土,水泥硬化產物。 (1 ) 一種水泥摻和物,其包含矽灰和經篩分到20微 米或更小的尺寸之飛灰,其中該矽灰對經篩分飛灰的混合 φ 重量比例爲從95 : 5至10 : 90。 (2 )根據上面第(1 )項的水泥摻和物,其進一步包 括石膏。 (3 ) —種水泥組成物,其包含其量爲1到3 5重量份 每1 0 0重量份的水泥之根據上面第(1 )項之水泥摻和物 〇 (4 )根據上面第(3 )項之水泥組成物’其進一步包 含石膏,其量爲以無水基準計算時之〇·5至12重量份每 1〇〇重量份該水泥組成物。 -7- 200602283 (5) (5 ) —種砂漿,其包含根據上面第(3 )或(4 )項 之水泥組成物,細骨材,減水劑和捏合水。 (6 )根據上面第(5 )項之砂漿,其具有添加於其中 的金屬纖維,該金屬纖維的外添加量爲1 · 〇至6 · 0體積% 每立方米該砂漿。 (7 ) —種混凝土,其包含上面第(3 )或(4 )項之 水泥組成物,細骨材,粗骨材,減水劑和捏合水。 (8 )根據上面第(7 )項之混凝土,其具有添加於其 中之金屬纖維,該金屬纖維的外添加量爲1·〇至4.0體積 %每立方米該混凝土。 (9 ) 一種經由將上面第(5 )或(6 )項之砂漿硬化 所得水泥硬化產物。 (1 〇 ) —種經由將上面第(7 )或(8 )項之混凝土硬 化所得之水泥硬化產物。 φ [發明功效] 根據本發明,經捏合過的砂漿或混凝土所具流度値會 受到改良而得到良好的操作性。再者,所得砂漿和混凝土 具有高壓縮強度和彎曲強度絕對値,且可得到高的彎曲強 度相對於壓縮強度的比例。另外,倂入金屬纖維所得強化 作用可大幅地增加彎曲強度。此可促成在土木工程和建築 結構及混凝土二次產物的製造中既經濟且有利的設計。 (實施本發明之最佳方式) -8- 200602283 (6) 下面要詳細說明本發明。於本發明中用來指明調配比 例或量的份數和百分比都是以重量計算。不過,於金屬纖 維的情況中,彼等係以體積%每立方米的砂漿或混凝土之 單位表示外添加量。 本發明所用矽灰係在電爐中製造矽合金和氧化鉻例如 金屬矽或鐵矽化物時以副產物形式得到者,且其係由具有 1微米或更小的尺寸之細球狀粒子所構成,主要成分爲具 φ 有高反應性的非晶態二氧化矽。雖然壓縮強度會隨著所添 加之矽灰量的增加而增加,不過相對於沒有摻和矽灰的情 況,彎曲強度對壓縮強度的比例會減低。 如上面所述者,矽灰不僅是作爲強度增加劑而已。當 其以水泥爲基準約1 〇%之量與相當大量的高性能減水劑合 倂使用時,流動性會極劇增進。不過,其流動特性取決於 高性能減水劑的種類而改變,且矽灰與所謂稍高性能減水 劑例如以多烷基烯丙基磺酸酯爲基礎或以三聚氰胺-福馬 φ 林(formalin )樹脂磺醯酯爲基礎之減水劑的倂用時,會 顯示與糊狀物低流動値有關的高黏稠流動性。另一方面, 當將矽灰與會夾帶空氣的以聚羧酸酯爲基礎之所謂高性能 AE減水劑倂用時,流動性會以黏滯塑性狀態而非稍黏稠 狀態增加。在用鏟子翻轉中,前者產生厚重感而後者爲輕 感。因此,高性能AE減水劑和矽灰的組合系統僅在某些 情況中爲了泵取容易之理由而使用。 如上所述者,飛灰是在粉煤-燃燒熱發電廠中以副產 物形式得到的煤灰,且爲與燃燒氣體從鍋爐氣體管道一起 -9 - 200602283 (7) 丟棄出的球形粒狀殘渣,以粉塵收集器回收所得者。通常 ,飛灰係與水泥摻合,而以飛灰水泥之形式使用。於本發 明中,不可或缺少的要件爲使用經篩分到20微米或更小 的尺寸之飛灰,而未經篩分者則不能提供本發明的優點。 有關市售舖分飛灰產品,有兩種類型,亦即,一是經筛分 到2 0微米或更小的尺寸者及一經篩分到1 0微米或更小的 尺寸者。 φ 於本發明水泥摻和物中,矽灰對經篩分到20微米或 更小的尺寸之飛灰的重量比例爲從95 : 5至10 : 90,較佳 者從90: 10至15: 85,且更佳者從80: 20至70: 30。 當篩分飛灰的比例小於5 %時,增加彎曲強度的效果變小 。相反地,當篩分飛灰的比例超過90%時,增加彎曲強度 的效應變小。雖然壓縮強度隨著篩分飛灰的調配比例之增 加而遞減不過,增加彎曲強度的效應在60 : 40附近具有 一峯値。 φ 另一方面,砂漿流度,坍度或坍流度(後文簡稱爲” 流度M )也會隨著經篩分飛灰的調配比例之增加而增加, 且在矽灰/篩分飛灰比例爲5 0 : 5 0附近具有一峯値。由經 篩分飛灰所致適度黏度會抑制骨材的分離而使其即使在有 添加金屬纖維時也能容易地流動。 本發明摻和物的添加量較佳爲1至3 5份,更佳者2 至3 0份且特別較佳者3至25份每100份水泥。即使該摻 和物係以超過3 5份的量添加,彎曲強度的增加仍只達到 該峯値,故此爲經濟上不利者。 -10- 200602283Patent Document 3: JP 1 1 — 24625 5 A However, a general technique in which only ash is blended can increase the compressive strength of concrete, but it has a problem that the concrete becomes brittle and its bend is -5 - 200602283 ( 3) The ratio of the compressive strength to the compressive strength is lower than that without the blended ash. Further, as shown in Patent Document 1, since fly ash sized to a size of 20 μm or less or 1 μm or less originally has low condensing hard activity, its strength is increased by water reduction. However, even if steam curing is carried out, the strength increase is hardly increased in the short term relative to the case where the sieved fly ash is not blended at the same low water/adhesive material ratio. Further, as shown in Patent Document 2, it is easy to exhibit high strength by using gypsum alone or in combination with φ ash, and it is also possible to increase the bending strength with respect to an increase in compressive strength. However, there are still problems, that is, the proportion is not better than that of conventional concrete. As shown in Patent Document 3, the maximum aggregate size is 5 mm or less compared to the fine aggregate or mortar or concrete used in concrete mixing plants or concrete product factories. Limiting to 2 mm or less, or 1 mm or less, has become an indispensable element. Therefore, this method has a problem that it cannot be widely adopted. SUMMARY OF THE INVENTION (Problems to be Solved by the Invention) The present invention has been made in an effort to solve the problems in the aforementioned conventional techniques, and an object of the present invention is to provide absolute strength and bending strength versus compressive strength of compressive strength and bending strength. Proportion 値 has increased mortar or concrete. Another object of the present invention is to provide a cement admixture to achieve the above-described mortar or concrete, and a cement composition using the cement admixture. Still another object of the present invention is to provide a cement hardened product obtained from the above mortar or concrete -6 - 200602283 (4). [Means for Solving the Problem] It has been found that by using the so-called ash as far as known, fly ash sized to a size of 20 μm or less, and gypsum, are not separate but combined users, with respect to each individual In the case of use, the ratio of bending strength and bending strength to compressive strength can be synergistically increased. In addition, the fact φ found is that since the bending strength of the matrix mortar or the concrete itself can be increased, even if a conventionally available fine aggregate for mortar or concrete is used, the use of the metal fiber can greatly increase the bending strength. This results in the completion of the present invention. In particular, the present invention relates to the following cement admixtures, cement compositions, mortars, concretes, cement hardened products. (1) A cement admixture comprising ash and fly ash sized to a size of 20 microns or less, wherein the ash weight ratio of the ash to the sieved fly ash is from 95:5 to 10 : 90. (2) The cement admixture according to the above item (1), which further comprises gypsum. (3) a cement composition comprising the cement in an amount of from 1 to 35 parts by weight per 100 parts by weight of the cement admixture according to item (1) above (4) according to the above (3) The cement composition of the item 'further contains gypsum in an amount of from 5 to 12 parts by weight per 1 part by weight per part by weight of the cement composition. -7- 200602283 (5) (5) A mortar comprising the cement composition according to the above item (3) or (4), a fine aggregate, a water reducing agent and a kneaded water. (6) The mortar according to the above item (5), which has a metal fiber added thereto, the metal fiber being externally added in an amount of from 1 to 0.001% by volume per cubic meter of the mortar. (7) A concrete comprising the cement composition of the above item (3) or (4), a fine aggregate, a coarse aggregate, a water reducing agent and a kneaded water. (8) The concrete according to the above item (7), which has the metal fiber added thereto, and the metal fiber is externally added in an amount of from 1 Torr to 4.0 vol% per cubic meter of the concrete. (9) A cement hardened product obtained by hardening the mortar of the above item (5) or (6). (1 〇 ) — A cement hardened product obtained by hardening the concrete of the above item (7) or (8). φ [Effect of the invention] According to the present invention, the fluidity of the kneaded mortar or concrete is improved to obtain good workability. Further, the obtained mortar and concrete have high compressive strength and bending strength, and a high ratio of bending strength to compressive strength can be obtained. In addition, the strengthening effect of the intrusion of the metal fibers can greatly increase the bending strength. This can result in an economical and advantageous design in the manufacture of civil engineering and building structures and concrete secondary products. (Best Mode for Carrying Out the Invention) -8- 200602283 (6) The present invention will be described in detail below. The parts and percentages used in the present invention to indicate the ratio or amount of the formulation are by weight. However, in the case of metal fibers, they are expressed in units of mortar or concrete in volume % per cubic meter. The ash used in the present invention is obtained as a by-product in the production of a niobium alloy and a chromium oxide such as a metal ruthenium or a ferrite in an electric furnace, and is composed of fine spherical particles having a size of 1 μm or less. The main component is amorphous cerium oxide with high reactivity of φ. Although the compressive strength increases as the amount of ash added increases, the ratio of flexural strength to compressive strength decreases with respect to the absence of ash. As described above, ash is not only used as a strength increasing agent. When it is used in an amount of about 1% by weight based on cement and is used in combination with a considerable amount of high-performance water reducing agent, the fluidity will increase dramatically. However, its flow characteristics vary depending on the type of high performance water reducer, and the soot is associated with a so-called slightly high performance water reducer such as polyalkylallyl sulfonate or melamine-formalin resin. When the sulfonate-based water reducing agent is used, it exhibits a high viscous fluidity associated with a low flow enthalpy of the paste. On the other hand, when the ash is used with a so-called high-performance AE water-reducing agent based on polycarboxylate which entrains air, the fluidity increases in a viscous plastic state rather than a slightly viscous state. In the shovel flip, the former produces a heavy feeling while the latter is light. Therefore, the combination of high performance AE water reducer and ash ash is only used in some cases for ease of pumping. As mentioned above, fly ash is a coal ash obtained as a by-product in a pulverized coal-combustion heat power plant, and is a spherical granular residue discarded from the combustion gas from the boiler gas pipe -9 - 200602283 (7). The person who recovered the waste with a dust collector. Usually, fly ash is blended with cement and used in the form of fly ash cement. In the present invention, an indispensable element is the use of fly ash sized to a size of 20 microns or less, while unscreened ones do not provide the advantages of the present invention. There are two types of commercially available paved fly ash products, that is, those that have been sieved to a size of 20 microns or less and that have been sieved to a size of 10 microns or less. φ In the cement admixture of the present invention, the weight ratio of the ash to the fly ash sized to a size of 20 μm or less is from 95:5 to 10:90, preferably from 90:10 to 15: 85, and better from 80: 20 to 70: 30. When the proportion of the sieved fly ash is less than 5%, the effect of increasing the bending strength becomes small. Conversely, when the proportion of the sieved fly ash exceeds 90%, the effect of increasing the bending strength becomes small. Although the compressive strength decreases as the blending ratio of the sieve fly ash increases, the effect of increasing the bending strength has a peak near 60:40. Φ On the other hand, mortar fluidity, temperature or turbulence (hereinafter referred to as "flow M" will also increase with the proportion of sieved fly ash, and fly in the ash / sieve The ash ratio has a peak near 50:50. The moderate viscosity caused by the sieved fly ash inhibits the separation of the aggregate so that it can easily flow even when metal fibers are added. The amount of the substance to be added is preferably from 1 to 35 parts, more preferably from 2 to 30 parts, and particularly preferably from 3 to 25 parts per 100 parts of the cement. Even if the admixture is added in an amount of more than 35 parts, The increase in bending strength still only reaches this peak, so it is economically disadvantageous. -10- 200602283

於本發明中,使用多種類型的石膏例如二水合石膏, 半水合石膏,可溶性無水石膏(第IΠ型)和不溶性無水 石膏(第II型)。彼等之中,較佳者爲無水石膏和二水合 石膏。在將”矽灰與經篩分到20微米或更小尺寸的飛灰" 加到水泥時,壓縮強度會隨著經篩分到20微米或更小尺 寸的飛灰之調配比例的增加而減低。不過,石膏增加壓縮 強度的效應大於該項降低,故可同時增加壓縮強度和彎曲 φ 強度兩者的絕對値。石膏的添加量以無水基準計較佳爲 〇·5至12份,更佳爲0·8至10份,且特別較佳爲1至8 份每100份水泥。即使石膏的添加量超過12份,也不能 得到使強度進一步增加之效果。 於本發明中,也倂用一需要量的高性能減水劑或高性 會g ΑΕ減水劑。高性能減水劑主要包括多烷基烯丙基磺酸 酯,芳族胺基磺酸酯及三聚氰胺-福馬林樹脂磺酸酯中任 何一者。此等可單獨地使用或以其二或更多者的組合使用 •。該以多烷基烯丙基磺酸酯爲基礎的高性能減水劑包括甲 基萘磺酸-福馬林縮合物,萘磺酸-福馬林縮合物與蒽磺 酸-福馬林縮合物,且彼等的市售產物之典型例子包括 nFT — 500"(商品名)及其一系列由 Denki Kagaku Kogyo Κ· Κ·所製產品,”Mighty-100”(商品名,粉末),和 ’’Mighty-150”及其一系列由Kao Corporation所製產品;由 Daiich Kogyo Seiyaku Co·,Ltd.所製"Selflow 110P”(商品 名,粉末)·,由 Takemoto Oil & Fat Co·,Ltd.所製 "Polfine 510N”(商品名):及由 Nippon Paper Industries -11 - 200602283 (9)In the present invention, various types of gypsum such as dihydrate gypsum, hemihydrate gypsum, soluble anhydrite (type I) and insoluble anhydrous gypsum (type II) are used. Among them, preferred are anhydrite and dihydrate gypsum. When adding "flying ash and fly ash sieved to a size of 20 microns or less" to the cement, the compressive strength increases with the proportion of fly ash that is sieved to a size of 20 microns or less. However, the effect of increasing the compressive strength of gypsum is greater than the reduction, so that the absolute enthalpy of both the compressive strength and the flexural φ strength can be increased at the same time. The amount of gypsum added is preferably from 5 to 12 parts on a water-free basis, preferably. It is from 0.8 to 10 parts, and particularly preferably from 1 to 8 parts per 100 parts of cement. Even if the amount of gypsum added exceeds 12 parts, the effect of further increasing the strength cannot be obtained. In the present invention, one is also used. The required amount of high performance water reducing agent or high performance water reducing agent. The high performance water reducing agent mainly includes polyalkyl allyl sulfonate, aromatic amine sulfonate and melamine-formalin resin sulfonate One. These may be used singly or in combination of two or more thereof. The polyalkylallyl sulfonate-based high performance water reducing agent includes methylnaphthalenesulfonic acid-formalin condensation. , naphthalenesulfonic acid-formalin condensate and sulfonate-fu Marlin condensates, and typical examples of their commercially available products include nFT-500" (trade name) and a series of products thereof manufactured by Denki Kagaku Kogyo Κ·Κ, "Mighty-100" (trade name, powder) ), and ''Mighty-150' and its series of products made by Kao Corporation; "Selflow 110P" (trade name, powder) made by Daiich Kogyo Seiyaku Co., Ltd., by Takemoto Oil & Fat Co., Ltd. made by "Polfine 510N" (trade name): and by Nippon Paper Industries -11 - 200602283 (9)

Co·,Ltd·所製’’Sunflow PS”(商品名)及其系列產品。以 芳族胺基磺酸酯爲基礎之高性能減水劑包括Fujisawa Pharmaceutical Co·,Ltd·,戶斤製"Paric FP200H”(商品名) 及其系列產品;且以三聚氰胺-甲醛樹脂磺酸酯爲基礎之 高性能減水劑包括G r a c e C h e m i c a 1 s K . K .所製’’ F T - 3 S M ( 商品名)。 高性能AE減水劑通常稱爲以聚羧酸酯爲基礎之減水 φ 劑,及其含有不飽和羧酸單體作爲一種成分之共聚物或鹽 。其例子包括聚(伸烷基二醇)單丙烯酸酯,聚(伸烷基 二醇)單甲基丙烯酸酯,順丁烯二酸酐與苯乙烯的共聚物 ,丙烯酸酯或甲基丙烯酸酯的共聚物及由可與此等單體共 聚合的單體衍生出的共聚物。商業上可取得者爲NMB Co·,Ltd·所製的"Rheobuild SP8N”(商品名)系列, Fujisawa Pharmaceutical Co·,Ltd.所製的"Paric FP100S 和 300S"(商品名)系歹IJ ; Takemoto oil & Fat Co·,Ltd·所製 邐^的"Chupol HP8 和 11"(商品名)系列;Grace Chemicals K.K·所製的 ’’Dar ex Super 100,200,300,和 1000”(商品名 )系列;及類似者。 本發明所用水泥可爲各種卜特蘭水泥(Portland c e m e n t s )和各種摻合水泥或生態水泥(e c 〇 c e m e n t s )中的 任何一者。也可以使用將任何量的彼等混合所得之水泥。 於本發明砂漿和混凝土的製造中,沒有任何特別限制 ,可以使用廣被使用的細骨材和粗骨材。另外,彼等可經 隨意地選擇,因爲不論水/黏合材料比例及細骨材比例爲 -1·2- 200602283 (10) 何,砂漿或混凝土的彎曲強度對壓縮強度的比例和彼等的 彎曲強度絕對値都會增加之故。 再者,於本發明中,可以倂用金屬纖維。對於金屬纖 維也同樣地可以使用一般市售用於砂漿或混凝土之金屬纖 維,而非任何特別者。金屬纖維的外添加量爲1.0至6.0 體積%每立方米的砂漿或混凝土。不過,從增加彎曲強度 和可操作性的觀點來看,其最大添加量和較佳範圍都在砂 _ 漿情況與混凝土情況之間各有不同。另外,其最大添加量 和較佳範圍也依混凝土的模塑方法例如振動模塑或離心模 塑而變異。 於振動模塑的情況中,對於砂漿,低於2體積%會導 致彎曲強度的小幅增加。不過,當金屬纖維的添加量爲2 體積%或更高時,彎曲強度也會隨著所加金屬纖維的量之 增加而增加,且在5.5體積%或更高處達到峯値。超過6.0 體積%會導致流動困難而造成模塑失敗。因此,金屬纖維 φ 的外添加量爲1.0至6.0體積%,較佳者2.5至5.0體積% 。對於混凝土,係在1.5體積%展現出效用,且超過4體 積%會導致不良的可操作性。因此,金屬纖維的外添加量 爲1.0至4·0體積%,較佳者1.5至3.5體積%。 於離心模塑物件中,對於砂漿和混凝土兩者,會在 1 .0體積%的金屬纖維外添加量開始增加彎曲抗張強度。 於砂漿的情況中,從可操作性的觀點來看,較佳者爲5·0 體積%。對於混凝土,較佳者爲3 · 0體積%。爲了增進 Hume管件對抗外壓力的強度,經濟上較佳者爲將鋼纖維 -13- 200602283 (11) 集中在管的內側以強化管厚度內約三分之二或更小之處。 對於添加本發明摻和物所用方法沒有任何特別的限制 。矽灰與經篩分到20微米或更小尺寸的飛灰之混合物, 或進一步混合石膏之混合物,可在捏合砂漿或混凝土時加 入。或者,可分開製備各成分,並與其他砂漿或混凝土材 料一起加到混合器內。對於捏合方法也沒有任何特別限制 ,且可以使用習用的捏合方法。此外,對於添加金屬纖維 φ 的方法也沒有任何特別限制。不過,較佳者爲在使用混合 器連續攪拌之下捏合砂漿或混凝土且同時對其添加金屬纖 維的方法,因爲如此一來就不太會形成纖維球。 此外,對於固化砂漿或混凝土所用方法也沒有任何特 別限制,可以採用標準固化,蒸汽固化與壓熱器固化。 【實施方式】 [實施例] 在本發明實施例和比較例中使用的材料,其檢驗項目 和方法都集體顯示於下。 <所用材料> 水泥:由Denki Kagaku Kogyo Κ·Κ·5所製的普通卜特 蘭水泥,密度:3.16克/立方厘米 細骨材:得自H i m e R i ν e r,N i i g a t a,的河沙(5毫米或 更小者),密度·· 2.62克/立方厘米 粗骨材:得自 Hime River,Niigata,的碎石(5至13 -14 - 200602283 (12) 毫米),密度:2.64克/立方厘米 矽灰··得自Russia,製成粒狀(稱爲SF ),密度: 2.44克/立方厘米 飛灰:Shikoku Electric Power Co.,Inc·所製,一爲經 篩分到20微米或更小的尺寸者(稱爲FA20 ),另一爲經 篩分到1 〇微米或更小的尺寸者(稱爲F A 1 0 )及一未經篩 分的飛灰(稱爲FA ),密度·· 2.44克/立方厘米 | 石膏:不溶性無水石膏(天然物,密度·· 2 · 8 2克/立 方厘米)和工業二水合石膏粉(密度:2.30克/立方厘米 ) 金屬纖維:Tokyo Rope MFG, Co· Ltd·所製"Dipac,,, 鋼製品,寬度:0.9毫米,厚度:0.34毫米,長度:30毫 米,密度:8.00克/立方厘米 減水劑:Grace Chemicals K.K·,所製高性能AE減水 劑 WRA ( 1 ) ,” Super 1 000N” ; Daiich Kogyo Seiyaku φ Co·,Ltd.所製的高性能減水劑 WRA ( 2 ) ,” Selflow 1 1 0 P,,° <檢驗項目及其方法> 砂漿流動之測量 根據JIS R 5 20 1測量拉上時的流度値。測量係在放置 於流動台上的50x50x2厘米亞克力(acrylic)玻璃板上進 行0 -15- 200602283 (13) 砂漿強度之測量 彎曲強度係根據JIS R 5 20 1測量,而壓縮強度係使用 在一模子內模塑成直徑5厘米及長度1 0厘米的試片測量 混凝土流度之測量 根據JIS A 1 1 0 1測量拉上時混凝土的側向展布。 混凝土的彎曲強度和壓縮強度之測量 於外徑20厘米和長度30厘米的圓柱形模子內塡充 17.5公斤混凝土,且在起始速度1.5G下2分鐘,3G低速 下5分鐘,8G中間速度I下1分鐘,1.5G中間速度II下 2分鐘及30G高速下3分鐘之條件下實施離心模塑。於固 化之後,測量外壓負載和發生碎裂時的管厚度以計算彎曲 拉力強度。於形成在三分之一內側部包含金屬纖維的砂漿 φ 時,係於模子內塡充12.5公斤的混凝土,接著在上述條 件下離心模塑,然後再塡充5公斤砂漿,接著施以相似的 離心模塑。 對於砂漿(或混凝土)的捏合,係將水泥,摻合物的 個別成分,細骨材(和粗骨材)乾混30秒,然後,加入 其中溶有減水劑的捏合水,接著在Omni -混合器內捏合3 分鐘。於要添加金屬纖維時,係在不停止攪拌之下,少許 地逐次加入金屬纖維,接著進一步捏合3分鐘。 -16- 200602283 (14) [實施例1] 砂漿 將1 0 0份水泥,1 0 0份細骨材,依表1所示個別摻合 量改變的矽灰和飛灰,及2 0份捏合水,其中有3份高性 能AE減水劑溶在20份水中,皆以捏合材料(水泥或水泥 +石夕灰及/或飛灰)爲基準,加入捏合成砂漿。測量所得砂 漿的流度値,且將其結果示於表1之中。經由模塑此砂漿 φ 所得試片事先靜置8小時,再以2(TC /小時之溫度增加速 率增高其溫度至80 °C。然後,將試片保持在此溫度5小時 ,關閉蒸汽閥以在蒸汽固化槽內慢慢冷卻該試片到隔天。 測量一日齡的彎曲強度和壓縮強度,且其結果示於表1之 中0 從表1可知,相對於沒有加入矽灰和飛灰的實驗1 - 1 ,在只加入矽灰的比較例實驗1 - 2中,流度値有增加, 可操作性獲得改良,且壓縮強度和彎曲強度也都有增加。 φ 不過,彎曲強度的增加相對於壓縮強度的增加係輕微者, 且彎曲強度對壓縮強度之比例係減低者。此外,於只加入 篩分飛灰的實驗1 - 1 4中,也觀察到流度値之改良,但壓 縮強度和彎曲強度幾乎沒有增加。相反地,於進一步摻入 矽灰和篩分飛灰的本發明實施例實驗1一 3至1一 13及1 一 26至1 — 30之中,顯示出流度値的增加。由此清楚可知, 雖然壓縮強度隨著矽灰比例的增加而遞減,不過彎曲強度 的增量變得顯著而且也增加彎曲強度對壓縮強度的比例。 其後,在矽灰/篩分飛灰比例爲60 : 40時彎曲強度達到最 '17- 200602283 (15) 大値。 一 此外,由實驗1 一 1 5至1 一 25中明顯可知,流度値、 彎曲強度和壓縮強度都隨著摻和物添加量之增加而增加。 不過,彎曲強度係從1份每1 〇 〇份水泥起始增加,且在3 份時彎曲強度的增加變得明顯。不過,流度値、彎曲強度 和壓縮強度全部都會達到峯値,因此在也考慮經濟效率之 下,摻合物添加量較佳爲3 0份或更低者。 [表 1 一 1] 實驗編號 彎曲量每100份水泥 流度値 彎曲強度 壓縮強度 彎曲/壓縮 SF(份數) FA(份數) (毫米) (N/mm2) (N/mm2) 強度比 1-1 0 0 198 14.6 133 1/9.1 1-2 16.0(100) 0 293 15.0 156 1/10.4 1-3 15.2(95) FA20 0.8(5) 294 18.7 158 1/8.4 1-4 14.4(90) FA20 1.6(10) 312 24.8 155 1/6.3 1-5 12.8(80) FA2.0 3.2(20) 342 27.6 152 1/5.5 1-6 11.2(70) FA20 4.8(30) 355 29.2 150 1/5.1 1-7 9.6(60) FA20 6.4(40) 360 29.5 148 1/5.0 1-8 8.0(50) FA20 8.0(50) 368 28.9 145 1/5.0 SF :矽灰 FA :飛灰 -18- 200602283 (16)"Sunflow PS" (trade name) manufactured by Co., Ltd. and its series of products. High performance water reducing agent based on aromatic amine sulfonate includes Fujisawa Pharmaceutical Co., Ltd. Paric FP200H" (trade name) and its products; and high-performance water reducer based on melamine-formaldehyde resin sulfonate, including G race C hemica 1 s K. K. '' FT - 3 SM (trade name) ). High-performance AE water reducing agents are generally referred to as polycarboxylate-based water reducing agents, and copolymers or salts thereof containing an unsaturated carboxylic acid monomer as a component. Examples thereof include poly(alkylene glycol) monoacrylate, poly(alkylene glycol) monomethacrylate, copolymer of maleic anhydride and styrene, copolymerization of acrylate or methacrylate And a copolymer derived from a monomer copolymerizable with such monomers. Commercially available is the "Rheobuild SP8N" (trade name) series manufactured by NMB Co., Ltd., and the "Paric FP100S and 300S" (trade name) system manufactured by Fujisawa Pharmaceutical Co., Ltd. ; Takemoto oil & Fat Co·, Ltd. manufactured by "Chupol HP8 and 11" (trade name) series; Grace Chemicals KK· made by ''Dar ex Super 100, 200, 300, and 1000' (trade name) series; and similar. The cement used in the present invention may be any of various Portland cements and various cement or ecological cements (e c 〇 c e m e n t s ). It is also possible to use cement obtained by mixing any amount of them. In the manufacture of the mortar and concrete of the present invention, there is no particular limitation, and fine aggregates and coarse aggregates which are widely used can be used. In addition, they can be selected at will, because the ratio of the bending strength to the compressive strength of the mortar or concrete and their bending, regardless of the ratio of water/adhesive material and the ratio of fine aggregates is -1·2- 200602283 (10) Absolute strength will increase. Further, in the present invention, metal fibers can be used. For metal fibers, it is equally possible to use metal fibers which are generally commercially available for mortar or concrete, and not any special one. The metal fiber is externally added in an amount of 1.0 to 6.0% by volume per cubic meter of mortar or concrete. However, from the viewpoint of increasing the bending strength and operability, the maximum addition amount and the preferred range are different between the sand-slurry condition and the concrete condition. Further, the maximum addition amount and preferred range are also varied depending on a molding method of concrete such as vibration molding or centrifugal molding. In the case of vibration molding, less than 2% by volume for the mortar causes a small increase in the bending strength. However, when the amount of the metal fibers added is 2 vol% or more, the bending strength also increases as the amount of the added metal fibers increases, and the peak enthalpy is reached at 5.5% by volume or more. More than 6.0% by volume can cause flow difficulties and cause molding failure. Therefore, the external addition amount of the metal fiber φ is from 1.0 to 6.0% by volume, preferably from 2.5 to 5.0% by volume. For concrete, it exhibits utility at 1.5% by volume, and more than 4% by volume results in poor operability. Therefore, the external addition amount of the metal fiber is from 1.0 to 4.0% by volume, preferably from 1.5 to 3.5% by volume. In the centrifugally molded article, for both the mortar and the concrete, the amount of addition of the metal fiber at a volume of 1.0% by volume starts to increase the bending tensile strength. In the case of the mortar, from the viewpoint of workability, it is preferably 5% by volume. For concrete, it is preferably 0.001% by volume. In order to increase the strength of the Hume pipe against external pressure, it is economically preferable to concentrate the steel fiber -13-200602283 (11) on the inside of the pipe to reinforce the pipe thickness by about two-thirds or less. There is no particular limitation on the method of adding the blend of the present invention. A mixture of ash and fly ash sieved to a size of 20 microns or less, or a mixture of further mixed gypsum, may be added during kneading of mortar or concrete. Alternatively, the ingredients can be prepared separately and added to the mixer along with other mortar or concrete materials. There is also no particular limitation on the kneading method, and a conventional kneading method can be used. Further, there is no particular limitation on the method of adding the metal fiber φ. However, it is preferred to knead the mortar or concrete under continuous stirring using a mixer while adding metal fibers thereto, since the fiber balls are less likely to be formed. In addition, there is no particular restriction on the method of curing the mortar or concrete, and standard curing, steam curing and autoclave curing can be employed. [Embodiment] [Examples] The materials and methods used in the examples and comparative examples of the present invention are collectively shown below. <Materials used> Cement: Ordinary Portland cement made by Denki Kagaku Kogyo Κ·Κ·5, density: 3.16 g/cm 3 fine aggregate: from H ime R i ν er, N iigata, River sand (5 mm or less), density · 2.62 g / cm 3 coarse aggregate: gravel from Hime River, Niigata, 5 to 13 -14 - 200602283 (12) mm, density: 2.64 Gram/cubic centimeter ash ash · from Russia, made of granules (called SF), density: 2.44 g / cm 3 fly ash: made by Shikoku Electric Power Co., Inc., one is sieved to 20 Micron or smaller size (called FA20), another size to be sieved to 1 〇 micron or smaller (called FA 1 0 ) and an unscreened fly ash (called FA ) , density · 2.44 g / cm3 | gypsum: insoluble anhydrite (natural, density · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Rope MFG, Co. Ltd. made by "Dipac,,, steel products, width: 0.9 mm, thickness: 0.34 mm, long : 30 mm, density: 8.00 g / cm 3 water reducing agent: Grace Chemicals KK ·, made high performance AE water reducing agent WRA (1), "Super 1 000N"; Daiich Kogyo Seiyaku φ Co·, Ltd. Performance water reducing agent WRA ( 2 ) , " Selflow 1 1 0 P,, ° <Inspection items and methods thereof> Measurement of mortar flow The flow rate 拉 when measured on JIS R 5 20 1 is measured. 50x50x2 cm acrylic glass plate on the flow table 0 -15- 200602283 (13) Measurement of mortar strength The bending strength is measured according to JIS R 5 20 1 and the compressive strength is molded into a diameter in a mold. 5 cm and length 10 cm test piece Measurement of concrete fluidity The lateral spread of concrete was measured according to JIS A 1 1 0 1. The flexural strength and compressive strength of concrete were measured at an outer diameter of 20 cm and length. The 30 cm cylindrical mold fills 17.5 kg of concrete and is 2 minutes at the initial speed of 1.5G, 5 minutes at 3G low speed, 1 minute at 8G intermediate speed I, 2 minutes at 1.5G intermediate speed II and 30G under 30G speed. Implemented under 3 minutes Heart molding. After the solidification, the external pressure load and the tube thickness at the time of chipping were measured to calculate the bending tensile strength. When forming a mortar φ containing metal fibers in one third of the inner portion, the mold is filled with 12.5 kg of concrete, then centrifugally molded under the above conditions, and then filled with 5 kg of mortar, followed by similar Centrifugal molding. For the kneading of mortar (or concrete), the cement, the individual components of the blend, the fine aggregate (and the coarse aggregate) are dry-blended for 30 seconds, and then added to the kneaded water in which the water reducing agent is dissolved, followed by Omni - Knead in the mixer for 3 minutes. When metal fibers were to be added, the metal fibers were added little by little without stopping the stirring, followed by further kneading for 3 minutes. -16- 200602283 (14) [Example 1] Mortar will be 100 parts of cement, 100 parts of fine aggregate, ash and fly ash changed according to the individual blending amount shown in Table 1, and 20 parts of kneading Water, wherein 3 parts of high-performance AE water reducing agent are dissolved in 20 parts of water, and kneaded mortar is added based on kneading material (cement or cement + shi ash and/or fly ash). The fluidity 値 of the obtained mortar was measured, and the results are shown in Table 1. The test piece obtained by molding the mortar φ was allowed to stand for 8 hours in advance, and then the temperature was increased to 80 ° C at a rate of increase of 2 (TC / hour). Then, the test piece was kept at this temperature for 5 hours, and the steam valve was closed. The test piece was slowly cooled in the steam curing tank to the next day. The bending strength and compressive strength of the day age were measured, and the results are shown in Table 1. 0 It can be seen from Table 1 that no ash and fly ash were added. Experiment 1 - 1 , in the comparative example experiment 1 - 2 in which only ash was added, the fluidity enthalpy was increased, the operability was improved, and the compressive strength and the bending strength were also increased. φ However, the bending strength was increased. The increase with respect to the compressive strength is slight, and the ratio of the bending strength to the compressive strength is reduced. In addition, in the experiment 1 - 14 in which only the sieved fly ash is added, the improvement of the fluidity enthalpy is also observed, but compression is performed. There is almost no increase in strength and flexural strength. Conversely, in experiments 1 to 3 to 13 and 1 to 26 to 1-30 of the present invention, which further incorporates ash and sieve fly ash, fluidity is shown. The increase in 値. It is clear from this that although The shrinkage decreases with increasing proportion of ash, but the increase in bending strength becomes significant and also increases the ratio of flexural strength to compressive strength. Thereafter, the ash/screen ash ratio is 60:40. The strength reaches the highest '17- 200602283 (15). In addition, it is obvious from the experiment 1 - 15 to 1 - 25 that the fluidity, bending strength and compressive strength increase with the addition of the admixture. However, the bending strength increases from 1 part per 1 part of cement, and the increase in bending strength becomes obvious at 3 parts. However, the flow enthalpy, bending strength and compressive strength all reach peaks. Therefore, in consideration of economic efficiency, the blending amount is preferably 30 parts or less. [Table 1 - 1] Experiment No. Bending amount per 100 parts of cement fluidity 値 Bending strength Compressive strength Bending/compression SF (Parts) FA (parts) (mm) (N/mm2) (N/mm2) Strength ratio 1-1 0 0 198 14.6 133 1/9.1 1-2 16.0(100) 0 293 15.0 156 1/10.4 1 -3 15.2(95) FA20 0.8(5) 294 18.7 158 1/8.4 1-4 14.4(90) FA20 1.6(10) 312 24.8 155 1/6.3 1-5 12.8(80) FA2.0 3.2(20) 342 27.6 152 1/5.5 1-6 11.2(70) FA20 4.8(30) 355 29.2 150 1/5.1 1-7 9.6(60) FA20 6.4(40) 360 29.5 148 1/5.0 1-8 8.0(50) FA20 8.0(50) 368 28.9 145 1/5.0 SF: ash gray FA: fly ash-18- 200602283 (16)

表 1 一 2] 實驗 彎曲量每100份水泥 流度値 彎曲強度 壓縮強度 彎曲/壓縮 編號. SF(份數) FA(份數) (毫米) (N/mm2) (N/mm2) 強度比 1-9 6.4(40) FA20 9.6(60) 364 28.8 142 1/5.1 1-10 4.8(30) FA20 11.2(70) 355 27.1 141 1/5.2 1-11 3.2(20) FA20 12.8(80) 342 25.5 140 1/5.5 M2 2.4(15) FA20 13.6(85) 336 22.7 138 1/6.1 1-13 1.6(10) FA20 14.4(90) 311 17.1 136 1/8.0 1-14 0 FA20 16.0(100) 290 15.3 134 1/8.8 1-15 0.5(50) FA20 0.5(50) 202 16.7 137 1/8.2 1-16 1.5(50) FA20 1.5(50) 273 19.1 143 1/7.5 1-17 2.5(50) FA20 2.5(50) 296 21.2 140 1/6.6 1-18 3.5(50) FA20 3.5(50) 325 24.7 148 1/6.0 1-19 50(50) FA20 5.0(50) 348 28.0 140 1/5.0 1-20 7.0(50) FA20 70(50) 357 29.6 153 1/5.2 1-21 10.0(50) FA20 10.0(50) 374 31.5 158 1/5.0 1-22 12.5(50) FA20 12.5(50) 380 32.0 160 1/5.0 1-23 15.0(50) FA20 15.0(50) 385 33.0 162 1/4.9 1-24 17.5(50) FA20 17.5(50) 387 33.4 163 1/4.9 1-25 20.0(50) FA20 20.5(50) 389 31.8 158 1/5.0 1-26 15.2(95) FA10 0.8(5) 305 19.7 160 1/8.1 1-27 14.4(90) FA10 1.6(10) 323 26.0 156 1/6.0 1-28 9.6(60) FA10 6.4(40) 371 30.4 152 1/5.0 1-29 2.4(15) FA10 1.3.6(85) 346 24.1 140 1/5.8 1-30 1.6(10) FA10 14.4(90) 323 17.5 138 1/7.8 1-31 9.6(60) FA6.4(40) 259 16.6 148 1/8.9 註:括號內的數値表示SF和FA之重量比例。 -19- 200602283 (17) [實施例2] 砂漿 以在實施例1的實驗1 — 1,1 一 2,1 — 7和1 一 14中 相同的方式進行檢驗,不同處在於進一步摻加表2所示類 型和添加量(每1 00份水泥)之石膏。其結果示於表2之 中0 表2顯示出該石膏可增強壓縮強度和彎曲強度以增加 φ 其強度。於此實施例中,當石膏的添加量爲0.5份或更多 份每1 00份水泥之時,其效果即展現出。當石膏的添加量 爲〇·8份或更多,或1.0份或更多時,效用變得更明顯。 但即使石膏的添加量超過1 2份,也不能得到進一步增加 強度之效用。其結果,顯然地,當石膏的添加量爲份 或更少,較佳者1至8份,每丨〇 〇份水泥時,壓縮強度和 彎曲強度兩者的絕對値都獲得增進。Table 1 - 2] Experimental bending amount per 100 parts of cement fluidity 値 bending strength compressive strength bending/compression number. SF (parts) FA (parts) (mm) (N/mm2) (N/mm2) strength ratio 1 -9 6.4(40) FA20 9.6(60) 364 28.8 142 1/5.1 1-10 4.8(30) FA20 11.2(70) 355 27.1 141 1/5.2 1-11 3.2(20) FA20 12.8(80) 342 25.5 140 1/5.5 M2 2.4(15) FA20 13.6(85) 336 22.7 138 1/6.1 1-13 1.6(10) FA20 14.4(90) 311 17.1 136 1/8.0 1-14 0 FA20 16.0(100) 290 15.3 134 1 /8.8 1-15 0.5(50) FA20 0.5(50) 202 16.7 137 1/8.2 1-16 1.5(50) FA20 1.5(50) 273 19.1 143 1/7.5 1-17 2.5(50) FA20 2.5(50) 296 21.2 140 1/6.6 1-18 3.5(50) FA20 3.5(50) 325 24.7 148 1/6.0 1-19 50(50) FA20 5.0(50) 348 28.0 140 1/5.0 1-20 7.0(50) FA20 70(50) 357 29.6 153 1/5.2 1-21 10.0(50) FA20 10.0(50) 374 31.5 158 1/5.0 1-22 12.5(50) FA20 12.5(50) 380 32.0 160 1/5.0 1-23 15.0 (50) FA20 15.0(50) 385 33.0 162 1/4.9 1-24 17.5(50) FA20 17.5(50) 387 33.4 163 1/4.9 1-25 20.0(50) FA20 20.5(50) 389 31.8 158 1/5.0 1-26 15.2(95) FA10 0.8(5) 305 19.7 160 1/8.1 1-27 14.4(90) FA10 1.6(10) 323 26.0 156 1/6.0 1-28 9.6(60) FA10 6.4(40) 371 30.4 152 1/5.0 1-29 2.4(15) FA10 1.3.6(85) 346 24.1 140 1/5.8 1-30 1.6(10) FA10 14.4(90) 323 17.5 138 1/7.8 1-31 9.6(60) FA6.4(40) 259 16.6 148 1/8.9 Note: Numbers in parentheses Indicates the weight ratio of SF and FA. -19- 200602283 (17) [Example 2] Mortar was examined in the same manner as in Experiments 1 - 1, 1 - 2, 1 - 7 and 1 - 14 of Example 1, except that Table 2 was further blended. Gypsum of the type shown and added (per 100 parts of cement). The results are shown in Table 2, and Table 2 shows that the gypsum can enhance the compressive strength and the bending strength to increase the strength of φ. In this embodiment, when the amount of gypsum added is 0.5 part or more per 100 parts of cement, the effect is exhibited. When the amount of gypsum added is 〇·8 parts or more, or 1.0 part or more, the utility becomes more conspicuous. However, even if the amount of gypsum added exceeds 12 parts, the effect of further increasing the strength cannot be obtained. As a result, it is apparent that when the amount of gypsum added is part by weight or less, preferably from 1 to 8 parts, the absolute enthalpy of both compressive strength and bending strength is improved every time the cement is added.

-20- 200602283 (18) [表2]-20- 200602283 (18) [Table 2]

實驗 黏合材料類型 石膏摻合量(份數) 流度値 彎曲強度 壓縮強度 編號 無水石膏 二水合石膏 (毫米) (N/mm2) (N/mm2) 2-1 實驗1-1者 5.0 203 16.6 153 2-2 實驗1-2者 5.0 299 17.1 168 2-3 實驗1-〗4者 5.0 301 15.5 147 2-4 實驗1-7者 0.5 363 30.0 153 2-5 實驗1-7者 0.8 366 31.5 158 2-6 實驗1-7者 1.0 370 33.8 165 2-7 實驗1-7者 2.0 374 34.3 171 2-8 實驗1-7者 3.0 375 35.0 176 2-9 實驗1-7者 5.0 377 36.4 180 2-10 實驗1-7者 6.0 368 37.2 186 2-11 實驗1-7者 8.0 360 37.3 188 2-12 實驗1-7者 10.0 356 37.2 186 2-13 實驗1-7者 12.0 342 36.0 184 2-14 實驗1-7者 1.0 360 31.4 160 2-15 實驗1-7者 3.0 358 33.9 164 2-16 實驗1-7者 5.0 342 34.3 167 2-17 實驗1-7者 6.0 330 35.3 173 2-18 實驗1-7者 8.0 321 35.6 174 2-19 實驗1-7者 10.0 308 35.7 172 -21 - 200602283 (19) [實施例3] 摻和金屬纖維的砂漿 將金屬纖維與1立方米(空氣含量:4% ) 實驗1 一 8的砂漿捏合,改變金屬纖維的添加 外部添加),且經由傾注實施模塑形成試片。 1中的相同方式,實施蒸汽固化,然後,以一 曲強度檢驗。其結果示於表3之中。 φ 自表3可知,金屬纖維可大幅增加砂漿的 但在1 · 5體積%量時完全沒有效用。金屬纖維存 開始顯示明顯效應,且彎曲強度會隨著金屬纖 之增加而增加。超過5 · 0體積%導致達到峰値 積%導致不良的操作性而劣化可形成性。於經 得到砂漿的情況中,顯然地,最佳範圍爲從2. % 〇 實施例1之 量(對砂漿 以與實施例 日齡進行彎 彎曲強度, $自2體積% 維的添加量 ,且6.5體 由振動模塑 5至5體積Experimental Adhesive Material Type Gypsum Blend (Parts) Fluidity 値 Bending Strength Compressive Strength No. Anhydrite Gypsum Dihydrate Gypsum (mm) (N/mm2) (N/mm2) 2-1 Experiment 1-1. 5.0 203 16.6 153 2-2 Experiment 1-2 5.0 299 17.1 168 2-3 Experiment 1-〗 4 5.0 301 15.5 147 2-4 Experiment 1-7 0.5 363 30.0 153 2-5 Experiment 1-7 0.8 366 31.5 158 2 -6 Experiment 1-7 1.0 370 33.8 165 2-7 Experiment 1-7 2.0 374 34.3 171 2-8 Experiment 1-7 3.0 375 35.0 176 2-9 Experiment 1-7 5.0 377 36.4 180 2-10 Experiment 1-7 6.0 368 37.2 186 2-11 Experiment 1-7 8.0 360 37.3 188 2-12 Experiment 1-7 10.0 356 37.2 186 2-13 Experiment 1-7 12.0 342 36.0 184 2-14 Experiment 1 -7 1.0360 31.4 160 2-15 Experiment 1-7 3.0 358 33.9 164 2-16 Experiment 1-7 5.0 342 34.3 167 2-17 Experiment 1-7 6.0 330 35.3 173 2-18 Experiment 1-7 8.0 321 35.6 174 2-19 Experiment 1-7 10.0 308 35.7 172 -21 - 200602283 (19) [Example 3] Mortar-mixed metal fiber mortar with metal fiber and 1 cubic meter (air content: 4%) 1-8 mortar kneading, change The addition of the modified metal fiber was externally added, and the test piece was formed by molding by pouring. In the same manner as in 1, the steam curing was carried out, and then, the test was performed with a single strength. The results are shown in Table 3. φ As shown in Table 3, the metal fiber can greatly increase the mortar, but it has no effect at 5% by volume. The presence of metal fibers begins to show significant effects and the bending strength increases as the metal fibers increase. More than 5% by volume results in a peak 値 product% resulting in poor workability and deterioration in formability. In the case of obtaining a mortar, it is apparent that the optimum range is from 2.% 〇 the amount of Example 1 (the bending strength to the mortar at the age of the embodiment, the addition amount from the 2 vol% dimension, and 6.5 body molded by vibration 5 to 5 volumes

-22- 200602283 (20) [表3] 實驗編號 黏合材料類型 金屬纖維 (體積%) 彎曲強度 (N / m m 2) 3-1 實驗- 0 28.9 3-2 實驗- 1.5 28.7 3-3 實驗 2.0 33.2 3-4 ---—-------- 實驗上土^- 2.5 42.4 3-5 實驗I-8考 30 47.5 3-6 實驗 I·8 %....... 3.5 52.6 3-7 實驗 I·8 ^...- 4.0 58.0 3-8 實驗1 -8者一 4.5 62.4 3-9 實驗I-8者_ .. 5.0 65.8 3-10 實驗1-8者_ 5.5 66.2 3-11 實驗1 - 8者 6.0 66.4 3-12 實驗1-8者 6.5 不能模塑 [實施例4] 混凝土 爲得到總體積爲1立方米的混凝土,乃以實施例1的 實驗1 一 1至1一 14及實施例2的實驗2— 5至2— 13等之 中的相同方式進行捏合,不同處在於粗骨材的添加量爲 9 00公斤/立方米每1立方米的混凝土,且將空氣含量調整 到2 · 5 %,然後由其模塑出試片。於標準固化91天之後, 測量壓縮強度和彎曲強度。其結果示於表4之中。 -23- 200602283 (21) 從表4中明顯可知,其中只加入水泥和矽灰作爲黏合 材料的實驗4 - 2之混凝土,及只加入水泥和篩分飛灰的 實驗4 一 1 4之混凝土,其彎曲強度的增加率小。另一方面 ,明顯地,有摻合矽灰和篩分飛灰兩者的混凝土,例如實 驗4 一 3至4 _ 1 3,在彎曲強度上顯示出明顯的增加。當矽 灰對篩分飛灰的比例爲95 : 5至10 : 90,且特別爲90 : 1 0至2 0 : 8 0之時,尤其特別明顯。 φ 於此證實同時使用石膏可增加壓縮強度和彎曲強度, 如從實驗4 一 1 5至4 一 23明顯可知者。此外,於組合使用 石膏的混凝土之情況中,類似於砂漿的情況者,即使石膏 添加量超過1 2份每1 〇 0份水泥,也不能獲得進一步增加 強度之效用。因此,石膏添加量爲1 〇份或更少,且較佳 者爲從1至8份。-22- 200602283 (20) [Table 3] Experiment No. Adhesive Material Type Metal Fiber (% by Volume) Bending Strength (N / mm 2) 3-1 Experiment - 0 28.9 3-2 Experiment - 1.5 28.7 3-3 Experiment 2.0 33.2 3-4 ------------ Experimental soil ^- 2.5 42.4 3-5 Experiment I-8 test 30 47.5 3-6 Experiment I·8 %....... 3.5 52.6 3 -7 Experiment I·8 ^...- 4.0 58.0 3-8 Experiment 1 -8 One 4.5 62.4 3-9 Experiment I-8 _ .. 5.0 65.8 3-10 Experiment 1-8 _ 5.5 66.2 3- 11 Experiment 1 - 8 6.0 66.4 3-12 Experiment 1-8 6.5 Cannot be molded [Example 4] Concrete is to obtain a total volume of 1 cubic meter of concrete, and the experiment 1 to 1 to 1 of Example 1 14 and kneading in the same manner as in Experiment 2-5 to 2-13 of Example 2, except that the amount of the coarse aggregate added is 900 kg/m3 per 1 m3 of concrete, and the air content is Adjust to 2 · 5 % and then mold the test piece from it. After 91 days of standard curing, the compressive strength and flexural strength were measured. The results are shown in Table 4. -23- 200602283 (21) It is apparent from Table 4 that the concrete of Experiment 4-2 in which only cement and ash as cement are added, and the concrete of Experiment 4-14 in which only cement and sieving fly ash are added, The rate of increase in bending strength is small. On the other hand, it is apparent that concrete having both fly ash and sieve fly ash, such as the experiment 4 - 3 to 4 - 1 3 , shows a marked increase in bending strength. This is especially true when the ratio of ash to sieved fly ash is 95:5 to 10:90, and particularly 90:10 to 2:80. φ This confirms that the simultaneous use of gypsum increases the compressive strength and flexural strength, as is evident from Experiments 4-15 to 4-23. Further, in the case of concrete in which gypsum is used in combination, in the case of mortar, even if the amount of gypsum added exceeds 12 parts per 1 part of cement, the effect of further increasing the strength cannot be obtained. Therefore, the amount of gypsum added is 1 part or less, and preferably from 1 to 8 parts.

-24- 200602283 (22) [表4]-24- 200602283 (22) [Table 4]

實驗 編號 黏合材料類型 (包括石膏) 彎曲強度 (N/mm2) 壓縮強度 (N/mm2) 彎曲/壓縮 強度比例 4-1 實驗1 -1者- 11.2 123 1/11.0 4-2 實驗1-2者 12.1 156 1/12.9 4-3 實驗1-3者 15.3 155 1/10.1 4-4 實驗1-4者 15.9 154 1/9.7 4-5 實驗1-5者 18.8 152 1/8.1 4-6 實驗1-6者 20.8 150 1/7.2 4-7 實驗1-7者 2 1.2 15 1 1/7.1 4-8 實驗1-8者 20.5 150 1/7.3 4-9 實驗1_9者 20.0 149 1/7.5 4-10 實驗1 -1 〇者 18.0 150 1/8.3 4-11 實驗1 -1 1者 17.2 152 1/8.8 4-12 實驗1 -1 2者 15.5 150 1/9.7 4-13 實驗1 -1 3者 13.7 144 1/10.5 4-14 實驗1 -1 4者 11.9 142 1/11.9 4-15 實驗2-5者 2 1.9 162 1/7.9 4-16 實驗2-6者 23.1 165 1/7.1 4-17 實驗2-7者 24.9 170 1/6.8 4-18 實驗2-8者 25.3 1 74 1/6.9 4-19 實驗2-9者 25.8 178 1/6.9 4-20 實驗2-10者 26.4 177 1/6.7 4-21 實驗2-1 1者 26.0 175 1/6.7 4-22 實驗2-12者 25.9 176 1/6.8 4-23 實驗2-13者 25.0 173 1/6.9 -25- 200602283 (23) [實施例5] 倂用金屬纖維的混凝土 以表5中所示量(外添加到混凝土)的金屬纖維與1 立方米的實施例4實驗4 - 8的混凝土捏合,並將混凝土 傾注於放在台式振動器上的模子內,同時將其輕微振動使 得金屬纖維不會發生分離,藉此模製出試片。以與實施例 1中的相同方式實施蒸汽固化,然後,進行1日齢的彎曲 φ 強度檢驗。其結果示於表5之中。 如從表5可看出者,金屬纖維會增加混凝土的彎曲強 度,但在1.0體積%的量時根本不具效用。金屬纖維從K5 體積❶/〇開始顯示明顯效應,且彎曲強度隨著金屬纖維添加 量之增加而增加。不過,其會逐漸達到峯値’且4 ·5體積 %導致不良的可操作性而造成模塑困難性。於經由振動模 塑獲得混凝土的情況中,顯然地,最佳範圍爲從2 · 〇至 4.0體積%。 -26- 200602283 (24) [表5] 實驗 編號 混凝土類型 金屬纖維 (外添加體積%) (以混凝土爲基準) 彎曲強度 (N/平方毫米) 5-1 實驗4-8者 1.0 2 1.7 5-2 實驗4-8者 1 .5 23.8 5-3 實驗4-8者 2.0 27.1 5-4 實驗4_8者 2.5 32.4 5-5 實驗4-8者 3.0 36.5 5-6 實驗4-8者 3.5 38.6 5-7 實驗4-8者 4.0 39.1 5-8 實驗4-8者 4.5 不能模塑 [實施例6] 使用表6中所示配方’將砂漿或混凝土與不同添加量 馨之金屬纖維捏合,且以離心模塑製備試片。以與實施例1 中的相同方式實施蒸汽固化,然後以1日齡測量發生碎裂 時的外部壓力負荷以計算彎曲張力強度。中央列指示出混 凝土的配方,上列指出比較用的混凝土配方,且下列指出 經由從中央列中所示混凝土配方的粗骨材量所得砂漿配方 ,且轉換成數値每立方米。附帶者,表6中所用符號分別 表示下列意義:Experiment number Adhesive material type (including gypsum) Bending strength (N/mm2) Compressive strength (N/mm2) Bending/compressive strength ratio 4-1 Experiment 1 -1 - 11.2 123 1/11.0 4-2 Experiment 1-2 12.1 156 1/12.9 4-3 Experiment 1-3. 15.3 155 1/10.1 4-4 Experiment 1-4. 15.9 154 1/9.7 4-5 Experiment 1-5. 18.8 152 1/8.1 4-6 Experiment 1 6 20.8 150 1/7.2 4-7 Experiment 1-7 2 1.2 15 1 1/7.1 4-8 Experiment 1-8 20.5 150 1/7.3 4-9 Experiment 1_9 20.0 149 1/7.5 4-10 Experiment 1 -1 1 18.0 150 1/8.3 4-11 Experiment 1 -1 1 of 17.2 152 1/8.8 4-12 Experiment 1 -1 2 of 15.5 150 1/9.7 4-13 Experiment 1 -1 3 of 13.7 144 1 /10.5 4-14 Experiment 1 -1 4 of 11.9 142 1/11.9 4-15 Experiment 2-5 2 of 1.9 162 1/7.9 4-16 Experiment 2-6 of 23.1 165 1/7.1 4-17 Experiment 2-7 24.9 170 1/6.8 4-18 Experiment 2-8 25.3 1 74 1/6.9 4-19 Experiment 2-9 25.8 178 1/6.9 4-20 Experiment 2-10 26.4 177 1/6.7 4-21 Experiment 2-1 1 26.0 175 1/6.7 4-22 Experiment 2-12 25.9 176 1/6.8 4-23 Experiment 2-13 25.0 173 1/6.9 -25- 200602283 (23) [Example 5] Metal fiber concrete in Table 5 The metal fibers of the amount (externally added to the concrete) were kneaded with 1 m3 of the concrete of the experiment 4-8 of Example 4, and the concrete was poured into a mold placed on a tabletop vibrator while being slightly vibrated to make the metal fibers. Separation does not occur, thereby molding the test piece. Steam solidification was carried out in the same manner as in Example 1, and then, a bending φ strength test of 1 day was performed. The results are shown in Table 5. As can be seen from Table 5, the metal fiber increases the bending strength of the concrete, but does not work at all in an amount of 1.0% by volume. The metal fiber showed a significant effect from the K5 volume ❶/〇, and the bending strength increased as the amount of metal fiber added increased. However, it gradually reaches a peak 値 and 4 · 5 % by volume results in poor operability and molding difficulty. In the case where concrete is obtained by vibration molding, it is apparent that the optimum range is from 2 · 〇 to 4.0 vol%. -26- 200602283 (24) [Table 5] Experiment No. Concrete Type Metal Fiber (External Addition Volume %) (Based on Concrete) Bending Strength (N/mm 2 ) 5-1 Experiment 4-8 1.0 2 1.7 5- 2 Experiment 4-8 1. 5 23.8 5-3 Experiment 4-8 2.0 17.1 5-4 Experiment 4_8 2.5 2.52.4 5-5 Experiment 4-8 3.0 3.0 56.5 5-6 Experiment 4-8 3.5 38.6 5- 7 Experiment 4-8. 4.0 39.1 5-8 Experiment 4-8. 4.5 Cannot be molded [Example 6] Using the formula shown in Table 6 'Knead mortar or concrete with different added amount of metal fiber, and centrifuge A test piece was prepared by molding. Steam solidification was carried out in the same manner as in Example 1, and then the external pressure load at the time of fragmentation was measured at 1 day of age to calculate the bending tensile strength. The central column indicates the formulation of the concrete, the above lists the concrete formulations used for comparison, and the following indicates the mortar formulation obtained from the amount of coarse aggregate of the concrete formulation shown in the central column and converted to several metres per cubic meter. Incidentally, the symbols used in Table 6 indicate the following meanings:

Gmax :最大骨材尺寸 空氣:空氣含量 -27- 200602283 (25) sL :坍度 s/a :細骨材比例 W / B :水/黏合材料比例 w ··水 C :水泥 S :細骨材 G :粗骨材 g 經由離心模塑製備試片,其中整個試片係經由將有不 同量的金屬纖維之混凝土或砂漿進行單層模塑而模塑所成 ,且經由雙層模塑製備模塑試片,其中試片的外側3 -厘 米部份係由不含金屬纖維的砂漿或混凝土模塑而成,然後 用有變異量的金屬纖維之砂漿或混凝土模塑其內側2 -厘 米部份。其結果示於表7之中。 [表6]Gmax : Maximum aggregate size Air: Air content -27- 200602283 (25) sL : 坍 s/a : Fine aggregate ratio W / B : Water / binder ratio w · · Water C : Cement S : Fine aggregate G: coarse aggregate g A test piece is prepared by centrifugal molding in which the entire test piece is molded by single-layer molding of concrete or mortar having different amounts of metal fibers, and a mold is prepared via double-layer molding. Plastic test piece, in which the outer 3 - cm portion of the test piece is molded from mortar or concrete without metal fiber, and then the inner 2 - cm portion is molded with a mortar or concrete having a variation of metal fiber . The results are shown in Table 7. [Table 6]

Gmax 空氣 sL s/a W/B 單位量(公斤/立方米) (mm) (%) (cm) (%) (%) W C S G WRA(2) SF FA20 II-CS *13 1.5 65 48.7 28 168 600 799 850 12 0 0 0 13 1.5 65 48.1 28 168 500 782 850 10 48 29 19 • 1.6 35 • 20 234 984 953 · 18 94 56 38 (註)WRA(2):高性能減水劑,以粉末形式添加及捏合。 II 一 CS爲不溶性無水石膏 從表7可以看出,添加1 .〇體積%的金屬纖維可增加 -28- 200602283 (26) 彎曲抗張強度,且彎曲抗張強度會隨金屬纖維的添加量之 增加而增加。於混凝土的情況中,在添加3.5體積%時, 即使金屬纖維係添加到具有高流性的混凝土時,混凝土的 伸展也不良而造成纖維球漂浮在內表面上。所以,較佳者 ,金屬纖維的添加量最高係達3.0體積%。 於砂漿的情況中,在超過5.5體積%的量之下不可能 模塑,且顯然地,金屬纖維的添加量較佳爲最高達5·0體 積%。於採用Hume管件之情況下,在只將金屬纖維摻合 到管的內側中之模塑,顯然可提供比其中將金屬纖維摻合 到整個管內的模塑較爲高的彎曲張力強度’因此係較爲經 濟者。Gmax Air sL s/a W/B Unit quantity (kg/m3) (mm) (%) (cm) (%) (%) WCSG WRA(2) SF FA20 II-CS *13 1.5 65 48.7 28 168 600 799 850 12 0 0 0 13 1.5 65 48.1 28 168 500 782 850 10 48 29 19 • 1.6 35 • 20 234 984 953 · 18 94 56 38 (Note) WRA (2): a high performance water reducing agent, added in powder form and Kneading. II - CS is insoluble anhydrite. As can be seen from Table 7, the addition of 1. 〇 vol% of the metal fiber can increase the tensile strength of -28-200602283 (26), and the flexural tensile strength will vary with the amount of metal fiber added. Increase and increase. In the case of concrete, when 3.5% by volume is added, even when the metal fiber is added to the concrete having high fluidity, the concrete is poorly stretched to cause the fiber ball to float on the inner surface. Therefore, preferably, the amount of the metal fibers added is up to 3.0% by volume. In the case of the mortar, it is impossible to mold at an amount exceeding 5.5 % by volume, and it is apparent that the amount of the metal fibers added is preferably up to 5% by volume. In the case of the Hume tube, the molding in which only the metal fibers are blended into the inner side of the tube clearly provides a higher bending tensile strength than the molding in which the metal fibers are blended into the entire tube. It is more economical.

-29- 200602283 (27) m 7] 實驗 編號 金屬纖維添加量 (外部添加量,體積%) 模塑方法 彎曲張力強度 (N/mm2) 混凝土中 砂漿中 6-1 〇,整管模塑 攀 單層 13.1 6-2 1.0,整管模塑 • 單層 16.1 6-3 1.5,整管模塑 單層 19.0 6-4 2.0,整管模塑 • 單層 22.5 6-5 2.5,整管模塑 單層 27.6 6-6 3.0,整管模塑 單層 27.5 6-7 3.5,整管模塑 麵 單層 纖維球 6-8 _ 〇,整管模塑 單層 17.0 6-9 讎 1.0,整管模塑 單層 2 1.0 6-10 嶋 1.5,整管模塑 單層 24.6 6-1 1 麵 2.0,整管模塑 單層 28.3 6-1 2 腾 3.0,整管模塑 單層 33.2 6-1 3 義 3.5,整管模塑 單層 37.2 6-14 嶋 4.0,整管模塑 單層 40.0 6-15 5.0,整管模塑 單層 41.7 6-16 • 6.0,整管模塑 單層 不能模塑 6-17 1.0,內側模塑 雙層 19.8 6-1 8 2.0,內側模塑 雙層 25.8 6-19 3.0,內側模塑 雙層 30.1 6-2 1 • 1.0,內側模塑 雙層 24.1 6-22 • 2.0,內側模塑 雙層 32.5 6-23 • 3.0,內側模塑 雙層 36.2 6-24 4.0,內側模塑 雙層 44.5 6-25 *〇,整管模塑 雙層 8.2 (註)* :實驗6 — 2 5爲根據表 土配方之比較例 中有符號所示混凝 -30- 200602283 (28) 雖然本發明已參照其特定具體實例予以詳細說明過, 不過對於諳於此技者顯而易知的是,於其中可作出各種改 變與修飾而不違離本發明旨意和範圍。 本申請案係以2004年三用17日提出申請的日本專利 申請第2004 - 075 1 8號爲基準,其內容倂於本文作爲參考 φ [工業實用性] 根據本發明,經捏合的砂漿或混凝土所具流度値可獲 改良而得良好可操作性。再者,所得砂漿和混凝土具有高 的壓縮強度和彎曲強度絕對値,且可得到相對於壓縮強度 之高彎曲強度。此外,經由摻合金屬纖維的強化作用可大 幅地增加彎曲強度。此可促成在土木工程和建築結構與混 凝土二次產品的製造中既經濟且有利之設計。 -31 --29- 200602283 (27) m 7] Experiment No. Metal fiber addition amount (external addition amount, volume %) Molding method Bending tensile strength (N/mm2) 6-1 〇 in concrete mortar, whole tube molding Layer 13.1 6-2 1.0, full tube moulding • Single layer 16.1 6-3 1.5, full tube moulding single layer 19.0 6-4 2.0, full tube moulding • single layer 22.5 6-5 2.5, full tube moulding Layer 27.6 6-6 3.0, single tube molding single layer 27.5 6-7 3.5, single tube molding surface single layer fiber ball 6-8 _ 〇, whole tube molding single layer 17.0 6-9 雠 1.0, whole tube mold Plastic single layer 2 1.0 6-10 嶋1.5, whole tube molding single layer 24.6 6-1 1 surface 2.0, whole tube molding single layer 28.3 6-1 2 ton 3.0, whole tube molding single layer 33.2 6-1 3 Sense 3.5, the whole tube molding single layer 37.2 6-14 嶋4.0, the whole tube molding single layer 40.0 6-15 5.0, the whole tube molding single layer 41.7 6-16 • 6.0, the whole tube molding single layer can not be molded 6-17 1.0, inner molded double layer 19.8 6-1 8 2.0, inner molded double layer 25.8 6-19 3.0, inner molded double layer 30.1 6-2 1 • 1.0, inner molded double layer 24.1 6-22 • 2.0, inner molded double layer 32.5 6-23 • 3.0, inner molded double layer 3 6.2 6-24 4.0, inner molded double layer 44.5 6-25 *〇, whole tube molded double layer 8.2 (Note)*: Experiment 6 - 2 5 is the coagulation indicated by the symbol in the comparative example of the topsoil formula - 30-200602283 (28) Although the present invention has been described in detail with reference to the specific embodiments thereof, various modifications and modifications may be made therein without departing from the spirit and scope of the invention. range. The present application is based on Japanese Patent Application No. 2004-07518, filed on Jan. 17, 2004, the content of which is incorporated herein by reference. The fluidity can be improved to achieve good operability. Further, the obtained mortar and concrete have high compressive strength and bending strength, and high bending strength with respect to compressive strength can be obtained. In addition, the bending strength can be greatly increased by the strengthening action of the blended metal fibers. This can result in an economical and advantageous design in the manufacture of civil engineering and building structures and concrete secondary products. -31 -

Claims (1)

200602283 (1) 十、申請專利範圍 1 · 一種水泥摻和物,其包含矽灰和經篩分到2 0微米 或更小的尺寸之飛灰,其中該矽灰對經篩分飛灰的混合重 量比例爲從9 5 : 5至1 0 : 9 0。 2 ·如申請專利範圍第1項之水泥摻和物,其進一步 包含石膏。 3· —種水泥組成物,其包含其量爲1到3 5重量份每 | 1 00重量份的水泥之申請專利範圍第1項之水泥摻和物。 4 ·如申請專利範圍第3項之水泥組成物,其進一步 包含石膏,其量爲以無水基準計算時之0.5至12重量份 每1〇〇重量份該水泥組成物。 5· —種砂漿,其包含申請專利範圍第3項或4項之 水泥組成物,細骨材,減水劑和捏合水。 6. 如申請專利範圍第5項之砂漿,其具有添加於其 中的金屬纖維,該金屬纖維的外添加量爲1.0至6·0體積 Φ %每立方米該砂漿。 7. 一種混凝土,其包含申請專利範圍第3項或4項 之水泥組成物,細骨材,粗骨材,減水劑和捏合水。 8. 如申請專利範圍第7項之混凝土,其具有添加於 其中之金屬纖維,該金屬纖維的外添加量爲K0至4·〇體 積%每立方米該混凝土。 9 · 一種經由將申請專利範圍第5項之砂漿硬化所得 之水泥硬化產物。 1 〇· —種經由將申請專利範圍第6項之混凝土硬化所 -32- 200602283 (2) 得之水泥硬化產物。 1 1 . 一種經由將申請專利範圍第7項之混凝土硬化所 得之水泥硬化產物。 1 2. —種經由將申請專利範圍第8項之混凝土硬化所 得之水泥硬化產物。200602283 (1) X. Patent Application 1 • A cement admixture comprising ash and fly ash sized to a size of 20 microns or less, wherein the ash is mixed with sieved fly ash The weight ratio is from 9 5 : 5 to 1 0 : 9 0. 2. The cement admixture of claim 1 further comprising gypsum. 3. A cement composition comprising a cement admixture of claim 1 in an amount of from 1 to 35 parts by weight per 10,000 parts by weight of cement. 4. The cement composition of claim 3, which further comprises gypsum in an amount of from 0.5 to 12 parts by weight per 1 part by weight of the cement composition, calculated on an anhydrous basis. 5. A mortar comprising a cement composition of claim 3 or 4, a fine aggregate, a water reducer and a kneaded water. 6. The mortar of claim 5, which has a metal fiber added thereto, the metal fiber being externally added in an amount of from 1.0 to 6.00 volume Φ% per cubic meter of the mortar. A concrete comprising the cement composition of the third or fourth aspect of the patent application, a fine aggregate, a coarse aggregate, a water reducer and a kneaded water. 8. The concrete of claim 7, which has a metal fiber added thereto, the metal fiber being externally added in an amount of K0 to 4% by volume per cubic meter of the concrete. 9. A cement hardened product obtained by hardening a mortar of claim 5 of the patent application. 1 〇·- Kind of cement hardened product obtained by hardening the concrete of the scope of application of the scope of the patent -32- 200602283 (2). 1 1 . A cement hardened product obtained by hardening concrete of claim 7 of the patent application. 1 2. A cement hardened product obtained by hardening concrete of the application of claim 8th. -33- 200602283 七、指定代表圓·· (一) 、本案指定代表圓為:無 (二) 、本代表囷之元件代表符號簡單說明:無-33- 200602283 VII. Designated representative circle · (1) The designated representative circle of this case is: None (2), the representative symbol of the representative 简单 is simple: no 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:無8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: none
TW94108257A 2004-03-17 2005-03-17 Cement admixture, cement composition, mortar and concrete TWI336318B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075718 2004-03-17

Publications (2)

Publication Number Publication Date
TW200602283A true TW200602283A (en) 2006-01-16
TWI336318B TWI336318B (en) 2011-01-21

Family

ID=34975493

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94108257A TWI336318B (en) 2004-03-17 2005-03-17 Cement admixture, cement composition, mortar and concrete

Country Status (6)

Country Link
JP (1) JP4813355B2 (en)
KR (1) KR20060123031A (en)
CN (1) CN1826298A (en)
MY (1) MY153230A (en)
TW (1) TWI336318B (en)
WO (1) WO2005087682A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488829B (en) * 2006-12-05 2015-06-21 太平洋水泥股份有限公司 Apparatus and method for manufacturing cement
TWI822093B (en) * 2022-06-08 2023-11-11 國立宜蘭大學 Cement doped with reactive ultra-fine fly ash and manufacturing method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755424B1 (en) * 2006-08-08 2007-09-05 한국건설기술연구원 A method for preparing high-early-strength fiber reinforced cement composites and high-early-strength fiber reinforced cement composites preparing from the method
JP2008162842A (en) * 2006-12-28 2008-07-17 Taiheiyo Material Kk High-strength admixture for mortar or concrete
JP4994056B2 (en) * 2007-02-14 2012-08-08 電気化学工業株式会社 Cement admixture, cement composition, and cement concrete
JP2008239403A (en) * 2007-03-27 2008-10-09 Taiheiyo Cement Corp Hydraulic composition
JP4889549B2 (en) * 2007-03-30 2012-03-07 住友大阪セメント株式会社 Centrifugal concrete products
KR100807761B1 (en) * 2007-04-27 2008-02-28 주식회사 콘크리닉 Cement composition using alpha type calcined gypsum and constructing method thereof
KR101365659B1 (en) * 2013-12-12 2014-02-20 (주)영광엔지니어링건축사사무소 Ultra high strength concrete
JP6350165B2 (en) * 2014-09-19 2018-07-04 株式会社Ihi How to treat fly ash
KR102525169B1 (en) * 2021-10-21 2023-04-24 문보경 Cement strength enhancer and composion thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638248A (en) * 1986-06-25 1988-01-14 四国電力株式会社 Quality improver for cement and concrete
JPH0649606B2 (en) * 1989-08-10 1994-06-29 大阪セメント株式会社 Cement composition
JP2930215B2 (en) * 1990-04-17 1999-08-03 株式会社四国総合研究所 Cement composition for watertight concrete and method for producing the same
JPH06157115A (en) * 1992-05-27 1994-06-03 Showa Denko Kk Extrusion molding method of inorganic molded body
JPH10287455A (en) * 1997-04-09 1998-10-27 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP3765693B2 (en) * 1999-07-28 2006-04-12 電気化学工業株式会社 Low environmental impact type high strength concrete
JP2001213654A (en) * 2000-01-31 2001-08-07 Taiheiyo Cement Corp Quick-setting mortar or concrete with ultra high strength
JP2001220197A (en) * 2000-02-03 2001-08-14 Taiheiyo Cement Corp Cement composition
JP2002080259A (en) * 2000-09-08 2002-03-19 Taiheiyo Cement Corp Hydraulicity composition
JP2003012361A (en) * 2001-06-26 2003-01-15 Taiheiyo Cement Corp Instant stripping porous concrete compact

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488829B (en) * 2006-12-05 2015-06-21 太平洋水泥股份有限公司 Apparatus and method for manufacturing cement
TWI822093B (en) * 2022-06-08 2023-11-11 國立宜蘭大學 Cement doped with reactive ultra-fine fly ash and manufacturing method thereof

Also Published As

Publication number Publication date
MY153230A (en) 2015-01-29
JPWO2005087682A1 (en) 2007-08-09
JP4813355B2 (en) 2011-11-09
TWI336318B (en) 2011-01-21
WO2005087682A1 (en) 2005-09-22
CN1826298A (en) 2006-08-30
KR20060123031A (en) 2006-12-01

Similar Documents

Publication Publication Date Title
JP4558569B2 (en) Ultra high strength fiber reinforced cement composition, ultra high strength fiber reinforced mortar or concrete, and ultra high strength cement admixture
TW200602283A (en) Cement admixture, cement composition, mortar and concrete
JP4607161B2 (en) Low shrinkage ultra high strength fiber reinforced cement composition, low shrinkage ultra high strength fiber reinforced mortar or concrete, and low shrinkage ultra high strength cement admixture
Tagnit-Hamou et al. Green ultra-high-performance glass concrete
EP3307692B1 (en) Advanced fiber reinforced concrete mix designs
JP4593412B2 (en) Centrifugal concrete product and manufacturing method thereof
JP5713540B2 (en) Spraying method of ultra high strength fiber reinforced mortar and cured mortar
WO2002096825A1 (en) Hydraulic composition
WO2008015767A1 (en) Cement admixture and cement composition making use of the same
JP5649780B2 (en) Method for producing concrete composition and concrete molded body
JP4709677B2 (en) Premix high toughness polymer cement mortar material and high toughness polymer cement mortar
JP3584564B2 (en) High fluidity cement composition
JP2001240440A (en) Steel fiber for reinforcing concrete and fiber reinforced concrete
JP4298247B2 (en) High fluidity concrete
JP4413532B2 (en) Reinforcing fiber for hydraulic composition and hydraulic composition containing the same
JP6985177B2 (en) Hydraulic composition and concrete
JP2003055018A (en) Polymer cement composition
JP2007176742A (en) Shearing strength-reinforced type lightweight concrete
JPH03193649A (en) High-fluidity and high-durability fiber-reinforced filling mortar
JP4108165B2 (en) Resin mortar composition
JP2004217521A (en) Whitewash reduction material, centrifugal molding using it, and its production method
WO2023248970A1 (en) Cement composition, repair method and concrete structure
JP2001213654A (en) Quick-setting mortar or concrete with ultra high strength
JP2024042172A (en) Fiber-reinforced mortar composition and mortar thereof
JP2001302310A (en) Short fiber-reinforced concrete excellent in workability in execution of construction work