KR101365659B1 - Ultra high strength concrete - Google Patents

Ultra high strength concrete Download PDF

Info

Publication number
KR101365659B1
KR101365659B1 KR20130154433A KR20130154433A KR101365659B1 KR 101365659 B1 KR101365659 B1 KR 101365659B1 KR 20130154433 A KR20130154433 A KR 20130154433A KR 20130154433 A KR20130154433 A KR 20130154433A KR 101365659 B1 KR101365659 B1 KR 101365659B1
Authority
KR
South Korea
Prior art keywords
weight
parts
concrete
high strength
present
Prior art date
Application number
KR20130154433A
Other languages
Korean (ko)
Inventor
김신호
고진국
Original Assignee
(주)영광엔지니어링건축사사무소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)영광엔지니어링건축사사무소 filed Critical (주)영광엔지니어링건축사사무소
Priority to KR20130154433A priority Critical patent/KR101365659B1/en
Application granted granted Critical
Publication of KR101365659B1 publication Critical patent/KR101365659B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/146Silica fume
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • C04B14/106Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • C04B14/16Minerals of vulcanic origin porous, e.g. pumice
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • C04B14/365Gypsum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/142Steelmaking slags, converter slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

The present invention provides concrete with ultra high strength, wherein the concrete is maximized in strength by applying silica fume and steel fibers thereto. The concrete with ultra high strength according to the present invention may include 95-100 wt% of cement, 28-32 wt% of silica fume, 18-22 wt% of steel-manufacturing slag, 8-12 wt% of fly ash, 18-22 wt% of basalt, 3-5 wt% of anhydrous gypsum, and 0.8-1.2 wt% of steel fibers.

Description

초고강도 콘크리트{ULTRA HIGH STRENGTH CONCRETE}Ultra High Strength Concrete {ULTRA HIGH STRENGTH CONCRETE}

본 발명은 초고강도 콘크리트에 관한 것으로, 구체적으로는 건축물의 재료로서 사용되는 초고강도 콘크리트에 관한 것이다.The present invention relates to ultra-high strength concrete, and more particularly to ultra-high strength concrete used as a building material.

콘크리트는 시멘트에 골재를 혼합하여 다양한 구조물을 만들기 위한 것으로서, 시멘트는 크게 골재와 골재를 결합시키는 역할을 한다. 시멘트는 도로, 교량 및 빌딩 등의 건설에 있어서, 일반적으로 가장 기초가 되는 재료로서 함께 혼합되는 다양한 재료에 따라 여러 가지 특성을 가지게 된다. 즉, 첨가되는 재료에 따라서 압축강도를 높이거나, 인장강도 또는 휨강도를 높일 수 있으며, 이 밖에 방수성이나 내화성 등의 특성을 향상시킬 수 있다. Concrete is to mix the aggregate with cement to make a variety of structures, cement serves to combine the aggregate and aggregate largely. Cement is generally the most basic material in the construction of roads, bridges, buildings, etc. and has various properties depending on various materials mixed together. That is, the compressive strength may be increased, the tensile strength or the flexural strength may be increased depending on the material to be added. In addition, properties such as water resistance and fire resistance may be improved.

먼 과거에는 건축물 등의 규모가 작아 일반적인 콘크리트로도 건축물을 건설하는데 문제가 없었으나, 산업 발전, 인구 증가 및 인구의 집중에 따른 고밀도 대도시화 등에 의해 건축물이 대형화되고 있으며, 특히 초고층 구조물의 증가에 따라 기존의 특성을 뛰어넘는 초고강도 콘크리트가 절실히 요구된다.In the distant past, the size of buildings was small, so there was no problem in constructing them even with concrete. However, buildings are becoming larger due to industrial development, population growth, and high density metropolis due to population concentration. Therefore, ultra-high strength concrete that exceeds the existing characteristics is urgently needed.

일반적으로 초고강도 콘크리트는 80MPa 이상의 압축강도를 가지는 콘크리트를 의미하며, 시멘트에 실리카흄, 제강슬래그 또는 플라이애쉬 등을 혼합하여 강도를 높일 수 있다. In general, ultra-high strength concrete refers to concrete having a compressive strength of 80MPa or more, and can be increased by mixing silica fume, steelmaking slag, or fly ash with cement.

콘크리트의 강도가 높은 경우에 더 많은 하중을 지지할 수 있으므로, 건축물 기둥 단면적의 축소가 가능하여 골조 비용을 줄일 수 있고, 빌딩의 경우에 기둥의 축소로 인하여 더 넓은 내부 공간을 확보할 수 있는 장점이 있다.When the strength of concrete is high, more loads can be supported, so the cross section area of the building can be reduced, so that the frame cost can be reduced, and in the case of a building, the larger internal space can be secured due to the reduction of the column. There is this.

현재까지 수많은 실험과 노력에 의해 약 100MPa 내지 110MPa의 압축강도를 가지는 콘크리트는 개발되어 있으나, 이 이상의 강도를 가지는 콘크리트는 실제 상용화 수준에 이르지 않은 실정이다. Until now, a number of experiments and efforts have been developed concrete having a compressive strength of about 100MPa to 110MPa, but concrete having a strength of more than this has not reached the actual commercialization level.

따라서, 콘크리트의 강도를 상기 이상으로 높일 수 있다면, 특히 초고층 빌딩 건설에 유리하고, 더욱 넓은 내부 공간 확보에 유리할 것이다. Therefore, if the strength of the concrete can be increased above the above, it is particularly advantageous for the construction of high-rise buildings, it will be advantageous to secure a wider interior space.

한국공개특허 제2000-0073334호(2000.12.05.)Korean Laid-Open Patent No. 2000-0073334 (2000.12.05.)

본 발명은 실리카흄과 강섬유를 적용하여 강도를 획기적으로 높일 수 있는 초고강도 콘크리트를 제공함에 목적이 있다.An object of the present invention is to provide an ultra-high strength concrete that can significantly increase the strength by applying silica fume and steel fiber.

본 발명에 따른 초고강도 콘크리트는, 시멘트 95 내지 100 중량부; 실리카흄 28 내지 32 중량부; 제강슬래그 18 내지 22 중량부; 플라이애쉬 8 내지 12 중량부; 현무암 18 내지 22 중량부; 무수석고 3 내지 5 중량부; 및 강섬유 0.8 내지 1.2 중량부를 포함할 수 있다.Ultra high-strength concrete according to the invention, 95 to 100 parts by weight of cement; 28 to 32 parts by weight of silica fume; 18 to 22 parts by weight of steelmaking slag; 8 to 12 parts by weight of fly ash; 18 to 22 parts by weight of basalt; Anhydrous gypsum 3 to 5 parts by weight; And it may include 0.8 to 1.2 parts by weight of steel fiber.

바람직하게는, 메타카올린 1.8 중량부 내지 2.2 중량부; 활성규사 2 중량부 내지 4 중량부; 송진 0.8 중량부 내지 1.2 중량부; 메틸셀룰로오스 1.8 중량부 내지 2.2 중량부; 벤토나이트 0.8 중량부 내지 1.2 중량부; 제올라이트 0.8 중량부 내지 1.2 중량부; 폴리카르본산계 감수제 1.8 중량부 내지 2.2 중량부; 알킬벤젠술폰산염 0.4 중량부; 산화칼슘 0.6 중량부; 리튬카보네이트 0.6 중량부; 염화칼슘 0.2 중량부; 아질산칼슘 0.2 중량부를 더 포함하고, 상기 시멘트는 포틀랜드 시멘트일 수 있다.Preferably, metakaolin 1.8 parts by weight to 2.2 parts by weight; 2 to 4 parts by weight of activated silica; 0.8 parts by weight to 1.2 parts by weight rosin; 1.8 to 2.2 parts by weight of methyl cellulose; 0.8 to 1.2 parts by weight of bentonite; 0.8 to 1.2 parts by weight of zeolite; 1.8 parts by weight to 2.2 parts by weight of a polycarboxylic acid-based water reducing agent; 0.4 parts by weight of alkylbenzenesulfonate; 0.6 parts by weight of calcium oxide; 0.6 parts by weight of lithium carbonate; 0.2 part by weight of calcium chloride; Further comprising 0.2 parts by weight of calcium nitrite, the cement may be Portland cement.

바람직하게는, 상기 강섬유는 링(Ring) 형상을 가질 수 있다.Preferably, the steel fiber may have a ring shape.

본 발명에 따른 초고강도 콘크리트는, 실리카흄과 강섬유를 적용하여 강도를 극대화할 수 있는 효과가 있다.Ultra high-strength concrete according to the present invention has the effect of maximizing the strength by applying silica fume and steel fibers.

이하 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
Hereinafter, a preferred embodiment of the present invention will be described in detail. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately It should be interpreted in accordance with the meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined. Accordingly, it is to be understood that the constituent features of the embodiments described herein are merely the most preferred embodiments of the present invention, and are not intended to represent all of the inventive concepts of the present invention, so that various equivalents, And the like.

본 발명의 일실시예에 따른 초고강도 콘크리트는 포틀랜드 시멘트, 실리카흄, 제강슬래그, 플라이애쉬, 현무암, 메타카올린, 활성규사, 무수석고, 송진, 메틸셀룰로오스, 벤토나이트, 제올라이트, 폴리카르본산계 감수제, 알킬벤젠술폰산염, 산화칼슘, 리튬카보네이트, 염화칼슘, 및 아질산칼슘을 포함한다.Ultra high strength concrete according to an embodiment of the present invention is Portland cement, silica fume, steel slag, fly ash, basalt, metakaolin, activated silica, anhydrous gypsum, rosin, methyl cellulose, bentonite, zeolite, polycarboxylic acid-based water reducing agent, alkyl Benzenesulfonate, calcium oxide, lithium carbonate, calcium chloride, and calcium nitrite.

포틀랜드 시멘트는 오늘날 흔히 시멘트로 불리는 것으로서, 주성분은 석회, 실리카, 알루미나 및 산화철 등이고, 이것들을 함유한 원료를 적당한 비율로 충분히 혼합하여, 그 일부가 용융, 소성(燒成)된 클링커(clinker)에 적당량의 석고를 가하여 분말화한 것이다('네이버 지식백과' 참조). 본 발명의 일실시예에 따르면, 초고강도 콘크리트에 포틀랜드 시멘트 95 내지 105 중량부가 포함될 수 있으며, 바람직하게는 100 중량부가 포함될 수 있다. Portland cement is commonly referred to as cement today, and its main components are lime, silica, alumina and iron oxide, etc., and the raw materials containing these are sufficiently mixed in a suitable proportion, part of which is melted and calcined clinker. Powdered by applying an appropriate amount of gypsum (see Naver Encyclopedia). According to one embodiment of the present invention, the ultra high strength concrete may include 95 to 105 parts by weight of Portland cement, and preferably 100 parts by weight.

실리카흄은 제철용 탈산제로 사용되는 페로실리콘과 이산화규소 가스를 응축시켜 제조하는 것으로서, 포졸란성 재료이다. 실리카흄은 이산화규소 함량이 높고, 분말상, 과립상 및 슬러리상의 형태가 있으며, 다른 재료와의 혼합을 위해서는 분말상 실리카흄을 사용하는 것이 바람직하다. 실리카흄의 이산화규소 성분은 시멘트 수화로 생성되는 수산화칼슘과 반응하여 C-S-H 수화물을 생성함으로써 압축강도가 향상되고, 실리카흄의 첨가로 인하여 화학 저항성 및 내구성이 향상된다. 실리카흄이 너무 많이 포함되는 경우에는 유동성이 저하되어 작업성이 현저히 저하되고, 너무 적게 포함되는 경우에는 강도 특성을 확보할 수 없다.Silica fume is produced by condensing ferrosilicon and silicon dioxide gas used as a deoxidizer for steel making, and is a pozzolanic material. Silica fume has a high content of silicon dioxide, and is in the form of powder, granules and slurries, and it is preferable to use powdery silica fume for mixing with other materials. The silicon dioxide component of the silica fume reacts with calcium hydroxide produced by cement hydration to produce C-S-H hydrate, thereby improving the compressive strength, and the chemical resistance and durability due to the addition of the silica fume. When too much silica fume is contained, fluidity is lowered and workability is remarkably reduced. When too little silica fume is contained, strength characteristics cannot be secured.

본 발명의 일실시예에 따르면, 초고강도 콘크리트에 실리카흄 28 내지 32 중량부가 포함될 수 있으며, 바람직하게는 30 중량부가 포함될 수 있다. According to one embodiment of the present invention, ultra-high strength concrete may include 28 to 32 parts by weight of silica fume, preferably 30 parts by weight.

제강슬래그는 시멘트 결합제의 유동성을 향상시키고, 수화열을 저감시킬 수 있는데, 일반적으로 초고강도 콘크리트는 다량의 시멘트 결합재가 사용되므로 수화열이 증가하고, 건축물 내부와 외부 사이의 온도 차로 인한 체적 변화에 의해 균열 및 압축강도 하락이 발생한다. 제강슬래그는 미분말 형태로 사용되며, 수화열을 감소시키고, 시멘트의 유동성을 향상시켜 작업성 악화를 방지할 수 있다. 본 발명의 일실시예에 따르면, 제강슬래그 미분말은 비표면적 7000㎠/g의 고분말도를 가지고, 반응성을 높여 압축강도를 향상시킬 수 있다. 또한, 메타카올린 사용에 따른 콘크리트 유동성 저하를 방지할 수 있다. 본 발명의 일실시예에 따르면, 초고강도 콘크리트에 제강슬래그 18 내지 22 중량부가 포함될 수 있으며, 바람직하게는 20 중량부가 포함될 수 있다. Steel slag can improve the fluidity of cement binder and reduce the heat of hydration. In general, super high strength concrete uses a large amount of cement binder, which increases the heat of hydration and cracks due to the volume change due to the temperature difference between the inside and outside of the building. And decrease in compressive strength. Steelmaking slag is used in the form of fine powder, can reduce the heat of hydration, improve the fluidity of the cement to prevent workability deterioration. According to one embodiment of the present invention, the steelmaking slag fine powder has a high powder density of 7000 cm 2 / g specific surface area, and can improve the compressive strength by increasing the reactivity. In addition, it is possible to prevent the decline in concrete fluidity due to the use of metakaolin. According to one embodiment of the present invention, ultra-high strength concrete may include 18 to 22 parts by weight of steelmaking slag, preferably 20 parts by weight may be included.

플라이애쉬는 세립의 석탄재의 규산질 물질로서 포졸란의 일종이며, 내구성을 향상시키고, 수밀성을 증가시킬 수 있다. 본 발명의 일실시예에 따르면, 초고강도 콘크리트에 플라이애쉬 8 내지 12 중량부가 포함될 수 있으며, 바람직하게는 10 중량부가 포함될 수 있다. Fly ash is a siliceous material of fine-grained coal ash, which is a kind of pozzolanic, and can improve durability and increase water tightness. According to one embodiment of the present invention, 8 to 12 parts by weight of fly ash may be included in the ultra high strength concrete, and preferably 10 parts by weight may be included.

현무암은 골재로서 사용되며, 일반적으로 사용되는 골재인 화강암보다 밀도 및 강도가 높아 콘크리트 강도 향상이 가능하며, 콘크리트의 유동성 확보를 위하여 직경 5 ㎜ 이하인 것이 바람직하다. 본 발명의 일실시예에 따르면, 초고강도 콘크리트에 현무암 18 내지 22 중량부가 포함될 수 있으며, 바람직하게는 20 중량부가 포함될 수 있다. Basalt is used as aggregate, and the density and strength is higher than the generally used granite granules can be improved concrete strength, it is preferable that the diameter of 5 mm or less to secure the fluidity of the concrete. According to one embodiment of the present invention, ultra-high strength concrete may include 18 to 22 parts by weight of basalt, preferably 20 parts by weight.

메타카올린은 시멘트와의 포졸란 반응으로 콘크리트 조직이 치밀화되어 강도 및 내구성이 향상될 수 있으며, 가격이 저렴하여 비용 감소가 가능하다. 메타카올린이 너무 적게 포함되는 경우에는 시공성이 저하되고, 너무 많이 포함되는 경우에는 휨강도가 저하될 수 있으나, 적절하게 사용되는 경우에는 강도 및 내구성이 향상될 수 있다. 본 발명의 일실시예에 따르면, 초고강도 콘크리트에 메타카올린 1.8 내지 2.2 중량부가 포함될 수 있으며, 바람직하게는 2 중량부가 포함될 수 있다. Metakaolin can be improved in strength and durability by compacting the concrete structure by the pozzolanic reaction with cement, it is possible to reduce the cost because the price is low. If too little metakaolin is included, the workability is lowered, if too much is included, the bending strength may be lowered, but if used properly, strength and durability may be improved. According to one embodiment of the present invention, ultra-high strength concrete may include 1.8 to 2.2 parts by weight of metakaolin, and preferably 2 parts by weight.

활성규사는 고온고압의 양생 시 이산화규소를 제공해주는 역할을 하며, 수화물의 생성을 돕는다. 본 발명의 일실시예에 따른 활성규사는 규사 미분말과 탈황석고로 이루어지고, 중량 기준으로 4:1의 비율을 가진다. 본 발명의 일실시예에 따르면, 초고강도 콘크리트에 활성규사 2 내지 4 중량부가 포함될 수 있으며, 바람직하게는 3 중량부가 포함될 수 있다. Activated silica serves to provide silicon dioxide during curing at high temperature and high pressure, and helps to produce hydrates. Activated silica sand according to an embodiment of the present invention is composed of fine silica sand and desulfurized gypsum, and has a ratio of 4: 1 by weight. According to one embodiment of the present invention, ultra-high strength concrete may include 2 to 4 parts by weight of activated silica, and preferably 3 parts by weight.

무수석고는 유효 팽창에 따른 치밀한 조직을 형성하고, 제강슬래그 미분말의 자극제로서 작용하는데, 본 발명의 일실시예에 따르면, 초고강도 콘크리트에 무수석고 2 내지 6 중량부가 포함될 수 있으며, 바람직하게는 4 중량부가 포함될 수 있다. Anhydrous gypsum forms a dense structure according to effective expansion and acts as a stimulant of fine steel slag fine powder. According to one embodiment of the present invention, ultra-high strength concrete may include 2 to 6 parts by weight of anhydrous gypsum, preferably 4 Parts by weight may be included.

송진은 천연수지로서 수지분(로진), 테레빈유, 레보피미르산, 네오아비에틴산 등으로 구성되어 있으며, 천연 성분으로서 단단하게 굳는 특성으로 인하여 콘크리트의 강도를 매우 향상시킬 수 있다. 본 발명의 일실시예에 따르면, 초고강도 콘크리트에 송진 0.8 내지 1.2 중량부가 포함될 수 있으며, 바람직하게는 1 중량부가 포함될 수 있다. As a natural resin, rosin is composed of resin powder (rosin), terebin oil, levopyrimic acid, neoabietinic acid, etc., and can hardly improve the strength of concrete due to its hardening property as a natural component. According to one embodiment of the present invention, the ultra-high strength concrete may include 0.8 to 1.2 parts by weight of rosin, and preferably 1 part by weight.

메틸셀룰로오스는 시멘트 등의 조성물 간의 공극을 조밀하게 하여 점착력을 증대시키고 수밀성을 향상시켜 블럭의 강도를 높이며, 방수 특성을 가지도록 하는데, 본 발명의 일실시예에 따르면, 초고강도 콘크리트에 메틸셀룰로오스 1.8 내지 2.2 중량부가 포함될 수 있으며, 바람직하게는 2 중량부가 포함될 수 있다. Methyl cellulose increases the strength of the block by increasing the adhesive strength by increasing the adhesion between the composition, such as cement, and water-tightness, and has a waterproof property, according to an embodiment of the present invention, methyl cellulose 1.8 in ultra-high strength concrete To 2.2 parts by weight may be included, and preferably 2 parts by weight.

벤토나이트는 재료 분리를 방지하고, 윤활 특성 및 응집 특성을 향상시켜 작업성을 개선하기 위한 것으로, 너무 적게 포함되면 결합력이 저하되며, 너무 많이 포함되면 응집 현상이 발생한다. 본 발명의 일실시예에 따르면, 초고강도 콘크리트에 벤토나이트 0.8 내지 1.2 중량부가 포함될 수 있으며, 바람직하게는 1 중량부가 포함될 수 있다. Bentonite is intended to prevent material separation and improve workability by improving lubrication and cohesion characteristics. If it is included too little, the bonding force is lowered, and when included too much, agglomeration occurs. According to one embodiment of the present invention, the ultra high strength concrete may include 0.8 to 1.2 parts by weight of bentonite, and preferably 1 part by weight.

제올라이트는 실리콘과 알루미늄으로 이루어지는 다공성 결정으로서 수산화칼슘과 포졸란 반응하여 강도 향상에 기여하며, 본 발명의 일실시예에 따르면, 초고강도 콘크리트에 제올라이트 0.8 내지 1.2 중량부가 포함될 수 있으며, 바람직하게는 1 중량부가 포함될 수 있다. Zeolite is a porous crystal made of silicon and aluminum, and contributes to the strength improvement by reacting calcium hydroxide with pozzolanic. According to one embodiment of the present invention, zeolite may contain 0.8 to 1.2 parts by weight of zeolite, preferably 1 part by weight. May be included.

폴리카르본산계 감수제는 조기 강도 발현 및 점성 증대를 위해 사용되고, 분산력, 감수력이 우수하고, 나프탈렌계보다 조기 강도 특성이 우수하다. 본 발명의 일실시예에 따르면, 초고강도 콘크리트에 폴리카르본산계 감수제 1.8 내지 2.2 중량부가 포함될 수 있으며, 바람직하게는 2 중량부가 포함될 수 있다. Polycarboxylic acid-based sensitizers are used for early strength development and viscosity increase, excellent dispersibility, water resistance, and excellent early strength characteristics than naphthalene-based. According to one embodiment of the present invention, ultra-high strength concrete may include 1.8 to 2.2 parts by weight of a polycarboxylic acid-based water reducing agent, preferably 2 parts by weight.

알킬벤젠술폰산염은 높은 부착강도, 무수축성 및 초고강도 특성의 발현을 위하여 사용되며, 너무 적게 사용되는 경우에는 유동성 확보가 어렵고, 너무 많이 사용되는 경우에는 시공 성능이 저하된다. 본 발명의 일실시예에 따르면, 초고강도 콘크리트에 알킬벤젠술폰산염 0.4 중량부가 포함될 수 있다. Alkylbenzenesulfonate is used for the expression of high adhesion strength, non-shrinkage and ultra-high strength properties, when too little is used to secure the fluidity, when too much, the construction performance is reduced. According to one embodiment of the present invention, 0.4 parts by weight of alkylbenzenesulfonate salt may be included in ultra high strength concrete.

산화칼슘 및 리튬카보네이트는 초기 강도를 증진시키기 위하여 사용되며, 본 발명의 일실시예에 따르면, 산화칼슘 및 리튬카보네이트는 초고강도 콘크리트에 각각 0.6 중량부가 포함될 수 있다. Calcium oxide and lithium carbonate are used to enhance the initial strength, according to one embodiment of the present invention, calcium oxide and lithium carbonate may be included 0.6 parts by weight of ultra-high strength concrete, respectively.

염화칼슘 및 아질산칼슘은 중성화 억제를 위하여 사용되며, 본 발명의 일실시예에 따르면, 염화칼슘 및 아질산칼슘은 초고강도 콘크리트에 각각 0.2 중량부가 포함될 수 있다.
Calcium chloride and calcium nitrite are used for neutralization suppression, and according to one embodiment of the present invention, calcium chloride and calcium nitrite may be included in the ultra-high strength concrete each 0.2 parts by weight.

한편, 본 발명의 일실시예에 따른 초고강도 콘크리트에 따르면, 강도를 극대화시키기 위하며, 강섬유(Steel fiber)가 포함된다. 강섬유는 콘크리트 내부에서 콘크리트와 결합하여 콘크리트를 잡아 지지하는 역할을 한다. 본 발명의 일실시예에 따르면, 강섬유의 콘크리트 지지 특성을 극대화하기 위하여 강섬유는 링(Ring) 형상을 가지도록 형성된다. 즉, 강섬유가 직선의 와이어 형상을 가지는 경우에는 강섬유의 측부 방향의 힘에 대하여 콘크리트를 지지할 수 없지만, 본 발명에서는 강섬유가 링 형상을 가지므로 강섬유의 방사상 방향으로 작용하는 힘에 대하여 콘크리트를 잡아 걸어 확실하게 지지할 수 있다. 본 발명의 일실시예에 따르면, 초고강도 콘크리트에 강섬유 0.8 내지 1.2 중량부가 포함될 수 있으며, 바람직하게는 1 중량부가 포함될 수 있다.
On the other hand, according to the ultra-high strength concrete according to an embodiment of the present invention, to maximize the strength, steel fiber (Steel fiber) is included. The steel fiber combines with the concrete in the concrete and serves to hold and support the concrete. According to one embodiment of the invention, the steel fiber is formed to have a ring (Ring) shape in order to maximize the concrete support characteristics of the steel fiber. That is, when the steel fiber has a straight wire shape, the concrete cannot be supported against the force in the lateral direction of the steel fiber, but in the present invention, since the steel fiber has a ring shape, the concrete is held against the force acting in the radial direction of the steel fiber. I can walk and support it well. According to one embodiment of the present invention, ultra high strength concrete may include 0.8 to 1.2 parts by weight of steel fibers, preferably 1 part by weight.

실시예1Example 1

실시예1에 따른 초고강도 콘크리트의 조성물은, 포틀랜드 시멘트 100 중량부, 실리카흄 30 중량부, 제강슬래그 20 중량부, 플라이애쉬 10 중량부, 현무암 20 중량부, 메타카올린 2 중량부, 활성규사 3 중량부, 무수석고 4 중량부, 송진 1 중량부, 메틸셀룰로오스 2 중량부, 벤토나이트 1 중량부, 제올라이트 1 중량부, 폴리카르본산계 감수제 2 중량부, 알킬벤젠술폰산염 0.4 중량부, 산화칼슘 0.6 중량부, 리튬카보네이트 0.6 중량부, 염화칼슘 0.2 중량부, 아질산칼슘 0.2 중량부, 및 강섬유 1 중량부를 포함하고, 강섬유의 링(Ring)의 직경은 1㎝이고 굵기는 0.05㎜이다.
Ultra high strength concrete composition according to Example 1, 100 parts by weight of Portland cement, 30 parts by weight of silica fume, 20 parts by weight of steel slag, 10 parts by weight of fly ash, 20 parts by weight of basalt, 2 parts by weight of metakaolin, 3 parts by weight of activated silica 4 parts by weight of anhydrous gypsum, 1 part by weight of rosin, 2 parts by weight of methyl cellulose, 1 part by weight of bentonite, 1 part by weight of zeolite, 2 parts by weight of polycarboxylic acid-based water reducing agent, 0.4 part by weight of alkylbenzenesulfonate, 0.6 parts by weight of calcium oxide Part, 0.6 parts by weight of lithium carbonate, 0.2 parts by weight of calcium chloride, 0.2 parts by weight of calcium nitrite, and 1 part by weight of steel fiber, wherein the diameter of the ring of the steel fiber is 1 cm and the thickness is 0.05 mm.

성분ingredient 중량부Weight portion 포틀랜드 시멘트Portland cement 100100 실리카흄Silica fume 3030 제강슬래그Steel slag 2020 플라이애쉬Fly ash 1010 현무암basalt 2020 메타카올린Meta kaolin 22 활성규사Activated silica 33 무수석고Anhydrous gypsum 44 송진Rosin 1One 메틸셀룰로오스Methyl cellulose 22 벤토나이트Bentonite 1One 제올라이트Zeolite 1One 폴리카르본산계 감수제Polycarboxylic acid-based water reducing agent 22 알킬벤젠술폰산염Alkylbenzenesulfonate 0.40.4 산화칼슘Calcium oxide 0.60.6 리튬카보네이트Lithium carbonate 0.60.6 염화칼슘Calcium chloride 0.20.2 아질산칼슘Calcium nitrite 0.20.2 강섬유Steel fiber 1One

상기 표 1의 조성물 100 중량부 대비 15 중량부의 배합수를 첨가하여 믹서에서 10분간 혼합하고, 형틀에 타설하여 일반적인 콘크리트 강도의 기준인 재령 28일 후 압축강도를 측정하였다.
15 parts by weight of the blended water was added to 100 parts by weight of the composition of Table 1, mixed for 10 minutes in a mixer, and placed on a mold to measure the compressive strength after 28 days of age, which is a standard of general concrete strength.

압축강도(MPa)Compressive strength (MPa) 28일28th 실시예1Example 1 187187

이상과 같이 본 발명의 초고강도 콘크리트에 따르면, 압축강도가 187MPa까지 향상될 수 있는 것으로 나타났다.
As described above, according to the ultrahigh strength concrete of the present invention, the compressive strength was found to be improved to 187MPa.

이상과 같이, 본 발명은 비록 한정된 실시예에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능하다.As described above, although the present invention has been described by means of a limited embodiment, the present invention is not limited thereto and will be described below by the person skilled in the art and the technical spirit of the present invention. Various modifications and variations are possible within the scope of the claims.

Claims (3)

시멘트 95 내지 100 중량부;
실리카흄 28 내지 32 중량부;
제강슬래그 18 내지 22 중량부;
플라이애쉬 8 내지 12 중량부;
현무암 18 내지 22 중량부;
무수석고 3 내지 5 중량부;
강섬유 0.8 내지 1.2 중량부;
메타카올린 1.8 중량부 내지 2.2 중량부;
활성규사 2 중량부 내지 4 중량부;
송진 0.8 중량부 내지 1.2 중량부;
메틸셀룰로오스 1.8 중량부 내지 2.2 중량부;
벤토나이트 0.8 중량부 내지 1.2 중량부;
제올라이트 0.8 중량부 내지 1.2 중량부;
폴리카르본산계 감수제 1.8 중량부 내지 2.2 중량부;
알킬벤젠술폰산염 0.4 중량부;
산화칼슘 0.6 중량부;
리튬카보네이트 0.6 중량부;
염화칼슘 0.2 중량부; 및
아질산칼슘 0.2 중량부
를 포함하고,
상기 시멘트는 포틀랜드 시멘트인 것을 특징으로 하는 초고강도 콘크리트.
95 to 100 parts by weight of cement;
28 to 32 parts by weight of silica fume;
18 to 22 parts by weight of steelmaking slag;
8 to 12 parts by weight of fly ash;
18 to 22 parts by weight of basalt;
Anhydrous gypsum 3 to 5 parts by weight;
0.8 to 1.2 parts by weight of steel fiber;
Metakaolin 1.8 parts by weight to 2.2 parts by weight;
2 to 4 parts by weight of activated silica;
0.8 parts by weight to 1.2 parts by weight rosin;
1.8 to 2.2 parts by weight of methyl cellulose;
0.8 to 1.2 parts by weight of bentonite;
0.8 to 1.2 parts by weight of zeolite;
1.8 parts by weight to 2.2 parts by weight of a polycarboxylic acid-based water reducing agent;
0.4 parts by weight of alkylbenzenesulfonate;
0.6 parts by weight of calcium oxide;
0.6 parts by weight of lithium carbonate;
0.2 part by weight of calcium chloride; And
0.2 parts by weight of calcium nitrite
Lt; / RTI >
The cement is super high strength concrete, characterized in that the portland cement.
삭제delete 제1항에 있어서,
상기 강섬유는 링(Ring) 형상을 가지는 것을 특징으로 하는 초고강도 콘크리트.
The method of claim 1,
The steel fiber is super high strength concrete, characterized in that it has a ring (Ring) shape.
KR20130154433A 2013-12-12 2013-12-12 Ultra high strength concrete KR101365659B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130154433A KR101365659B1 (en) 2013-12-12 2013-12-12 Ultra high strength concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130154433A KR101365659B1 (en) 2013-12-12 2013-12-12 Ultra high strength concrete

Publications (1)

Publication Number Publication Date
KR101365659B1 true KR101365659B1 (en) 2014-02-20

Family

ID=50271600

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130154433A KR101365659B1 (en) 2013-12-12 2013-12-12 Ultra high strength concrete

Country Status (1)

Country Link
KR (1) KR101365659B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104058646A (en) * 2014-05-29 2014-09-24 安徽华塑股份有限公司 Wood fiber concrete and preparation method thereof
JP2017222534A (en) * 2016-06-14 2017-12-21 日新製鋼株式会社 Cement admixture, cement composition, and cement cured body
CN107500635A (en) * 2017-08-11 2017-12-22 汤始建华建材(苏州)有限公司 A kind of steel slag concrete
CN108675724A (en) * 2018-06-11 2018-10-19 河北安和新材料科技有限公司 A kind of concrete and preparation method thereof containing slag fiber
CN109437718A (en) * 2018-11-20 2019-03-08 上海市建筑科学研究院 A kind of C40 grades of large dosage solid waste concrete and preparation method thereof
CN111925173A (en) * 2020-08-24 2020-11-13 安徽精公检测检验中心有限公司 Low water-gel ratio ultra-high performance concrete and preparation method thereof
CN113563034A (en) * 2021-09-22 2021-10-29 湖南大学 Normal-temperature-cured fireproof ultrahigh-performance concrete and preparation method thereof
WO2023279730A1 (en) * 2021-07-06 2023-01-12 江苏科技大学 Plastic concrete for vertical anti-fouling barrier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087682A1 (en) * 2004-03-17 2005-09-22 Denki Kagaku Kogyo Kabushiki Kaisha Cement admixture, cement composition, mortar and concrete
KR101061950B1 (en) * 2008-11-07 2011-09-05 삼성물산 주식회사 Super High Strength High Fire Resistance Concrete for Reinforced Concrete Structures
KR101130954B1 (en) * 2010-01-06 2012-03-30 주식회사 포스코건설 Ultra High Strength Concrete with Polyamide Fiber
KR20120034287A (en) * 2010-10-01 2012-04-12 삼성물산 주식회사 Very low plastic viscosity composition for concrete, mortar and paste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087682A1 (en) * 2004-03-17 2005-09-22 Denki Kagaku Kogyo Kabushiki Kaisha Cement admixture, cement composition, mortar and concrete
KR101061950B1 (en) * 2008-11-07 2011-09-05 삼성물산 주식회사 Super High Strength High Fire Resistance Concrete for Reinforced Concrete Structures
KR101130954B1 (en) * 2010-01-06 2012-03-30 주식회사 포스코건설 Ultra High Strength Concrete with Polyamide Fiber
KR20120034287A (en) * 2010-10-01 2012-04-12 삼성물산 주식회사 Very low plastic viscosity composition for concrete, mortar and paste

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104058646A (en) * 2014-05-29 2014-09-24 安徽华塑股份有限公司 Wood fiber concrete and preparation method thereof
JP2017222534A (en) * 2016-06-14 2017-12-21 日新製鋼株式会社 Cement admixture, cement composition, and cement cured body
CN107500635A (en) * 2017-08-11 2017-12-22 汤始建华建材(苏州)有限公司 A kind of steel slag concrete
CN108675724A (en) * 2018-06-11 2018-10-19 河北安和新材料科技有限公司 A kind of concrete and preparation method thereof containing slag fiber
CN109437718A (en) * 2018-11-20 2019-03-08 上海市建筑科学研究院 A kind of C40 grades of large dosage solid waste concrete and preparation method thereof
CN109437718B (en) * 2018-11-20 2021-04-27 上海市建筑科学研究院 C40-grade high-mixing-amount solid waste concrete and preparation method thereof
CN111925173A (en) * 2020-08-24 2020-11-13 安徽精公检测检验中心有限公司 Low water-gel ratio ultra-high performance concrete and preparation method thereof
WO2023279730A1 (en) * 2021-07-06 2023-01-12 江苏科技大学 Plastic concrete for vertical anti-fouling barrier
CN113563034A (en) * 2021-09-22 2021-10-29 湖南大学 Normal-temperature-cured fireproof ultrahigh-performance concrete and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101365659B1 (en) Ultra high strength concrete
Deb et al. Drying shrinkage of slag blended fly ash geopolymer concrete cured at room temperature
KR100855686B1 (en) Alkali-activated binder with no cement
ES2925976T3 (en) Calcium aluminosilicate derivative based binder for construction materials
KR101709240B1 (en) Mortar composition for recovering cross section of eco-friendly cement with sulphate resistance
Rashad Influence of different additives on the properties of sodium sulfate activated slag
Hadjsadok et al. Durability of mortar and concretes containing slag with low hydraulic activity
Živica et al. Geopolymer cements and their properties: a review
KR100908498B1 (en) Alkall-activated brick with no cement
KR100917117B1 (en) Filler for Iron reinforcing rod joint and construction method for filling-up of iron reinforcing rod joint using the same
JPS5826055A (en) Hydraulic cement blend
Lorca et al. Microconcrete with partial replacement of Portland cement by fly ash and hydrated lime addition
CN101258115A (en) Cement composition for grouting and grout material comprising the same
RU2013116738A (en) APPLICATION OF COMPOUNDS CONTAINING ALUMINUM OXIDE AND SILICON OXIDE FOR THE PRODUCTION OF A HYDROPHOBIC CONSTRUCTION PRODUCT
KR101365664B1 (en) Ultra high strength concrete
JP2019085304A (en) Non-shrinkage grout composition, and non-shrinkage grout material
RU2400441C2 (en) Binding composition and concrete made of this composition
KR101014866B1 (en) Alkall-activated masonry products with no cement
KR101448837B1 (en) Cement zero binder for concrete having high fluidity and nature-friendly concrete having high fluidity comprising the same
KR101375279B1 (en) Ultra high strength concrete
KR101375274B1 (en) Ultra high strength concrete
KR101375278B1 (en) Ultra high strength concrete
KR101664273B1 (en) cement mortar compositon and cement mortar comprising the same, method thereof
KR102103471B1 (en) Noncement Concrete Based on Industrial By-products
RU2553667C1 (en) Preparation method of portland cement binding agent with addition of high-lime ash of thermal power plants

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee