WO2005087682A1 - Cement admixture, cement composition, mortar and concrete - Google Patents

Cement admixture, cement composition, mortar and concrete Download PDF

Info

Publication number
WO2005087682A1
WO2005087682A1 PCT/JP2005/004532 JP2005004532W WO2005087682A1 WO 2005087682 A1 WO2005087682 A1 WO 2005087682A1 JP 2005004532 W JP2005004532 W JP 2005004532W WO 2005087682 A1 WO2005087682 A1 WO 2005087682A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
cement
mortar
strength
fly ash
Prior art date
Application number
PCT/JP2005/004532
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiharu Watanabe
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to JP2006519418A priority Critical patent/JP4813355B2/en
Publication of WO2005087682A1 publication Critical patent/WO2005087682A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0042Powdery mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • C04B7/04Portland cement using raw materials containing gypsum, i.e. processes of the Mueller-Kuehne type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/26Cements from oil shales, residues or waste other than slag from raw materials containing flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a cement admixture, a cement composition, a mortar and a concrete using the same. More specifically, it is an admixture containing silica fume and fly ash classified to 20 m or less, and a cement composition obtained by adding this to cement. Further, the present invention relates to a mortar and a concrete having an increased bending strength using the cement composition.
  • Mortar or concrete has a problem that the bending strength is basically lower than the compressive strength, and the bending strength is not so high even if the compressive strength is increased. Therefore, road surfaces, beams, girders and many concrete secondary products designed with bending strength tend to be rich and economical in concrete mix. Prestress is introduced by a steel bar. In addition, for fume pipes and the like, an expanding material is mixed with concrete to introduce a chemical press or a chemical prestress to increase the external pressure strength.
  • silica fume has a high pozzolanic activity and is used as a strength enhancer. Furthermore, by combining with a relatively large amount of a high-performance water reducing agent, the mortar flow, the concrete slump or the slump flow can be increased, and the mortar or the concrete having a low water binder ratio can be easily produced, so that a high fluidity can be obtained. It is often used as an admixture for strength mortar or concrete.
  • Fly ash is spherical coal ash containing hollow particles with a diameter of 100 m or less, produced as a by-product from a pulverized coal-fired thermal power plant, and although its pozzolanic activity is low, it reacts in the long term. It is often used as fly ash cement because it enhances water tightness. As shown in Patent Document 1, by classifying this into 20 m or less or 10 m or less, large hollow particles are removed, resulting in good spherical solid particles. When combined with a high-performance water reducing agent or high-performance AE water reducing agent due to its ball bearing action, it increases the mortar flow, concrete slump or slump flow, and exhibits strong stickiness. . Further, it is also known that even when the same flow or slump is used, the strength of the reduced water is increased as compared with the mortar or concrete containing no classified fly ash.
  • gypsum is widely used as a high-strength admixture regardless of the presence or absence of steam curing, and it is also known that higher strength and durability can be obtained by combining with gypsum. Tepuru.
  • Patent Document 3 As a classical method for increasing bending strength and toughness, there is a method of adding a metal fiber. It is also known that a method of improving toughness by using metal fibers can be achieved by adding silica fume and fine needle-like or plate-like powder to cement to limit the maximum aggregate diameter to a small value. RU
  • Patent Document 1 JP-A-63-8248
  • Patent Document 2 JP-A-3-40947
  • Patent Document 3 JP-A-11-246255
  • Patent Document 2 high strength is easily developed by using gypsum alone or in combination with silica fume, and bending strength is also increased by increasing the compressive strength. There was a problem that the ratio was not in the same area as ordinary concrete. As shown in Patent Document 3, in the method of reinforcing with metal fibers, while the fine aggregate for mortar or concrete used in ready-mixed concrete plants and concrete product factories is 5 mm or less, the maximum aggregate diameter is reduced. There is a problem that it cannot be widely spread because it is an essential requirement that the thickness be 2 mm or less or 1 mm or less.
  • the present invention has been made to solve the above-mentioned problems in the prior art, It is an object of the present invention to provide a mortar or concrete in which the absolute values of strength and bending strength are increased and the ratio of bending strength to compressive strength is increased.
  • Another object of the present invention is to provide a cement admixture for realizing the mortar or concrete, and a cement composition using the cement admixture.
  • Still another object of the present invention is to provide a hardened cement body obtained from the above mortar or concrete.
  • the ratio of the bending strength to the bending strength and the compressive strength can be independently determined by using a combination of fly ash and gypsum, which are conventionally known as silica fumes with a diameter of 20 m or less, in combination. It has been found that it can be synergistically increased as compared with the case of using. Furthermore, since the bending strength of the base mortar or concrete itself can be increased, the bending strength can be increased by using metal fibers in combination even when using fine aggregate for mortar or concrete that is commonly used. The inventors have found a fact that can be dramatically increased, and have completed the present invention.
  • the present invention relates to the following cement admixture, cement composition, mortar, concrete, and hardened cement.
  • a cement admixture comprising silica fume and fly ash classified to 20 ⁇ m or less, wherein the mixing ratio of silica fume: classified fly ash is 95: 5—10: 90 by mass. Admixture.
  • a cement composition comprising 100 parts of the cement and 1 to 35 parts of the cement admixture described in (1) above.
  • the flow value of kneaded mortar or concrete is improved, and good workability is obtained.
  • the obtained mortar and concrete have high absolute values of compressive strength and flexural strength, and also have a high ratio of flexural strength to compressive strength.
  • metal fibers are mixed and reinforced, the bending strength can be dramatically increased, and an economical and advantageous design for manufacturing civil engineering structures and concrete secondary products becomes possible.
  • Silica fume used in the present invention is a fine particle having a spherical diameter of not more than Lm, which is a by-product produced when silicon alloys such as metallic silicon and Fe-mouth silicon and zirconia are produced in an electric furnace. Is amorphous highly reactive SiO. Compressive strength is silica fume
  • the force gradually increases in accordance with the amount of added silica.
  • the ratio of the bending strength to the compressive strength is lower than in the case where silica fume is not mixed.
  • silica fume significantly enhances fluidity when used in combination with a relatively large amount of a high-performance water reducing agent that can be used not only as a strength enhancer and about 10% of silica fume with respect to cement.
  • the flow characteristics vary depending on the type of high-performance water reducing agent. Is small, and shows relatively high viscosity and fluidity.
  • a so-called high-performance AE water reducing agent based on polycarboxylate that entrains air On the other hand, the fluidity becomes large in the state of sticky plastic rather than simply viscous, and the feeling of switching back with a scoop becomes lighter in the former and heavier in the latter. Therefore, a combination system of high performance AE water reducer and silica fume may be used simply because it makes pumping easier.
  • Fly ash is a spherical granular residue collected from a boiler's flue together with combustion gas with coal ash produced as a by-product from a pulverized coal-fired thermal power plant as described above, and collected by a dust collector. Usually, it is directly blended with cement and used as fly ash cement. In the present invention, it is an essential condition that a material classified to 20 m or less is used, and fly ash cannot achieve the effects of the present invention without classification. There are two types of commercially available classified fly ash: those classified to 20 ⁇ m or less and those classified to 10 ⁇ m or less.
  • the cement admixture of the present invention has a mass ratio of silica fume: fly ash classified to 20 ⁇ m or less to 95: 5-10: 90, preferably 90: 10-10-15: 85, more preferably 80:50. 20-70: 30 ratio. If the classified fly ash is less than 5%, the effect of increasing the bending strength is small. Even if the classified fly ash exceeds 90%, the effect of increasing the bending strength is small. The compressive strength gradually decreases as the proportion of classified fly ash is increased. The effect of increasing the bending strength has a peak at around 60:40.
  • the admixture of the present invention is preferably added in an amount of 1 to 35 parts, more preferably 2 to 30 parts, and most preferably 3 to 25 parts, based on 100 parts of cement. Even if it is added in excess of 35 parts, the increase in bending strength reaches a plateau and is not economically favorable.
  • the gypsum used in the present invention includes various forms of gypsum such as dihydrate gypsum, hemihydrate gypsum, soluble anhydrous gypsum (type III), and insoluble anhydrous gypsum (type II).
  • Water gypsum is preferred.
  • the compressive strength decreases as the proportion of fly ash classified to 20 m or less increases. Further increase the compressive strength and song This has the effect of increasing both absolute values of the bending strength. Gypsum is converted to anhydrous, cement
  • 0.5 to 12 parts, more preferably 0.8 to 10 parts, most preferably 118 parts are added to 100 parts. Even if it exceeds 12 parts, no further strength effect can be obtained.
  • a required amount of a high-performance water reducing agent or a high-performance AE water reducing agent is used in combination.
  • the high-performance water reducing agent is mainly composed of any one of polyalkylarylsulfonate, aromatic aminosulfonate, and melamine formalin resin / sulfonate. Two or more are used.
  • Polyalkylaryl sulfonate-based high-performance water reducing agents include methyl naphthalene sulfonic acid formalin condensate, naphthalene sulfonic acid formalin condensate, and anthracene sulfonic acid formalin condensate.
  • the commercial products are Denki Kagaku Kogyo Co., Ltd. Company name "FT-500” and its series, Kao Corporation product name "Mighty-100" (powder) and "Mighty-150" and its series, Daiichi Kogyo Pharmaceutical Co., Ltd. Representative examples include Nippon Paper Industries Co., Ltd.
  • the high-performance AE water reducing agent is usually called a polycarboxylate-based water reducing agent, and is a copolymer containing an unsaturated carboxylic acid monomer as one component or a salt thereof.
  • a polycarboxylate-based water reducing agent is usually called a copolymer containing an unsaturated carboxylic acid monomer as one component or a salt thereof.
  • copolymers of polyalkylene glycol monoacrylate, polyalkylene glycol monomethacrylate, maleic anhydride and styrene, copolymers of acrylic acid and methacrylate, and copolymerizable with these monomers examples include copolymers derived from monomers.
  • the company name "Darlex Super 100, 200, 300, 1000" series and others are commercial
  • the cement used in the present invention is various portland cements, various mixed cements or eco cements. Further, cement in which these arbitrary amounts are mixed may be used.
  • metal fibers can be used in combination.
  • the metal fiber is not special, and may be used for mortar or concrete that is usually sold.
  • the metal fibers maximum amount and in the case where the concrete mortar from the viewpoint of increasing the effect and the workability of the force bending strength to 1. added 0 to 6.0 volume% in outer percentage relative to mortar or concrete lm 3
  • the preferred ranges are different.
  • the maximum addition amount and the preferable range also differ depending on the concrete molding method such as vibration molding and centrifugal force molding.
  • the bending tensile strength of the mortar and the concrete increases from 1.0% by volume of the metal fiber, and the workability of the mortar is 5.0% by volume or less.
  • the content is preferably 3.0% by volume or less.
  • the method of adding the admixture of the present invention is not particularly limited.
  • a mixture of silica fume and fly ash classified to 20 m or less may be added, or gypsum may be further added.
  • each component may be separately prepared and added to a mixer together with another mortar or concrete material.
  • the kneading method is not particularly limited, and the kneading method usually used may be used.
  • There is no particular limitation on the method of adding the metal fiber but a method in which mortar or concrete is kneaded and mixed, and the mixing is continued while stirring the mixer is preferred because it is difficult to form fiber balls.
  • the method for curing the mortar and concrete of the present invention is not limited, and standard curing, steam curing and autoclave curing are also possible.
  • Cement Ordinary Portland cement manufactured by Denki Kagaku Kogyo Co., Ltd. Fine density: 3.16 g / cm 3 Fine aggregate: Himekawa river sand from Niigata (5 mm below), density: 2.62 g / cm 3
  • Coarse aggregate crushed stone from Himekawa, Niigata (13-5 mm), density 2.64 g / cm 3
  • Gypsum Insoluble anhydrous gypsum (naturally occurring, density 2.82) and industrial dihydrate gypsum powder, density 2.30 Metal fiber: manufactured by Tokyo Seimitsu Co., Ltd., "Daipack" iron, width 0.9 mm, thickness 0.34 mm, length 30mm, Density 8.00gZcm 3
  • Water reducing agent High performance AE water reducing agent WRA (l), Grace Chemicals Co., Ltd. "Super 1000N”, High performance water reducing agent WRA (2), Daiichi Kogyo Seiyaku Co., Ltd. "Cell Flow 110P” ⁇ Test items And how to do it>
  • 17.5kg of concrete is packed into a cylindrical form of 20cm in outer diameter x 30cm in length, initial speed 1.5G x 2 minutes, low speed 3G x 5 minutes, medium speed I: 8G x 1 minute, medium speed II: 15G x 2 minutes
  • the mold was subjected to centrifugal force molding. After curing, the external pressure load at which cracks occurred and the tube thickness were measured to calculate the bending tensile strength.
  • the inner 1Z3 was made of mortar containing metal fiber, 12.5 kg of concrete was packed and subjected to centrifugal molding under the above conditions, and then 5 kg of mortar was packed again and similarly centrifugally molded.
  • the kneading of the mortar (or concrete) is performed by kneading the cement, the components of the admixture, and the fine aggregate (and coarse aggregate) for 30 seconds, and then dissolving a water reducing agent in water. And kneaded with an omni mixer for 3 minutes.
  • knead the mortar or concrete for 3 minutes add the metal fibers little by little without stopping stirring, and knead for another 3 minutes.
  • Example 1 gypsum of the type and addition amount (based on 100 parts of cement) shown in Table 2 was further added. The same test as in Example 1 was performed. Table 2 shows the results.
  • gypsum promotes both compressive strength and bending strength to increase strength.
  • the effect is apparent when 0.5 part or more is added to 100 parts of cement, becomes more remarkable at 0.8 part or more or 1.0 part or more, and exceeds 12 parts.
  • no further strength effect can be obtained.
  • adding 10 parts or less, preferably 118 parts of gypsum to 100 parts of cement increases the absolute values of both compressive strength and bending strength.
  • the metal fiber dramatically increases the bending strength of the mortar, but the effect is completely lost at 1.5% by volume.
  • the bending strength increased. When it exceeded 5.0% by volume, it reached a plateau. At 6.5% by volume, workability was poor and moldability was poor. It has been found that the range is most preferably 2.5-5% by volume for the mortar of vibration molding.
  • metal fibers increase the flexural strength of concrete, but have little effect at 1.0% by volume.
  • the bending strength gradually increases, but reaches a plateau.
  • workability is poor and molding is difficult.
  • the most preferable range including the workability was 2.0-4.0% by volume in the case of the concrete of vibration molding.
  • the specimens for centrifugal force molding were prepared by molding the whole with one layer of mortar or concrete with the added amount of metal fiber, and molding the outer 3cm with mortar or concrete without metal fiber, Two-layer molded mortar or concrete with 2 cm inside was prepared using mortar or concrete with added fiber. Table 7 shows the results.
  • WRA (2) A high-performance water reducing agent, added in powder form and mixed.
  • the flow value of the kneaded mortar or concrete is improved, and good workability is obtained.
  • the obtained mortar and concrete have high absolute values of compressive strength and flexural strength, and also have a high ratio of flexural strength to compressive strength.
  • metal fibers are mixed and reinforced, the bending strength can be dramatically increased, and an economical and advantageous design for manufacturing civil engineering structures and concrete secondary products becomes possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

A cement admixture, which comprises silica fume and a fly ash classified to 20 μm or less, wherein the ratio of silica fume : the classified fly ash is 95:5 to 10:90 in mass ratio; the cement admixture which further comprises gypsum; and a cement composition, a mortar, concrete and a cement hardened article using the above cement admixture. The above cement admixture improves the flow value of a mortar or concrete after mixing and provides good workability, and further provides a resulting mortar or concrete which exhibits high absolute values of compressive strength and flexural strength and also exhibits a high ratio of the flexural strength to the compressive strength. Still further, the reinforcement by compounding a metal fiber can markedly enhance the flexural strength, which results in allowing an economical and advantageous design in producing a civil engineering construction, an architectural structure and a concrete secondary product.

Description

明 細 書  Specification
セメント混和材、セメント組成物、モルタル及びコンクリート  Cement admixture, cement composition, mortar and concrete
技術分野  Technical field
[0001] 本発明はセメント混和材、セメント組成物、これを用いたモルタル及びコンクリートに 関する。より詳しくは、シリカフュームと 20 m以下に分級したフライアッシュを配合し た混和材であり、これをセメントに添カ卩したセメント組成物である。更に、このセメント 組成物を用いて曲げ強度を高めたモルタル及びコンクリートに関する。  The present invention relates to a cement admixture, a cement composition, a mortar and a concrete using the same. More specifically, it is an admixture containing silica fume and fly ash classified to 20 m or less, and a cement composition obtained by adding this to cement. Further, the present invention relates to a mortar and a concrete having an increased bending strength using the cement composition.
背景技術  Background art
[0002] モルタル又はコンクリートは基本的に圧縮強度と比較して曲げ強度が小さいという 課題があり、圧縮強度を高くしても曲げ強度はそれほど高くならない。したがって、曲 げ強度で設計する路面や梁、桁及び多くのコンクリート二次製品では富配合で不経 済なコンクリート配合となり易ぐ更に、曲げ耐カを高めるために部材断面を厚くしたり 、 PC鋼棒によりプレストレスを導入している。また、ヒューム管などでは膨張材をコンク リートに配合してケミカルプレス又はケミカルプレストレスを導入して外圧強度を高め ている。  [0002] Mortar or concrete has a problem that the bending strength is basically lower than the compressive strength, and the bending strength is not so high even if the compressive strength is increased. Therefore, road surfaces, beams, girders and many concrete secondary products designed with bending strength tend to be rich and economical in concrete mix. Prestress is introduced by a steel bar. In addition, for fume pipes and the like, an expanding material is mixed with concrete to introduce a chemical press or a chemical prestress to increase the external pressure strength.
[0003] 一方、シリカフュームはポゾラン活性が高く強度増進材として利用されている。更に 、比較的大量の高性能減水剤と組み合わせることによってモルタルフローやコンクリ 一トスランプ又はスランプフローを増大させ、かつ、低水結合材比のモルタルやコンク リートが容易に製造できるので高流動性の高強度モルタル又はコンクリート用混和材 としても多用されている。  [0003] On the other hand, silica fume has a high pozzolanic activity and is used as a strength enhancer. Furthermore, by combining with a relatively large amount of a high-performance water reducing agent, the mortar flow, the concrete slump or the slump flow can be increased, and the mortar or the concrete having a low water binder ratio can be easily produced, so that a high fluidity can be obtained. It is often used as an admixture for strength mortar or concrete.
[0004] また、フライアッシュは微粉炭焚きの火力発電所から副生する径 100 m以下の中 空粒子を含む球形粒子の石炭灰であり、そのポゾラン活性は低いものの長期的に反 応して水密性などを高めるのでフライアッシュセメントとして多用されている。特許文 献 1に示すように、これを 20 m以下又は 10 m以下に分級することによって大きな 中空の粒子が取り除かれ、良球形で中空のない粒子となる。そのボールベアリング作 用によって高性能減水剤や高性能 AE減水剤と組み合わせると、特にモルタルフロ 一やコンクリートスランプ又はスランプフローを増大させて強い粘ちよう性を発揮する 。更に、同一のフローやスランプとした場合でも分級フライアッシュ無混和のモルタル やコンクリートよりも減水した分の強度を高めることも知られている。 [0004] Fly ash is spherical coal ash containing hollow particles with a diameter of 100 m or less, produced as a by-product from a pulverized coal-fired thermal power plant, and although its pozzolanic activity is low, it reacts in the long term. It is often used as fly ash cement because it enhances water tightness. As shown in Patent Document 1, by classifying this into 20 m or less or 10 m or less, large hollow particles are removed, resulting in good spherical solid particles. When combined with a high-performance water reducing agent or high-performance AE water reducing agent due to its ball bearing action, it increases the mortar flow, concrete slump or slump flow, and exhibits strong stickiness. . Further, it is also known that even when the same flow or slump is used, the strength of the reduced water is increased as compared with the mortar or concrete containing no classified fly ash.
[0005] 更に、例えば、特許文献 2に示すように、石こうは蒸気養生の有無に係わりなく高強 度混和材として多用され、シリカフュームと組み合わせることによってより高い強度や 耐久性が得られることも知られて ヽる。  [0005] Further, for example, as shown in Patent Document 2, gypsum is widely used as a high-strength admixture regardless of the presence or absence of steam curing, and it is also known that higher strength and durability can be obtained by combining with gypsum. Tepuru.
[0006] また、特許文献 3に示すように、曲げ強度や靱性を高める古典的方法としては金属 繊維を添加する方法もある。そして、金属繊維を使用してより靱性を改善する方法と して、セメントにシリカフュームと針状や板状の微粉末を添加し、最大骨材径を小さく 限定することによって達成できることも知られて 、る。  [0006] Further, as shown in Patent Document 3, as a classical method for increasing bending strength and toughness, there is a method of adding a metal fiber. It is also known that a method of improving toughness by using metal fibers can be achieved by adding silica fume and fine needle-like or plate-like powder to cement to limit the maximum aggregate diameter to a small value. RU
特許文献 1:特開昭 63-8248号公報  Patent Document 1: JP-A-63-8248
特許文献 2:特開平 3 - 40947号公報  Patent Document 2: JP-A-3-40947
特許文献 3:特開平 11—246255号公報  Patent Document 3: JP-A-11-246255
[0007] し力しながら、シリカフュームのみを配合する汎用技術では、コンクリートの圧縮強 度は高くなるが、脆くなつて圧縮強度に対する曲げ強度の比率はシリカフューム無混 和の場合よりも低くなるという課題があった。また、特許文献 1に示すように、 20 /z m 以下又は 10 m以下に分級したフライアッシュは本来ポゾラン活性は低いので、減 水した分の強度は高くなるが、同一水結合材比とした分級フライアッシュ無混和の場 合と比較して、たとえ蒸気養生しても短期的な強度増加はほとんど増大しなかった。  [0007] With the general-purpose technology in which only silica fume is blended while pressing, the compressive strength of concrete increases, but the ratio of flexural strength to compressive strength becomes lower due to brittleness, which is lower than in the case where silica fume is not mixed. was there. In addition, as shown in Patent Document 1, fly ash classified to 20 / zm or less or 10 m or less originally has low pozzolanic activity, so the strength of the reduced water increases, but the classification using the same water binder ratio is performed. Compared to the case without fly ash, even in the case of steam curing, the short-term strength increase hardly increased.
[0008] 更に、特許文献 2に示すように、石こう単独又はシリカフュームと併用することによつ て容易に高強度を発現させ、圧縮強度の増加に対して曲げ強度も増力 tlさせるが、そ の比率は普通のコンクリートと同様の域をでないという課題があった。特許文献 3に示 されるように、金属繊維で補強する方法では、生コン工場やコンクリート製品工場で 使用されているモルタル又はコンクリート用細骨材は 5mm以下であるのに対し、最大 骨材径を 2mm以下、又は lmm以下にすることが必須要件となっているために、一般 的に広く普及できな 、と 、う課題があった。  [0008] Further, as shown in Patent Document 2, high strength is easily developed by using gypsum alone or in combination with silica fume, and bending strength is also increased by increasing the compressive strength. There was a problem that the ratio was not in the same area as ordinary concrete. As shown in Patent Document 3, in the method of reinforcing with metal fibers, while the fine aggregate for mortar or concrete used in ready-mixed concrete plants and concrete product factories is 5 mm or less, the maximum aggregate diameter is reduced. There is a problem that it cannot be widely spread because it is an essential requirement that the thickness be 2 mm or less or 1 mm or less.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は従来技術における上記課題を解決するためになされたものであり、圧縮 強度と曲げ強度の絶対値を高め、且つ、圧縮強度に対する曲げ強度の比率を高め たモルタル又はコンクリートを提供することを目的とする。 [0009] The present invention has been made to solve the above-mentioned problems in the prior art, It is an object of the present invention to provide a mortar or concrete in which the absolute values of strength and bending strength are increased and the ratio of bending strength to compressive strength is increased.
本発明の他の目的は、上記モルタル又はコンクリートを実現するためのセメント混和 材、及び該セメント混和材を用いたセメント組成物を提供することにある。  Another object of the present invention is to provide a cement admixture for realizing the mortar or concrete, and a cement composition using the cement admixture.
本発明の更に他の目的は、上記モルタル又はコンクリートから得られるセメント硬化 体を提供することにある。  Still another object of the present invention is to provide a hardened cement body obtained from the above mortar or concrete.
課題を解決するための手段 Means for solving the problem
セメント混和材として、従来知られているシリカフュームゃ径 20 m以下に分級した フライアッシュや石こうを単独でなぐ組合わせて使用することにより、曲げ強度及び 圧縮強度に対する曲げ強度の比率を、それぞれを単独で使用した場合に比して相 乗的に高めることができることを知見した。更に、ベースとなるモルタル又はコンクリー ト自身の曲げ強度を高めることができるので、通常使用されているモルタル又はコン クリート用の細骨材を使用した場合でも金属繊維を併用することにより曲げ強度を飛 躍的に高くできる事実を見出し、本発明を完成するに至った。  As a cement admixture, the ratio of the bending strength to the bending strength and the compressive strength can be independently determined by using a combination of fly ash and gypsum, which are conventionally known as silica fumes with a diameter of 20 m or less, in combination. It has been found that it can be synergistically increased as compared with the case of using. Furthermore, since the bending strength of the base mortar or concrete itself can be increased, the bending strength can be increased by using metal fibers in combination even when using fine aggregate for mortar or concrete that is commonly used. The inventors have found a fact that can be dramatically increased, and have completed the present invention.
すなわち、本発明は以下のセメント混和材、セメント組成物、モルタル、コンクリート 、セメント硬化体に関する。  That is, the present invention relates to the following cement admixture, cement composition, mortar, concrete, and hardened cement.
(1)シリカフュームと 20 μ m以下に分級したフライアッシュを配合してなるセメント混和 材であって、シリカフューム:分級したフライアッシュの配合割合が質量比で 95: 5— 1 0: 90であるセメント混和材。  (1) A cement admixture comprising silica fume and fly ash classified to 20 μm or less, wherein the mixing ratio of silica fume: classified fly ash is 95: 5—10: 90 by mass. Admixture.
(2)更に石こうを配合してなる上記(1)記載のセメント混和材。  (2) The cement admixture according to the above (1), further containing gypsum.
(3)セメント 100部に対して、上記(1)記載のセメント混和材を 1な 、し 35部の割合で 配合してなるセメント組成物。  (3) A cement composition comprising 100 parts of the cement and 1 to 35 parts of the cement admixture described in (1) above.
(4)セメント 100部に対して、更に無水物換算で 0. 5ないし 12部の石こうを配合した 上記(3)記載のセメント組成物。  (4) The cement composition according to the above (3), further comprising 0.5 to 12 parts of gypsum in terms of anhydride based on 100 parts of the cement.
(5)上記(3)又は (4)記載のセメント組成物と、細骨材、減水剤及び練り混ぜ水を混 合してなるモルタル。  (5) A mortar obtained by mixing the cement composition according to (3) or (4) above, fine aggregate, a water reducing agent, and mixing water.
(6)上記(5)のモルタル lm3に対して、外割で 1. 0ないし 6. 0容積%の金属繊維を 添カ卩してなるモルタル。 (7)上記(3)又は (4)記載のセメント組成物と、細骨材、粗骨材、減水剤及び練り混 ぜ水を混合してなるコンクリート。 (6) above (5) to the mortar lm 3 of outer percentage at 1.0 to 6.0% by volume of metal fibers formed by添Ka卩mortar. (7) Concrete obtained by mixing the cement composition according to (3) or (4) above, fine aggregate, coarse aggregate, a water reducing agent, and mixing water.
(8)上記(7)記載のコンクリート lm3に対して、外割で 1. 0ないし 4. 0容積%の金属 繊維を添加してなるコンクリート。 (8) Concrete obtained by adding 1.0 to 4.0% by volume of metal fibers to the concrete lm 3 described in (7) above.
(9)上記(5)又は(6)に記載のモルタルを硬化させて得られるセメント硬化体。  (9) A hardened cement obtained by hardening the mortar according to (5) or (6).
(10)上記(7)又は(8)に記載のコンクリートを硬化させて得られるセメント硬化体。 発明の効果  (10) A cement hardened body obtained by hardening the concrete according to (7) or (8). The invention's effect
[0011] 本発明により、練り上げたモルタルやコンクリートのフロー値が向上し、良好な作業 性が得られる。し力も、得られたモルタルやコンクリートは圧縮強度及び曲げ強度の 高い絶対値を有すると共に、圧縮強度に対して高い比率の曲げ強度が得られる。更 に、金属繊維を配合して補強すると、飛躍的に曲げ強度を高めることができ、土木建 築構造物やコンクリート二次製品を製造する上で経済的且つ有利な設計が可能にな る。  According to the present invention, the flow value of kneaded mortar or concrete is improved, and good workability is obtained. As for the mortar and concrete, the obtained mortar and concrete have high absolute values of compressive strength and flexural strength, and also have a high ratio of flexural strength to compressive strength. Furthermore, if metal fibers are mixed and reinforced, the bending strength can be dramatically increased, and an economical and advantageous design for manufacturing civil engineering structures and concrete secondary products becomes possible.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明を詳しく説明する。なお、本発明で使用する配合割合や添加量を示 す部や%は質量単位である。但し、金属繊維の場合はモルタル又はコンクリート lm3 当たりに対する外割容積%である。 Hereinafter, the present invention will be described in detail. The parts and percentages used in the present invention to indicate the blending ratio and the amount added are mass units. However, when the metal fibers are outer percentage volume% relative to mortar or concrete lm 3 per.
[0013] 本発明で使用するシリカフュームとは、金属シリコンやフエ口シリコンなどのシリコン ァロイ及びジルコユアを電気炉で製造する際に副生する、球形の直径が: L m以下 の微粒子で、主成分は非晶質の反応性の高い SiOである。圧縮強度はシリカフュー [0013] Silica fume used in the present invention is a fine particle having a spherical diameter of not more than Lm, which is a by-product produced when silicon alloys such as metallic silicon and Fe-mouth silicon and zirconia are produced in an electric furnace. Is amorphous highly reactive SiO. Compressive strength is silica fume
2  2
ム添加量に応じて順次高くなる力 曲げ強度の圧縮強度に対する比率はシリカフユ ーム無混和の場合よりも低下する。  The force gradually increases in accordance with the amount of added silica. The ratio of the bending strength to the compressive strength is lower than in the case where silica fume is not mixed.
[0014] シリカフュームは前記したように単なる強度増進材としてだけでなぐ比較的大量の 高性能減水剤と、セメントに対して 10%前後のシリカフュームを併用すると流動性を 著しく高める。但し、高性能減水剤の種類によって流動特性が異なり、ポリアルキル ァリルスルホン酸塩系やメラミンホルマリン榭脂スルホン酸塩系の、いわゆる単に高性 能減水剤と呼ばれる減水剤に対してはペーストの降伏値が小さ 、割に粘性の強 、流 動性を示す。空気を連行するポリカルボン酸塩系の、いわゆる高性能 AE減水剤に 対しては単に粘性というよりは粘着性のあるプラスチックな状態で流動性が大きくなり 、スコップで切り返した感じは前者が重ぐ後者は軽い感じとなる。したがって、高性 能 AE減水剤とシリカフュームの併用系は単にポンプ打ちが容易となるという理由で 使用される場合もある。 [0014] As described above, silica fume significantly enhances fluidity when used in combination with a relatively large amount of a high-performance water reducing agent that can be used not only as a strength enhancer and about 10% of silica fume with respect to cement. However, the flow characteristics vary depending on the type of high-performance water reducing agent. Is small, and shows relatively high viscosity and fluidity. A so-called high-performance AE water reducing agent based on polycarboxylate that entrains air On the other hand, the fluidity becomes large in the state of sticky plastic rather than simply viscous, and the feeling of switching back with a scoop becomes lighter in the former and heavier in the latter. Therefore, a combination system of high performance AE water reducer and silica fume may be used simply because it makes pumping easier.
[0015] フライアッシュは前記したように微粉炭焚の火力発電所力 副生する石炭灰で燃焼 ガスと一緒にボイラーの煙道から廃棄され、集塵機で回収された球形の粒状残查で あり、通常はそのままセメントに配合され、フライアッシュセメントとしても使用される。 本発明では更に 20 m以下に分級したものを使用することが必須条件であり、分級 しな 、フライアッシュでは本発明の効果は得られな 、。分級フライアッシュの市販品と しては 20 μ m以下に分級したものと 10 μ m以下に分級したものの二種類がある。  [0015] Fly ash is a spherical granular residue collected from a boiler's flue together with combustion gas with coal ash produced as a by-product from a pulverized coal-fired thermal power plant as described above, and collected by a dust collector. Usually, it is directly blended with cement and used as fly ash cement. In the present invention, it is an essential condition that a material classified to 20 m or less is used, and fly ash cannot achieve the effects of the present invention without classification. There are two types of commercially available classified fly ash: those classified to 20 μm or less and those classified to 10 μm or less.
[0016] 本発明のセメント混和材は、シリカフューム: 20 μ m以下に分級したフライアッシュと の質量比を 95 : 5—10 : 90,好ましくは 90 : 10—15 : 85、より好ましくは 80: 20— 70 : 30の割合とする。分級フライアッシュが 5%未満であると曲げ強度の増大効果は小 さぐ分級フライアッシュが 90%を超えても曲げ強度の増大効果は小さい。分級フラ ィアッシュの配合割合を多くしていくと圧縮強度は徐々に低下する力 曲げ強度の増 大効果は 60: 40付近にピークがある。  [0016] The cement admixture of the present invention has a mass ratio of silica fume: fly ash classified to 20 µm or less to 95: 5-10: 90, preferably 90: 10-10-15: 85, more preferably 80:50. 20-70: 30 ratio. If the classified fly ash is less than 5%, the effect of increasing the bending strength is small. Even if the classified fly ash exceeds 90%, the effect of increasing the bending strength is small. The compressive strength gradually decreases as the proportion of classified fly ash is increased. The effect of increasing the bending strength has a peak at around 60:40.
[0017] 一方、分級フライアッシュの配合割合を多くして行くとモルタルフローやスランプ又 はスランプフロー(以下、単にフローという)も増大し、シリカフューム:分級フライアツ シュの比 50 : 50付近にピークがあり、分級フライアッシュによる適度な粘ちよう性は骨 材の分離を押さえ、金属繊維を添加しても流動し易くする。  [0017] On the other hand, as the proportion of the classified fly ash is increased, the mortar flow, the slump or the slump flow (hereinafter, simply referred to as flow) also increases, and a peak appears at a silica fume: classified fly ash ratio of about 50:50. Yes, the moderate stickiness of the classified fly ash suppresses the separation of aggregates and makes it easier to flow even if metal fibers are added.
[0018] 本発明の混和材はセメント 100部に対して、好ましくは 1一 35部、より好ましくは 2— 30部、最も好ましくは 3— 25部添加される。 35部を超えて添加しても曲げ強度の増 加は頭打ちとなり経済的にも好ましくない。  [0018] The admixture of the present invention is preferably added in an amount of 1 to 35 parts, more preferably 2 to 30 parts, and most preferably 3 to 25 parts, based on 100 parts of cement. Even if it is added in excess of 35 parts, the increase in bending strength reaches a plateau and is not economically favorable.
[0019] 本発明で使用する石こうとは、二水石こう、半水石こう、可溶性無水石こう (III型)、 不溶性無水石こう(II型)の各種形態の石こうが使用されるが、無水石こうと二水石こう が好ましい。石こうはセメントに「シリカフュームと 20 μ m以下に分級したフライアツシ ュ」のセメント混和材を添加した場合に、 20 m以下に分級したフライアッシュの配合 割合が多くなるにしたがって低下してくる圧縮強度をそれ以上に高め、圧縮強度と曲 げ強度の両方の絶対値を高める効果を有する。石こうは無水物に換算して、セメントThe gypsum used in the present invention includes various forms of gypsum such as dihydrate gypsum, hemihydrate gypsum, soluble anhydrous gypsum (type III), and insoluble anhydrous gypsum (type II). Water gypsum is preferred. For gypsum, when the cement admixture of “silica fume and fly ash classified to 20 μm or less” is added to the cement, the compressive strength decreases as the proportion of fly ash classified to 20 m or less increases. Further increase the compressive strength and song This has the effect of increasing both absolute values of the bending strength. Gypsum is converted to anhydrous, cement
100部に対して、好ましくは 0. 5— 12部、より好ましくは 0. 8— 10部、最も好ましくは 1一 8部添加される。 12部を超えて添加してもそれ以上の強度的効果は得られない。 Preferably, 0.5 to 12 parts, more preferably 0.8 to 10 parts, most preferably 118 parts are added to 100 parts. Even if it exceeds 12 parts, no further strength effect can be obtained.
[0020] 本発明にお 、ては高性能減水剤や高性能 AE減水剤の必要量を併用する。高性 能減水剤とはポリアルキルァリルスルホン酸塩系、芳香族アミノスルホン酸塩系、メラ ミンホルマリン榭脂スルホン酸塩系のいずれかを主成分とするものであり、これらの一 種又は二種以上が使用されるものである。ポリアルキルァリルスルホン酸塩系高性能 減水剤にはメチルナフタレンスルホン酸ホルマリン縮合物、ナフタレンスルホン酸ホ ルマリン縮合物、アントラセンスルホン酸ホルマリン縮合物などがあり、市販品として は電気化学工業 (株)社商品名「FT-500」とそのシリーズ、花王 (株)社商品名「マイテ ィ- 100」(粉末)や「マイティ- 150」とそのシリーズ、第一工業製薬 (株)社商品名「セル フロー 110P」(粉末)、竹本油脂 (株)社商品名「ポールファイン 510N」等、 日本製紙( 株)社商品名「サンフロー PS」とそのシリーズなどが代表的である。芳香族アミノスルホ ン酸塩系高性能減水剤としては藤沢薬品 (株)社商品名「パリック FP200HJとそのシリ ーズがあり、メラミンホルマリン榭脂スルホン酸塩系高性能減水剤にはグレースケミカ ルズ社商品名「FT-3S」が挙げられる。 [0020] In the present invention, a required amount of a high-performance water reducing agent or a high-performance AE water reducing agent is used in combination. The high-performance water reducing agent is mainly composed of any one of polyalkylarylsulfonate, aromatic aminosulfonate, and melamine formalin resin / sulfonate. Two or more are used. Polyalkylaryl sulfonate-based high-performance water reducing agents include methyl naphthalene sulfonic acid formalin condensate, naphthalene sulfonic acid formalin condensate, and anthracene sulfonic acid formalin condensate.The commercial products are Denki Kagaku Kogyo Co., Ltd. Company name "FT-500" and its series, Kao Corporation product name "Mighty-100" (powder) and "Mighty-150" and its series, Daiichi Kogyo Pharmaceutical Co., Ltd. Representative examples include Nippon Paper Industries Co., Ltd. brand name “Sunflow PS” and its series, such as “Flow 110P” (powder), Takemoto Yushi Co., Ltd. brand name “Pole Fine 510N”. As an aromatic aminosulfonate-based high-performance water reducing agent, Fujisawa Pharmaceutical Co., Ltd. has the brand name "Palic FP200HJ and its series. The product name is "FT-3S".
[0021] 高性能 AE減水剤は、通常、ポリカルボン酸塩系減水剤と呼称され、不飽和カルボ ン酸モノマーを一成分として含む共重合体又はその塩である。例えば、ポリアルキレ ングリコールモノアクリル酸エステル、ポリアルキレングリコールモノメタクリル酸エステ ル、無水マレイン酸及びスチレンの共重合体やアクリル酸ゃメタクリル酸塩の共重合 体及びこれらの単量体と共重合可能な単量体から導かれた共重合体などを挙げるこ とができる。 (株)ェヌェムビー社商品名「レオビルド SP8N」シリーズ、藤沢薬品工業( 株)社商品名「パリック FP100S,300S」シリーズ、竹本油脂 (株)社商品名「チュポール HP8,11」シリーズ、グレースケミカルズ (株)社商品名「ダーレックスス一パー 100、 200 、 300, 1000」シリーズ、その他が市販されている。 [0021] The high-performance AE water reducing agent is usually called a polycarboxylate-based water reducing agent, and is a copolymer containing an unsaturated carboxylic acid monomer as one component or a salt thereof. For example, copolymers of polyalkylene glycol monoacrylate, polyalkylene glycol monomethacrylate, maleic anhydride and styrene, copolymers of acrylic acid and methacrylate, and copolymerizable with these monomers Examples include copolymers derived from monomers. The brand name of Leobuild SP8N series, the brand name of Nemby Corporation, the series name of Palic FP100S, 300S, the brand name of Fujisawa Pharmaceutical Co., Ltd. ) The company name "Darlex Super 100, 200, 300, 1000" series and others are commercially available.
[0022] 本発明で使用するセメントは、各種ポルトランドセメント、各種混合セメント又はェコ セメントである。また、これらの任意量を混合したセメントでもよい。  [0022] The cement used in the present invention is various portland cements, various mixed cements or eco cements. Further, cement in which these arbitrary amounts are mixed may be used.
[0023] 本発明のモルタルやコンクリートを製造するに当たり特別な制限はなぐ一般に使 用されている細骨材や粗骨材を使用することができる。また、モルタル又はコンクリー トの圧縮強度に対する曲げ強度の比率及び曲げ強度の絶対値は、水結合材比ゃ細 骨材率に関係なくそれなりに増大するので任意に選択することができる。 [0023] There are no special restrictions on the production of the mortar or concrete of the present invention. Fine aggregate or coarse aggregate used can be used. In addition, the ratio of the bending strength to the compressive strength of the mortar or concrete and the absolute value of the bending strength can be arbitrarily selected because the ratio thereof increases irrespective of the water binder ratio / the fine aggregate ratio.
[0024] 更に、本発明においては金属繊維を併用することができる。金属繊維も特別なもの ではなぐ通常巿販されているモルタル又はコンクリート用でよい。金属繊維はモルタ ル又はコンクリート lm3に対して外割で 1. 0ないし 6. 0容積%添加する力 曲げ強度 の増大効果と作業性の観点よりモルタルの場合とコンクリートの場合では最大添加量 及び好ましい範囲が相違する。また、振動成型、遠心力成型等、コンクリートの成型 方法によっても最大添加量及び好ましい範囲が相違する。 Further, in the present invention, metal fibers can be used in combination. The metal fiber is not special, and may be used for mortar or concrete that is usually sold. The metal fibers maximum amount and in the case where the concrete mortar from the viewpoint of increasing the effect and the workability of the force bending strength to 1. added 0 to 6.0 volume% in outer percentage relative to mortar or concrete lm 3 The preferred ranges are different. The maximum addition amount and the preferable range also differ depending on the concrete molding method such as vibration molding and centrifugal force molding.
[0025] 振動成型の場合は、モルタルでは 2容積%未満では曲げ強度の増加は少ないが 2 容積%以上で、添加量を多くしてゆくと曲げ強度も順次高くなり、 5. 5容積%以上で 頭打ちとなり、 6. 0容積%を超えると流動し難く成型できなくなり、外割で 1. 0-6. 0 容積0 /0、好ましくは 2. 5-5. 0容積%である。コンクリートの場合は 1. 5容積0 /0以上 力 効果を発揮し、 4容積%を超えると作業性が悪くなるので外割で 1. 0-4. 0容積 %、好ましくは 1. 5-3. 5容積0 /0である。 [0025] In the case of vibration molding, when the mortar is less than 2% by volume, the increase in bending strength is small, but when it is added at 2% by volume or more, the bending strength gradually increases as the amount of addition increases, and 5.5% by volume or more. in it levels off, 6. can no longer flow hardly molded with more than 0% by volume, 1. outside split 0-6. 0 volume 0/0, preferably from 2. 5-5. 0% by volume. For concrete exhibits 1.5 volume 0/0 or force effect, 1. 0-4. 0% by volume in outer percentage since deteriorates workability and more than 4% by volume, preferably 1. 5-3 . it is a 5 volume 0/0.
[0026] 遠心力成型体ではモルタルもコンクリートも、金属繊維の外割配合量 1. 0容積%か ら曲げ引張強度が増大し、モルタルの場合は作業性力 5. 0容積%以下とするのが 好ましぐコンクリートでは 3. 0容積%以下が好ましい。なお、ヒューム管の外圧強度 を高めるには内側にスチールファイバーを集中すればよいので管厚の内側 2Z3前 後以下の厚さを補強するのが経済的にも好ましい。  [0026] In the case of the mortar and the concrete, the bending tensile strength of the mortar and the concrete increases from 1.0% by volume of the metal fiber, and the workability of the mortar is 5.0% by volume or less. However, for preferred concrete, the content is preferably 3.0% by volume or less. In order to increase the external pressure strength of the fume tube, it is only necessary to concentrate steel fibers on the inside. Therefore, it is economically preferable to reinforce the thickness of the inside of the tube 2Z3 or less.
[0027] 本発明の混和材の添加方法は特に制限されない。モルタル又はコンクリートの練り 混ぜ時に、シリカフュームと 20 m以下に分級したフライアッシュを混合したものを添 カロしても良いし、更に石こうを混合して添加しても良い。また、それぞれの成分を別々 に用意してミキサに他のモルタル又はコンクリート材料と一緒に添カ卩してもよい。練り 混ぜ方法も特別な限定はなぐ通常行われている練混ぜ方法で良い。また、金属繊 維の添加方法も特に制限はないが、モルタル又はコンクリートを練り混ぜて力 さらに ミキサの撹拌を継続しながらその中に添加する方法がファイバーボールを生成させ 難いので好ましい。 [0028] また、本発明のモルタル及びコンクリートの養生方法にも制限はなぐ標準養生も、 蒸気養生も、オートクレープ養生も可能である。 [0027] The method of adding the admixture of the present invention is not particularly limited. When mixing mortar or concrete, a mixture of silica fume and fly ash classified to 20 m or less may be added, or gypsum may be further added. Alternatively, each component may be separately prepared and added to a mixer together with another mortar or concrete material. The kneading method is not particularly limited, and the kneading method usually used may be used. There is no particular limitation on the method of adding the metal fiber, but a method in which mortar or concrete is kneaded and mixed, and the mixing is continued while stirring the mixer is preferred because it is difficult to form fiber balls. [0028] Further, the method for curing the mortar and concrete of the present invention is not limited, and standard curing, steam curing and autoclave curing are also possible.
[0029] 以下、本発明の実施例及び比較例で使用する材料と試験項目とその方法をまとめ て示した。 Hereinafter, materials, test items, and methods used in Examples and Comparative Examples of the present invention are shown together.
<使用材料 >  <Material used>
セメント:電気化学工業 (株)社製 普通ポルトランドセメント、密度 3. 16g/cm3 細骨材:新潟県姫川産川砂(5mm下)、密度 2. 62g/cm3 Cement: Ordinary Portland cement manufactured by Denki Kagaku Kogyo Co., Ltd. Fine density: 3.16 g / cm 3 Fine aggregate: Himekawa river sand from Niigata (5 mm below), density: 2.62 g / cm 3
粗骨材:新潟県姫川産砕石(13— 5mm)、密度 2. 64g/cm3 Coarse aggregate: crushed stone from Himekawa, Niigata (13-5 mm), density 2.64 g / cm 3
シリカフューム:ロシア産、顆粒状にしたもの(SFとする)、密度 2. 44g/cm3 フライアッシュ:四国電力(株)社製、 20 μ m以下に分級したもの (FA20とする)と 1Silica fume: Russian, (and SF) those in granular form, density 2. 44 g / cm 3 Fly Ash: Shikoku Electric Power Co., Inc., 20 mu m those classified below as (a FA 20) 1
0 μ m以下に分級したもの (FA10とする)と分級しな!ヽフライアッシュ (FAとする)、密 度 2. 44g/cm° Classify to 0 μm or less (FA10) and do not classify! Fly ash (FA), density 2.44g / cm °
石こう:不溶性無水石こう(天然産、密度 2.82)と工業用二水石こう粉末、密度 2. 30 金属繊維:東京製綱 (株)社製、「ダイパック」鉄製、幅 0.9mm厚さ 0.34mm、長さ 30mm,密度 8.00gZcm3 Gypsum: Insoluble anhydrous gypsum (naturally occurring, density 2.82) and industrial dihydrate gypsum powder, density 2.30 Metal fiber: manufactured by Tokyo Seimitsu Co., Ltd., "Daipack" iron, width 0.9 mm, thickness 0.34 mm, length 30mm, Density 8.00gZcm 3
減水剤:高性能 AE減水剤 WRA(l)、グレースケミカルズ(株)社製「スーパー 1000N」、高性能減水剤 WRA(2)、第一工業製薬 (株)社製「セルフロー 110P」 <試験項目とその方法 >  Water reducing agent: High performance AE water reducing agent WRA (l), Grace Chemicals Co., Ltd. "Super 1000N", High performance water reducing agent WRA (2), Daiichi Kogyo Seiyaku Co., Ltd. "Cell Flow 110P" <Test items And how to do it>
[モルタルフローの測定]  [Mortar flow measurement]
JIS R 5201に準じ、抜き上げたときのフロー値を測定した。但し、フローテーブルの 上に 50 X 50 X 2cmのアクリルガラス板を乗せてその上で行った。  According to JIS R 5201, the flow value at the time of extraction was measured. However, an acrylic glass plate of 50 × 50 × 2 cm was placed on the flow table, and the test was performed thereon.
[モルタル強度の測定方法]  [Method of measuring mortar strength]
曲げ強度は JIS R 5201に準じ、圧縮強度は φ 5 X 10cmの型枠に成型したものを用 いた。  The flexural strength conformed to JIS R 5201, and the compressive strength used was one molded into a formwork of φ5 x 10 cm.
[コンクリートフローの測定]  [Measurement of concrete flow]
JIS A 1101に準じて抜き上げたときのコンクリートの横の広がりを測定した。  The lateral spread of the concrete when pulled out according to JIS A 1101 was measured.
[コンクリートの曲げ強度と圧縮強度の測定] JIS A 1132、 JIS A 1106、 JIS A 1132及び JIS A 1108に準じた。 [Measurement of flexural strength and compressive strength of concrete] Based on JIS A 1132, JIS A 1106, JIS A 1132 and JIS A 1108.
[遠心力成型の曲げ引張強度の測定]  [Measurement of bending tensile strength of centrifugal molding]
外径 20cm X長さ 30cmの円筒型枠にコンクリート 17. 5kgを詰め、初速 1. 5G X 2 分間、低速 3G X 5分間、中速 I : 8G X 1分間、中速 II: 15G X 2分間、高速 30G X 3 分間の条件で遠心力成型し、養生後、ひびわれが発生する外圧荷重と管厚を測定 して曲げ引張強度を算出した。また、内側 1Z3を金属繊維入りモルタルとする場合 はコンクリート 12. 5kgを詰めて上記条件で遠心力成型した後、モルタル 5kgを再度 詰めて、同様に遠心力成型した。  17.5kg of concrete is packed into a cylindrical form of 20cm in outer diameter x 30cm in length, initial speed 1.5G x 2 minutes, low speed 3G x 5 minutes, medium speed I: 8G x 1 minute, medium speed II: 15G x 2 minutes After high-speed 30G x 3 minutes, the mold was subjected to centrifugal force molding. After curing, the external pressure load at which cracks occurred and the tube thickness were measured to calculate the bending tensile strength. When the inner 1Z3 was made of mortar containing metal fiber, 12.5 kg of concrete was packed and subjected to centrifugal molding under the above conditions, and then 5 kg of mortar was packed again and similarly centrifugally molded.
[0030] なお、モルタル(又はコンクリート)の練り混ぜは、セメント、混和材の各成分、細骨 材 (及び粗骨材)を 30秒間空練りした後、水に減水剤を溶解した練り混ぜ水を添加し て 3分間ォムニミキサで練り混ぜた。金属繊維を添加する場合はモルタル又はコンク リートを 3分間練り混ぜた後、撹拌を止めないで少しずつ金属繊維を添加してから、さ らに 3分間練り混ぜた。 [0030] The kneading of the mortar (or concrete) is performed by kneading the cement, the components of the admixture, and the fine aggregate (and coarse aggregate) for 30 seconds, and then dissolving a water reducing agent in water. And kneaded with an omni mixer for 3 minutes. When adding metal fibers, knead the mortar or concrete for 3 minutes, add the metal fibers little by little without stopping stirring, and knead for another 3 minutes.
実施例 1  Example 1
[0031] (モルタル) [0031] (mortar)
セメント 100部、細骨材 100部、シリカフュームとフライアッシュの配合量を表 1に示 すように変えて、水 20部に高性能 AE減水剤 3部を溶解した練り混ぜ水を結合材 (セ メント又はセメント +シリカフューム及び Z又はフライアッシュ)に対して 20部を添カロし て練り混ぜたモルタルのフロー値を測定し表 1に併記した。このモルタルを成型した 供試体を前置き時間 8時間、昇温速度 20°CZ時間で 80°Cまで上げて、そのまま 5時 間保持してカゝら蒸気バルブを止めて翌日まで蒸気養生槽中で徐冷し、材齢 1日の曲 げ強度と圧縮強度を測定し、その結果を表 1に併記した。  The mixing amounts of 100 parts of cement, 100 parts of fine aggregate, silica fume and fly ash were changed as shown in Table 1, and 20 parts of water and 3 parts of a high-performance AE water reducing agent were mixed and mixed with water. Mentor or cement + silica fume and Z or fly ash), and the mortar was kneaded with 20 parts of calorie and the flow value was measured. Place the specimen into which this mortar was molded for 8 hours at pre-heating time, raise the temperature to 80 ° C at a heating rate of 20 ° CZ time, hold it for 5 hours, stop the cara steam valve, and leave it in the steam curing tank until the next day. After cooling slowly, the bending strength and compressive strength of one day of age were measured, and the results are shown in Table 1.
[0032] 表 1から明らかなように、無混和の実験 No. 1-1に対して、比較例のシリカフューム のみを添加した No. 1-2ではフロー値は大きくなり作業性は改善され、圧縮強度及び 曲げ強度も増力 tlしたが、圧縮強度の増加に対する曲げ強度の増加はわずかであり、 圧縮強度に対する曲げ強度の比率は低下した。また、分級したフライアッシュのみを 添カ卩した No.1-14でもフロー値の向上は認められる力 圧縮強度及び曲げ強度はほ とんど増加しない。これに対して本発明例の実験 No.1-3— No. 1-13、 No.1-26— No.1-30に示されるように、シリカフュームと分級したフライアッシュを配合することに よってフロー値はより大きくなる。圧縮強度の増加はシリカフュームの割合が少なくな るほど順次低下するが曲げ強度の増加が著しく、圧縮強度に対する曲げ強度の比率 も大きくなることが判明した。そして、曲げ強度はシリカフューム Z分級フライアッシュ の比率が 60 :40のとき最高に達した。 [0032] As is clear from Table 1, the flow value became larger and the workability was improved in No. 1-2 in which only silica fume of the comparative example was added, compared to No. 1-1 in which no mixing was performed, and the workability was improved. Although the strength and bending strength also increased tl, the increase in bending strength relative to the increase in compressive strength was slight, and the ratio of bending strength to compressive strength decreased. No.1-14, in which only classified fly ash was added, showed an improvement in flow value. Compressive strength and bending strength hardly increased. On the other hand, experiments No. 1-3—No. 1-13, No. 1-26— As shown in No.1-30, the flow value becomes larger by mixing silica fume and classified fly ash. It was found that the increase in compressive strength gradually decreased as the proportion of silica fume decreased, but the flexural strength increased markedly and the ratio of flexural strength to compressive strength also increased. The bending strength reached the maximum when the ratio of silica fume Z classified fly ash was 60:40.
[0033] また、実験 No. 1 - 15— No.1-25から明らかな通り、本混和材はその添加量を多くし ていくとフロー値も曲げ強度及び圧縮強度も増加する力 曲げ強度はセメント 100部 に対し 1部力も増加しはじめ、 3部で顕著となる力 35部以上ではフロー値、曲げ強 度、圧縮強度共に頭打ちとなり、経済性も考慮に入れると 30部以下が好ましい。  [0033] Further, as is clear from Experiment Nos. 1-15 to No. 1-25, as the amount of the admixture increases, the flow value, the bending strength, and the compressive strength increase as the addition amount increases. The force of 1 part starts to increase for 100 parts of cement, and the force becomes remarkable in 3 parts. In 35 parts or more, the flow value, bending strength and compressive strength reach a plateau, and considering economics, 30 parts or less is preferable.
[0034] [表 1-1]  [0034] [Table 1-1]
Figure imgf000011_0001
Figure imgf000011_0001
[0035] [表 1-2] [0035] [Table 1-2]
■実験 セメ ン ト 100 部に対する配合量 7口-値 曲げ強度 圧縮強度 曲げ/圧■ Compounding amount per 100 parts of experimental cement 7 ports-value Bending strength Compressive strength Bending / pressure
: No. S F (部) F A (部) (mm) (N/DimJ) 縮強度比: No. SF (part) FA (part) (mm) (N / Dim J ) Shrinkage ratio
1-9 6.4 (40) FA20 9.6 (60) 3 6 4 2 8. 8 1 2 1/5.11-9 6.4 (40) FA20 9.6 (60) 3 6 4 2 8.8 1 2 1 / 5.1
1-10 4.8 (30) FA20 11.2 (70) 3 5 5 2 7. 1 1 1 1/5,21-10 4.8 (30) FA20 11.2 (70) 3 5 5 2 7.1 1 1 1 / 5,2
1-11 3.2 (20) FA20 12.8 (80) 3 4 2 ■2 5. 5 1 0 1/5.51-11 3.2 (20) FA20 12.8 (80) 3 4 2 ■ 2 5.5 1 0 1 / 5.5
1-12 2. (15) FA20 13.6 (85) 3 3 6 2 2. 7 1 3 8 1/B.11-12 2. (15) FA20 13.6 (85) 3 3 6 2 2.7 1 3 8 1 / B.1
1-13 1.6 (10) FA20 14. (90) 3 1 1 1 7. 1 1 3 6 1/8.01-13 1.6 (10) FA20 14. (90) 3 1 1 1 7. 1 1 3 6 1 / 8.0
1-14 0 FA20 :16.0 ひ 00) 2 9 0 1 5. 3 】 3 4 1/8.81-14 0 FA20: 16.0h 00) 2 9 0 1 5.3] 3 4 1 / 8.8
1-15 0.5 (.50) FA20 0.5 (50) 2 0 2 1 6. 7 1 3 7 1/8.21-15 0.5 (.50) FA20 0.5 (50) 2 0 2 1 6.7 1 3 7 1 / 8.2
1 - 16 1.5 (50) FA20 1.5 (50.) 2 7 S 1 9. 1 1 4 3 1/7.51-16 1.5 (50) FA20 1.5 (50.) 2 7 S 19.1 1 4 3 1 / 7.5
1-17 2.5 (50) FA20 2.5 (50) 2 9 6 2 1. 2 1 4 0 1/6.61-17 2.5 (50) FA20 2.5 (50) 2 9 6 2 1.2 1 4 0 1 / 6.6
1 - 18 3.5 (50) FA20 3.5 (50;) 3 2 5 2 4. 7 1 4 8 1/6.01-18 3.5 (50) FA20 3.5 (50;) 3 2 5 2 4.7 1 4 8 1 / 6.0
1-19 5.0 (50) FA20 5.0 (50) 3 4 8 2 8. 0 1 0 1/5.01-19 5.0 (50) FA20 5.0 (50) 3 4 8 2 8.0 1 0 1 / 5.0
1-20 7.0 (50) FA20 7.0 (50) . 3 5 7 2 9. 6 1 5 3 1/5.21-20 7.0 (50) FA20 7.0 (50) .3 5 7 2 9.6 1 5 3 1 / 5.2
■】-21 :10..ひ (50) FA20 10.0 (50) 3: 7 4 3 1. 5 1 5 8 1/5.0■】 -21: 10..hi (50) FA20 10.0 (50) 3: 7 4 3 1.5 1 5 8 1 / 5.0
1-22 12.5 (50) ? K20- 12.5 ) 3 8 0 3 2. 0 1 6 0 1/5.01-22 12.5 (50)? K20- 12.5) 3 8 0 3 2. 0 1 6 0 1 / 5.0
1-23 15.0' (5.0) FA20 15,0 (50) 3: 8 5 3 3. 0 Ί 6 2 1/4.91-23 15.0 '(5.0) FA20 15,0 (50) 3: 8 5 33.0 Ί 6 2 1 / 4.9
1-24 17.5 (50) ■FA2ひ 17.5 (50) 3 8 7 3 3. 4 1 6 3 1/4.91-24 17.5 (50) FA2 17.5 (50) 3 8 7 3 3.4 1 6 3 1 / 4.9
1-25 20.0 (50) FA20 20.0 (50) 3 8 9 3 1. 8 1 5 8 1/5.01-25 20.0 (50) FA20 20.0 (50) 3 8 9 3 1.8 1 5 8 1 / 5.0
]-26 15.2 (.95) FA10 0,8 (5) 3. 0 5 1 9. 7 1 6 0 1/8.1] -26 15.2 (.95) FA10 0,8 (5) 3.0 5 1 9.7 1 6 0 1 / 8.1
1-27 4 (90) FA10 1.6 (10) 3 23 2 6. 0 】 5 6 ]/6.01-27 4 (90) FA10 1.6 (10) 3 23 26.0 0 5 6] /6.0
1-28 9.6 (60) FA1.0 6.4 (4.0) 3 7 1 3 0. 4 1 5 2 1/5.01-28 9.6 (60) FA1.0 6.4 (4.0) 3 7 1 3 0.4 1 5 2 1 / 5.0
1-29 2.4 (15) FA10 13.6 (85) 3 4 6 2 4. 1 】 4 0 1/5.81-29 2.4 (15) FA10 13.6 (85) 3 4 6 24.1】 4 0 1 / 5.8
1-30 1.6 (10) FA10 14,4 (90) 3 2 3 1 7. 5 1 3 8 1/7.81-30 1.6 (10) FA10 14,4 (90) 3 2 3 1 7.5 5 3 8 1 / 7.8
1-31 9.6 (60) FA 6.4 (40) 2 5 9 1 6. 6 】 4 8 1/8.9 註: ( :) 内数値は S Fと FAの質量比率を表す。 1-31 9.6 (60) FA 6.4 (40) 2 5 9 1 6.6] 4 8 1 / 8.9 Note: Figures in parentheses indicate the mass ratio of SF to FA.
実施例 2 Example 2
(モルタル) (Mortar)
実施例 1の実験 No.l- 1、 No.l- 2、 No.l- 7、 No.l- 14に、表 2に示す種類と添加量 ( セメント 100部に対する量)の石こうを更に配合し、実施例 1と同様の試験を行い、そ の結果を表 2に示した。 Experiment No. 1-1, No. 1-2, No. 7 and No. 14 of Example 1 gypsum of the type and addition amount (based on 100 parts of cement) shown in Table 2 was further added. The same test as in Example 1 was performed. Table 2 shows the results.
[0037] 表 2より、石こうは圧縮強度と曲げ強度の両方を助長し強度を高める。本実施例に おいては、セメント 100部に対して 0. 5部以上添加した場合に効果が顕れ、 0. 8部 以上又は 1. 0部以上でより顕著になり、 12部を超えて添加してもそれ以上の強度的 効果は得られない。この結果、セメント 100部に対し 10部以下、好ましくは 1一 8部の 石こうを添加すると、圧縮強度と曲げ強度の両者の絶対値を高めることが判明した。  [0037] As shown in Table 2, gypsum promotes both compressive strength and bending strength to increase strength. In this example, the effect is apparent when 0.5 part or more is added to 100 parts of cement, becomes more remarkable at 0.8 part or more or 1.0 part or more, and exceeds 12 parts. However, no further strength effect can be obtained. As a result, it was found that adding 10 parts or less, preferably 118 parts of gypsum to 100 parts of cement increases the absolute values of both compressive strength and bending strength.
[0038] [表 2]  [Table 2]
Figure imgf000013_0001
実施例 3
Figure imgf000013_0001
Example 3
[0039] (金属繊維配合モルタル) [0039] (Mortar mixed with metal fiber)
実施例 1の実験 No.l- 8のモルタル lm3 (空気量は 4%)に金属繊維の添加量 (モ ルタルに対する外割添加)を変えて練り混ぜて供試体を流し込みで成型し、実施例 1 と同様に蒸気養生して力 材齢 1日の曲げ強度試験を行った。その結果を表 3に示し た。 The amount of metal fiber added to the mortar lm 3 (air content 4%) of experiment No. l-8 of Example 1 The test specimens were molded by casting, and steam-cured in the same manner as in Example 1 to carry out a 1-day bending strength test. Table 3 shows the results.
[0040] 表 3より、金属繊維はモルタルの曲げ強度を飛躍的に高めるが、 1. 5容積%では全 く効果がなぐ 2容積%から卓効を示すようになり、添加量が多くなるほど順次曲げ強 度は増大した。 5. 0容積%を超えると頭打ちとなり、更に 6. 5容積%では作業性が 悪く成型性が悪くなつた。そして振動成型のモルタルの場合の最も好まし 、範囲は 2 . 5— 5容積%であることが判明した。  [0040] According to Table 3, the metal fiber dramatically increases the bending strength of the mortar, but the effect is completely lost at 1.5% by volume. The bending strength increased. When it exceeded 5.0% by volume, it reached a plateau. At 6.5% by volume, workability was poor and moldability was poor. It has been found that the range is most preferably 2.5-5% by volume for the mortar of vibration molding.
[0041] [表 3]  [Table 3]
Figure imgf000014_0001
実施例 4
Figure imgf000014_0001
Example 4
(コンクリート)  (Concrete)
コンクリート lm3当たり 900kgZm3の粗骨材を加え、また空気量を 2. 5%と調整し た以外は、実施例 1の実験 No.1-1—実験 No.1-14と実施例 2の実験 No. 2-5—実験 No.2-13のモルタルと同様に配合して全体を lm3としたコンクリートを練り混ぜて供試 体を成型し、標準養生 91日の圧縮強度と曲げ強度を測定し、その結果を表 4に示し た。 Concrete lm 3 of coarse aggregate per 900KgZm 3 added, also except for adjusting the air amount 2.5% and is the experimental No.1-1- experiment No.1-14 Example 2 Example 1 We tested the whole blended in the same manner and mortar experiment No. 2-5-experiment No.2-13 by kneading the concrete was lm 3 The body was molded and the compressive strength and flexural strength of 91 days of standard curing were measured. The results are shown in Table 4.
[0043] 表 4から明らかなように、結合材としてセメントとシリカフュームのみを添加した実験 No.4-2のコンクリート及びセメントと分級したフライアッシュのみを添カ卩した実験 No.4-14のコンクリートは曲げ強度の増加率が小さい。一方、実験 No.4-3—実験 No.4-13のように、シリカフュームと分級したフライアッシュの両者を配合したコンクリ ートの場合は曲げ強度の増加が著しいことが判明した。そして、シリカフューム:分級 フライアッシュの比率が 95 : 5—10 : 90、好ましくは 90: 10— 20: 80の場合に特に著 しい。  [0043] As is clear from Table 4, the concrete of Experiment No. 4-2 in which only cement and silica fume were added as binders and the concrete of Experiment No. 4-14 in which only cement and classified fly ash were added. Has a small rate of increase in bending strength. On the other hand, as in Experiment No. 4-3—Experiment No. 4-13, it was found that the flexural strength was significantly increased in the case of the concrete containing both silica fume and classified fly ash. It is particularly remarkable when the ratio of silica fume: classified fly ash is 95: 5-10: 90, preferably 90: 10-20: 80.
[0044] また、石こうを併用すると、実験 No.4-15—実験 No.4-23力 明らかなように、圧縮 強度及び曲げ強度の両者を増大させることが示されている。石こうの併用はモルタル の場合と同様に、コンクリートの場合もセメント 100部に対して 12部を超えて添加して もそれ以上の強度的効果は得られなぐ 10部以下、好ましくは 1一 8部である。  [0044] It is also shown that the use of gypsum increases both the compressive strength and the flexural strength of Experiment No. 4-15—Experiment No. 4-23. As in the case of mortar, in the case of concrete, even in the case of concrete, even if it is added in excess of 12 parts to 100 parts of cement, no further strength effect can be obtained.10 parts or less, preferably 118 parts It is.
[0045] [表 4] [Table 4]
実験 結合材の種類 曲 げ 強 度 圧 縮 強 度 曲 げ 強 度 / 莶 (:含石こう) (N/mm2) (N/mm2) 圧 縮 強 度 比Experiment Type of binder Bending strength Compression strength Bending strength / 莶 (: gypsum) (N / mm 2 ) (N / mm 2 ) Compression strength ratio
4一 1 o. 1 — 1 1 1. 2 1 2 3 1 / 1 1. 04 1 1 o. 1 — 1 1 1. 2 1 2 3 1/1 1.0
4 - 2 N o. 1 - 2 1 2. 1 1 5 6 1 / 1 2. 94-2 No. 1-2 1 2.1 1 5 6 1/1 2.9
4一 3 N o . 1 - 3 1 5 , 3 1 5 5 1 / 1 0. 14 1 3 No. 1-3 15, 3 1 5 5 1/1 0.1
4 - 4 N ρ . 1 - 4 1 5·. 9 1 5 4 1 / 9. 74-4 N ρ. 1-4 1 5 9 1 5 4 1 / 9.7
4一 5 N o. 1 - 5 1 8. 8 1 .5 2 1 / 8. 14 1 5 No. 1-5 1 8.8 1 .5 2 1 / 8.1
4一 6 N o. 1 — 6 .2 0. 8 1 5 0 1 /7. 24 1 6 No. 1 — 6.2 0. 8 1 5 0 1/7. 2
4 - 7 N o. 1 - 7 2 1. 2 1 5 1 1 / 7. 14-7 No. 1-7 2 1.2 1 5 1 1 / 7.1
4一 8 N o. 1 - '8 2 0. 5 1 5 0 1 / 7. 34 1 8 No. 1-'8 2 0. 5 1 5 0 1 / 7.3
4 - 9 N o; 1 — 9 2 0. 0 1 4 S 1 / 7. 54-9 N o; 1 — 9 2 0. 0 1 4 S 1 / 7.5
4 - 1 0 N o . 1 - 1 0 1 8. 0 1 5 0 1 / 8. 34-10 0 No. 1-10 1 8.0 0 1 5 0 1 / 8.3
4 - 1 1 N o. 1 — 1 i 1 7. ;2 1 5 2 1 / 8. 84-1 1 No. 1 — 1 i 1 7.; 2 1 5 2 1 / 8.8
4 - 1 .2 N o. 1 - 1 2 1 5 , 5 1 5. 0 1 / 9. 74-1.2 No. 1-1 2 1 5, 5 15.0 1 / 9.7
4 - 1 3 N o - 1 - 1 3 1 3, 7 1 4 4 1 / 1 0. 54-1 3 No-1-1 3 1 3, 7 1 4 4 1/1 0.5
4 - J 4 N o- 1 - 1 4 1 1. 9 1 2 1 1 1. 94-J 4 No-1-1 4 1 1.9 1 2 1 1 1.9
4 - 1 5 N o. 2 - 5 2 1. S 1 6 2 1 /7. 94-15 No. 2-5 2 1.S 16 21 1 / 7.9
4 - 1 6 N o. 2 - 6 2 3. 1 1 6 5 1 /1. 14-16 No. 2-6 2 3. 1 1 6 5 1/1. 1
4 - 1 7 N o . :2一 7 2 4. 9 1 7 0 1 / 6. 84-17 No.: 2 1 7 2 4.9.1 7 0 1 / 6.8
4一〗 8 N o. 2 - 8 2 5. 3 1 7 4 1 / 6. 94 10 8 No. 2-8 2 5.3 1 7 4 1 / 6.9
4 - 1 9 N o. 2 - 9 2 5. 8 1 7 8 1 / 6. 94-19 No. 2-9 2 5.8 1 7 8 1 / 6.9
4 - 2 0 N o. 2 - 1 0 2 6. 4 1 7 7 1 &. 74-20 No. 2-1 0 2 6.4 1 7 7 1 &. 7
■4一 2 1 N o; 2 - 1 1 2 6. 0 1 7 5 1 / 6. 7■ 4 1 2 1 No; 2-1 1 2 6.0 0 1 7 5 1 / 6.7
4 - 2 2 N o. 2 - 1 2 2 5. 9 1 7 6 1 / 6. 84-2 2 No. 2-1 2 2 5.9 1 7 6 1 / 6.8
4 - 2 3 N o. 2 - 1 3 2 5. 0 ϊ 7 3 1 / 6. 9 実施例 5 4-2 3 No. 2-1 3 25.0 ϊ 7 3 1 / 6.9 Example 5
(金属繊維配合コンクリート) (Metal fiber mixed concrete)
実施例 4の実験 Νο.4-8のコンクリート lm3に、表 5に示す量 (コンクリートに対して 外割添加)の金属繊維を練り混ぜて、型枠をテーブル振動機の上に置いて、金属繊 維が分離しないようにわずかに振動を掛けながらコンクリートを流し込んで供試体を 成型し、実施例 1と同様に蒸気養生して力も材齢 1日の曲げ強度試験を行った。その 結果を表 5に示した。 Concrete lm 3 experiments Νο.4-8 of Example 4, and kneaded the metal fibers in an amount shown in Table 5 (outer percentage added to the concrete), place the mold on the table vibrator, Pour concrete while applying slight vibration so that the metal fibers do not separate, It was molded, steam-cured in the same manner as in Example 1, and subjected to a 1-day-old flexural strength test. Table 5 shows the results.
[0047] 表 5より判るように、金属繊維はコンクリートの曲げ強度を高めるが、 1. 0容積%で はほとんど効果がなぐ 1. 5容積%から卓効を示すようになり、添加量が多くなるほど 順次曲げ強度は増大するが、段々頭打ちとなる。 4. 5容積%では作業性が悪くて成 型が困難となる。そして、振動成型のコンクリートの場合は作業性を含めて最も好まし い範囲は 2. 0-4. 0容積%であることが判明した。  [0047] As can be seen from Table 5, metal fibers increase the flexural strength of concrete, but have little effect at 1.0% by volume. The bending strength gradually increases, but reaches a plateau. At 5% by volume, workability is poor and molding is difficult. And it was found that the most preferable range including the workability was 2.0-4.0% by volume in the case of the concrete of vibration molding.
[0048] [表 5]  [Table 5]
Figure imgf000017_0001
実施例 6
Figure imgf000017_0001
Example 6
[0049] 表 6の配合を用いて、金属繊維の添力卩量を変えてモルタル又はコンクリートを練り混 ぜ、遠心力成型供試体を作製し、実施例 1と同様の蒸気養生を行い、材齢 1曰のひ びわれが入る時点の外圧荷重を測定して、曲げ引張強度を算出した。なお、中欄は コンクリートの配合、上欄は比較用コンクリートの配合であり、下欄のモルタルの配合 は中欄のコンクリート配合力も粗骨材を抜いて lm 3に換算して表した。尚、表 6中の記 号はそれぞれ以下のものを表す。 [0049] Using the composition shown in Table 6, the mortar or concrete was kneaded while changing the amount of metal fiber added, and a centrifugal force molded specimen was prepared. Age 1 The external pressure load at the time of cracking was measured, and the bending tensile strength was calculated. Incidentally, the middle column the formulation of concrete, welan is formulated for comparative concrete, expressed in terms of concrete mixing power of the middle column the formulation of mortar under column also remove the coarse aggregate in lm 3. The symbols in Table 6 indicate the following.
Gmax :最大骨材寸法  Gmax: Maximum aggregate size
air:空 直  air : 空 直
sL :スランプ  sL: Slump
sZa :細骨材率 WZB:水結合材比 sZa: Fine aggregate ratio WZB: Water binder ratio
W:水  W: Water
C:セメント  C: cement
s:細骨材  s: Fine aggregate
G:粗骨材  G: Coarse aggregate
[0050] 遠心力成型供試体の作製は、全体を金属繊維の添加量を変えてモルタル又はコ ンクリートで一層成型したものと、外側 3cmを金属繊維無しのモルタル又はコンクリー トで成型した後、金属繊維の添加量を変えたモルタル又はコンクリートで内側 2cmを 二層成型したものを作製した。その結果を表 7に示した。  [0050] The specimens for centrifugal force molding were prepared by molding the whole with one layer of mortar or concrete with the added amount of metal fiber, and molding the outer 3cm with mortar or concrete without metal fiber, Two-layer molded mortar or concrete with 2 cm inside was prepared using mortar or concrete with added fiber. Table 7 shows the results.
[0051] [表 6]  [Table 6]
Gmax air sし s/a W/B 単 位 量 ( k g / m 3 ) Gmax air s and s / a W / B Unit amount (kg / m 3)
〔mm) C¾) (cm) (¾) (¾) W •C S G W AC2) SF FA20 I I-CS (Mm) C¾) (cm) (¾) (¾) WC S G W AC2) SF FA20 I I-CS
¾Π 3 1. 5 65 48. 7 28 168 ;600 799 850 12 0 . 0 0¾Π 3 1.5 65 48.7 28 168 ; 600 799 850 12 0.
13 1. 5 65 48. 1 28 168 500 782 850 10 48 29 1913 1.5 65 48.1 28 168 500 782 850 10 48 29 19
― 1. 6 35 - 20 234 984 953 - 18 94 56 38 ― 1.6 35-20 234 984 953-18 94 56 38
(註) WRA(2) : 高性能減水剤であり、 粉末状態で添加して練り混ぜる。 (Note) WRA (2): A high-performance water reducing agent, added in powder form and mixed.
1 1-CS は不溶性無水石育. P 1 1-CS is insoluble anhydrous stone. P
[0052] 表 7より判るように、金属繊維を 1. 0容積%添加すると曲げ引張強度が増加し、添 加量が多くなるほど、順次曲げ引張強度も増加していく。コンクリートの場合は流動性 の高いコンクリートに金属繊維を添カ卩しても、 3. 5容積0 /0ではコンクリートの延びが悪 くファイバーボールが内面に浮くため 3. 0容積%までが好ましい。 [0052] As can be seen from Table 7, when 1.0% by volume of metal fiber is added, the bending tensile strength increases, and as the amount of addition increases, the bending tensile strength also increases. In the case of concrete and添Ka卩metal fibers with high fluidity concrete, 3.5 volume 0/0 At extended is rather poor fiber balls of the concrete is preferably up to 0% by volume 3. To float on the inner surface.
[0053] モルタルの場合では 5. 0容積%を超えると成型できなくなり 5. 0容積0 /0以下が好ま しいことが判明した。また、ヒューム管を想定した場合は、管全体に金属繊維を配合し て成型するよりも、管厚の内側のみに金属繊維を配合して成型した方が曲げ引張強 度が高くなり、経済的であることが判明した。 [0053] In the case of mortar, if it exceeds 5.0% by volume, it becomes impossible to mold, and it has been found that 5.0 / 0 or less is preferable. In addition, when assuming a fume tube, it is more economical to mix and mold metal fibers only inside the tube thickness than to mold and mix metal fibers to the entire tube, because the bending tensile strength becomes higher. Turned out to be.
[0054] [表 7] 実験 金属線維の添加量 (外割容積% ) 曲 げ 引 張 強 度 成型法 [Table 7] Experiment Addition amount of metal fiber (outer volume%) Bending tensile strength Molding method
No. コ ン ク リ ー ト 中 モ ル タ ル 中 (N/mm2 )No. During concrete During molar (N / mm 2 )
6-1 0 管全体を成型 一 一層 1 3. 16-1 0 Mold entire tube 1 layer 1 3.1
6-2 1.0 管全体を成型 一 一層 1 6. 16-2 1.0 Mold entire tube 1 layer 1 6.1
6-3 1.5 管全体を成型 一 —層 1 9. 06-3 1.5 Molding the entire tube 1-layer 19.0
6-4 2.0 管全体を成型 - —層 2 2. 56-4 2.0 Molding the whole pipe--layer 2 2.5
6-5 2.5 管全体を成型 - 一層 2 7,. 66-5 2.5 Mold entire tube-layer 2 7 ,. 6
6-6 3.0 管全体を成型 ― —層 2 7. 56-6 3.0 Molding the whole pipe ― ―Layer 2 7.5
6-7 3.5 管全体を成型 - 一層 フアイバーボール6-7 3.5 Molding the Entire Tube-Single Layer Fiber Ball
6-8 ― 0 管全体を成型 —層 1 7. 06-8 ― 0 Molding of entire tube —Layer 1 7.0
6-9 一 1.0 管.垒 を成型 —層 2 1 . 06-9 One 1.0 Tube. Molding —Layer 2 1.0
6-10 - 1.5 管全体を成型 一層 2 4. 66-10-1.5 Mold entire tube Layer 2 4.6
6-11 一 2.0 管全体を成型 一層 2 8. 36-11 One 2.0 Molding the entire pipe Layer 2 8.3
6-12 - 3-0 黉全体を成型 —層 3 3. 26-12-3-0 黉 Molding the whole—Layer 3 3.2
6-13: ― 3.5 管全体を成型 —層 3 7. 26-13: ― 3.5 Molding the whole pipe —Layer 3 7.2
6-J4 一 4.0 管全体を成型 —層 4 0. 06-J4 I 4.0 Mold the entire tube —Layer 4 0.0
6-15 5.0 管全体を成型 一層 4 1. 76-15 5.0 Mold entire tube Layer 4 1.7
6-16 6.0 管全体を成型 一雇 成型不可6-16 6.0 Mold entire tube
6-17 1.0 内側を成型 二層 1 9. 86-17 1.0 Mold inside 2 layers 19.8
6-18 2.0 内側を成型 二層 2 5. 86-18 2.0 Molded inside 2 layers 2 5.8
6-19 3.0 内側を成型 二層 3 0. 16-19 3.0 Molded inside 2 layers 3 0.1
6-21 1.0 内側を成型 二層 2 4. 16-21 1.0 Mold inside 2 layers 2 4.1
6 - 22 2.0 内側を成型' 二層 3 2. 56-22 2.0 Molded inside '' Double layer 3 2.5
6-23 3.0 内側を成型 二層 3 6. 26-23 3.0 Molded inside 2 layers 3 6.2
6-24 4.0 内側を成型 二層 4 4. 56-24 4.0 Molded inside Double layer 4 4.5
6-25 0 管全体を成型 —層 8, 2 6-25 0 Molding of entire tube —Layers 8, 2
(註) ※;表 6中の※印のコンクリ一ト配合による比較例である 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。 本出願は、 2004年 3月 17日出願の日本特許出願 (特願 2004— 075718)に基づくもの であり、その内容はここに参照として取り込まれる。 (Note) *: This is a comparative example using a concrete formulation marked with * in Table 6. The present invention has been described in detail and with reference to specific embodiments, but without departing from the spirit and scope of the present invention. It will be apparent to those skilled in the art that various changes and modifications can be made. This application is based on Japanese Patent Application (No. 2004-075718) filed on March 17, 2004, the contents of which are incorporated herein by reference.
産業上の利用可能性 Industrial applicability
本発明により、練り上げたモルタルやコンクリートのフロー値が向上し、良好な作業 性が得られる。し力も、得られたモルタルやコンクリートは圧縮強度及び曲げ強度の 高い絶対値を有すると共に、圧縮強度に対して高い比率の曲げ強度が得られる。更 に、金属繊維を配合して補強すると、飛躍的に曲げ強度を高めることができ、土木建 築構造物やコンクリート二次製品を製造する上で経済的且つ有利な設計が可能にな る。  According to the present invention, the flow value of the kneaded mortar or concrete is improved, and good workability is obtained. As for the mortar and concrete, the obtained mortar and concrete have high absolute values of compressive strength and flexural strength, and also have a high ratio of flexural strength to compressive strength. Furthermore, if metal fibers are mixed and reinforced, the bending strength can be dramatically increased, and an economical and advantageous design for manufacturing civil engineering structures and concrete secondary products becomes possible.

Claims

請求の範囲 The scope of the claims
[1] シリカフュームと 20 μ m以下に分級したフライアッシュを配合してなるセメント混和材 であって、シリカフューム:分級したフライアッシュの配合割合が質量比で 95: 5— 10 : 90であるセメント混和材。  [1] A cement admixture comprising silica fume and fly ash classified to 20 μm or less, wherein the mixing ratio of silica fume: classified fly ash is 95: 5—10: 90 by mass. Wood.
[2] 更に石こうを配合してなる請求項 1記載のセメント混和材。  [2] The cement admixture according to claim 1, further comprising gypsum.
[3] セメント 100質量部に対して、請求項 1記載のセメント混和材を 1ないし 35質量部の 割合で配合してなるセメント組成物。  [3] A cement composition comprising 1 to 35 parts by mass of the cement admixture according to claim 1 with respect to 100 parts by mass of cement.
[4] セメント 100質量部に対して、更に無水物換算で 0. 5ないし 12質量部の石こうを配 合した請求項 3記載のセメント組成物。 [4] The cement composition according to claim 3, wherein 0.5 to 12 parts by mass of gypsum in terms of anhydride is further mixed with 100 parts by mass of the cement.
[5] 請求項 3又は 4記載のセメント組成物と、細骨材、減水剤及び練り混ぜ水を混合して なるモルタル。 [5] A mortar obtained by mixing the cement composition according to claim 3 or 4, a fine aggregate, a water reducing agent, and mixing water.
[6] 前記モルタル lm3に対して、外割で 1. 0ないし 6. 0容積%の金属繊維を添加してな る請求項 5記載のモルタル。 [6] The relative mortar lm 3, outer percentage at 1.0 to 6.0% by volume of metal fibers Ru claim 5 mortar according Na was added.
[7] 請求項 3又は 4記載のセメント組成物と、細骨材、粗骨材、減水剤及び練り混ぜ水を 混合してなるコンクリート。 [7] A concrete obtained by mixing the cement composition according to claim 3 or 4, and fine aggregate, coarse aggregate, a water reducing agent, and mixing water.
[8] 前記コンクリート lm3に対して、外割で 1. 0ないし 4. 0容積%の金属繊維を添加して なる請求項 7記載のコンクリート。 [8] the relative concrete lm 3, outer percentage by 1.0 to become the addition of 4.0% by volume of metal fibers according to claim 7, wherein the concrete.
[9] 請求項 5又は 6に記載のモルタルを硬化させて得られるセメント硬化体。 [9] A cement hardened body obtained by hardening the mortar according to claim 5 or 6.
[10] 請求項 7又は 8に記載のコンクリートを硬化させて得られるセメント硬化体。 [10] A hardened cement body obtained by hardening the concrete according to claim 7 or 8.
PCT/JP2005/004532 2004-03-17 2005-03-15 Cement admixture, cement composition, mortar and concrete WO2005087682A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006519418A JP4813355B2 (en) 2004-03-17 2005-03-15 Cement admixture, cement composition, mortar and concrete

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004075718 2004-03-17
JP2004-075718 2004-03-17

Publications (1)

Publication Number Publication Date
WO2005087682A1 true WO2005087682A1 (en) 2005-09-22

Family

ID=34975493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004532 WO2005087682A1 (en) 2004-03-17 2005-03-15 Cement admixture, cement composition, mortar and concrete

Country Status (6)

Country Link
JP (1) JP4813355B2 (en)
KR (1) KR20060123031A (en)
CN (1) CN1826298A (en)
MY (1) MY153230A (en)
TW (1) TWI336318B (en)
WO (1) WO2005087682A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162842A (en) * 2006-12-28 2008-07-17 Taiheiyo Material Kk High-strength admixture for mortar or concrete
JP2008195576A (en) * 2007-02-14 2008-08-28 Denki Kagaku Kogyo Kk Cement admixture, cement composition and cement concrete
JP2008239403A (en) * 2007-03-27 2008-10-09 Taiheiyo Cement Corp Hydraulic composition
JP2008247709A (en) * 2007-03-30 2008-10-16 Sumitomo Osaka Cement Co Ltd Centrifugally formed concrete product
KR101365659B1 (en) * 2013-12-12 2014-02-20 (주)영광엔지니어링건축사사무소 Ultra high strength concrete
JP2016060673A (en) * 2014-09-19 2016-04-25 株式会社Ihi Processing method of fly ash

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755424B1 (en) * 2006-08-08 2007-09-05 한국건설기술연구원 A method for preparing high-early-strength fiber reinforced cement composites and high-early-strength fiber reinforced cement composites preparing from the method
CN101578243A (en) * 2006-12-05 2009-11-11 太平洋水泥株式会社 Device for producing cement and production method
KR100807761B1 (en) * 2007-04-27 2008-02-28 주식회사 콘크리닉 Cement composition using alpha type calcined gypsum and constructing method thereof
KR102525169B1 (en) * 2021-10-21 2023-04-24 문보경 Cement strength enhancer and composion thereof
TWI822093B (en) * 2022-06-08 2023-11-11 國立宜蘭大學 Cement doped with reactive ultra-fine fly ash and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042642A (en) * 1990-04-17 1992-01-07 Shikoku Sogo Kenkyusho:Kk Cement composition for watertight concrete and production thereof
JPH06157115A (en) * 1992-05-27 1994-06-03 Showa Denko Kk Extrusion molding method of inorganic molded body
JP2001213654A (en) * 2000-01-31 2001-08-07 Taiheiyo Cement Corp Quick-setting mortar or concrete with ultra high strength

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638248A (en) * 1986-06-25 1988-01-14 四国電力株式会社 Quality improver for cement and concrete
JPH0649606B2 (en) * 1989-08-10 1994-06-29 大阪セメント株式会社 Cement composition
JPH10287455A (en) * 1997-04-09 1998-10-27 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP3765693B2 (en) * 1999-07-28 2006-04-12 電気化学工業株式会社 Low environmental impact type high strength concrete
JP2001220197A (en) * 2000-02-03 2001-08-14 Taiheiyo Cement Corp Cement composition
JP2002080259A (en) * 2000-09-08 2002-03-19 Taiheiyo Cement Corp Hydraulicity composition
JP2003012361A (en) * 2001-06-26 2003-01-15 Taiheiyo Cement Corp Instant stripping porous concrete compact

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042642A (en) * 1990-04-17 1992-01-07 Shikoku Sogo Kenkyusho:Kk Cement composition for watertight concrete and production thereof
JPH06157115A (en) * 1992-05-27 1994-06-03 Showa Denko Kk Extrusion molding method of inorganic molded body
JP2001213654A (en) * 2000-01-31 2001-08-07 Taiheiyo Cement Corp Quick-setting mortar or concrete with ultra high strength

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162842A (en) * 2006-12-28 2008-07-17 Taiheiyo Material Kk High-strength admixture for mortar or concrete
JP2008195576A (en) * 2007-02-14 2008-08-28 Denki Kagaku Kogyo Kk Cement admixture, cement composition and cement concrete
JP2008239403A (en) * 2007-03-27 2008-10-09 Taiheiyo Cement Corp Hydraulic composition
JP2008247709A (en) * 2007-03-30 2008-10-16 Sumitomo Osaka Cement Co Ltd Centrifugally formed concrete product
KR101365659B1 (en) * 2013-12-12 2014-02-20 (주)영광엔지니어링건축사사무소 Ultra high strength concrete
JP2016060673A (en) * 2014-09-19 2016-04-25 株式会社Ihi Processing method of fly ash

Also Published As

Publication number Publication date
MY153230A (en) 2015-01-29
JPWO2005087682A1 (en) 2007-08-09
JP4813355B2 (en) 2011-11-09
CN1826298A (en) 2006-08-30
KR20060123031A (en) 2006-12-01
TWI336318B (en) 2011-01-21
TW200602283A (en) 2006-01-16

Similar Documents

Publication Publication Date Title
WO2005087682A1 (en) Cement admixture, cement composition, mortar and concrete
JP4558569B2 (en) Ultra high strength fiber reinforced cement composition, ultra high strength fiber reinforced mortar or concrete, and ultra high strength cement admixture
JP4607161B2 (en) Low shrinkage ultra high strength fiber reinforced cement composition, low shrinkage ultra high strength fiber reinforced mortar or concrete, and low shrinkage ultra high strength cement admixture
Nazari et al. Benefits of Fe2O3 nanoparticles in concrete mixing matrix
Nazari et al. Assessment of the effects of the cement paste composite in presence TiO2 nanoparticles
JP5165873B2 (en) Reinforcement joint filling method using filler for reinforcing steel joints
Nazari et al. RETRACTED: Assessment of the effects of Fe2O3 nanoparticles on water permeability, workability, and setting time of concrete
JP5713540B2 (en) Spraying method of ultra high strength fiber reinforced mortar and cured mortar
EP3307691A1 (en) Concrete mix designs using a plurality of reinforcement fibers systems
Nazari et al. An investigation on the Strength and workability of cement based concrete performance by using ZrO2 nanoparticles
JP5649780B2 (en) Method for producing concrete composition and concrete molded body
Soleymani Assessments of the effects of limewater on water permeability of TiO2 nanoparticles binary blended palm oil clinker aggregate-based concrete
JP2007210842A (en) Drying shrinkage-reducing agent and cement hardened product using it
JP2581803B2 (en) Cement admixture and cement composition
JP3672518B2 (en) Cement admixture, cement composition and concrete using the same
Elbasir et al. Effect of addition silica fume to the workability, strength and permeability of concrete
JP2001220201A (en) Fiber reinforced concrete
JP3150169B2 (en) Polymer cement composition
JPH0328146A (en) Cement admixture and cement composition
JP4620555B2 (en) Molded bodies that receive bending moments made of mortar or concrete
JP5888586B2 (en) Method for producing hardened cement
Soleymani Assessments of the effects of limewater on water permeability of TiO2 nanoparticles binary blended limestone aggregate-based concrete
Abubaker et al. The Performance of Concrete Containing Slag as a Partial Replacement for Cement
JP5717001B2 (en) Method for producing hardened cement
Karakuzu et al. Investigation of anionic group characteristics of PCEs on the behavior of fly ash cementitious systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006519418

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020057018239

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20058001022

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020057018239

Country of ref document: KR

122 Ep: pct application non-entry in european phase