JP2009065649A - Circuit for detecting power supply voltage drop - Google Patents

Circuit for detecting power supply voltage drop Download PDF

Info

Publication number
JP2009065649A
JP2009065649A JP2008201662A JP2008201662A JP2009065649A JP 2009065649 A JP2009065649 A JP 2009065649A JP 2008201662 A JP2008201662 A JP 2008201662A JP 2008201662 A JP2008201662 A JP 2008201662A JP 2009065649 A JP2009065649 A JP 2009065649A
Authority
JP
Japan
Prior art keywords
voltage
power supply
circuit
transistor
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008201662A
Other languages
Japanese (ja)
Other versions
JP5203086B2 (en
Inventor
Fumiyasu Utsunomiya
文靖 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2008201662A priority Critical patent/JP5203086B2/en
Priority to KR1020080077490A priority patent/KR101444465B1/en
Priority to CN2008101350007A priority patent/CN101363878B/en
Priority to US12/188,766 priority patent/US7868622B2/en
Priority to TW097130437A priority patent/TWI421508B/en
Publication of JP2009065649A publication Critical patent/JP2009065649A/en
Application granted granted Critical
Publication of JP5203086B2 publication Critical patent/JP5203086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/22Modifications for ensuring a predetermined initial state when the supply voltage has been applied
    • H03K17/223Modifications for ensuring a predetermined initial state when the supply voltage has been applied in field-effect transistor switches
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Electronic Switches (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit for detecting power supply voltage drop, which has a small circuit scale. <P>SOLUTION: An NMOS transistor 12 generates a source voltage based on a voltage obtained by subtracting an absolute value of a threshold voltage and an overdrive voltage from a power supply voltage with reference to the power supply voltage. An NMOS transistor 17 is turned on/off on the basis of the source voltage of the NMOS transistor 12. A PMOS transistor 15 generates a source voltage based on a voltage obtained by adding an absolute value of a threshold voltage and an overdrive voltage to a ground voltage with reference to the ground voltage. A PMOS transistor 19 is turned on/off on the basis of the source voltage of the PMOS transistor 15. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電源電圧の低下を検出する電源電圧低下検出回路に関する。   The present invention relates to a power supply voltage drop detection circuit that detects a drop in power supply voltage.

一般的に、半導体装置は、電源電圧の低下を検出する電源電圧低下検出回路を搭載している。この電源電圧低下検出回路が、電源電圧が最低動作電圧未満になったこと検出すると、半導体装置は、誤動作する回路または電源電圧低下検出回路以外の全ての回路をシャットダウンすることにより、誤動作しなくなる。   Generally, a semiconductor device has a power supply voltage drop detection circuit that detects a drop in power supply voltage. When this power supply voltage drop detection circuit detects that the power supply voltage has become lower than the minimum operating voltage, the semiconductor device does not malfunction by shutting down all the circuits other than the malfunctioning circuit or the power supply voltage drop detection circuit.

ここで、半導体装置の最低動作電圧について説明する。   Here, the minimum operating voltage of the semiconductor device will be described.

図5は、半導体装置の要素回路の例を示す回路図である。図5の回路は、NMOSトランジスタ31〜34によって構成されるNMOSカスコードタイプのカレントミラー回路である。この回路の最低動作電圧は、NMOSトランジスタ31の閾値電圧の絶対値及びオーバードライブ電圧の合計とNMOSトランジスタ32の閾値電圧の絶対値及びオーバードライブ電圧の合計との和電圧である。   FIG. 5 is a circuit diagram illustrating an example of an element circuit of a semiconductor device. The circuit shown in FIG. 5 is an NMOS cascode type current mirror circuit composed of NMOS transistors 31-34. The minimum operating voltage of this circuit is the sum voltage of the sum of the absolute value and overdrive voltage of the threshold voltage of the NMOS transistor 31 and the sum of the absolute value and overdrive voltage of the threshold voltage of the NMOS transistor 32.

図6は、半導体装置の他の要素回路の例を示す回路図である。図6の回路は、PMOSトランジスタ41〜44によって構成されるPMOSカスコードタイプのカレントミラー回路である。この回路の最低動作電圧は、PMOSトランジスタ41の閾値電圧の絶対値及びオーバードライブ電圧の合計とPMOSトランジスタ42の閾値電圧の絶対値及びオーバードライブ電圧の合計との和電圧である。   FIG. 6 is a circuit diagram illustrating an example of another element circuit of the semiconductor device. The circuit shown in FIG. 6 is a PMOS cascode type current mirror circuit composed of PMOS transistors 41 to 44. The minimum operating voltage of this circuit is the sum voltage of the sum of the absolute value and overdrive voltage of the threshold voltage of the PMOS transistor 41 and the sum of the absolute value and overdrive voltage of the threshold voltage of the PMOS transistor 42.

図7は、半導体装置の他の要素回路の例を示す回路図である。図7の回路は、PMOSトランジスタ51、PMOSトランジスタ55〜56、NMOSトランジスタ52、NMOSトランジスタ54及び抵抗53によって構成される定電流回路である。この回路を動作させる信号がPMOSトランジスタ55のゲートに入力し、PMOSトランジスタ55がオンすると、この回路は動作する。この回路の最低動作電圧は、NMOSトランジスタ52の閾値電圧の絶対値及びオーバードライブ電圧の合計とNMOSトランジスタ54の閾値電圧の絶対値及びオーバードライブ電圧の合計との和電圧、及び、PMOSトランジスタ55の閾値電圧の絶対値及びオーバードライブ電圧の合計とPMOSトランジスタ56の閾値電圧の絶対値及びオーバードライブ電圧の合計との和電圧における高い方の電圧である。   FIG. 7 is a circuit diagram illustrating an example of another element circuit of the semiconductor device. The circuit in FIG. 7 is a constant current circuit including a PMOS transistor 51, PMOS transistors 55 to 56, an NMOS transistor 52, an NMOS transistor 54, and a resistor 53. When a signal for operating this circuit is input to the gate of the PMOS transistor 55 and the PMOS transistor 55 is turned on, this circuit operates. The minimum operating voltage of this circuit is the sum of the absolute value of the threshold voltage and the overdrive voltage of the NMOS transistor 52 and the sum of the absolute value and overdrive voltage of the NMOS transistor 54, and the PMOS transistor 55. The sum of the absolute value of the threshold voltage and the overdrive voltage and the sum of the absolute value of the threshold voltage and the sum of the overdrive voltage of the PMOS transistor 56 is the higher voltage.

半導体装置は、一般的に、上記の要素回路を用いることが多いので、半導体装置の最低動作電圧は、半導体装置内の最も和電圧が高い2個のNMOSトランジスタにおける、一のNMOSトランジスタの閾値電圧の絶対値及びオーバードライブ電圧の合計と他のNMOSトランジスタの閾値電圧の絶対値及びオーバードライブ電圧の合計との和電圧、及び、半導体装置内の最も和電圧が高い2個のPMOSトランジスタにおける、一のPMOSトランジスタの閾値電圧の絶対値及びオーバードライブ電圧の合計と他のPMOSトランジスタの閾値電圧の絶対値及びオーバードライブ電圧の合計との和電圧における高い方の電圧である。   Since a semiconductor device generally uses the above element circuit in many cases, the minimum operating voltage of the semiconductor device is the threshold voltage of one NMOS transistor in two NMOS transistors having the highest sum voltage in the semiconductor device. And the sum of the absolute value and overdrive voltage of the other NMOS transistor and the sum of the absolute value and overdrive voltage of the threshold voltages of the other NMOS transistors, and the two PMOS transistors having the highest sum voltage in the semiconductor device. This is the higher voltage in the sum voltage of the sum of the absolute value and overdrive voltage of the threshold voltage of the PMOS transistor and the sum of the absolute value and overdrive voltage of the threshold voltage of the other PMOS transistors.

従来の電源電圧低下検出回路について説明する。図8は、従来の電源電圧低下検出回路を示す図である。   A conventional power supply voltage drop detection circuit will be described. FIG. 8 is a diagram showing a conventional power supply voltage drop detection circuit.

従来の電源電圧低下検出回路は、基準電圧を出力する基準電圧回路72と、電源71の電源電圧を抵抗75と抵抗76とで分圧して分圧電圧を出力する分圧回路73と、基準電圧と分圧電圧とを比較して電源電圧の低下を検出する差動増幅回路74と、差動増幅回路74の出力端子をプルアップするプルアップ抵抗77と、を備えている(例えば、特許文献1参照)。
特開2005−278056号公報(図4)
A conventional power supply voltage drop detection circuit includes a reference voltage circuit 72 that outputs a reference voltage, a voltage dividing circuit 73 that outputs a divided voltage by dividing the power supply voltage of the power supply 71 by a resistor 75 and a resistor 76, and a reference voltage. And a divided voltage and a differential amplifier circuit 74 that detects a drop in power supply voltage, and a pull-up resistor 77 that pulls up the output terminal of the differential amplifier circuit 74 (see, for example, Patent Documents). 1).
Japanese Patent Laying-Open No. 2005-278056 (FIG. 4)

しかし、特許文献1によって開示された回路では、基準電圧回路、分圧回路及び差動増幅回路が必要になり、回路規模が大きくなってしまう。よって、その分、消費電流が多くなってしまう。   However, the circuit disclosed in Patent Document 1 requires a reference voltage circuit, a voltage dividing circuit, and a differential amplifier circuit, which increases the circuit scale. Therefore, current consumption increases accordingly.

本発明は、上記課題に鑑みてなされ、回路規模が小さい電源電圧低下検出回路を提供する。   The present invention has been made in view of the above problems, and provides a power supply voltage drop detection circuit having a small circuit scale.

本発明は、上記課題を解決するため、電源電圧の低下を検出する電源電圧低下検出回路において、第一導電型であり、前記電源電圧に基づき、前記電源電圧から閾値電圧の絶対値及びオーバードライブ電圧を減算した電圧に基づいたソース電圧を出力する第一トランジスタと、前記第一導電型であり、前記第一トランジスタのソース電圧に基づき、オンオフする第二トランジスタと、第二導電型であり、接地電圧に基づき、前記接地電圧に閾値電圧の絶対値及びオーバードライブ電圧を加算した電圧に基づいたソース電圧を出力する第三トランジスタと、前記第二導電型であり、前記第三トランジスタのソース電圧に基づき、オンオフする第四トランジスタと、前記第一トランジスタに電流を供給する第一定電流回路と、前記第二トランジスタ及び前記第三トランジスタに電流を供給する第二定電流回路と、前記第四トランジスタに電流を供給する第三定電流回路と、を備えていることを特徴とする電源電圧低下検出回路を提供する。   In order to solve the above-mentioned problem, the present invention provides a power supply voltage drop detection circuit for detecting a drop in power supply voltage, which is of the first conductivity type, and based on the power supply voltage, an absolute value of threshold voltage and an overdrive from the power supply voltage. A first transistor that outputs a source voltage based on a voltage obtained by subtracting a voltage; the first conductivity type; a second transistor that turns on and off based on a source voltage of the first transistor; and a second conductivity type. A third transistor that outputs a source voltage based on a ground voltage based on a voltage obtained by adding an absolute value of a threshold voltage and an overdrive voltage to the ground voltage; and a source voltage of the third transistor that is of the second conductivity type. A fourth transistor that is turned on and off, a first constant current circuit that supplies current to the first transistor, and the second transistor. And a second constant current circuit for supplying current to the third transistor, and a third constant current circuit for supplying current to the fourth transistor. .

本発明の電源電圧低下検出回路は、基準電圧回路、分圧回路及び差動増幅回路が不必要になり、回路規模が小さくなる。よって、その分、消費電流が少なくなる。   In the power supply voltage drop detection circuit of the present invention, the reference voltage circuit, the voltage dividing circuit, and the differential amplifier circuit are unnecessary, and the circuit scale is reduced. Therefore, the current consumption is reduced accordingly.

以下、本発明の電源電圧低下検出回路の実施形態を、図面を参照して説明する。   Embodiments of a power supply voltage drop detection circuit according to the present invention will be described below with reference to the drawings.

図1は、本発明の電源電圧低下検出回路を示す回路図である。   FIG. 1 is a circuit diagram showing a power supply voltage drop detection circuit according to the present invention.

本発明の電源電圧低下検出回路は、電源端子1、接地端子2及び出力端子3を備えている。また、電源電圧低下検出回路は、定電流回路4〜6を備えている。また、電源電圧低下検出回路は、NMOSトランジスタ12、NMOSトランジスタ17、PMOSトランジスタ15及びPMOSトランジスタ19を備えている。   The power supply voltage drop detection circuit of the present invention includes a power supply terminal 1, a ground terminal 2, and an output terminal 3. The power supply voltage drop detection circuit includes constant current circuits 4 to 6. The power supply voltage drop detection circuit includes an NMOS transistor 12, an NMOS transistor 17, a PMOS transistor 15, and a PMOS transistor 19.

定電流回路4がNMOSトランジスタ12のソースと接地端子2との間に設けられている。定電流回路5が電源端子1とPMOSトランジスタ15のソースとの間に設けられている。定電流回路6が出力端子3と接地端子2との間に設けられている。NMOSトランジスタ12のゲート及びドレインは電源端子1に接続され、バックゲートは接地端子2に接続されている。NMOSトランジスタ17のゲートはNMOSトランジスタ12のソースに接続され、ソース及びバックゲートは接地端子2に接続され、ドレインはPMOSトランジスタ15のドレインに接続されている。PMOSトランジスタ15のゲートは接地端子2に接続され、バックゲートは電源端子1に接続されている。PMOSトランジスタ19のゲートはPMOSトランジスタ15のソースに接続され、ソース及びバックゲートは電源端子1に接続され、ドレインは出力端子3に接続されている。   A constant current circuit 4 is provided between the source of the NMOS transistor 12 and the ground terminal 2. A constant current circuit 5 is provided between the power supply terminal 1 and the source of the PMOS transistor 15. A constant current circuit 6 is provided between the output terminal 3 and the ground terminal 2. The gate and drain of the NMOS transistor 12 are connected to the power supply terminal 1, and the back gate is connected to the ground terminal 2. The gate of the NMOS transistor 17 is connected to the source of the NMOS transistor 12, the source and back gate are connected to the ground terminal 2, and the drain is connected to the drain of the PMOS transistor 15. The PMOS transistor 15 has a gate connected to the ground terminal 2 and a back gate connected to the power supply terminal 1. The gate of the PMOS transistor 19 is connected to the source of the PMOS transistor 15, the source and back gate are connected to the power supply terminal 1, and the drain is connected to the output terminal 3.

NMOSトランジスタ12及びNMOSトランジスタ17について、NMOSトランジスタ12の閾値電圧の絶対値及びオーバードライブ電圧の合計とNMOSトランジスタ17の閾値電圧の絶対値及びオーバードライブ電圧の合計との和電圧は、半導体装置内の所定の2個のNMOSトランジスタにおける一のNMOSトランジスタの閾値電圧の絶対値及びオーバードライブ電圧の合計と他のNMOSトランジスタの閾値電圧の絶対値及びオーバードライブ電圧の合計との和電圧よりも、高くなっている。PMOSトランジスタ15及びPMOSトランジスタ19についても、同様である。   Regarding the NMOS transistor 12 and the NMOS transistor 17, the sum of the absolute value of the threshold voltage and the overdrive voltage of the NMOS transistor 12 and the sum of the absolute value of the threshold voltage and the overdrive voltage of the NMOS transistor 17 is The sum of the absolute value and overdrive voltage of the threshold voltage of one NMOS transistor and the sum of the absolute value and overdrive voltage of the threshold voltages of the other NMOS transistors in a given two NMOS transistors is higher. ing. The same applies to the PMOS transistor 15 and the PMOS transistor 19.

また、定電流回路4は、NMOSトランジスタ12に電流を供給する。定電流回路5は、NMOSトランジスタ17及びPMOSトランジスタ15に電流を供給する。定電流回路6は、PMOSトランジスタ19に電流を供給する。NMOSトランジスタ12は、電源電圧に基づき、電源電圧から閾値電圧の絶対値及びオーバードライブ電圧を減算した電圧に基づいたソース電圧を出力する。このソース電圧に基づき、NMOSトランジスタ17は、オンオフする。PMOSトランジスタ15は、接地電圧に基づき、接地電圧に閾値電圧の絶対値及びオーバードライブ電圧を加算した電圧に基づいたソース電圧を出力する。このソース電圧に基づき、PMOSトランジスタ19は、オンオフする。   The constant current circuit 4 supplies current to the NMOS transistor 12. The constant current circuit 5 supplies current to the NMOS transistor 17 and the PMOS transistor 15. The constant current circuit 6 supplies a current to the PMOS transistor 19. The NMOS transistor 12 outputs a source voltage based on a voltage obtained by subtracting the absolute value of the threshold voltage and the overdrive voltage from the power supply voltage based on the power supply voltage. Based on this source voltage, the NMOS transistor 17 is turned on and off. The PMOS transistor 15 outputs a source voltage based on a voltage obtained by adding the absolute value of the threshold voltage and the overdrive voltage to the ground voltage based on the ground voltage. Based on this source voltage, the PMOS transistor 19 is turned on and off.

次に、本発明の電源電圧低下検出回路の動作について説明する。   Next, the operation of the power supply voltage drop detection circuit of the present invention will be described.

ここで、NMOSトランジスタの閾値電圧の絶対値をVtnとし、PMOSトランジスタの閾値電圧の絶対値をVtpとする。   Here, the absolute value of the threshold voltage of the NMOS transistor is Vtn, and the absolute value of the threshold voltage of the PMOS transistor is Vtp.

[Vtp>Vtnの時(NMOSトランジスタがPMOSトランジスタよりもオフしにくい時)における電源電圧の低下検出動作]
電源電圧が低くなっていくと、NMOSトランジスタ12のゲート電圧が低くなっていき、NMOSトランジスタ12がオフしていき、NMOSトランジスタ17のゲート電圧も低くなっていき、NMOSトランジスタ17もオフしていく。よって、PMOSトランジスタ19のゲート電圧が高くなっていき、PMOSトランジスタ19はオフしていく。電源電圧が2Vtp未満になってしまうと、NMOSトランジスタ12及びNMOSトランジスタ17はまだオンしているが、PMOSトランジスタ15によってPMOSトランジスタ19のゲート電圧が完全にロウにならず、PMOSトランジスタ19はオフする。よって、電源電圧が2Vtp未満になってしまうと、つまり、電源電圧が半導体装置の最低動作電圧未満になると、電源電圧低下検出回路はロウ信号を検出信号として出力端子3から外部に出力する。
[Operation for detecting a drop in power supply voltage when Vtp> Vtn (when the NMOS transistor is more difficult to turn off than the PMOS transistor)]
As the power supply voltage is lowered, the gate voltage of the NMOS transistor 12 is lowered, the NMOS transistor 12 is turned off, the gate voltage of the NMOS transistor 17 is lowered, and the NMOS transistor 17 is also turned off. . Therefore, the gate voltage of the PMOS transistor 19 increases and the PMOS transistor 19 turns off. When the power supply voltage becomes less than 2 Vtp, the NMOS transistor 12 and the NMOS transistor 17 are still on, but the gate voltage of the PMOS transistor 19 is not completely lowered by the PMOS transistor 15 and the PMOS transistor 19 is turned off. . Therefore, when the power supply voltage becomes lower than 2 Vtp, that is, when the power supply voltage becomes lower than the lowest operating voltage of the semiconductor device, the power supply voltage drop detection circuit outputs a low signal from the output terminal 3 to the outside as a detection signal.

[Vtp<Vtnの時(PMOSトランジスタがNMOSトランジスタよりもオフしにくい時)における電源電圧の低下検出動作]
電源電圧が低くなっていき、電源電圧が2Vtn未満になってしまうと、NMOSトランジスタ12はまだオンしているが、定電流回路4によってNMOSトランジスタ17のゲート電圧が完全にハイにならず、NMOSトランジスタ17はオフし、PMOSトランジスタ19のゲート電圧がハイになり、PMOSトランジスタ19もオフする。よって、電源電圧が2Vtn未満になってしまうと、つまり、電源電圧が半導体装置の最低動作電圧未満になると、電源電圧低下検出回路はロウ信号を検出信号として出力端子3から外部に出力する。
[Operation for detecting a drop in power supply voltage when Vtp <Vtn (when the PMOS transistor is less likely to be turned off than the NMOS transistor)]
When the power supply voltage is lowered and the power supply voltage becomes less than 2 Vtn, the NMOS transistor 12 is still turned on, but the gate voltage of the NMOS transistor 17 is not completely raised by the constant current circuit 4, and the NMOS transistor The transistor 17 is turned off, the gate voltage of the PMOS transistor 19 becomes high, and the PMOS transistor 19 is also turned off. Therefore, when the power supply voltage becomes lower than 2 Vtn, that is, when the power supply voltage becomes lower than the lowest operating voltage of the semiconductor device, the power supply voltage drop detection circuit outputs a low signal from the output terminal 3 to the outside as a detection signal.

[Vtp>Vtn(NMOSトランジスタがPMOSトランジスタよりもオンしやすい時)の時における電源電圧の低下検出解除動作]
電源電圧が2Vtp及び2Vtnの両方よりも低くなっていて、その後、電源電圧が高くなっていくと、NMOSトランジスタ12のゲート電圧が高くなっていき、NMOSトランジスタ12がオンしていき、NMOSトランジスタ17のゲート電圧も高くなっていき、NMOSトランジスタ17もオンしていく。よって、PMOSトランジスタ19のゲート電圧が低くなっていき、PMOSトランジスタ19もオンしていく。電源電圧が2Vtn以上になると、NMOSトランジスタ12及びNMOSトランジスタ17はオンするが、PMOSトランジスタ15によってPMOSトランジスタ19のゲート電圧が完全にロウにならず、PMOSトランジスタ19はまだオフしている。電源電圧が2Vtp以上になると、NMOSトランジスタ12及びNMOSトランジスタ17はすでにオンしていて、PMOSトランジスタ19のゲート電圧がロウになり、PMOSトランジスタ19もオンする。よって、電源電圧が2Vtp以上になると、つまり、電源電圧が半導体装置の最低動作電圧以上になると、電源電圧低下検出回路はハイ信号を検出信号として出力端子3から外部に出力する。
[Operation of detecting a decrease in power supply voltage drop when Vtp> Vtn (when the NMOS transistor is easier to turn on than the PMOS transistor)]
When the power supply voltage is lower than both 2Vtp and 2Vtn, and then the power supply voltage increases, the gate voltage of the NMOS transistor 12 increases, the NMOS transistor 12 turns on, and the NMOS transistor 17 As the gate voltage increases, the NMOS transistor 17 also turns on. Therefore, the gate voltage of the PMOS transistor 19 is lowered and the PMOS transistor 19 is also turned on. When the power supply voltage becomes 2 Vtn or more, the NMOS transistor 12 and the NMOS transistor 17 are turned on, but the gate voltage of the PMOS transistor 19 is not completely lowered by the PMOS transistor 15 and the PMOS transistor 19 is still turned off. When the power supply voltage becomes 2 Vtp or more, the NMOS transistor 12 and the NMOS transistor 17 are already turned on, the gate voltage of the PMOS transistor 19 becomes low, and the PMOS transistor 19 is also turned on. Therefore, when the power supply voltage becomes 2 Vtp or higher, that is, when the power supply voltage becomes higher than the lowest operating voltage of the semiconductor device, the power supply voltage drop detection circuit outputs a high signal as a detection signal from the output terminal 3 to the outside.

[Vtp<Vtnの時(PMOSトランジスタがNMOSトランジスタよりもオンしやすい時)における電源電圧の低下検出解除動作]
電源電圧が2Vtp及び2Vtnの両方よりも低くなっていて、その後、電源電圧が高くなっていき、電源電圧が2Vtn以上になると、NMOSトランジスタ12及びNMOSトランジスタ17はオンし、PMOSトランジスタ19のゲート電圧がロウになり、PMOSトランジスタ19もオンする。よって、電源電圧が2Vtn以上になると、つまり、電源電圧が半導体装置の最低動作電圧以上になると、電源電圧低下検出回路はハイ信号を検出信号として出力端子3から外部に出力する。
[When Vtp <Vtn (when the PMOS transistor is easier to turn on than the NMOS transistor), the power supply voltage drop detection canceling operation]
When the power supply voltage is lower than both 2Vtp and 2Vtn, and then the power supply voltage increases and the power supply voltage becomes 2Vtn or more, the NMOS transistor 12 and the NMOS transistor 17 are turned on, and the gate voltage of the PMOS transistor 19 Becomes low, and the PMOS transistor 19 is also turned on. Therefore, when the power supply voltage becomes 2 Vtn or higher, that is, when the power supply voltage becomes higher than the minimum operating voltage of the semiconductor device, the power supply voltage drop detection circuit outputs a high signal as a detection signal from the output terminal 3 to the outside.

次に、本発明の電源電圧低下検出回路の定電流回路について説明する。図2は、本発明の電源電圧低下検出回路の定電流回路の一具体例を示す回路図である。   Next, the constant current circuit of the power supply voltage drop detection circuit of the present invention will be described. FIG. 2 is a circuit diagram showing a specific example of the constant current circuit of the power supply voltage drop detection circuit of the present invention.

定電流回路4は、例えば、デプレッションNMOSトランジスタ11によって実現される。デプレッションNMOSトランジスタ11のゲート、ソース及びバックゲートは接地端子2に接続され、ドレインはNMOSトランジスタ11のソースに接続されている。デプレッションNMOSトランジスタ11のドレインは、電流をNMOSトランジスタ12のソースから引き抜く。   The constant current circuit 4 is realized by a depletion NMOS transistor 11, for example. The gate, source, and back gate of the depletion NMOS transistor 11 are connected to the ground terminal 2, and the drain is connected to the source of the NMOS transistor 11. The drain of the depletion NMOS transistor 11 draws current from the source of the NMOS transistor 12.

定電流回路5は、例えば、デプレッションNMOSトランジスタ11及びPMOSトランジスタ13〜14によって実現される。PMOSトランジスタ13のゲート及びドレインはNMOSトランジスタ12のドレインに接続され、ソース及びバックゲートは電源端子1に接続されている。PMOSトランジスタ14のゲートはPMOSトランジスタ13のゲートに接続され、ソース及びバックゲートは電源端子1に接続され、ドレインはPMOSトランジスタ15のソースに接続されている。PMOSトランジスタ14のドレインは、定電流回路4の電流に基づいた電流をPMOSトランジスタ15のソースに流す。   The constant current circuit 5 is realized by, for example, a depletion NMOS transistor 11 and PMOS transistors 13 to 14. The gate and drain of the PMOS transistor 13 are connected to the drain of the NMOS transistor 12, and the source and back gate are connected to the power supply terminal 1. The gate of the PMOS transistor 14 is connected to the gate of the PMOS transistor 13, the source and back gate are connected to the power supply terminal 1, and the drain is connected to the source of the PMOS transistor 15. The drain of the PMOS transistor 14 supplies a current based on the current of the constant current circuit 4 to the source of the PMOS transistor 15.

定電流回路6は、例えば、デプレッションNMOSトランジスタ11、PMOSトランジスタ13〜14、NMOSトランジスタ16及びNMOSトランジスタ18によって実現される。NMOSトランジスタ16のゲート及びドレインはPMOSトランジスタ15のドレインに接続され、ソースはNMOSトランジスタ17のドレインに接続され、バックゲートは接地端子2に接続されている。NMOSトランジスタ18のゲートはNMOSトランジスタ16のゲートに接続され、ソース及びバックゲートは接地端子2に接続され、ドレインはPMOSトランジスタ19のドレインに接続されている。NMOSトランジスタ18のドレインは、定電流回路4の電流に基づいた電流をPMOSトランジスタ19のドレインから引き抜く。   The constant current circuit 6 is realized by, for example, a depletion NMOS transistor 11, PMOS transistors 13 to 14, an NMOS transistor 16, and an NMOS transistor 18. The gate and drain of the NMOS transistor 16 are connected to the drain of the PMOS transistor 15, the source is connected to the drain of the NMOS transistor 17, and the back gate is connected to the ground terminal 2. The gate of the NMOS transistor 18 is connected to the gate of the NMOS transistor 16, the source and back gate are connected to the ground terminal 2, and the drain is connected to the drain of the PMOS transistor 19. The drain of the NMOS transistor 18 extracts a current based on the current of the constant current circuit 4 from the drain of the PMOS transistor 19.

以上説明したように、本発明の電源電圧低下検出回路は、基準電圧回路、分圧回路及び差動増幅回路が不必要になり、回路規模が小さくなる。従って、消費電流も少なくなる。   As described above, the power supply voltage drop detection circuit according to the present invention eliminates the need for the reference voltage circuit, the voltage dividing circuit, and the differential amplifier circuit, thereby reducing the circuit scale. Therefore, current consumption is reduced.

また、基準電圧のばらつきを補償するために、分圧回路の抵抗トリミングが必要であったが、トリミングが不必要になる。従って、製造工程が減るので、製造コストが安くなる。   Further, in order to compensate for variations in the reference voltage, resistance trimming of the voltage dividing circuit is necessary, but trimming is unnecessary. Therefore, the manufacturing cost is reduced because the manufacturing process is reduced.

また、PMOSトランジスタとNMOSトランジスタの動作の関係がいずれであっても、電源電圧が半導体装置の最低動作電圧未満になると、電源電圧低下検出回路はロウ信号を検出信号として出力端子3から外部に出力するので、半導体装置は誤動作しなくなる。   In addition, regardless of the operation relationship between the PMOS transistor and the NMOS transistor, when the power supply voltage becomes lower than the minimum operating voltage of the semiconductor device, the power supply voltage drop detection circuit outputs a low signal as a detection signal from the output terminal 3 to the outside. Therefore, the semiconductor device does not malfunction.

なお、図1及び図2におけるNMOSトランジスタをPMOSトランジスタに変更してPMOSトランジスタをNMOSトランジスタに変更してもよい。   The NMOS transistor in FIGS. 1 and 2 may be changed to a PMOS transistor, and the PMOS transistor may be changed to an NMOS transistor.

次に、本発明の他の実施例の電源電圧低下検出回路を、図面を参照して説明する。   Next, a power supply voltage drop detection circuit according to another embodiment of the present invention will be described with reference to the drawings.

図3は、本発明の他の実施例の電源電圧低下検出回路を示す回路図である。図1の電源電圧低下検出回路との差において、定電流回路4は定電流回路7に変更され、定電流回路5は定電流回路8に変更され、定電流回路6は定電流回路9に変更されている。   FIG. 3 is a circuit diagram showing a power supply voltage drop detection circuit according to another embodiment of the present invention. 1, the constant current circuit 4 is changed to a constant current circuit 7, the constant current circuit 5 is changed to a constant current circuit 8, and the constant current circuit 6 is changed to a constant current circuit 9. Has been.

図4は、本発明の他の実施例の電源電圧低下検出回路の定電流回路の一具体例を示す回路図である。図2の電源電圧低下検出回路との差において、NMOSトランジスタ12はPMOSトランジスタ22に変更され、NMOSトランジスタ17はPMOSトランジスタ27に変更され、PMOSトランジスタ15はNMOSトランジスタ25に変更され、PMOSトランジスタ19はNMOSトランジスタ29に変更されている。ここで、デプレッションNMOSトランジスタ11はデプレッションNMOSトランジスタ21に変更され、PMOSトランジスタ13はNMOSトランジスタ23に変更され、PMOSトランジスタ14はNMOSトランジスタ24に変更され、NMOSトランジスタ16はPMOSトランジスタ26に変更され、NMOSトランジスタ18はPMOSトランジスタ28に変更されている。   FIG. 4 is a circuit diagram showing a specific example of a constant current circuit of a power supply voltage drop detection circuit according to another embodiment of the present invention. 2, the NMOS transistor 12 is changed to the PMOS transistor 22, the NMOS transistor 17 is changed to the PMOS transistor 27, the PMOS transistor 15 is changed to the NMOS transistor 25, and the PMOS transistor 19 is changed. The NMOS transistor 29 is changed. Here, the depletion NMOS transistor 11 is changed to a depletion NMOS transistor 21, the PMOS transistor 13 is changed to an NMOS transistor 23, the PMOS transistor 14 is changed to an NMOS transistor 24, the NMOS transistor 16 is changed to a PMOS transistor 26, and an NMOS transistor. The transistor 18 is changed to a PMOS transistor 28.

図3、及び図4のように電源電圧低下検出回路を構成しても、図1、及び図2のような電源電圧低下検出回路と同様な効果が得られることは明白である。   Even if the power supply voltage drop detection circuit is configured as shown in FIGS. 3 and 4, it is obvious that the same effect as the power supply voltage drop detection circuit as shown in FIGS. 1 and 2 can be obtained.

本発明の電源電圧低下検出回路を示す回路図である。It is a circuit diagram which shows the power supply voltage fall detection circuit of this invention. 本発明の電源電圧低下検出回路の定電流回路の一具体例を示す回路図である。It is a circuit diagram which shows one specific example of the constant current circuit of the power supply voltage drop detection circuit of this invention. 本発明の他の実施例の電源電圧低下検出回路を示す回路図である。It is a circuit diagram which shows the power supply voltage fall detection circuit of the other Example of this invention. 本発明の他の実施例の電源電圧低下検出回路の定電流回路の一具体例を示す回路図である。It is a circuit diagram which shows one specific example of the constant current circuit of the power supply voltage fall detection circuit of the other Example of this invention. 半導体装置の要素回路の例を示す回路図である。It is a circuit diagram which shows the example of the elemental circuit of a semiconductor device. 半導体装置の要素回路の他の例を示す回路図である。It is a circuit diagram which shows the other example of the element circuit of a semiconductor device. 半導体装置の要素回路の他の例を示す回路図である。It is a circuit diagram which shows the other example of the element circuit of a semiconductor device. 従来の電源電圧低下検出回路を示す回路図である。It is a circuit diagram which shows the conventional power supply voltage fall detection circuit.

符号の説明Explanation of symbols

1 電源端子
2 接地端子
3 出力端子
4〜6 定電流回路
11 デプレッションNMOSトランジスタ
13〜15、19 PMOSトランジスタ
12、16〜18 NMOSトランジスタ
DESCRIPTION OF SYMBOLS 1 Power supply terminal 2 Ground terminal 3 Output terminals 4-6 Constant current circuit 11 Depletion NMOS transistors 13-15, 19 PMOS transistors 12, 16-18 NMOS transistors

Claims (1)

電源電圧の低下を検出する電源電圧低下検出回路において、
第一導電型であり、前記電源電圧に基づき、前記電源電圧から閾値電圧の絶対値及びオーバードライブ電圧を減算した電圧に基づいたソース電圧を出力する第一トランジスタと、
前記第一導電型であり、前記第一トランジスタのソース電圧に基づき、オンオフする第二トランジスタと、
第二導電型であり、接地電圧に基づき、前記接地電圧に閾値電圧の絶対値及びオーバードライブ電圧を加算した電圧に基づいたソース電圧を出力する第三トランジスタと、
前記第二導電型であり、前記第三トランジスタのソース電圧に基づき、オンオフする第四トランジスタと、
前記第一トランジスタに電流を供給する第一定電流回路と、
前記第二トランジスタ及び前記第三トランジスタに電流を供給する第二定電流回路と、
前記第四トランジスタに電流を供給する第三定電流回路と、
を備えていることを特徴とする電源電圧低下検出回路。
In the power supply voltage drop detection circuit that detects the power supply voltage drop,
A first transistor that is a first conductivity type and outputs a source voltage based on a voltage obtained by subtracting an absolute value and an overdrive voltage of a threshold voltage from the power supply voltage based on the power supply voltage;
A second transistor of the first conductivity type that turns on and off based on a source voltage of the first transistor;
A third transistor that is a second conductivity type and outputs a source voltage based on a voltage obtained by adding an absolute value of a threshold voltage and an overdrive voltage to the ground voltage based on the ground voltage;
A fourth transistor of the second conductivity type, which is turned on and off based on a source voltage of the third transistor;
A first constant current circuit for supplying current to the first transistor;
A second constant current circuit for supplying current to the second transistor and the third transistor;
A third constant current circuit for supplying current to the fourth transistor;
A power supply voltage drop detection circuit comprising:
JP2008201662A 2007-08-10 2008-08-05 Power supply voltage drop detection circuit Active JP5203086B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008201662A JP5203086B2 (en) 2007-08-10 2008-08-05 Power supply voltage drop detection circuit
KR1020080077490A KR101444465B1 (en) 2007-08-10 2008-08-07 Circuit for detecting source voltage lowering
CN2008101350007A CN101363878B (en) 2007-08-10 2008-08-08 Circuit for detecting power supply voltage drop
US12/188,766 US7868622B2 (en) 2007-08-10 2008-08-08 Circuit for detecting power supply voltage drop
TW097130437A TWI421508B (en) 2007-08-10 2008-08-08 Power supply voltage reduction detection circuit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007209106 2007-08-10
JP2007209106 2007-08-10
JP2008201662A JP5203086B2 (en) 2007-08-10 2008-08-05 Power supply voltage drop detection circuit

Publications (2)

Publication Number Publication Date
JP2009065649A true JP2009065649A (en) 2009-03-26
JP5203086B2 JP5203086B2 (en) 2013-06-05

Family

ID=40390355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008201662A Active JP5203086B2 (en) 2007-08-10 2008-08-05 Power supply voltage drop detection circuit

Country Status (4)

Country Link
JP (1) JP5203086B2 (en)
KR (1) KR101444465B1 (en)
CN (1) CN101363878B (en)
TW (1) TWI421508B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249034A (en) * 2016-08-15 2016-12-21 北京航空航天大学 Voltage drop alarm on a kind of sheet adjusting system for working in coordination with dynamic voltage frequency
JP2020025342A (en) * 2014-11-11 2020-02-13 ラピスセミコンダクタ株式会社 Semiconductor circuit, voltage detection circuit and voltage determination circuit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7325352B2 (en) * 2020-02-07 2023-08-14 エイブリック株式会社 Reference voltage circuit
CN113406509B (en) * 2021-06-11 2022-05-10 浙江今日阳光新能源车业有限公司 Electric vehicle electric quantity display method, electric vehicle instrument and computer storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888450U (en) * 1981-12-10 1983-06-15 リコーエレメックス株式会社 Initial reset circuit
JPS6111839A (en) * 1984-06-26 1986-01-20 Ricoh Co Ltd Power-on initializing circuit
JPH03218064A (en) * 1990-01-23 1991-09-25 Sharp Corp Semiconductor integrated circuit device
JP2005278056A (en) * 2004-03-26 2005-10-06 Matsushita Electric Ind Co Ltd Circuit for detecting power supply voltage drop

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619686B2 (en) * 1983-08-29 1994-03-16 日本電信電話株式会社 Power supply circuit
JP2972245B2 (en) * 1989-11-29 1999-11-08 株式会社日立製作所 Reference voltage output circuit with voltage detection function
JP3077072B2 (en) * 1992-07-14 2000-08-14 三機工業株式会社 Pipeline transportation method for waste
KR970075931A (en) * 1996-05-16 1997-12-10 김광호 Programmable low voltage detection circuit
US5838191A (en) * 1997-02-21 1998-11-17 National Semiconductor Corporation Bias circuit for switched capacitor applications
US6734719B2 (en) * 2001-09-13 2004-05-11 Kabushiki Kaisha Toshiba Constant voltage generation circuit and semiconductor memory device
JP3806011B2 (en) * 2001-10-05 2006-08-09 セイコーインスツル株式会社 Voltage detection circuit
JP2005191821A (en) * 2003-12-25 2005-07-14 Seiko Epson Corp Comparator circuit and power supply circuit
JP2006018774A (en) * 2004-07-05 2006-01-19 Seiko Instruments Inc Voltage regulator
JP2006112906A (en) * 2004-10-14 2006-04-27 Sanyo Electric Co Ltd Voltage detection circuit
US7161861B2 (en) * 2004-11-15 2007-01-09 Infineon Technologies Ag Sense amplifier bitline boost circuit
JP2006322711A (en) * 2005-05-17 2006-11-30 Fuji Electric Device Technology Co Ltd Voltage detection circuit and current detection circuit
JP4562638B2 (en) * 2005-10-27 2010-10-13 三洋電機株式会社 Low voltage detection circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888450U (en) * 1981-12-10 1983-06-15 リコーエレメックス株式会社 Initial reset circuit
JPS6111839A (en) * 1984-06-26 1986-01-20 Ricoh Co Ltd Power-on initializing circuit
JPH03218064A (en) * 1990-01-23 1991-09-25 Sharp Corp Semiconductor integrated circuit device
JP2005278056A (en) * 2004-03-26 2005-10-06 Matsushita Electric Ind Co Ltd Circuit for detecting power supply voltage drop

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020025342A (en) * 2014-11-11 2020-02-13 ラピスセミコンダクタ株式会社 Semiconductor circuit, voltage detection circuit and voltage determination circuit
CN106249034A (en) * 2016-08-15 2016-12-21 北京航空航天大学 Voltage drop alarm on a kind of sheet adjusting system for working in coordination with dynamic voltage frequency
CN106249034B (en) * 2016-08-15 2018-10-02 北京航空航天大学 A kind of on piece voltage drop alarm for cooperateing with dynamic voltage frequency adjustment system

Also Published As

Publication number Publication date
CN101363878A (en) 2009-02-11
KR101444465B1 (en) 2014-09-24
CN101363878B (en) 2012-12-26
JP5203086B2 (en) 2013-06-05
KR20090016410A (en) 2009-02-13
TW200921115A (en) 2009-05-16
TWI421508B (en) 2014-01-01

Similar Documents

Publication Publication Date Title
JP4475309B2 (en) comparator
JP2007026337A (en) Voltage regulator
US8736320B2 (en) Power-on reset circuit
TWI520486B (en) Level shift circuit set in semiconductor apparatus
JP2010191619A (en) Voltage regulator
JP2011048601A (en) Reference current and voltage generation circuit
JP2008217203A (en) Regulator circuit
JP5203086B2 (en) Power supply voltage drop detection circuit
JP2008211707A (en) Input circuit
WO2017169057A1 (en) Sensor device
JP2009277122A (en) Power source voltage monitoring circuit
KR102180505B1 (en) Voltage detection circuit
JP5272467B2 (en) Semiconductor integrated circuit with built-in reference voltage generation circuit and reset circuit
KR20160106498A (en) Reference voltage circuit
US20120268208A1 (en) Semiconductor integrated circuit device
JP2007097131A (en) Differential amplifier
US7868622B2 (en) Circuit for detecting power supply voltage drop
JP5606345B2 (en) Output circuit
US7652524B2 (en) Voltage source for gate oxide protection
JP2017169029A (en) Level shift circuit, electronic apparatus, and integrated circuit
JP2006330837A (en) Semiconductor integrated circuit device and internal power voltage control method
JP2011015017A (en) Differential amplifier circuit
JP5815433B2 (en) Amplifier and semiconductor device
KR101555712B1 (en) Pulldown circuit and semiconductor device
JP3945412B2 (en) Level shift circuit

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R150 Certificate of patent or registration of utility model

Ref document number: 5203086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250