JP2009065037A - Semiconductor integrated circuit and inspecting device therefor - Google Patents

Semiconductor integrated circuit and inspecting device therefor Download PDF

Info

Publication number
JP2009065037A
JP2009065037A JP2007232702A JP2007232702A JP2009065037A JP 2009065037 A JP2009065037 A JP 2009065037A JP 2007232702 A JP2007232702 A JP 2007232702A JP 2007232702 A JP2007232702 A JP 2007232702A JP 2009065037 A JP2009065037 A JP 2009065037A
Authority
JP
Japan
Prior art keywords
pad
voltage
integrated circuit
semiconductor integrated
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007232702A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kawasumi
泰之 川澄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007232702A priority Critical patent/JP2009065037A/en
Publication of JP2009065037A publication Critical patent/JP2009065037A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor integrated circuit capable of accurately measuring the resistance of a wiring element, and to provide an inspecting device therefor. <P>SOLUTION: In the semiconductor integrated circuit which comprises a semiconductor package 40 having terminals 14 to 16, 41, and 42 and a semiconductor chip 50 contained in the semiconductor package 40 and having an IO pad 25 and is configured to connect the IO pad 25 to a corresponding terminal using a connection element, the resistance value of the connection element can be accurately measured by: varying a current flowing to the IO pad 25; and measuring the current voltage and current of the IO pad 25. A joining defect of a flip-chip bump and a shape defect of fine wiring, which do not cause a disconnection, can be detected, so stress during secondary mounting and a disconnection resulting from long-period use can be detected in advance. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体チップのパッドと半導体パッケージの端子間の接続要素の抵抗を高精度で検査することができる半導体集積回路およびその検査装置に関するものである。   The present invention relates to a semiconductor integrated circuit capable of inspecting the resistance of a connecting element between a pad of a semiconductor chip and a terminal of a semiconductor package with high accuracy, and an inspection apparatus therefor.

図2に半導体集積回路の構成を示す。図2において、10は半導体パッケージであり、端子14〜16を具備し、半導体チップ20を収納している。半導体チップ20には正電源を供給する正電源パッド24、信号の入出力を行うIOパッド25、負電源を供給する負電源パッド26が形成されており、それぞれ接続要素で端子14〜16に接続されている。   FIG. 2 shows the configuration of the semiconductor integrated circuit. In FIG. 2, reference numeral 10 denotes a semiconductor package, which includes terminals 14 to 16 and houses a semiconductor chip 20. The semiconductor chip 20 is formed with a positive power supply pad 24 for supplying a positive power supply, an IO pad 25 for inputting / outputting a signal, and a negative power supply pad 26 for supplying a negative power supply. Has been.

一般的なBGA(Ball Grid Array)パッケージでは、接続要素として配線、ビア、フリップチップ用バンプ、ボンディングワイヤを用いる。11〜13はこれら接続要素の抵抗を表している。正常に製作された半導体集積回路では、抵抗11〜13は非常に小さい値になる。   In a general BGA (Ball Grid Array) package, wiring, vias, flip chip bumps, and bonding wires are used as connection elements. Reference numerals 11 to 13 denote resistances of these connection elements. In a normally manufactured semiconductor integrated circuit, the resistors 11 to 13 have very small values.

半導体チップ20は、内部回路21、正保護素子22、負保護素子23、およびパッド24〜26で構成されている。正保護素子22、負保護素子23は、IOパッドに過大電圧が印可されたときに、内部回路21をこの過大電圧から保護する役割を果たし、通常MOSFETが用いられる。なお、通常IOパッド25は複数個存在するが、図2では簡略化するために1つのみ図示している。   The semiconductor chip 20 includes an internal circuit 21, a positive protection element 22, a negative protection element 23, and pads 24 to 26. The positive protection element 22 and the negative protection element 23 serve to protect the internal circuit 21 from the excessive voltage when an excessive voltage is applied to the IO pad, and a normal MOSFET is used. Normally, there are a plurality of IO pads 25, but only one is shown in FIG. 2 for simplification.

正電源パッド24、IOパッド25、負電源パッド26は内部回路21に接続される。また、正電源パッド24とIOパッド25との間には正保護素子22が接続され、負電源パッド26とIOパッド25との間には負保護素子23が接続されている。   The positive power supply pad 24, the IO pad 25, and the negative power supply pad 26 are connected to the internal circuit 21. In addition, a positive protection element 22 is connected between the positive power supply pad 24 and the IO pad 25, and a negative protection element 23 is connected between the negative power supply pad 26 and the IO pad 25.

このような半導体集積回路のパッド24〜26と端子14〜16間の接続はオープンテスト方法を用いて検査していた。オープンテスト方法は、図2に示すように、正電源パッド24が接続される端子14と、負電源パッド26が接続される端子16を接地して正保護素子22と負保護素子23をダイオードとして動作させ、電流源30により端子15に電流ISを流して、端子15と共通電位点間の電圧を電圧計31で測定する。 The connection between the pads 24 to 26 and the terminals 14 to 16 of such a semiconductor integrated circuit has been inspected using an open test method. In the open test method, as shown in FIG. 2, the terminal 14 to which the positive power supply pad 24 is connected and the terminal 16 to which the negative power supply pad 26 is connected are grounded, and the positive protection element 22 and the negative protection element 23 are used as diodes. It is operated by applying a current I S to the terminal 15 by the current source 30 to measure the voltage between the common potential point and the terminal 15 by the voltmeter 31.

電流源30によって端子15から電流ISを引き出すと、電流は点線32の経路を流れる。半導体集積回路10が正常に製作されていると抵抗12、13の抵抗値は小さいので、これらの抵抗による電圧降下は無視できる。このため、電圧計31は負保護素子23のフォワード電圧を示す。端子15、16とパッド25、26の間の接続要素に異常があると、電圧計31の示す電圧はフォワード電圧より大きくなり、異常があることがわかる。 When the current I S is drawn from the terminal 15 by the current source 30, the current flows along the dotted line 32. When the semiconductor integrated circuit 10 is normally manufactured, the resistance values of the resistors 12 and 13 are small, so that a voltage drop due to these resistors can be ignored. For this reason, the voltmeter 31 indicates the forward voltage of the negative protection element 23. If there is an abnormality in the connection element between the terminals 15 and 16 and the pads 25 and 26, the voltage indicated by the voltmeter 31 becomes larger than the forward voltage, which indicates that there is an abnormality.

電流源30から端子15に電流ISを注入すると、電流は点線33の経路を流れる。電圧計31を用いて端子15の電圧を測定することにより、端子15−パッド25と端子14−パッド24間の接続要素に異常があるかどうかを検査できる。 When the current I S is injected from the current source 30 to the terminal 15, the current flows through the path of the dotted line 33. By measuring the voltage at the terminal 15 using the voltmeter 31, it is possible to inspect whether there is an abnormality in the connection element between the terminal 15 -pad 25 and the terminal 14 -pad 24.

特開2002−313859号公報JP 2002-313859 A 特開2006−058075号公報JP 2006-058075 A 特開2006−084191号公報JP 2006-084191 A

しかしながら、このような半導体集積回路の検査手法には次のような課題があった。最近の半導体集積回路は多ピン化、高密度化が進み、内部構造は微細化、複雑化している。そのため、半導体集積回路内部の接続要素の故障モードも多様化している。例えば、フリップチップバンプの接合不良や、微細配線の形成不良などによる故障では、初期段階では接続要素の抵抗値が小さくても、2次実装時とストレスや長期の動作で断線に至る場合がある。これらの不良品をパッケージ実装時に検出するためには、接続要素の抵抗値を高精度で測定しなければならない。   However, such a semiconductor integrated circuit inspection method has the following problems. Recent semiconductor integrated circuits have been increased in pin count and density, and the internal structure has been miniaturized and complicated. For this reason, failure modes of connection elements inside the semiconductor integrated circuit are diversified. For example, in the case of failure due to defective bonding of flip chip bumps or defective formation of fine wiring, even if the resistance value of the connection element is small at the initial stage, disconnection may occur due to stress or long-term operation during secondary mounting. . In order to detect these defective products at the time of packaging, the resistance value of the connection element must be measured with high accuracy.

しかしながら、図2で説明した検査手法では、電圧計31が測定する電圧は正、負保護素子22、23のフォワード電圧に接続要素の抵抗分の電圧降下を加算した値になり、抵抗値を正確に求めることはできないという課題があった。   However, in the inspection method described with reference to FIG. 2, the voltage measured by the voltmeter 31 is a value obtained by adding a voltage drop corresponding to the resistance of the connection element to the forward voltage of the positive and negative protection elements 22 and 23, and the resistance value is accurately determined. There was a problem that could not be asked.

電流源30が吸い込む電流値をIS、負保護素子23のフォワード電圧をVF、端子15とIOパッド25間の配線抵抗をRIO、端子16と負電源パッド26間の配線抵抗をRSS、電圧計31の測定電圧をVSとすると、
S=−(RIO+RSS)・IS−VF
になる。この式から、
IO=−(VF+VS)/IS−RSS
になり、電圧計31の測定値Vsから端子15−IOパッド25間の抵抗分を求めることはできる。しかし、フォワード電圧VFは半導体プロセスの状態によって数十mV以上のばらつきがあるので、ISを数十mAとしても1Ω程度の精度でしか測定することができない。また、上式には端子16−負電源パッド26間の抵抗値RSSが含まれるので、RIOのみの抵抗分を測定することができないという課題もあった。
The current value drawn by the current source 30 is I S , the forward voltage of the negative protection element 23 is V F , the wiring resistance between the terminal 15 and the IO pad 25 is R IO , and the wiring resistance between the terminal 16 and the negative power supply pad 26 is R SS When the measurement voltage of the voltmeter 31 is V S ,
V S = − (R IO + R SS ) · I S −V F
become. From this equation:
R IO = − (V F + V S ) / I S −R SS
Thus, the resistance between the terminal 15 and the IO pad 25 can be obtained from the measured value Vs of the voltmeter 31. However, the forward voltage V F because there are variations of several tens of mV depending on the state of the semiconductor process, it can not be measured only by 1Ω accuracy of about even tens mA to I S. In addition, since the resistance value R SS between the terminal 16 and the negative power supply pad 26 is included in the above equation, there is a problem that it is impossible to measure the resistance component of only RIO .

従って本発明の目的は、配線要素の抵抗を正確に測定することができる半導体集積回路およびその検査装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a semiconductor integrated circuit capable of accurately measuring the resistance of a wiring element and an inspection apparatus therefor.

このような課題を解決するために、本発明のうち請求項1記載の発明は、
端子を具備した半導体パッケージと、IOパッドを具備し、前記半導体パッケージに内蔵された半導体チップで構成され、接続要素を用いて前記半導体パッケージの端子を対応するIOパッドに接続する半導体集積回路において、
前記IOパッドに流れる電流を変化させる電流切り替え手段と、
前記IOパッドの電圧を前記半導体パッケージの外部に取り出すバッファアンプと、
を具備したものである。接続要素の抵抗値を正確に測定できる。
In order to solve such a problem, the invention according to claim 1 of the present invention,
In a semiconductor integrated circuit comprising a semiconductor package having terminals and an IO pad, comprising a semiconductor chip built in the semiconductor package, and connecting a terminal of the semiconductor package to a corresponding IO pad using a connection element,
Current switching means for changing the current flowing through the IO pad;
A buffer amplifier for extracting the voltage of the IO pad to the outside of the semiconductor package;
Is provided. The resistance value of the connecting element can be measured accurately.

請求項2記載の発明は、請求項1記載の請求項1記載の発明において、
前記電流切り替え手段を、前記半導体チップを過電圧から保護する保護素子、およびこの保護素子のオン、オフを制御する制御手段で構成したものである。既存の保護素子を利用するので、構成が簡単になる。
The invention according to claim 2 is the invention according to claim 1 according to claim 1,
The current switching means includes a protection element that protects the semiconductor chip from overvoltage and a control means that controls on / off of the protection element. Since an existing protection element is used, the configuration is simplified.

請求項3記載の発明は、請求項1記載の発明において、
前記電流切り替え手段として、3ステートバッファまたはハイインピーダンス付き出力バッファを用いたものである。集積回路でよく用いるバッファを利用できる。
The invention according to claim 3 is the invention according to claim 1,
As the current switching means, a three-state buffer or a high impedance output buffer is used. Buffers often used in integrated circuits can be used.

請求項4記載の発明は、請求項1乃至請求項3いずれかに記載の発明において、
複数のIOパッドの電圧を切り替えて前記バッファアンプに入力する切り替え手段を具備したものである。バッファアンプを兼用できるので、構成が簡単になる。
請求項5記載の発明は、
請求項1乃至請求項4いずれかに記載の半導体集積回路を検査する検査装置であって、
前記バッファアンプの出力電圧を測定する電圧測定部と、
前記半導体チップに電源を供給する定電圧源と、
前記IOパッドに所定の電圧を供給する、出力電圧を可変できる可変電圧源と、
前記IOパッドに流れる電流を測定する電流測定部と、
前記電流切り替え手段を制御する電圧制御部と、
を具備したものである。接続要素の抵抗を正確に測定できる。
The invention according to claim 4 is the invention according to any one of claims 1 to 3,
Switching means for switching the voltage of a plurality of IO pads and inputting it to the buffer amplifier is provided. Since the buffer amplifier can also be used, the configuration is simplified.
The invention according to claim 5
An inspection apparatus for inspecting the semiconductor integrated circuit according to claim 1,
A voltage measuring unit for measuring the output voltage of the buffer amplifier;
A constant voltage source for supplying power to the semiconductor chip;
A variable voltage source for supplying a predetermined voltage to the IO pad and capable of varying an output voltage;
A current measuring unit for measuring a current flowing through the IO pad;
A voltage control unit for controlling the current switching means;
Is provided. The resistance of the connecting element can be measured accurately.

以上説明したことから明らかなように、本発明によれば次のような効果がある。
請求項1,2、3、4および5の発明によれば、IOパッドに流れる電流を変化させて、このときのIOパッドの電圧および電流を測定することにより、このIOパッドの接続要素の抵抗を測定するようにした。
As is apparent from the above description, the present invention has the following effects.
According to the first, second, third, fourth and fifth aspects of the present invention, the current flowing through the IO pad is changed, and the voltage and current of the IO pad at this time are measured. Was measured.

接続要素の抵抗値を正確に測定することができるので、フリップチップバンプの接合不良や微細配線の形成不良を検出することができる。そのため、2次実装時のストレスや長期間の使用で発生する断線を事前に検出することができるという効果がある。   Since the resistance value of the connection element can be accurately measured, it is possible to detect a defective bonding of the flip chip bump and a defective formation of the fine wiring. Therefore, there is an effect that it is possible to detect in advance the stress at the time of secondary mounting and the disconnection that occurs due to long-term use.

また、IOパッドに流れる電流を変化させる手段として保護素子を用いると、構成を大幅に簡単にすることができるという効果もある。   Further, when a protective element is used as means for changing the current flowing through the IO pad, there is an effect that the configuration can be greatly simplified.

以下本発明を図面を用いて詳細に説明する。図1は本発明に係る半導体集積回路およびその検査装置の一実施例を示す構成図である。なお、図2と同じ要素には同一符号を付し、説明を省略する。図1において、40は半導体パッケージであり、端子14〜16、41、42を具備し、その内部に半導体チップ50を収納している。半導体パッケージ40と半導体チップ50で半導体集積回路を構成している。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a semiconductor integrated circuit and its inspection apparatus according to the present invention. In addition, the same code | symbol is attached | subjected to the same element as FIG. 2, and description is abbreviate | omitted. In FIG. 1, reference numeral 40 denotes a semiconductor package having terminals 14 to 16, 41, and 42, in which a semiconductor chip 50 is accommodated. The semiconductor package 40 and the semiconductor chip 50 constitute a semiconductor integrated circuit.

半導体チップ50は、内部回路21、正保護素子22、負保護素子23、正電源パッド24、IOパッド25、負電源パッド26、IOパッド25の電圧が入力されるバッファアンプ51、このバッファアンプ51の出力を半導体チップ外部に出力するためのテストパッド53、負保護素子23のゲートを正電源または負電源に接続するスイッチ部52、このスイッチ部52の制御信号が入力される制御パッド54で構成されている。なお、バッファアンプ51のゲインを1とする。   The semiconductor chip 50 includes an internal circuit 21, a positive protection element 22, a negative protection element 23, a positive power supply pad 24, an IO pad 25, a negative power supply pad 26, a buffer amplifier 51 to which the voltage of the IO pad 25 is input, and the buffer amplifier 51. The test pad 53 for outputting the output of the semiconductor chip to the outside of the semiconductor chip, the switch unit 52 for connecting the gate of the negative protection element 23 to the positive power source or the negative power source, and the control pad 54 for receiving a control signal of the switch unit 52 Has been. It is assumed that the gain of the buffer amplifier 51 is 1.

図2従来例では負保護素子23のゲートは負電源に接続されているが、この実施例では、スイッチ部52を操作することにより、正電源と負電源のいずれかに接続できるようになっている。スイッチ部52は直列接続された2つのスイッチ52aおよび52bで構成されている。スイッチ52aの一端は正電源側に接続され、スイッチ52bの一端は負電源側に接続されている。また、スイッチ52a、52bの共通接続点は負保護素子23のゲートに接続されている。スイッチ52と負保護素子23で電流切り替え手段を構成している。   In the conventional example of FIG. 2, the gate of the negative protection element 23 is connected to a negative power source. However, in this embodiment, by operating the switch unit 52, it can be connected to either a positive power source or a negative power source. Yes. The switch unit 52 includes two switches 52a and 52b connected in series. One end of the switch 52a is connected to the positive power supply side, and one end of the switch 52b is connected to the negative power supply side. The common connection point of the switches 52 a and 52 b is connected to the gate of the negative protection element 23. The switch 52 and the negative protection element 23 constitute current switching means.

半導体パッケージ40には、端子41と42が追加されている。端子41はテストパッド53に接続され、端子42は制御パッド54に接続されている。   Terminals 41 and 42 are added to the semiconductor package 40. The terminal 41 is connected to the test pad 53, and the terminal 42 is connected to the control pad 54.

検査装置60は、端子41の電圧を測定する電圧測定部61、端子14に所定の電圧を印可する可変電圧源64、端子15に流れる電流を測定する電流測定部63、端子42に制御電圧を印加する電圧制御部65で構成されている。なお、端子16は共通電位点に接続される。   The inspection device 60 includes a voltage measuring unit 61 that measures the voltage of the terminal 41, a variable voltage source 64 that applies a predetermined voltage to the terminal 14, a current measuring unit 63 that measures the current flowing through the terminal 15, and a control voltage applied to the terminal 42. The voltage control unit 65 is configured to be applied. Note that the terminal 16 is connected to a common potential point.

次に、この実施例の動作を説明する。定電圧源62から電源が供給されているので、内部回路21は動作状態になっている。最初に、電圧制御部65によってスイッチ52aをオフ、52bをオンに制御する。このため、負保護素子23はオフ状態になる。可変電圧源64を調整して、半導体チップが破壊しない程度の電圧を端子15に供給する。このときの端子15に流れる電流を電流測定部63で測定し、端子41の電圧、すなわちバッファアンプ51の出力電圧を電圧測定部61で測定する。   Next, the operation of this embodiment will be described. Since power is supplied from the constant voltage source 62, the internal circuit 21 is in an operating state. First, the switch 52a is turned off and the switch 52b is turned on by the voltage controller 65. For this reason, the negative protection element 23 is turned off. The variable voltage source 64 is adjusted to supply the terminal 15 with a voltage that does not damage the semiconductor chip. The current flowing through the terminal 15 at this time is measured by the current measuring unit 63, and the voltage at the terminal 41, that is, the output voltage of the buffer amplifier 51 is measured by the voltage measuring unit 61.

可変電圧源64が端子15に印可する電圧をVS、電流測定部63が測定した電流をI1、バッファアンプ51の入力電圧をV1、配線抵抗12の抵抗値をRIOとすると、負保護素子23はオフなので、下記(1)式が成立する。
S−V1=I1・RIO ・・・・・・ (1)
When the voltage applied to the terminal 15 by the variable voltage source 64 is V S , the current measured by the current measuring unit 63 is I 1 , the input voltage of the buffer amplifier 51 is V 1 , and the resistance value of the wiring resistor 12 is R IO. Since the protective element 23 is off, the following equation (1) is established.
V S −V 1 = I 1 · R IO (1)

バッファアンプ51のオフセット電圧をVOFS、電圧測定部61の測定電圧をVM1とすると、下記(2)式が成立する。
M1=V1+VOFS ・・・・・・ (2)
前記(2)式を(1)式に代入して整理すると、下記(3)式になる。
S=I1・RIO +VM1−VOFS ・・・・・・ (3)
When the offset voltage of the buffer amplifier 51 is V OFS and the measurement voltage of the voltage measurement unit 61 is V M1 , the following equation (2) is established.
V M1 = V 1 + V OFS (2)
Substituting the formula (2) into the formula (1) and rearranging the formula, the following formula (3) is obtained.
V S = I 1 · R IO + V M1 -V OFS ······ (3)

次に、スイッチ52aをオン、52bをオフにする。負保護素子23のゲートには負電源が印加されるので、負保護素子23はオン状態になる。端子15にVS電圧が印加されるように可変電圧源64を調整し、このときの電圧測定部61が測定する電圧をVM2、電流測定部63が測定する電流をI2とすると、前記(1)〜(3)式と同様にして、下記(4)式が得られる。
S=I2・RIO +VM2−VOFS ・・・・・・ (4)
Next, the switch 52a is turned on and the switch 52b is turned off. Since a negative power supply is applied to the gate of the negative protection element 23, the negative protection element 23 is turned on. When the variable voltage source 64 is adjusted so that the V S voltage is applied to the terminal 15, the voltage measured by the voltage measuring unit 61 at this time is V M2 , and the current measured by the current measuring unit 63 is I 2. The following equation (4) is obtained in the same manner as equations (1) to (3).
V S = I 2 · R IO + VM 2 −V OFS (4)

この(3)式と(4)式からオフセット電圧VOFSを消去すると下記(5)式が得られ、配線抵抗RIOを正確に測定することができる。前述したように、配線抵抗を正確に測定すると微細配線の形成不良を検出することができ、2次実装時や長期使用で発生する断線を事前に予測することができる。
IO=(VM1−VM2)/(I2−I1) ・・・・・・ (5)
When the offset voltage V OFS is eliminated from the equations (3) and (4), the following equation (5) is obtained, and the wiring resistance R IO can be accurately measured. As described above, when the wiring resistance is accurately measured, it is possible to detect the formation failure of the fine wiring, and it is possible to predict in advance the disconnection that occurs during secondary mounting or long-term use.
R IO = (V M1 -V M2 ) / (I 2 -I 1) ······ (5)

なお、内部回路21の内部インピーダンスが非常に高いと、内部回路21に流入する電流を無視することができる。従って、負保護素子23がオフのときは端子15の経路に電流が流れず、前記(1)式の右辺は0になる。このため、負電源素子23をオフにする測定を省略することができる。配線抵抗RIOは、前記(5)式にI1=0して、
IO=(VM1−VM2)/I2=(VS−VM2)/I2
で求めることができる。この場合、可変電源64として出力電圧精度の高い電源を用いるか、別途可変電圧源64の出力電圧VSを測定すればよい。
If the internal impedance of the internal circuit 21 is very high, the current flowing into the internal circuit 21 can be ignored. Therefore, when the negative protection element 23 is off, no current flows through the path of the terminal 15 and the right side of the equation (1) becomes zero. For this reason, the measurement which turns off the negative power supply element 23 is omissible. The wiring resistance RIO is set to I 1 = 0 in the above equation (5).
R IO = (V M1 -V M2 ) / I 2 = (V S -V M2) / I 2
Can be obtained. In this case, a power supply with high output voltage accuracy may be used as the variable power supply 64, or the output voltage V S of the variable voltage source 64 may be measured separately.

また、この実施例ではスイッチ52を用いて負保護素子23をオン、オフするようにしたが、ドライバアンプなどを用いてゲート電圧を変化させ、オン、オフさせるようにしてもよい。要は、負保護素子23をオン、オフできる制御手段であればよい。また、図1の実施例は負保護素子23をオン、オフさせるようにしたが、正保護素子22をオン、オフさせるようにしてもよい。   In this embodiment, the negative protection element 23 is turned on / off using the switch 52, but it may be turned on / off by changing the gate voltage using a driver amplifier or the like. In short, any control means capable of turning on and off the negative protection element 23 may be used. In the embodiment of FIG. 1, the negative protection element 23 is turned on and off, but the positive protection element 22 may be turned on and off.

また、この実施例では電流切り替え手段として保護素子22または23とスイッチ52を用いたが、保護素子22、23を用いないで、他の要素を電流切り替え手段としてもよい。例えば、3ステートバッファやハイインピーダンス付き出力バッファを用いたり、抵抗とスイッチを直列に接続し、このスイッチをオン、オフさせ、また内部回路21の一部を切り離して電流を変化させるようにしてもよい。要は、配線抵抗RIOに流れる電流を変化させて、そのときの電流及びバッファアンプ51の出力電圧を測定するようにすればよい。 Further, in this embodiment, the protection element 22 or 23 and the switch 52 are used as the current switching means, but other elements may be used as the current switching means without using the protection elements 22 and 23. For example, a three-state buffer or a high-impedance output buffer may be used, or a resistor and a switch may be connected in series, the switch may be turned on / off, and a part of the internal circuit 21 may be disconnected to change the current. Good. In short, by changing the current flowing through the wiring resistance R IO, it is sufficient to measure the output voltage of the current and the buffer amplifier 51 at that time.

さらに、バッファアンプ51の入力側にマルチプレクサ等の切り替え手段を設け、バッファアンプ51に入力する信号を切り替えできるようにすれば、1つのバッファアンプで複数のIO端子の配線抵抗を測定することができる。   Furthermore, if a switching means such as a multiplexer is provided on the input side of the buffer amplifier 51 so that signals input to the buffer amplifier 51 can be switched, the wiring resistance of a plurality of IO terminals can be measured with one buffer amplifier. .

本発明の一実施例を示す構成図である。It is a block diagram which shows one Example of this invention. 従来の半導体集積回路の構成図である。It is a block diagram of the conventional semiconductor integrated circuit.

符号の説明Explanation of symbols

11〜 13 配線抵抗
14〜16、41、42 端子
21 内部回路
22 正保護素子
23 負保護素子
24 正電源パッド
25 IOパッド
26 負電源パッド
40 半導体パッケージ
50 半導体チップ
51 バッファアンプ
52 スイッチ部
52a、52b スイッチ
53 テストパッド
54 制御パッド
60 検査装置
61 電圧測定部
62 定電圧源
63 電流測定部
64 可変電圧源
65 電圧制御部
11 to 13 Wiring resistors 14 to 16, 41, 42 Terminal 21 Internal circuit 22 Positive protection element 23 Negative protection element 24 Positive power supply pad 25 IO pad 26 Negative power supply pad 40 Semiconductor package 50 Semiconductor chip 51 Buffer amplifier 52 Switch units 52a and 52b Switch 53 Test pad 54 Control pad 60 Inspection device 61 Voltage measurement unit 62 Constant voltage source 63 Current measurement unit 64 Variable voltage source 65 Voltage control unit

Claims (5)

端子を具備した半導体パッケージと、IOパッドを具備し、前記半導体パッケージに内蔵された半導体チップで構成され、接続要素を用いて前記半導体パッケージの端子を対応するIOパッドに接続する半導体集積回路において、
前記IOパッドに流れる電流を変化させる電流切り替え手段と、
前記IOパッドの電圧を前記半導体パッケージの外部に取り出すバッファアンプと、
を具備したことを特徴とする半導体集積回路。
In a semiconductor integrated circuit comprising a semiconductor package having terminals and an IO pad, comprising a semiconductor chip built in the semiconductor package, and connecting a terminal of the semiconductor package to a corresponding IO pad using a connection element,
Current switching means for changing the current flowing through the IO pad;
A buffer amplifier for extracting the voltage of the IO pad to the outside of the semiconductor package;
A semiconductor integrated circuit comprising:
前記電流切り替え手段は、前記半導体チップを過電圧から保護する保護素子、およびこの保護素子のオン、オフを制御する制御手段とからなることを特徴とする請求項1記載の半導体集積回路。   2. The semiconductor integrated circuit according to claim 1, wherein the current switching means includes a protection element for protecting the semiconductor chip from overvoltage, and control means for controlling on / off of the protection element. 前記電流切り替え手段は、3ステートバッファまたはハイインピーダンス付き出力バッファであることを特徴とする請求項1記載の半導体集積回路。   2. The semiconductor integrated circuit according to claim 1, wherein the current switching means is a three-state buffer or an output buffer with high impedance. 複数のIOパッドの電圧を切り替えて前記バッファアンプに入力する切り替え手段を具備したことを特徴とする請求項1乃至請求項3いずれかに記載の半導体集積回路。   4. The semiconductor integrated circuit according to claim 1, further comprising switching means for switching voltages of a plurality of IO pads and inputting the voltages to the buffer amplifier. 請求項1乃至請求項4いずれかに記載の半導体集積回路を検査する検査装置であって、
前記バッファアンプの出力電圧を測定する電圧測定部と、
前記半導体チップに電源を供給する定電圧源と、
前記IOパッドに所定の電圧を供給する、出力電圧を可変できる可変電圧源と、
前記IOパッドに流れる電流を測定する電流測定部と、
前記電流切り替え手段を制御する電圧制御部と、
を具備したことを特徴とする検査装置。
An inspection apparatus for inspecting the semiconductor integrated circuit according to claim 1,
A voltage measuring unit for measuring the output voltage of the buffer amplifier;
A constant voltage source for supplying power to the semiconductor chip;
A variable voltage source for supplying a predetermined voltage to the IO pad and capable of varying an output voltage;
A current measuring unit for measuring a current flowing through the IO pad;
A voltage control unit for controlling the current switching means;
An inspection apparatus comprising:
JP2007232702A 2007-09-07 2007-09-07 Semiconductor integrated circuit and inspecting device therefor Pending JP2009065037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007232702A JP2009065037A (en) 2007-09-07 2007-09-07 Semiconductor integrated circuit and inspecting device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007232702A JP2009065037A (en) 2007-09-07 2007-09-07 Semiconductor integrated circuit and inspecting device therefor

Publications (1)

Publication Number Publication Date
JP2009065037A true JP2009065037A (en) 2009-03-26

Family

ID=40559343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232702A Pending JP2009065037A (en) 2007-09-07 2007-09-07 Semiconductor integrated circuit and inspecting device therefor

Country Status (1)

Country Link
JP (1) JP2009065037A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025863A1 (en) * 2010-07-27 2012-02-02 Eric Ochs Solder joint inspection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025863A1 (en) * 2010-07-27 2012-02-02 Eric Ochs Solder joint inspection
US8810252B2 (en) * 2010-07-27 2014-08-19 Robert Bosch Gmbh Solder joint inspection

Similar Documents

Publication Publication Date Title
JPH02105074A (en) Semiconductor integrated circuit
WO2008004414A1 (en) Semiconductor device having defect detecting function
JP2010210238A (en) Probe card, semiconductor inspection device equipped with the same and method for checking fuse of probe card
US20150025830A1 (en) Methods and systems to measure a signal on an integrated circuit die
JP6738236B2 (en) Device inspection circuit, device inspection device and probe card
JP2010139442A (en) Testing apparatus and diagnosis method
KR100485462B1 (en) Method for inspecting an integrated circuit
JP6339834B2 (en) Board inspection equipment
JP2009065037A (en) Semiconductor integrated circuit and inspecting device therefor
KR100576492B1 (en) Apparatus for measuring internal DC bias of semiconductor device in PKG level
JP2007315789A (en) Semiconductor integrated circuit and its mounting inspection method
JP2011158347A (en) Semiconductor device and inspection system
JP7392533B2 (en) inspection system
JP2012063198A (en) Semiconductor device, semiconductor tester, and semiconductor test system
JP2010272825A (en) Semiconductor integrated circuit device
JP2010190839A (en) Semiconductor device
JP2007178257A (en) Measuring device
JP2006189340A (en) Inspection system and inspection method for semiconductor device
JP2012163466A (en) Semiconductor device
JP2010223791A (en) Semiconductor device and inspecting method for the same
JP2012083262A (en) Testing device and testing method
JP2016066862A (en) Semiconductor device
US7705620B2 (en) Measuring and identifying analog characteristics of a microelectronic component at a wafer level and a platform level
JP2007234816A (en) Semiconductor device
JP2009098034A (en) Manufacturing method of semiconductor device