JP2009064866A - Electronic device with heat-dissipating structure - Google Patents

Electronic device with heat-dissipating structure Download PDF

Info

Publication number
JP2009064866A
JP2009064866A JP2007229885A JP2007229885A JP2009064866A JP 2009064866 A JP2009064866 A JP 2009064866A JP 2007229885 A JP2007229885 A JP 2007229885A JP 2007229885 A JP2007229885 A JP 2007229885A JP 2009064866 A JP2009064866 A JP 2009064866A
Authority
JP
Japan
Prior art keywords
heat
insulating substrate
electronic device
mounting surface
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007229885A
Other languages
Japanese (ja)
Other versions
JP5312764B2 (en
Inventor
Shinichi Sato
真一 佐藤
Kuniya Kishino
訓也 岸野
Hiroshi Sato
佐藤  寛
Hitoshi Kurihara
仁 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2007229885A priority Critical patent/JP5312764B2/en
Publication of JP2009064866A publication Critical patent/JP2009064866A/en
Application granted granted Critical
Publication of JP5312764B2 publication Critical patent/JP5312764B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-dissipating structure capable of efficiently providing heat dissipation for an electronic device wherein an insulating substrate mounted with a heating device, and to provide a heat-dissipating member are connected via a heat conduction material. <P>SOLUTION: In the electronic device 10 equipped with the heating device 16, the insulating substrate 14 mounted with the heating device on a mounted surface 14a, and the heat dissipation member 12 connected to the reverse surface 14b, opposed to the mounted surface of the insulating substrate via the heat conducting member 26, the insulating substrate is provided with heat conductive material escape portions 24, 34, 44, 54, 64, 74, 84, and 94 which release the conducting material nearby the heating device. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、放熱構造を有する電子装置に関し、特に、実装された発熱素子の近傍における絶縁基板に、絶縁基板と放熱部材との間に介在される熱伝導材を逃す熱伝導材逃し部が設けられた電子装置に関するものである。   The present invention relates to an electronic device having a heat dissipation structure, and in particular, a heat conductive material escape portion for releasing a heat conductive material interposed between the insulating substrate and the heat dissipation member is provided on the insulating substrate in the vicinity of the mounted heating element. The present invention relates to an electronic device.

近年、絶縁基板に実装される半導体素子等の電子素子においては、その高集積化や高駆動電力化に伴って、発熱量が一層増加する傾向にあるため、絶縁基板を金属体等の放熱部材に接続して効果的に放熱せんとする放熱構造を備えたものが提案されてきた。   In recent years, in electronic elements such as semiconductor elements mounted on an insulating substrate, the amount of heat generation tends to increase with the increase in integration and driving power. There has been proposed one having a heat dissipation structure that effectively connects to a heat sink.

かかる構成においては、絶縁基板と放熱部材との間の接着性を向上するために、熱伝導材である熱伝導グリースが塗布される場合がある(特許文献1及び2参照)。   In such a configuration, in order to improve the adhesion between the insulating substrate and the heat radiating member, a thermal conductive grease that is a thermal conductive material may be applied (see Patent Documents 1 and 2).

具体的には、特許文献1においては、半導体素子を実装してその筐体を載置する絶縁基板とその下方に配置された放熱板とは、互いの接合面が面接触した状態で半田によって接続され、放熱板とその下方に配置された冷却器とは、下凸形状の放熱板が冷却器に接触された状態で熱伝導材である熱伝導グリースを介して接続されている。   Specifically, in Patent Document 1, the insulating substrate on which the semiconductor element is mounted and the housing is mounted and the heat sink disposed below the solder substrate are soldered in a state where the joint surfaces are in surface contact with each other. The connected heat radiating plate and the cooler disposed below the heat radiating plate are connected via a heat conductive grease, which is a heat conductive material, in a state in which the lower convex heat radiating plate is in contact with the cooler.

また、特許文献2においては、半導体素子を実装する絶縁基板を覆ったハウジングを載置した放熱板とその下方に配置された放熱ケースとは、放熱板及び放熱ケースの少なくとも一方の全幅にわたって形成された溝を有する接合面同士が接触された状態で、溝に注入された熱伝導材である熱伝導グリースを介して接続されている。
特開2005−039081号公報 特開2005−101259号公報
Further, in Patent Document 2, a heat sink on which a housing covering an insulating substrate on which a semiconductor element is mounted and a heat dissipation case disposed below the heat sink are formed over the entire width of at least one of the heat sink and the heat dissipation case. In a state in which the joint surfaces having the grooves are in contact with each other, they are connected via thermal conductive grease, which is a thermal conductive material injected into the grooves.
JP 2005-039081 A JP 2005-101259 A

しかしながら、特許文献1で提案される構成では、放熱板にである熱伝導材である熱伝導グリースを均一に塗布し、冷却器に固定する際に、放熱板と冷却器と間の側部に熱伝導グリースがはみ出る傾向があり、はみ出した熱伝導グリースを除去する後処理が必要になって、作業工程上は煩雑である。また、はみ出した熱伝導グリースを放置すると、熱伝導グリースに含まれるオイル分が、経年変化や温度変化によって分離した場合に、オイル分が垂れてしまい好ましくない。また、かかる事情は、特許文献2で提案される構成における放熱板と放熱ケースとの間においても同様である。   However, in the configuration proposed in Patent Document 1, when heat conduction grease, which is a heat conduction material, is uniformly applied to the heat radiating plate and fixed to the cooler, the side portion between the heat radiating plate and the cooler is arranged. There is a tendency for the thermal grease to protrude, and a post-treatment for removing the protruding thermal grease is necessary, which is complicated in the work process. In addition, if the protruding thermal conductive grease is left untreated, the oil component droops when the oil component contained in the thermal conductive grease is separated due to aging or temperature change, which is not preferable. Moreover, this situation is the same between the heat radiating plate and the heat radiating case in the configuration proposed in Patent Document 2.

本発明は、かかる事情に鑑みてなされたもので、発熱素子を実装する絶縁基板と放熱部材とを熱伝導材を介して接続する電子装置において、放熱を効率よく実現できる放熱構造を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a heat dissipation structure capable of efficiently realizing heat dissipation in an electronic device in which an insulating substrate on which a heating element is mounted and a heat dissipation member are connected via a heat conductive material. With the goal.

以上の目的を達成すべく、本発明は、発熱素子と、前記発熱素子を実装面に実装する絶縁基板と、前記絶縁基板の前記実装面に対向する裏面に対して熱伝導材を介して接続された放熱部材と、を備えた電子装置において、前記発熱素子の近傍における前記絶縁基板に、前記熱伝導材を逃す熱伝導材逃し部が設けられたことを第1の特徴とする。   In order to achieve the above object, the present invention connects a heating element, an insulating substrate on which the heating element is mounted on a mounting surface, and a back surface of the insulating substrate facing the mounting surface via a heat conductive material. In the electronic apparatus comprising the heat dissipation member, a heat conductive material escape portion for allowing the heat conductive material to escape is provided on the insulating substrate in the vicinity of the heat generating element.

また本発明は、かかる第1の特徴に加えて、前記熱伝導材逃し部は、前記発熱素子の近傍において、前記絶縁基板の前記実装面と前記裏面とを貫いて設けられたスルーホールであることを第2の特徴とする。   Further, according to the present invention, in addition to the first feature, the heat conducting material escape portion is a through hole provided through the mounting surface and the back surface of the insulating substrate in the vicinity of the heating element. This is the second feature.

また本発明は、かかる第2の特徴に加えて、前記発熱素子は、前記絶縁基板の前記実装面に接続して、前記実装面に平行である放熱板部を有し、前記放熱板部の一辺の長さをaとし、前記放熱板部の他辺の長さをbとし、かつ前記絶縁基板の厚さをtとしたときに、前記実装面に平行な発熱拡散領域を、その一辺の長さがa+2tであって、その他辺の長さをb+2tである四角形の範囲として定義した場合、前記スルーホールが、前記発熱拡散領域の外方近傍に配置されたことを第3の特徴とする。   In addition to the second feature of the present invention, the heat generating element includes a heat radiating plate portion connected to the mounting surface of the insulating substrate and parallel to the mounting surface. When the length of one side is a, the length of the other side of the heat radiating plate portion is b, and the thickness of the insulating substrate is t, a heat generation diffusion region parallel to the mounting surface is A third feature is that when the length is defined as a square range having a + 2t and the length of the other side being b + 2t, the through-hole is disposed in the vicinity of the outside of the heat generation diffusion region. .

また本発明は、かかる第1の特徴に加えて、前記熱伝導材逃し部は、前記発熱素子の近傍において、前記絶縁基板の前記裏面に設けられた溝であることを第4の特徴とする。   In addition to the first feature, the present invention has a fourth feature in that the heat conducting material escape portion is a groove provided on the back surface of the insulating substrate in the vicinity of the heating element. .

また本発明は、かかる第4の特徴に加えて、前記発熱素子は、前記絶縁基板の前記実装面に接続して、前記実装面に平行である放熱板部を有し、前記放熱板部の一辺の長さをaとし、前記放熱板部の他辺の長さをbとし、かつ前記絶縁基板の厚さをtとしたときに、前記実装面に平行な発熱拡散領域を、その一辺の長さがa+2tであって、その他辺の長さをb+2tである四角形の範囲として定義した場合、前記溝が、前記発熱拡散領域の内方近傍に配置されたことを第5の特徴とする。   In addition to the fourth feature of the present invention, the heat generating element includes a heat radiating plate portion connected to the mounting surface of the insulating substrate and parallel to the mounting surface. When the length of one side is a, the length of the other side of the heat radiating plate portion is b, and the thickness of the insulating substrate is t, a heat generation diffusion region parallel to the mounting surface is A fifth feature is that when the length is a + 2t and the length of the other side is defined as a quadrangular range of b + 2t, the groove is disposed in the vicinity of the inside of the heat diffusion region.

また本発明は、かかる第2から第5のいずれかの特徴に加えて、前記熱伝導材逃し部は、前記絶縁基板の前記実装面から前記裏面に向けて幅が拡大することを第6の特徴とする。   According to the sixth aspect of the present invention, in addition to any one of the second to fifth features, the heat conducting material escape portion has a width that increases from the mounting surface to the back surface of the insulating substrate. Features.

本発明の第1の特徴によれば、発熱素子の近傍における絶縁基板に、熱伝導材を逃す熱伝導材逃し部を設けることにより、発熱素子を実装した絶縁基板と放熱部材との間での熱伝導材を介した密着性を向上でき、効率のよい放熱が可能である。ここに、絶縁基板と放熱部材との側面に熱伝導材が不要にはみ出ることを確実に防止できる。併せて、熱伝導材中に、不要なボイドが発生することを確実に防止できる。   According to the first feature of the present invention, the insulating substrate in the vicinity of the heat generating element is provided with a heat conductive material escape portion for allowing the heat conductive material to escape, so that the heat insulating element is mounted between the insulating substrate on which the heat generating element is mounted and the heat radiating member. Adhesion through the heat conducting material can be improved, and efficient heat dissipation is possible. Here, it is possible to surely prevent the heat conductive material from unnecessarily protruding from the side surfaces of the insulating substrate and the heat radiating member. In addition, unnecessary voids can be reliably prevented from occurring in the heat conducting material.

本発明の第2の特徴によれば、熱伝導材逃し部を、発熱素子の近傍において、絶縁基板の実装面と裏面とを貫いて設けられたスルーホールとすることにより、熱伝導材の量が多い場合に、余分な量の熱伝導材を、絶縁基板の表面に確実に溢れ出させることができ、効率のよい放熱を可能とすると共に、絶縁基板と放熱部材との側面に熱伝導材が不要にはみ出ることを確実に防止できる。更に、絶縁基板上に複数の発熱素子が実装される場合、隣接する発熱素子間には、スルーホールが存在することになり、隣接する発熱素子間の絶縁基板を介した不要な熱干渉を効果的に低減できる。   According to the second feature of the present invention, the heat conducting material escape portion is a through hole provided through the mounting surface and the back surface of the insulating substrate in the vicinity of the heat generating element, so that the amount of the heat conducting material is increased. When there is a large amount of heat conduction material, it is possible to reliably overflow an excessive amount of heat conduction material onto the surface of the insulating substrate, enabling efficient heat radiation, and heat conduction material on the side surfaces of the insulation substrate and the heat radiation member. Can be reliably prevented from protruding. Furthermore, when a plurality of heat generating elements are mounted on an insulating substrate, a through hole exists between adjacent heat generating elements, which is effective for unnecessary heat interference via the insulating substrate between adjacent heat generating elements. Can be reduced.

本発明の第3の特徴によれば、スルーホールが、発熱素子の発熱拡散領域の外方近傍に配置されることにより、発熱素子の裏面からの熱放射が有効に行なわれる範囲を確保しながらその外方にスルーホールを配置でき、隣接する発熱素子間の不要な熱干渉をより効果的に低減できる。   According to the third feature of the present invention, the through hole is disposed in the vicinity of the outside of the heat generating diffusion region of the heat generating element, thereby ensuring a range in which heat radiation from the back surface of the heat generating element is effectively performed. A through-hole can be disposed on the outer side, and unnecessary thermal interference between adjacent heating elements can be more effectively reduced.

本発明の第4の特徴によれば、熱伝導材逃し部を、発熱素子の近傍において、絶縁基板の裏面に設けられた溝とすることにより、絶縁基板と放熱部材との間に存在する熱伝導材の接触表面積を増加することができ、効率のよい放熱を可能とすると共に、絶縁基板と放熱部材との側面に熱伝導材が不要にはみ出ることを確実に防止できる。   According to the fourth feature of the present invention, the heat conducting material escape portion is a groove provided on the back surface of the insulating substrate in the vicinity of the heat generating element, so that heat existing between the insulating substrate and the heat dissipation member is present. The contact surface area of the conductive material can be increased, efficient heat dissipation can be achieved, and the heat conductive material can be reliably prevented from protruding to the side surfaces of the insulating substrate and the heat dissipation member.

本発明の第5の特徴によれば、溝が、発熱素子の発熱拡散領域の内方近傍に配置されることにより、発熱素子の裏面からの熱放射が有効に行なわれる範囲に、絶縁基板と放熱部材との間の接触面積を増加し得る溝を配置でき、効率のよい放熱を可能とする。   According to the fifth feature of the present invention, the groove is disposed in the vicinity of the inner side of the heat generating diffusion region of the heat generating element, so that the heat radiation from the back surface of the heat generating element is effectively performed. A groove that can increase the contact area with the heat dissipating member can be disposed, enabling efficient heat dissipation.

本発明の第6の特徴によれば、熱伝導材逃し部を、絶縁基板の実装面から裏面に向けて幅が拡大する形状にすることにより、絶縁基板と放熱部材との間に熱伝導材を塗布して押しつけたときに、絶縁基板と放熱部材との間で、熱伝導材を均一に介在させることができると共に、放熱部材に対する絶縁基板の表面積が増加することで熱伝導材の接触表面積を増加することができて、より放熱効果が増大し、一層確実に放熱性を向上できる。   According to the sixth feature of the present invention, the heat conducting material escape portion has a shape whose width increases from the mounting surface to the back surface of the insulating substrate, so that the heat conducting material is interposed between the insulating substrate and the heat dissipation member. When applying and pressing, the heat conductive material can be uniformly interposed between the insulating substrate and the heat radiating member, and the surface area of the heat conductive material is increased by increasing the surface area of the insulating substrate with respect to the heat radiating member. The heat dissipation effect can be further increased and the heat dissipation can be improved more reliably.

以下、図面を適宜参照して、本発明の各実施形態における放熱構造を有する電子装置につき詳細に説明する。なお、図中、x軸、y軸及びz軸は、3軸直交座標系をなす。   Hereinafter, an electronic device having a heat dissipation structure in each embodiment of the present invention will be described in detail with reference to the drawings as appropriate. In the figure, the x-axis, y-axis, and z-axis form a three-axis orthogonal coordinate system.

(第1の実施形態)
まず、本発明の第1の実施形態における放熱構造を有する電子装置につき、図1〜7を参照して、詳細に説明する。
(First embodiment)
First, an electronic device having a heat dissipation structure according to a first embodiment of the present invention will be described in detail with reference to FIGS.

図1は、本実施形態における放熱構造を有する電子装置の概略斜視図である。また、図2は、図1をz軸の負方向に沿って見た、本実施形態における放熱構造を有する電子装置の概略上面図であり、図3は、図2のA−A線による拡大断面図である。   FIG. 1 is a schematic perspective view of an electronic device having a heat dissipation structure in the present embodiment. 2 is a schematic top view of the electronic device having the heat dissipation structure in the present embodiment as viewed in FIG. 1 along the negative direction of the z-axis, and FIG. 3 is an enlarged view taken along line AA in FIG. It is sectional drawing.

図1に示すように、本実施形態における放熱構造を有する電子装置10は、アルミ等の金属製の放熱部材12上に、絶縁基板14が載置される。絶縁基板14は、アルミ等の金属層上に樹脂製の絶縁層が形成された2層構造を有する。ここに、詳細は後述するが、放熱部材12と絶縁基板14との間には、それらの密着性を向上させながら、絶縁基板14側から放熱部材12側へ向けて熱伝導をする熱伝導材が塗布されて介在する。なお、かかる熱伝導材としては、熱伝導グリースが使用できるが、これ以外にも、液状、ゲル状及び粒子状の熱伝導材が使用でき、また、熱伝導性を有する接着剤も使用できる。また、放熱部材12は、金属製のものに限らず、例えばグラファイト製のものを用いることもできる。   As shown in FIG. 1, in an electronic device 10 having a heat dissipation structure in the present embodiment, an insulating substrate 14 is placed on a metal heat dissipation member 12 such as aluminum. The insulating substrate 14 has a two-layer structure in which a resin insulating layer is formed on a metal layer such as aluminum. As will be described in detail later, between the heat radiating member 12 and the insulating substrate 14, a heat conducting material that conducts heat from the insulating substrate 14 side toward the heat radiating member 12 side while improving their adhesion. Is applied and interposed. In addition, although heat conductive grease can be used as such a heat conductive material, liquid, gel-like and particulate heat conductive materials can also be used, and an adhesive having heat conductivity can also be used. Moreover, the heat radiating member 12 is not limited to a metal member, and, for example, a graphite member can be used.

かかる絶縁基板14上には、トランジスタ等の電子素子である複数の発熱素子16が実装される。発熱素子16は、図示は省略するが、絶縁基板14に金属層を露出させるべく絶縁層に開けられた窓部に対応して、絶縁基板14の金属層に半田等により接着されている。発熱素子16を構成する電子素子が駆動されると、発熱素子16は発熱し、その熱は、絶縁基板14の金属層から熱伝導材に伝達され、更に放熱部材12に伝達される。   A plurality of heating elements 16 that are electronic elements such as transistors are mounted on the insulating substrate 14. Although not shown, the heating element 16 is bonded to the metal layer of the insulating substrate 14 by solder or the like corresponding to the window portion opened in the insulating layer so that the metal layer is exposed on the insulating substrate 14. When the electronic element constituting the heat generating element 16 is driven, the heat generating element 16 generates heat, and the heat is transmitted from the metal layer of the insulating substrate 14 to the heat conducting material and further to the heat radiating member 12.

なお、絶縁基板14上には、発熱素子16に加えて、入力端子18、出力端子20及び中継端子22が、実装されている。例えば、発熱素子16が、スイッチング動作をするトランジスタである場合には、入力端子18は、トランジスタの動作を安定化する平滑コンデンサ等に接続されるP端子及びN端子の2端子を有し、出力端子20は、モータやコンプレッサ等の負荷に印加される3相交流用のU相端子、V相端子及びW相端子の3端子を有する。また、かかる場合、中継端子22は、トランジスタの動作を制御するコントローラ等に接続される複数本の端子を有する。   In addition to the heating element 16, an input terminal 18, an output terminal 20, and a relay terminal 22 are mounted on the insulating substrate 14. For example, when the heating element 16 is a transistor that performs a switching operation, the input terminal 18 has two terminals, a P terminal and an N terminal connected to a smoothing capacitor or the like that stabilizes the operation of the transistor, and an output. The terminal 20 has three terminals of a U-phase terminal, a V-phase terminal, and a W-phase terminal for three-phase AC applied to a load such as a motor or a compressor. In such a case, the relay terminal 22 has a plurality of terminals connected to a controller or the like that controls the operation of the transistor.

ここに、本実施形態においては、図2及び3に示すように、発熱素子16の近傍の絶縁基板14において、熱伝導材を逃す熱伝導材逃し部である複数のスルーホール24が設けられている。また、発熱素子16は、放熱板部16aを有し、かかる放熱板部16aが、絶縁基板14の絶縁層に開けられた窓部に対応して、絶縁基板14の金属層に半田等により接着されるパッド部分である。なお、図2及び3では、入力端子18、出力端子20及び中継端子22は、図示を省略し、図3では、熱伝導材を符号26で示し、模式的に放熱部材12と絶縁基板14との間に示している。   Here, in the present embodiment, as shown in FIGS. 2 and 3, the insulating substrate 14 in the vicinity of the heating element 16 is provided with a plurality of through holes 24 that are heat conducting material escape portions for letting out the heat conducting material. Yes. The heat generating element 16 has a heat radiating plate portion 16a, and the heat radiating plate portion 16a is bonded to the metal layer of the insulating substrate 14 by solder or the like corresponding to the window portion opened in the insulating layer of the insulating substrate 14. It is the pad part to be done. 2 and 3, the input terminal 18, the output terminal 20, and the relay terminal 22 are not shown. In FIG. 3, the heat conductive material is denoted by reference numeral 26, and the heat dissipation member 12, the insulating substrate 14, and the like are schematically illustrated. Between.

かかるスルーホール24は、絶縁基板14の発熱素子16が実装される面である実装面14aとそれに対向する裏面14bとの間を貫通し、中心軸Zについて対称な内壁面である壁面24aを有する。かかるスルーホール24では、熱伝導材逃し部の幅に相当する内径が一定である。また、スルーホール24は、絶縁基板14上に実装された複数の発熱素子16間にも配置される。なお、図3中では、便宜上、スルーホール24は1つのみ示す。   The through-hole 24 has a wall surface 24a that is an inner wall surface that is symmetric with respect to the central axis Z and penetrates between a mounting surface 14a that is a surface on which the heating element 16 of the insulating substrate 14 is mounted and a back surface 14b that faces the mounting surface 14a. . In such a through hole 24, the inner diameter corresponding to the width of the heat conducting material escape portion is constant. The through hole 24 is also disposed between the plurality of heat generating elements 16 mounted on the insulating substrate 14. In FIG. 3, only one through hole 24 is shown for convenience.

次に、このように発熱素子16を実装した絶縁基板14を、放熱部材12に固定する工程につき、詳細に説明する。   Next, the process of fixing the insulating substrate 14 mounted with the heat generating element 16 to the heat radiating member 12 will be described in detail.

まず、図2及び3に示すように、発熱素子16を実装した絶縁基板14の裏面14b又は放熱部材12の上面に熱伝導材26を塗布し、ついで、この状態で絶縁基板14を、放熱部材12上に所定荷重で圧着する。その後、図示を省略するボルト等の締結部材で、絶縁基板14を放熱部材12に固定する。   First, as shown in FIGS. 2 and 3, a heat conductive material 26 is applied to the back surface 14 b of the insulating substrate 14 on which the heat generating element 16 is mounted or the upper surface of the heat radiating member 12, and then the insulating substrate 14 is attached to the heat radiating member in this state. 12 is pressure-bonded with a predetermined load. Thereafter, the insulating substrate 14 is fixed to the heat dissipation member 12 with a fastening member such as a bolt (not shown).

ここに、熱伝導材26が絶縁基板14又は放熱部材12に塗布された状態で、絶縁基板14を放熱部材12上に圧着する際に、熱伝導材26は押されて、図3中で矢印26aで示すように、スルーホール24内に侵入し、z軸の正方向に向かって逃がされる。   Here, when the insulating substrate 14 is crimped onto the heat radiating member 12 in a state where the heat conductive material 26 is applied to the insulating substrate 14 or the heat radiating member 12, the heat conductive material 26 is pushed and an arrow in FIG. As shown by 26a, it penetrates into the through hole 24 and escapes in the positive direction of the z-axis.

このように、かかる構成においては、余分な量の熱伝導材26を、スルーホール24に収容しつつ絶縁基板14の表面に確実に溢れ出させることができ、絶縁基板14と放熱部材12との密着性を向上させて効率のよい放熱を可能とすると共に、絶縁基板14と放熱部材12との側面に熱伝導材26が不要にはみ出ることを確実に防止できる。更に、絶縁基板14上で隣接する発熱素子16間には、スルーホール24が存在することになり、隣接する発熱素子16間の絶縁基板を介した不要な熱干渉を効果的に低減できる。   As described above, in this configuration, an excessive amount of the heat conductive material 26 can be reliably overflowed to the surface of the insulating substrate 14 while being accommodated in the through hole 24, and the insulating substrate 14 and the heat dissipation member 12 can be It is possible to improve the adhesion and to efficiently dissipate heat, and to reliably prevent the heat conductive material 26 from protruding from the side surfaces of the insulating substrate 14 and the heat radiating member 12 with certainty. Further, the through holes 24 exist between the adjacent heating elements 16 on the insulating substrate 14, and unnecessary thermal interference between the adjacent heating elements 16 via the insulating substrate can be effectively reduced.

次に、絶縁基板14上に実装された発熱素子16の近傍に、スルーホール24を配置するためのより詳細な構成につき、更に図4及び5を参照しつつ、詳細に説明する。   Next, a more detailed configuration for disposing the through hole 24 in the vicinity of the heating element 16 mounted on the insulating substrate 14 will be described in detail with reference to FIGS.

図4は、図2の本実施形態における放熱構造を有する電子装置の概略上面図を、更に部分的に拡大した拡大図であり、図5は、図4のB−B線による断面図である。なお、図4では、発熱素子16の部分は、図示を省略している。   4 is an enlarged view in which the schematic top view of the electronic device having the heat dissipation structure in this embodiment of FIG. 2 is further partially enlarged, and FIG. 5 is a cross-sectional view taken along the line BB of FIG. . In FIG. 4, the heating element 16 is not shown.

まず、発熱素子16が発する熱が、絶縁基板14を介して放熱部材12に向かって拡散する発熱拡散領域について検討する。   First, a heat diffusion region where heat generated by the heat generating element 16 diffuses toward the heat radiating member 12 through the insulating substrate 14 will be considered.

発熱素子16は、その放熱板部16aが、絶縁基板14の絶縁層に開けられた窓部に対応して、絶縁基板14の金属層に接着されるパッド部分であるから、発熱素子16が発する熱は、かかる放熱板部16aから絶縁基板14に伝達される。ここに、発熱素子16が発する熱が、放熱板部16aから絶縁基板14に伝達される拡散範囲の境界は、x−y平面に対してz軸の負方向に45°である角度αで規定されると見積もれるから、絶縁基板14のz軸方向の厚さをtとすれば、熱が絶縁基板14の裏面14bに達したときにx方向及びy方向に拡がる長さは各々tとなる。また、矩形の放熱板部16aのx方向の長さをaとし、y方向の長さをbとすれば、熱が絶縁基板14の裏面14bに達したときに、x−y平面上で拡散する領域は、x方向の長さがa+2tであり、y方向の長さがb+2tである矩形領域となる。つまり、熱が絶縁基板14の裏面14bに達したときに、x−y平面上で拡散する矩形領域を発熱拡散領域28と定義すれば、それはx方向の長さがa+2tであり、y方向の長さがb+2tであるxーy平面に平行な矩形領域となる。   The heat generating element 16 emits the heat generating element 16 because the heat radiating plate portion 16a is a pad portion bonded to the metal layer of the insulating substrate 14 corresponding to the window portion opened in the insulating layer of the insulating substrate 14. The heat is transmitted from the heat radiating plate portion 16a to the insulating substrate 14. Here, the boundary of the diffusion range in which the heat generated by the heat generating element 16 is transmitted from the heat radiating plate portion 16a to the insulating substrate 14 is defined by an angle α that is 45 ° in the negative direction of the z axis with respect to the xy plane. Therefore, if the thickness of the insulating substrate 14 in the z-axis direction is t, the lengths of heat spreading in the x and y directions when the heat reaches the back surface 14b of the insulating substrate 14 are t. . Further, if the length of the rectangular heat radiating plate portion 16a in the x direction is a and the length in the y direction is b, when heat reaches the back surface 14b of the insulating substrate 14, it diffuses on the xy plane. The area to be processed is a rectangular area whose length in the x direction is a + 2t and whose length in the y direction is b + 2t. That is, if a rectangular region that diffuses on the xy plane when heat reaches the back surface 14b of the insulating substrate 14 is defined as a heat generation diffusion region 28, the length in the x direction is a + 2t, It becomes a rectangular region parallel to the xy plane whose length is b + 2t.

ここに、かかる発熱拡散領域28内では、発熱素子16の放熱板部16aから伝達される熱が拡散されて伝播されているのであるから、かかる発熱拡散領域28内にスルーホール24を配置しなければ、発熱拡散領域28内での熱の伝搬経路はそのまま確保でき、かつ発熱拡散領域28の外方近傍にスルーホール24を配置すれば、絶縁基板14の連続性がスルーホール24で妨げられ、発熱拡散領域28の外方周辺への、つまり典型的には隣接する発熱素子16への熱伝達を遮断することが可能となる。更にかかる場合に、発熱素子16の放熱板部16aから絶縁基板14への熱の拡散は、放熱板部16aのz軸方向の中心軸、つまり発熱拡散領域28のz軸方向の中心軸について対称的なのであるから、スルーホール24を発熱拡散領域28の4辺の各々の外方近傍に配置すれば、隣接する発熱素子16等への放熱を効果的に4方向で遮断することが可能となる。   Here, in the heat generating diffusion region 28, the heat transmitted from the heat radiating plate portion 16a of the heat generating element 16 is diffused and propagated, so the through hole 24 must be disposed in the heat generating diffusion region 28. For example, the heat propagation path in the heat generating diffusion region 28 can be secured as it is, and if the through hole 24 is disposed near the outside of the heat generating diffusion region 28, the continuity of the insulating substrate 14 is hindered by the through hole 24, Heat transfer to the outer periphery of the heat generating diffusion region 28, that is, typically to the adjacent heat generating element 16 can be blocked. Further, in such a case, the heat diffusion from the heat radiating plate 16a of the heat generating element 16 to the insulating substrate 14 is symmetric with respect to the central axis of the heat radiating plate 16a in the z-axis direction, that is, the central axis of the heat generating diffusion region 28 in the z-axis direction. Therefore, if the through holes 24 are arranged in the vicinity of the outside of each of the four sides of the heat generation diffusion region 28, it is possible to effectively block heat radiation to the adjacent heat generating elements 16 in four directions. .

従って、かかる構成では、発熱素子16の放熱板部16aからの熱の拡散状態を考慮して、スルーホール24を、発熱拡散領域28の外方近傍に配置したものである。また、発熱素子16の放熱板部16aの矩形形状をも考慮して、スルーホール24を、発熱拡散領域28の4辺の各々の外方近傍に配置したものである。なお、ここに、スルーホール24が発熱拡散領域28の外方近傍に位置されるとは、スルーホール24が、発熱拡散領域28の境界に接するか、その境界の外側の近傍に配置されることをいう。   Therefore, in this configuration, the through hole 24 is disposed in the vicinity of the outside of the heat generation diffusion region 28 in consideration of the heat diffusion state from the heat radiating plate portion 16a of the heat generation element 16. In consideration of the rectangular shape of the heat radiating plate portion 16 a of the heat generating element 16, the through holes 24 are arranged near the outer sides of the four sides of the heat generating diffusion region 28. Here, the through hole 24 being positioned near the outside of the heat generating diffusion region 28 means that the through hole 24 is in contact with the boundary of the heat generating diffusion region 28 or is disposed near the outside of the boundary. Say.

このように、かかる構成によれば、スルーホール24が、発熱素子16の発熱拡散領域28の外方近傍に配置されることにより、発熱素子16の裏面からの熱放射が有効に行なわれる範囲を確保しながらその外方にスルーホール24を配置でき、隣接する発熱素子16間の不要な熱干渉を効果的に低減できる。   As described above, according to such a configuration, the through hole 24 is disposed in the vicinity of the outside of the heat generation diffusion region 28 of the heat generating element 16, so that a range in which heat radiation from the back surface of the heat generating element 16 is effectively performed can be achieved. The through-hole 24 can be arranged outside while securing it, and unnecessary thermal interference between adjacent heating elements 16 can be effectively reduced.

次に、本実施形態における放熱構造を有する電子装置において、発熱素子16の発熱拡散領域28の外方近傍に配置されるスルーホールの変形例につき、更に図6及び7を参照して、詳細に説明する。   Next, in the electronic device having the heat dissipation structure in the present embodiment, a modification of the through hole disposed near the outside of the heat generating diffusion region 28 of the heat generating element 16 will be described in detail with reference to FIGS. explain.

図6は、本実施形態における放熱構造を有する電子装置のスルーホールの変形例を示す部分断面図であり、図7は、本実施形態における放熱構造を有する電子装置のスルーホールの別の変形例を示す部分断面図である。なお、図6及び7では、図3で示す断面図に対応する位置関係で断面をとっているが、放熱部材12、発熱素子16及び熱伝導材26は、図示を省略している。   FIG. 6 is a partial cross-sectional view showing a modification of the through hole of the electronic device having the heat dissipation structure in the present embodiment, and FIG. 7 is another modification of the through hole of the electronic device having the heat dissipation structure in the present embodiment. FIG. 6 and 7, the cross section is taken in a positional relationship corresponding to the cross sectional view shown in FIG. 3, but the heat radiating member 12, the heat generating element 16, and the heat conducting material 26 are not shown.

図6に示すように、本変形例のスルーホール34は、前述したスルーホール24に対して、絶縁基板14の発熱素子16が実装される面である実装面14aとそれに対向する裏面14bとの間を貫通して、中心軸Zについて対称な壁面34aを有することは同様であるが、かかる壁面34aが、熱伝導材逃し部の幅に相当するスルーホール34の内径を実装面14aから裏面14bに向かうにつれて拡大させるように、z軸に対して傾斜していることが相違する。   As shown in FIG. 6, the through hole 34 of the present modified example has a mounting surface 14 a that is a surface on which the heat generating element 16 of the insulating substrate 14 is mounted and a back surface 14 b that faces the mounting surface 14 b. It is the same that the wall surface 34a that is symmetrical with respect to the central axis Z passes through between the mounting surface 14a and the back surface 14b. The wall surface 34a has an inner diameter of the through hole 34 that corresponds to the width of the heat conducting material escape portion. It is different in that it is inclined with respect to the z-axis so as to expand as it goes to.

このように、スルーホール34を、絶縁基板14の実装面14aから裏面14bに向けて、その内径が拡大する形状にすることにより、絶縁基板14と放熱部材12との間に熱伝導材26を塗布して押しつけたときに、余分な熱伝導材26の収容量が増加され得て、絶縁基板14と放熱部材12との間で、熱伝導材26を均一に介在させることができると共に、放熱部材に対する絶縁基板の表面積が増加することで熱伝導材の接触表面積を増加することができて、より放熱効果が増大し、一層確実に放熱性を向上できる。   In this way, the through hole 34 is shaped so that its inner diameter increases from the mounting surface 14 a to the back surface 14 b of the insulating substrate 14, so that the heat conductive material 26 is interposed between the insulating substrate 14 and the heat dissipation member 12. When applied and pressed, the amount of excess heat conductive material 26 can be increased, and the heat conductive material 26 can be evenly interposed between the insulating substrate 14 and the heat radiating member 12, and the heat can be radiated. By increasing the surface area of the insulating substrate with respect to the member, the contact surface area of the heat conducting material can be increased, the heat dissipation effect can be further increased, and the heat dissipation can be improved more reliably.

次に、図7に示すように、別の変形例のスルーホール44は、上述した変形例のスルーホール34に対して、絶縁基板14の実装面14aとそれに対向する裏面14bとの間を貫通して、中心軸Zについて対称な壁面44aを有し、実装面14aから裏面14bに向かうにつれて拡大する内径を有することは同様であるが、壁面44aが絶縁基板14の裏面14bに向かう途中で、スルーホール44の内径がより増大するように、z軸に対してより大きく傾斜する壁面44bに変化することが相違する。   Next, as shown in FIG. 7, the through hole 44 of another modified example penetrates between the mounting surface 14a of the insulating substrate 14 and the back surface 14b opposite to the through hole 34 of the modified example described above. Then, it is the same that it has a wall surface 44a symmetrical about the central axis Z and has an inner diameter that increases as it goes from the mounting surface 14a to the back surface 14b, but the wall surface 44a is on the way to the back surface 14b of the insulating substrate 14, The difference is that the wall surface 44b is more inclined with respect to the z-axis so that the inner diameter of the through hole 44 is further increased.

このように、スルーホール44を、絶縁基板14の実装面14aから裏面14bに向けて、その内径が段階的に拡大する形状にすることにより、余分な熱伝導材26の収容量がより増加され得て、絶縁基板14と放熱部材12との間で、熱伝導材26をより均一に介在させることができると共に、放熱部材に対する絶縁基板の表面積が更に増加することで熱伝導材の接触表面積を一層増加することができて、より放熱効果が増大し、更に確実に放熱性を向上できる。
(第2の実施形態)
次に、本発明の第2の実施形態における放熱構造を有する電子装置につき、図8〜15を参照して、詳細に説明する。なお、本実施形態においては、第1の実施形態と同様な構成要素には同じ符号を用い、その詳細な説明は適宜省略する。
In this way, the through hole 44 is shaped so that its inner diameter gradually increases from the mounting surface 14 a to the back surface 14 b of the insulating substrate 14, so that the accommodation amount of the excess heat conductive material 26 is further increased. As a result, the heat conductive material 26 can be more uniformly interposed between the insulating substrate 14 and the heat dissipation member 12, and the surface area of the heat conductive material can be increased by further increasing the surface area of the insulating substrate with respect to the heat dissipation member. It can be further increased, the heat dissipation effect is further increased, and the heat dissipation can be improved more reliably.
(Second Embodiment)
Next, an electronic device having a heat dissipation structure according to the second embodiment of the present invention will be described in detail with reference to FIGS. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.

図8は、図1をz軸の負方向に沿って見た、本実施形態における放熱構造を有する電子装置の概略上面図であり、図9は、図8のC−C線による拡大断面図である。   8 is a schematic top view of the electronic device having the heat dissipation structure in the present embodiment as viewed in FIG. 1 along the negative direction of the z-axis, and FIG. 9 is an enlarged cross-sectional view taken along the line CC in FIG. It is.

本実施形態においては、図8及び9に示すように、第1の実施形態で説明した構成に対し、第1の実施形態のスルーホール24、34、44に代えて、y軸方向に直線的に延在する溝54が、絶縁基板14に設けられていることが主たる相違点であり、残余の構成は同様である。   In the present embodiment, as shown in FIGS. 8 and 9, the configuration described in the first embodiment is linear in the y-axis direction instead of the through holes 24, 34, and 44 in the first embodiment. The main difference is that the groove 54 extending to the insulating substrate 14 is provided in the insulating substrate 14, and the remaining configuration is the same.

より詳しくは、発熱素子16の近傍の絶縁基板14においては、熱伝導材を逃す熱伝導材逃し部である複数の溝54が設けられている。かかる溝54は、絶縁基板14の発熱素子16が実装される面である実装面14aに対向する裏面14bに凹部として形成され、中心軸Zについて各々対称に配されて、x軸方向及びy軸方向で各々対向する2対の側壁面54a並びに上方を閉じる上壁面54bを有する。つまり、溝54では、側壁面54aが、x−z平面又はy−z平面に平行な垂直面であって、熱伝導材逃し部の幅であるところの対向した側壁面54a間の距離が一定である。なお、図9中では、便宜上、溝54は1つのみ示す。   More specifically, the insulating substrate 14 in the vicinity of the heat generating element 16 is provided with a plurality of grooves 54 that are heat conduction material escape portions for allowing the heat conduction material to escape. The grooves 54 are formed as recesses on the back surface 14b facing the mounting surface 14a that is the surface on which the heat generating element 16 of the insulating substrate 14 is mounted, and are arranged symmetrically with respect to the central axis Z, respectively, in the x-axis direction and the y-axis. There are two pairs of side wall surfaces 54a facing each other in the direction, and an upper wall surface 54b that closes upward. That is, in the groove 54, the side wall surface 54a is a vertical surface parallel to the xz plane or the yz plane, and the distance between the opposed side wall surfaces 54a, which is the width of the heat conducting material escape portion, is constant. It is. In FIG. 9, only one groove 54 is shown for convenience.

次に、このように発熱素子16を実装した絶縁基板14を、放熱部材12に固定する工程につき、詳細に説明する。   Next, the process of fixing the insulating substrate 14 mounted with the heat generating element 16 to the heat radiating member 12 will be described in detail.

図8及び9に示すように、発熱素子16を実装した絶縁基板14の裏面14b又は放熱部材12の上面に熱伝導材26を塗布し、ついで、この状態で絶縁基板14を、放熱部材12上に所定荷重で圧着し、その後、図示を省略するボルト等の締結部材で、絶縁基板14を放熱部材12に固定することは、第1の実施形態と同様である。   As shown in FIGS. 8 and 9, a heat conductive material 26 is applied to the back surface 14 b of the insulating substrate 14 on which the heat generating element 16 is mounted or the upper surface of the heat radiating member 12, and then the insulating substrate 14 is placed on the heat radiating member 12 in this state. It is the same as in the first embodiment that the insulating substrate 14 is fixed to the heat radiating member 12 with a fastening member such as a bolt (not shown).

ここに、熱伝導材26が絶縁基板14又は放熱部材12に塗布された状態で、絶縁基板14を放熱部材12上に圧着する際に、熱伝導材26は押されて、図9中で矢印26aで示すように、溝54内に侵入し、z軸の正方向に向かって逃がされる。   Here, when the insulating substrate 14 is pressure-bonded onto the heat radiating member 12 in a state where the heat conductive material 26 is applied to the insulating substrate 14 or the heat radiating member 12, the heat conductive material 26 is pushed and an arrow in FIG. As indicated by 26a, it enters the groove 54 and escapes in the positive direction of the z-axis.

このように、かかる構成においては、余分な量の熱伝導材26を溝54に収容しつつ、絶縁基板14と放熱部材12との間に存在する熱伝導材26の接触表面積を増加することができ、効率のよい放熱を可能とすると共に、絶縁基板14と放熱部材12との側面に熱伝導材26が不要にはみ出ることを確実に防止できる。   As described above, in such a configuration, it is possible to increase the contact surface area of the heat conductive material 26 existing between the insulating substrate 14 and the heat dissipation member 12 while accommodating an excessive amount of the heat conductive material 26 in the groove 54. In addition, it is possible to efficiently dissipate heat, and to reliably prevent the heat conductive material 26 from unnecessarily protruding from the side surfaces of the insulating substrate 14 and the heat radiating member 12.

次に、絶縁基板14上に実装された発熱素子16の近傍に、溝54を配置するためのより詳細な構成につき、更に図10及び11を参照しつつ、詳細に説明する。   Next, a more detailed configuration for disposing the groove 54 in the vicinity of the heating element 16 mounted on the insulating substrate 14 will be described in detail with reference to FIGS.

図10は、図8の本実施形態における放熱構造を有する電子装置の概略上面図を、更に部分的に拡大した拡大図であり、図11は、図10のD−D線による断面図である。なお、図10では、発熱素子16の部分は、図示を省略している。   FIG. 10 is an enlarged view in which the schematic top view of the electronic device having the heat dissipation structure in this embodiment of FIG. 8 is further partially enlarged, and FIG. 11 is a cross-sectional view taken along the line DD of FIG. . In FIG. 10, the heating element 16 is not shown.

まず、本実施形態においても、発熱素子16が発する熱が、絶縁基板14を介して放熱部材12に向かって拡散する発熱拡散領域28は、絶縁基板14のz軸方向の厚さをtとし、発熱素子16の矩形の放熱板部16aのx方向の長さをaとし、y方向の長さをbとすれば、x方向の長さがa+2tであり、y方向の長さがb+2tであるxーy平面に平行な矩形領域として定義できる。   First, also in the present embodiment, the heat generation diffusion region 28 in which the heat generated by the heat generating element 16 diffuses toward the heat radiating member 12 through the insulating substrate 14 is t, and the thickness of the insulating substrate 14 in the z-axis direction is t. If the length in the x direction of the rectangular heat sink 16a of the heat generating element 16 is a and the length in the y direction is b, the length in the x direction is a + 2t, and the length in the y direction is b + 2t. It can be defined as a rectangular region parallel to the xy plane.

ここに、かかる発熱拡散領域28内では、発熱素子16の放熱板部16aから伝達される熱が拡散されて伝播されているのであるから、かかる発熱拡散領域28内に溝54を配置すれば、発熱拡散領域28内での熱の伝搬経路に対応して、確実に溝54を配置できることになる。そして、かかる溝54には、余分な量の熱伝導材26が収容されるから、発熱拡散領域28内での熱の伝搬経路に対して、絶縁基板14と放熱部材12との間に存在する熱伝導材26の接触表面積が増加された領域を、確実に対応させることができて、発熱素子16から放熱部材12に向けて、より確実に放熱を行い得ることになる。   Here, since heat transmitted from the heat radiating plate portion 16a of the heat generating element 16 is diffused and propagated in the heat generating diffusion region 28, if the groove 54 is disposed in the heat generating diffusion region 28, Corresponding to the heat propagation path in the heat generation diffusion region 28, the groove 54 can be reliably arranged. Since an excessive amount of the heat conducting material 26 is accommodated in the groove 54, the groove 54 exists between the insulating substrate 14 and the heat radiating member 12 with respect to the heat propagation path in the heat generating diffusion region 28. The region where the contact surface area of the heat conductive material 26 is increased can be made to correspond reliably, and heat can be radiated more reliably from the heating element 16 toward the heat radiating member 12.

従って、かかる構成においては、発熱素子16の放熱板部16aからの熱の拡散状態を考慮して、溝54を、絶縁基板14の裏面において、発熱拡散領域28の内方近傍に配置したものである。なお、ここに、溝54が発熱拡散領域28の内方近傍に配置されるとは、溝54が、発熱拡散領域28の境界に接するか、その境界の内側の近傍に配置されることをいう。また、ここでは、溝54を、y軸方向に直線的に延在する形状を有するものとして説明したが、もちろん限定的なものではなく、x軸方向に直線的に延在する形状を有するものであってもよく、また、直線状ではなく、曲線状、ジグザク状、交差状等に変化しつつ延在するものであってもよい。また、溝54の本数も、限定的なものではなく、発熱拡散領域28の大きさや溝加工の内容等を考慮して、適宜の本数を設定可能である。   Therefore, in such a configuration, the groove 54 is disposed on the back surface of the insulating substrate 14 in the vicinity of the inside of the heat generation diffusion region 28 in consideration of the heat diffusion state from the heat radiating plate portion 16a of the heat generation element 16. is there. Here, the phrase that the groove 54 is arranged in the vicinity of the inside of the heat generation diffusion region 28 means that the groove 54 is in contact with the boundary of the heat generation diffusion region 28 or in the vicinity of the inside of the boundary. . Further, here, the groove 54 has been described as having a shape extending linearly in the y-axis direction. However, the groove 54 is of course not limited, and has a shape extending linearly in the x-axis direction. Alternatively, it may extend in a curved shape, a zigzag shape, a cross shape or the like instead of a linear shape. Further, the number of the grooves 54 is not limited, and an appropriate number can be set in consideration of the size of the heat diffusion region 28, the contents of the groove processing, and the like.

このように、かかる構成において、溝54が、発熱素子16の発熱拡散領域28の内方近傍に配置されることにより、発熱拡散領域28内での熱の伝搬経路に対して、絶縁基板14と放熱部材12との間に存在する熱伝導材26の接触表面積が増加された領域を、確実に対応させることができ、発熱素子16から放熱部材12に向けて、より確実に放熱を行うことができる。   As described above, in this configuration, the groove 54 is disposed in the vicinity of the inner side of the heat generation diffusion region 28 of the heat generating element 16, so that the insulating substrate 14 and the heat propagation path in the heat generation diffusion region 28 are arranged. The region where the contact surface area of the heat conductive material 26 existing between the heat radiating member 12 is increased can be reliably handled, and heat can be radiated more reliably from the heat generating element 16 toward the heat radiating member 12. it can.

次に、本実施形態における放熱構造を有する電子装置において、発熱素子16の発熱拡散領域28の内方近傍に配置される溝の変形例につき、更に図12〜15を参照して、詳細に説明する。   Next, in the electronic device having the heat dissipation structure in the present embodiment, a modified example of the groove disposed in the vicinity of the heat diffusion region 28 of the heat generating element 16 will be described in detail with reference to FIGS. To do.

図12は、本実施形態における放熱構造を有する電子装置の溝の変形例を示す部分断面図であり、図13〜15は、本実施形態における放熱構造を有する電子装置の溝の別の変形例を各々示す部分断面図である。なお、図12〜15では、図3で示す断面図に対応する位置関係で断面をとっているが、放熱部材12、発熱素子16及び熱伝導材26は、図示を省略している。   FIG. 12 is a partial cross-sectional view showing a modification of the groove of the electronic device having the heat dissipation structure in the present embodiment, and FIGS. 13 to 15 show another modification of the groove of the electronic device having the heat dissipation structure in the present embodiment. FIG. 12 to 15, the cross section is taken in a positional relationship corresponding to the cross sectional view shown in FIG. 3, but the heat radiating member 12, the heat generating element 16, and the heat conducting material 26 are not shown.

図12に示すように、本変形例の溝64は、前述した溝54に対して、絶縁基板14の発熱素子16が実装される面である実装面14aに対向する裏面14bに設けられた凹部であって、y軸方向に直線的に延在することは同様であるが、x軸方向で互いに対向しつつy軸方向に延在するその1対の側壁面64aを、熱伝導材逃し部の幅に相当する側壁面64a間の距離を実装面14aから裏面14bに向かうにつれて拡大させるように、y−z平面に平行な面Pに対して各々傾斜していることが相違する。   As shown in FIG. 12, the groove 64 of this modification is a recess provided on the back surface 14b of the insulating substrate 14 that faces the mounting surface 14a that is the surface on which the heat generating element 16 is mounted. However, the linearly extending in the y-axis direction is the same, but the pair of side wall surfaces 64a extending in the y-axis direction while facing each other in the x-axis direction are used as the heat conduction material relief portion. The distance between the side wall surfaces 64a corresponding to the width of each of the surfaces is inclined with respect to the plane P parallel to the yz plane so as to increase from the mounting surface 14a toward the back surface 14b.

このように、溝64を、絶縁基板14の実装面14aから裏面14bに向けて、その側壁面64a間の距離が拡大する形状にすることにより、絶縁基板14と放熱部材12との間に熱伝導材26を塗布して押しつけたときに、余分な熱伝導材26の収容量が増加され得て、絶縁基板14と放熱部材12との間で、熱伝導材26を均一に介在させることができると共に、放熱部材に対する絶縁基板の表面積が増加することで熱伝導材の接触表面積を増加することができて、より放熱効果が増大し、一層確実に放熱性を向上できる。   In this way, the groove 64 is shaped so that the distance between the side wall surfaces 64a increases from the mounting surface 14a to the back surface 14b of the insulating substrate 14, so that heat is generated between the insulating substrate 14 and the heat dissipation member 12. When the conductive material 26 is applied and pressed, the amount of excess heat conductive material 26 can be increased, and the heat conductive material 26 can be uniformly interposed between the insulating substrate 14 and the heat dissipation member 12. In addition, since the surface area of the insulating substrate with respect to the heat radiating member is increased, the contact surface area of the heat conducting material can be increased, the heat radiating effect is further increased, and the heat radiating property can be improved more reliably.

次に、図13に示すように、別の変形例の溝74は、上述した変形例の溝64に対して、絶縁基板14の裏面14bに設けられた凹部であって、y軸方向に直線的に延在し、絶縁基板14の実装面14aから裏面14bに向けて、その側壁面74a間の距離が拡大するすることは同様であるが、側壁面74aが絶縁基板14の裏面14bに向かう途中で、側壁面間の距離がより増大するように、y−z平面に平行な面Pに対してより大きく傾斜する側壁面74bに変化することが相違する。   Next, as shown in FIG. 13, the groove 74 of another modified example is a recess provided on the back surface 14b of the insulating substrate 14 with respect to the groove 64 of the modified example described above, and is linear in the y-axis direction. In the same manner, the distance between the side wall surfaces 74a increases from the mounting surface 14a of the insulating substrate 14 toward the back surface 14b, but the side wall surface 74a faces the back surface 14b of the insulating substrate 14. In the middle, the side wall surface 74b is more inclined with respect to the plane P parallel to the yz plane so that the distance between the side wall surfaces increases.

このように、溝74を、絶縁基板14の実装面14aから裏面14bに向けて、その側壁面74a、74b間の距離が段階的に拡大する形状にすることにより、余分な熱伝導材26の収容量がより増加され得て、絶縁基板14と放熱部材12との間で、熱伝導材26をより均一に介在させることができると共に、放熱部材に対する絶縁基板の表面積が更に増加することで熱伝導材の接触表面積を一層増加することができて、より放熱効果が増大し、更に確実に放熱性を向上できる。   Thus, the groove 74 is shaped so that the distance between the side wall surfaces 74a, 74b gradually increases from the mounting surface 14a of the insulating substrate 14 toward the back surface 14b, so that the excess heat conductive material 26 is removed. The capacity can be further increased, and the heat conductive material 26 can be more uniformly interposed between the insulating substrate 14 and the heat radiating member 12, and the surface area of the insulating substrate with respect to the heat radiating member can be further increased. The contact surface area of the conductive material can be further increased, the heat dissipation effect can be further increased, and the heat dissipation can be improved more reliably.

次に、図14に示すように、更に別の変形例の溝84は、上述した変形例の溝64に対して、絶縁基板14の裏面14bに設けられた凹部であって、y軸方向に直線的に延在し、絶縁基板14の実装面14aから裏面14bに向けて、その側壁面84a間の距離が拡大するすることは同様であるが、側壁面84a同士が絶縁基板14の実装面14a側で接することが相違する。なお、側壁面84a同士が絶縁基板14の実装面14a側で接する頂部は、R形状を有していてもよい。   Next, as shown in FIG. 14, the groove 84 of still another modified example is a recess provided on the back surface 14 b of the insulating substrate 14 with respect to the groove 64 of the above-described modified example, and extends in the y-axis direction. The distance between the side wall surfaces 84a extends linearly from the mounting surface 14a of the insulating substrate 14 toward the back surface 14b, but the side wall surfaces 84a are the same as the mounting surface of the insulating substrate 14. It is different in contact on the 14a side. In addition, the top part where the side wall surfaces 84a are in contact with each other on the mounting surface 14a side of the insulating substrate 14 may have an R shape.

このように、溝84を、絶縁基板14の実装面14aから裏面14bに向けて、その側壁面84a間の距離が拡大する形状にすることにより、余分な熱伝導材26の収容量が増加され得て、絶縁基板14と放熱部材12との間で、熱伝導材26を均一に介在させることができると共に、放熱部材に対する絶縁基板の表面積が増加することで熱伝導材の接触表面積を増加することができて、より放熱効果が増大し、一層に放熱性を向上できることに加え、側壁面84a同士が絶縁基板14の実装面14a側で接する構成のものであるため、溝84を形成する工程が簡素化され得る。   As described above, the groove 84 has a shape in which the distance between the side wall surfaces 84a is increased from the mounting surface 14a to the back surface 14b of the insulating substrate 14, thereby increasing the amount of the heat conductive material 26 accommodated. Thus, the heat conductive material 26 can be uniformly interposed between the insulating substrate 14 and the heat dissipation member 12, and the surface area of the heat conductive material is increased by increasing the surface area of the insulating substrate with respect to the heat dissipation member. In addition to the fact that the heat radiation effect can be further increased and the heat radiation performance can be further improved, the side wall surfaces 84a are in contact with each other on the mounting surface 14a side of the insulating substrate 14, and thus the step of forming the groove 84 is possible. Can be simplified.

次に、図15に示すように、更に別の変形例の溝94は、上述した変形例の溝84に対して、絶縁基板14の裏面14bに設けられた凹部であって、y軸方向に直線的に延在し、絶縁基板14の実装面14aから裏面14bに向けて、その側壁面94a間の距離が拡大するすることは同様であるが、側壁面94aが絶縁基板14の裏面14bに向かう途中で、側壁面間の距離がより増大するように、y−z平面に平行な面Pに対してより大きく傾斜する側壁面94bに変化することが相違する。   Next, as shown in FIG. 15, the groove 94 of still another modified example is a recess provided in the back surface 14 b of the insulating substrate 14 with respect to the groove 84 of the modified example described above, and extends in the y-axis direction. The distance between the side wall surfaces 94a increases linearly from the mounting surface 14a of the insulating substrate 14 toward the back surface 14b, but the side wall surface 94a extends to the back surface 14b of the insulating substrate 14. On the way, the side wall surface 94b is more inclined with respect to the plane P parallel to the yz plane so that the distance between the side wall surfaces increases.

このように、溝94を、絶縁基板14の実装面14aから裏面14bに向けて、その側壁面94a、94b間の距離が段階的に拡大する形状にすることにより、余分な熱伝導材26の収容量がより増加され得て、絶縁基板14と放熱部材12との間で、熱伝導材26をより均一に介在させることができると共に、放熱部材に対する絶縁基板の表面積が更に増加することで熱伝導材の接触表面積を一層増加することができて、より放熱効果が増大し、更に確実に放熱性を向上できる。   In this way, the groove 94 is shaped so that the distance between the side wall surfaces 94a and 94b gradually increases from the mounting surface 14a to the back surface 14b of the insulating substrate 14, so that the excess heat conductive material 26 is removed. The capacity can be further increased, and the heat conductive material 26 can be more uniformly interposed between the insulating substrate 14 and the heat radiating member 12, and the surface area of the insulating substrate with respect to the heat radiating member can be further increased. The contact surface area of the conductive material can be further increased, the heat dissipation effect can be further increased, and the heat dissipation can be improved more reliably.

なお、本発明は、部材の種類、配置、個数等は前述の実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。   In the present invention, the type, arrangement, number, and the like of the members are not limited to the above-described embodiments, and the constituent elements thereof are appropriately replaced with those having the same operational effects, and the gist of the invention is not deviated. Of course, it can be appropriately changed within the range.

以上のように、本発明においては、発熱素子を実装する絶縁基板と放熱部材とを熱伝導材を介して接続する電子装置において、放熱を効率よく実現できる放熱構造を提供できるものであり、その汎用普遍的な性格から発熱素子を有する電子装置に広範に適用され得るものと期待される。   As described above, in the present invention, in an electronic device in which an insulating substrate on which a heating element is mounted and a heat radiating member are connected via a heat conductive material, a heat radiating structure capable of efficiently realizing heat radiation can be provided. It is expected that it can be widely applied to an electronic device having a heating element because of its general purpose universal character.

本発明の第1の実施形態における放熱構造を有する電子装置の概略斜視図である。1 is a schematic perspective view of an electronic device having a heat dissipation structure in a first embodiment of the present invention. 本実施形態における放熱構造を有する電子装置の概略上面図である。It is a schematic top view of an electronic device having a heat dissipation structure in the present embodiment. 図2のA−A線による拡大断面図である。It is an expanded sectional view by the AA line of FIG. 図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 図4のB−B線による断面図である。It is sectional drawing by the BB line of FIG. 本実施形態における放熱構造を有する電子装置の変形例における部分断面図である。It is a fragmentary sectional view in the modification of the electronic device which has a heat dissipation structure in this embodiment. 本実施形態における放熱構造を有する電子装置の別の変形例における部分断面図である。It is a fragmentary sectional view in another modification of an electronic device which has a heat dissipation structure in this embodiment. 本発明の第2の実施形態における放熱構造を有する電子装置の概略上面図である。It is a schematic top view of the electronic device which has the heat dissipation structure in the 2nd Embodiment of this invention. 図8のC−C線による拡大断面図である。It is an expanded sectional view by the CC line of FIG. 図8の部分拡大図である。It is the elements on larger scale of FIG. 図10のD−D線による断面図である。It is sectional drawing by the DD line of FIG. 本実施形態における放熱構造を有する電子装置の変形例における部分断面図である。It is a fragmentary sectional view in the modification of the electronic device which has a heat dissipation structure in this embodiment. 本実施形態における放熱構造を有する電子装置の別の変形例における部分断面図である。It is a fragmentary sectional view in another modification of an electronic device which has a heat dissipation structure in this embodiment. 本実施形態における放熱構造を有する電子装置の別の変形例における部分断面図である。It is a fragmentary sectional view in another modification of an electronic device which has a heat dissipation structure in this embodiment. 本実施形態における放熱構造を有する電子装置の別の変形例における部分断面図である。It is a fragmentary sectional view in another modification of an electronic device which has a heat dissipation structure in this embodiment.

符号の説明Explanation of symbols

10……電子装置
12……放熱部材
14……絶縁基板
14a…実装面
14b…裏面
16……発熱素子
16a…放熱板部
18……入力端子
20……出力端子
22……中継端子
24……スルーホール
24a…壁面
26……熱伝導材
28……発熱拡散領域
34……スルーホール
34a…壁面
44……スルーホール
44a…壁面
44b…壁面
54……溝
54a…側壁面
54b…上壁面
64……溝
64a…側壁面
74……溝
74a…側壁面
74b…側壁面
84……溝
84a…側壁面
94……溝
94a…側壁面
94b…側壁面
DESCRIPTION OF SYMBOLS 10 ... Electronic device 12 ... Heat dissipation member 14 ... Insulation board 14a ... Mounting surface 14b ... Back surface 16 ... Heating element 16a ... Heat sink 18 ... Input terminal 20 ... Output terminal 22 ... Relay terminal 24 ... Through hole 24a ... Wall surface 26 ... Thermal conductive material 28 ... Heat diffusion region 34 ... Through hole 34a ... Wall surface 44 ... Through hole 44a ... Wall surface 44b ... Wall surface 54 ... Groove 54a ... Side wall surface 54b ... Upper wall surface 64 ... ... Groove 64a ... Side wall surface 74 ... Groove 74a ... Side wall surface 74b ... Side wall surface 84 ... Groove 84a ... Side wall surface 94 ... Groove 94a ... Side wall surface 94b ... Side wall surface

Claims (6)

発熱素子と、前記発熱素子を実装面に実装する絶縁基板と、前記絶縁基板の前記実装面に対向する裏面に対して熱伝導材を介して接続された放熱部材と、を備えた電子装置において、
前記発熱素子の近傍における前記絶縁基板に、前記熱伝導材を逃す熱伝導材逃し部が設けられたことを特徴とする電子装置。
In an electronic device comprising: a heat generating element; an insulating substrate on which the heat generating element is mounted on a mounting surface; and a heat radiating member connected to a back surface of the insulating substrate facing the mounting surface via a heat conductive material. ,
An electronic device, wherein a heat conduction material escape portion for allowing the heat conduction material to escape is provided on the insulating substrate in the vicinity of the heat generating element.
前記熱伝導材逃し部は、前記発熱素子の近傍において、前記絶縁基板の前記実装面と前記裏面とを貫いて設けられたスルーホールであることを特徴とする請求項1に記載の電子装置。   2. The electronic device according to claim 1, wherein the heat conducting material escape portion is a through hole provided through the mounting surface and the back surface of the insulating substrate in the vicinity of the heat generating element. 前記発熱素子は、前記絶縁基板の前記実装面に接続して、前記実装面に平行である放熱板部を有し、前記放熱板部の一辺の長さをaとし、前記放熱板部の他辺の長さをbとし、かつ前記絶縁基板の厚さをtとしたときに、前記実装面に平行な発熱拡散領域を、その一辺の長さがa+2tであって、その他辺の長さをb+2tである四角形の範囲として定義した場合、前記スルーホールが、前記発熱拡散領域の外方近傍に配置されたことを特徴とする請求項2に記載の電子装置。   The heat generating element has a heat radiating plate portion connected to the mounting surface of the insulating substrate and parallel to the mounting surface, and the length of one side of the heat radiating plate portion is a, When the length of the side is b and the thickness of the insulating substrate is t, the heat-diffusion region parallel to the mounting surface has a length of one side of a + 2t, and the length of the other side. 3. The electronic device according to claim 2, wherein the through-hole is disposed in the vicinity of the outside of the heat diffusion region when defined as a square range of b + 2t. 前記熱伝導材逃し部は、前記発熱素子の近傍において、前記絶縁基板の前記裏面に設けられた溝であることを特徴とする請求項1に記載の電子装置。   The electronic device according to claim 1, wherein the heat conducting material escape portion is a groove provided on the back surface of the insulating substrate in the vicinity of the heating element. 前記発熱素子は、前記絶縁基板の前記実装面に接続して、前記実装面に平行である放熱板部を有し、前記放熱板部の一辺の長さをaとし、前記放熱板部の他辺の長さをbとし、かつ前記絶縁基板の厚さをtとしたときに、前記実装面に平行な発熱拡散領域を、その一辺の長さがa+2tであって、その他辺の長さをb+2tである四角形の範囲として定義した場合、前記溝が、前記発熱拡散領域の内方近傍に配置されたことを特徴とする請求項4に記載の電子装置。   The heat generating element has a heat radiating plate portion connected to the mounting surface of the insulating substrate and parallel to the mounting surface, and the length of one side of the heat radiating plate portion is a, When the length of the side is b and the thickness of the insulating substrate is t, the heat-diffusion region parallel to the mounting surface has a length of one side of a + 2t, and the length of the other side. 5. The electronic device according to claim 4, wherein when defined as a square range of b + 2t, the groove is arranged in the vicinity of the inside of the heat generation diffusion region. 前記熱伝導材逃し部は、前記絶縁基板の前記実装面から前記裏面に向けて幅が拡大することを特徴とする請求項2から5のいずれかに記載の電子装置。   6. The electronic device according to claim 2, wherein a width of the heat conductive material escape portion is increased from the mounting surface to the back surface of the insulating substrate.
JP2007229885A 2007-09-05 2007-09-05 Electronic device having heat dissipation structure Expired - Fee Related JP5312764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007229885A JP5312764B2 (en) 2007-09-05 2007-09-05 Electronic device having heat dissipation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007229885A JP5312764B2 (en) 2007-09-05 2007-09-05 Electronic device having heat dissipation structure

Publications (2)

Publication Number Publication Date
JP2009064866A true JP2009064866A (en) 2009-03-26
JP5312764B2 JP5312764B2 (en) 2013-10-09

Family

ID=40559216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007229885A Expired - Fee Related JP5312764B2 (en) 2007-09-05 2007-09-05 Electronic device having heat dissipation structure

Country Status (1)

Country Link
JP (1) JP5312764B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134779A (en) * 2009-12-22 2011-07-07 Tdk Corp Electronic apparatus
JP2014056885A (en) * 2012-09-11 2014-03-27 Toyota Motor Corp Electronic component
JP2018050011A (en) * 2016-09-14 2018-03-29 株式会社ジェイテクト Electronic control device
JP2021082625A (en) * 2019-11-14 2021-05-27 株式会社デンソー Electronic control device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336009A (en) * 1994-06-10 1995-12-22 Fujitsu General Ltd Radiation structure of semiconductor element
JP2000174179A (en) * 1998-12-07 2000-06-23 Pioneer Electronic Corp Radiating structure of heating element
JP2003168772A (en) * 2001-11-30 2003-06-13 Denso Corp Package structure of power module
JP2003243584A (en) * 2002-02-15 2003-08-29 Mitsubishi Electric Corp Semiconductor device
JP2004221111A (en) * 2003-01-09 2004-08-05 Toyota Industries Corp Electronic apparatus
JP2006108326A (en) * 2004-10-04 2006-04-20 Fujitsu Ten Ltd Heat radiation structure of component, and restricting structure of heat dissipation material
JP2006165279A (en) * 2004-12-08 2006-06-22 Mitsubishi Electric Corp Semiconductor device
JP2008091522A (en) * 2006-09-29 2008-04-17 Digital Electronics Corp Radiation component, printed substrate, radiation system, and structure for supporting printed substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336009A (en) * 1994-06-10 1995-12-22 Fujitsu General Ltd Radiation structure of semiconductor element
JP2000174179A (en) * 1998-12-07 2000-06-23 Pioneer Electronic Corp Radiating structure of heating element
JP2003168772A (en) * 2001-11-30 2003-06-13 Denso Corp Package structure of power module
JP2003243584A (en) * 2002-02-15 2003-08-29 Mitsubishi Electric Corp Semiconductor device
JP2004221111A (en) * 2003-01-09 2004-08-05 Toyota Industries Corp Electronic apparatus
JP2006108326A (en) * 2004-10-04 2006-04-20 Fujitsu Ten Ltd Heat radiation structure of component, and restricting structure of heat dissipation material
JP2006165279A (en) * 2004-12-08 2006-06-22 Mitsubishi Electric Corp Semiconductor device
JP2008091522A (en) * 2006-09-29 2008-04-17 Digital Electronics Corp Radiation component, printed substrate, radiation system, and structure for supporting printed substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134779A (en) * 2009-12-22 2011-07-07 Tdk Corp Electronic apparatus
JP2014056885A (en) * 2012-09-11 2014-03-27 Toyota Motor Corp Electronic component
JP2018050011A (en) * 2016-09-14 2018-03-29 株式会社ジェイテクト Electronic control device
JP2021082625A (en) * 2019-11-14 2021-05-27 株式会社デンソー Electronic control device
JP7283358B2 (en) 2019-11-14 2023-05-30 株式会社デンソー electronic controller

Also Published As

Publication number Publication date
JP5312764B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
US8729692B2 (en) Power module package
US8446727B2 (en) Electronic component
JP7105874B2 (en) Printed circuit board with heat sink
JP5312764B2 (en) Electronic device having heat dissipation structure
JP2011091088A (en) Heat radiation structure of heating element and semiconductor device using the heat radiation structure
KR20080073506A (en) Printed circuit board and semiconductor memory module using the same
JP5222838B2 (en) Control device
JP2016115782A (en) Semiconductor module
EP3098845B1 (en) Package assembly
JP2006196593A (en) Semiconductor device and heat sink
US9204572B2 (en) Heat radiation arrangement
JP2007184424A (en) Semiconductor device
JP6992913B2 (en) Lead frame wiring structure and semiconductor module
JP7059714B2 (en) Power converter and manufacturing method of power converter
JP5125530B2 (en) Power converter
JP4730668B2 (en) Heat sink and power conversion device using the same
EP3214646A1 (en) Heat-dissipating structure
US20210183726A1 (en) Semiconductor device
JP2020167181A (en) Electronic apparatus
JP2008227361A (en) Electronic equipment
JP2020009989A (en) Semiconductor device
JP5260044B2 (en) Sealed electronic equipment
WO2023021725A1 (en) Electronic control device
JP2009188192A (en) Circuit device
JP7466850B2 (en) On-board chargers and inverters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees