JP2009064561A - 導電性黒色ペースト組成物及び該組成物を用いたバス電極の製造方法 - Google Patents

導電性黒色ペースト組成物及び該組成物を用いたバス電極の製造方法 Download PDF

Info

Publication number
JP2009064561A
JP2009064561A JP2007228590A JP2007228590A JP2009064561A JP 2009064561 A JP2009064561 A JP 2009064561A JP 2007228590 A JP2007228590 A JP 2007228590A JP 2007228590 A JP2007228590 A JP 2007228590A JP 2009064561 A JP2009064561 A JP 2009064561A
Authority
JP
Japan
Prior art keywords
powder
mass
oxide
glass powder
paste composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007228590A
Other languages
English (en)
Other versions
JP4924304B2 (ja
Inventor
Reiko Ogawa
怜子 小川
Masahide Arai
将英 荒井
Keiji Ogawa
恵二 小川
Ryuji Uesugi
隆二 植杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007228590A priority Critical patent/JP4924304B2/ja
Publication of JP2009064561A publication Critical patent/JP2009064561A/ja
Application granted granted Critical
Publication of JP4924304B2 publication Critical patent/JP4924304B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】遮蔽効果と高い導電性の双方を兼ね備えた単一のバス電極を形成できる。ペースト材料の利用効率を向上できる。フォトリソグラフィ法を用いた従来の製造工程の煩雑さを改善し、製造工程を簡略化できる。
【解決手段】PDP10を構成するフロントガラス基板11上にオフセット印刷法又はスクリーン印刷法によりバス電極16を形成するための導電性黒色ペースト組成物であって、組成物が3〜15質量%の黒色酸化物粉末27と、5〜30質量%の酸化ビスマスを含むガラス粉末28と、35〜85質量%の金属粉末26と、残部が有機系ビヒクルとを含み、酸化ビスマスの含有割合がガラス粉末28を100質量%としたとき26〜65質量%であり、ガラス粉末28の平均粒径が0.05〜1.0μmであり、かつガラス粉末28の比表面積が3〜50m2/gであることを特徴とする。
【選択図】図1

Description

本発明は、プラズマディスプレイパネル(Plasma Display Panel、以下、PDPという。)のフロントガラス基板上にバス電極を形成するのに好適な導電性黒色ペースト組成物及び該組成物を用いたバス電極の製造方法に関するものである。
PDPはガスを封入した密閉空間である放電セルの電極対に電圧を印加し、プラズマ放電を発生させ、ガスから発生する紫外線を放電セル内に塗布された蛍光体に照射し、蛍光体を励起させてこれを発光させることにより情報を表示する表示デバイスである。
PDPの画像表示方法について以下、図6を参照しながら更に説明する。PDPはフロントガラス基板11とリアガラス基板12との間に放電の広がりを一定領域に抑え、表示を規定のセル内で行わせると同時に、かつ均一な放電空間を確保するために隔壁13が設けられる。フロントガラス基板11の内面にはバス電極16が設けられ、リアガラス基板12の内面には、バス電極16に対向してアドレス電極17が設けられる。両基板11、12は隔壁13により区画される。区画された内部にはガスが封入され、放電空間14が形成される。PDPはこの放電空間14内で相対向するバス電極16とアドレス電極17との間にプラズマ放電を生じさせることにより、この放電空間14内に封入されているガスから発生する紫外線を放電空間14内に設けた蛍光体18G,18B,18Rに当てることにより表示を行うものである。
近年、PDPの高画質化が求められ、その対策の一つとしてハイコントラスト化が挙げられる。従来、PDPのコントラストは、ブラウン管テレビと比べ低いものであったが、このコントラストを低下させる原因の1つが、室内光の反射輝度の高さである。
室内光は可視光であるが、PDPを構成する放電セル内の蛍光体に対する可視光の反射率が高いため、蛍光体に当たって反射した室内光が視聴者の目に入り、蛍光体による発光の視認を弱める原因を引き起こしていた。
そのため、最近のPDPでは、室内光の反射によるコントラスト低下を解決する対策として、フロント基板における室内光の遮蔽率を向上させることにより、室内光がPDPを構成する放電セル内に射し込むのを防止する方法が採用されている。例えば、従来、銀などを主成分とする白色層1層のみで構成されていたバス電極を、図6に示すように、先ず黒色ペーストを塗布して黒色層16bを形成し、その上に白色層16aを積層することで白黒2層16a,16bから構成されるバス電極16とする方法である(例えば、特許文献1参照。)。
上記バス電極の黒色層のような黒色膜を形成するための材料として耐熱性黒顔料、有機バインダ、光重合性モノマー、光重合開始剤及び有機ビーズを含有することを特徴とする光硬化性樹脂組成物、及び黒色層が上記光硬化性樹脂組成物により形成されることを特徴とするPDP用前面基板が提案されている(例えば、特許文献2参照。)。前記特許文献2に示される光硬化性樹脂組成物によるバス電極を構成する黒色層を形成するためにフォトリソグラフィ法が使用されている。
具体的には、先ず、透明電極が形成されたフロントガラス基板の全面に光硬化性樹脂組成物を塗布し、乾燥してタックフリーの黒層を形成する。形成した黒層に対し、バス電極のパターンを有するフォトマスクを重ね合わせ、露光する。次に、黒層の全面にAg等の導電性粉末を含有する導電性の高い組成物を塗布し、乾燥してタックフリーの白層(導電性層)を形成する。これにバス電極の露光パターンを有するフォトマスクを重ね合わせ、露光する。次に、アルカリ水溶液により現像して非露光部分を除去し、焼成することにより、フロントガラス基板の透明電極の上に、黒層(下層)電極と白層(上層)電極とからなるバス電極と、ブラックマトリックスとが形成される。フォトリソグラフィ法では、黒層の材料として、光硬化の性質を有する光硬化性モノマーなどを含んだ、いわゆる感光性の黒色ペーストが使用されている。ここで、「タック」とは、粘着力の度合いを示す値である。
特開2004−63247号公報(請求項1) 特開2005−8700号公報(請求項1及び4、明細書[0052]、図2)
しかしながら、上記特許文献1及び2では、先ず、黒色ペーストを塗布して黒色層を形成した後、その上に白色層を積層することでバス電極を形成する。そのため、白黒2層をそれぞれ別の材料及び別工程で形成しなければならず、しかも黒色層を形成する方法としてフォトリソグラフィ法を使用しているため塗布、乾燥、露光、現像、焼成といった煩雑な製造工程を踏まなければならない。
また、フォトリソグラフィ法では露光した部分以外は後工程で除去してしまうため、ペースト材料の利用効率が極めて悪く、除去するペースト材料に含まれる元素の種類によっては、処理方法やリサイクル等にコストがかかるという問題も生じていた。
そこで本発明は、このような従来技術が抱える課題を解決するためになされたものである。
本発明の目的は、遮蔽効果と高い導電性の双方を兼ね備えた単一のバス電極を形成し得る導電性黒色ペースト組成物を提供することにある。
本発明の別の目的は、ペースト材料の利用効率を向上し得る導電性黒色ペースト組成物を用いたバス電極の製造方法を提供することにある。
本発明の更に別の目的は、フォトリソグラフィ法を用いた従来の製造工程の煩雑さを改善し、製造工程を簡略化し得る導電性黒色ペースト組成物を用いたバス電極の製造方法を提供することにある。
請求項1に係る発明は、プラズマディスプレイパネルを構成するフロントガラス基板上にバス電極を形成するための導電性黒色ペースト組成物であって、組成物が3〜15質量%の黒色酸化物粉末と、5〜30質量%の酸化ビスマスを含むガラス粉末と、35〜85質量%の金属粉末と、残部が有機系ビヒクルとを含み、酸化ビスマスの含有割合がガラス粉末を100質量%としたとき26〜65質量%であり、ガラス粉末の平均粒径が0.05〜1.0μmであり、かつガラス粉末の比表面積が3〜50m2/gであることを特徴とする導電性黒色ペースト組成物である。
請求項2に係る発明は、請求項1に係る発明であって、黒色酸化物粉末がCo、Cr、Cu、Mn、Fe及びNiからなる群より選ばれた1種の金属元素を含む金属酸化物、又は2種以上の金属元素を含む複合酸化物或いはこれらの混合物である導電性黒色ペースト組成物である。
請求項3に係る発明は、請求項1に係る発明であって、ガラス粉末が酸化ビスマス以外に、酸化鉛、酸化亜鉛、酸化ホウ素、酸化ケイ素、酸化リン、酸化カルシウム及び酸化チタンからなる群より選ばれた1又は2以上の酸化物を含む450〜550℃の軟化点を有するフリットガラスである導電性黒色ペースト組成物である。
請求項4に係る発明は、請求項1に係る発明であって、ガラス粉末が酸化鉛、酸化ビスマス、酸化亜鉛、酸化ホウ素、酸化ケイ素、酸化リン、酸化カルシウム及び酸化チタンからなる群より選ばれた1又は2以上の酸化物を含む450〜550℃の軟化点を有するフリットガラスである導電性黒色ペースト組成物である。
請求項5に係る発明は、請求項1ないし4いずれか1項に記載の導電性黒色ペースト組成物を用いてオフセット印刷法又はスクリーン印刷法により基板上に塗布膜を形成し、塗布膜を有する基板を加熱冷却処理することにより基板上に膜状のバス電極を形成するバス電極の製造方法において、加熱冷却処理が塗布膜を有する基板を昇温速度5〜30℃/minで室温から保持温度500〜600℃まで昇温させて5〜20分間保持した後、冷却速度1〜5℃/minで保持温度から室温まで冷却することにより行われることを特徴とするバス電極の製造方法である。
以上述べたように、本発明の導電性黒色ペースト組成物によれば、ペースト組成物が3〜15質量%の黒色酸化物粉末と、5〜30質量%の酸化ビスマスを含むガラス粉末と、35〜85質量%の金属粉末と、残部が有機系ビヒクルとを含み、酸化ビスマスの含有割合がガラス粉末を100質量%としたとき26〜65質量%とすることにより、このペースト組成物を用いてバス電極を形成すると、針状結晶を含む遮蔽効果を持つ反応層と高い導電率を持つ導電層を形成することができる。そのため、高い導電性を得るために金属粉末の含有割合を高くし、黒色酸化物粉末の含有割合を低くしても、針状結晶を有するこの反応層の遮蔽効果により高い遮蔽率を確保できる。これにより、従来、遮蔽効果を有する黒層と導電性を有する白層の2層をそれぞれ別の材料及び別工程で形成していたバス電極を、同じ材料及び同一工程で形成できるため製造工程を簡略化できる。また本発明のペースト組成物は、平均粒径が0.05〜1.0μmであり、かつ比表面積が3〜50m2/gである微小なガラス粉末を成分として含むため、密着性に優れた精細でライン乱れのないパターンを形成することができる。更に本発明のバス電極の製造方法ではオフセット印刷法又はスクリーン印刷法を使用するため、フォトリソグラフィ法を用いた場合に比べてペースト材料の利用効率を向上でき、またフォトリソグラフィ法を用いた場合の塗布、乾燥、露光、現像、焼成といった製造工程の煩雑さを改善し、製造工程を簡略化することができる。
次に本発明を実施するための最良の形態を図面に基づいて説明する。
図1は、本発明の導電性ペースト組成物を用いて形成された導電性と高い遮蔽効果の双方を有する単一のバス電極で構成されるPDPの放電セルを示す図である。本発明の導電性黒色ペースト組成物は、図1に示すように、PDP10を構成するフロントガラス基板11上にバス電極16を形成するために使用される。本発明の導電性黒色ペースト組成物は、3〜15質量%の黒色酸化物粉末27と、5〜30質量%の酸化ビスマスを含むガラス粉末28と、35〜85質量%の金属粉末26と、残部が有機系ビヒクルとを含み、酸化ビスマスの含有割合がガラス粉末28を100質量%としたとき26〜65質量%含むように構成される。
十分な遮蔽効果を得るための黒色を得るには、黒色酸化物粉末の含有割合を高くする必要があるが、黒色酸化物粉末は非導電性の粉末であるため、黒色酸化物粉末の含有割合を高くすると、導電性は低下する。一方、高い導電性を得るために黒色酸化物粉末の含有割合を低くして金属粉末の割合を高くした場合、黒色度が低下して十分な遮蔽効果が得られない。本発明は、バス電極に必要とされる導電性を確保しつつ十分な遮蔽率をも有するバス電極を、同一材料から形成する際に生じる上記問題点を解消するためになされたものである。
本発明の導電性黒色ペースト組成物に含まれる各成分を上記範囲内にすることにより、図1に示すような、遮蔽効果と高い導電性の双方を持つバス電極を同一材料及び同一工程により形成することができる。図3は本発明の導電性黒色ペースト組成物により形成されたバス電極の断面を模式的に表した図である。この本発明の導電性黒色ペースト組成物により形成されたバス電極16には、透明電極23を有する基板との界面側に、針状結晶29が含まれる反応層16bができる。これは黒色酸化物粉末27と、ガラス粉末28の一部として含まれる酸化ビスマスとが反応してできた結晶であり、この針状結晶29を含む反応層16bは高い遮蔽効果を持ち、基板側から射し込む室内光を十分に遮蔽する。また形成されるバス電極16の基板とは反対側の表面側にできる導電層16aでは、導電性を低下させる原因となる非導電性の黒色酸化物粉末27が、酸化ビスマスとの反応による反応層の形成により減少するため高い導電性が得られる。
これにより、従来、バス電極16は、図6に示すように、室内光の遮蔽率を向上させるための黒色層16aと銀などを主成分とした導電層である白色層16bの2層をそれぞれ別の材料及び別の工程で形成していたが、本発明の導電性ペースト組成物によれば、図1に示すような、遮蔽効果と高い導電性の双方を兼ね備えた単一のバス電極16を形成することができる。黒色酸化物粉末の含有割合を上記3〜15質量%の範囲内としたのは、下限値未満では形成されるバス電極が、基板との界面付近以外の部分において十分な黒色が得られず遮蔽率が低下するからであり、上限値を越えると、非導電性粉末を多く含むため、バス電極としての十分な導電性が得られないからである。このうち、黒色酸化物粉末の含有割合は好ましくは5〜12質量%、更に好ましくは5〜8質量%である。酸化ビスマスを含むガラス粉末の含有割合を5〜30質量%としたのは、下限値未満ではマトリックス状に広がるガラス粉末の存在が少なすぎるため基板との密着性が悪くなり、上限値を越えると、導電性を持つ粉末成分に対して非導電性の粉末成分を多く含むため、十分な導電性が得られないからである。このうち、酸化ビスマスを含むガラス粉末の含有割合は好ましくは5〜20質量%、更に好ましくは10〜20質量%である。金属粉末の含有割合を上記35〜85質量%の範囲内としたのは、下限値未満では十分な導電性が得られず、上限値を越えると、金属光沢の反射による白色が増し、遮蔽効果が低下するからである。このうち、金属粉末の含有割合は好ましくは45〜75質量%、更に好ましくは55〜70質量%である。酸化ビスマスの含有割合をガラス粉末を100質量%としたとき26〜65質量%としたのは、下限値未満であると、得られるガラス粉末の軟化点が高くなるため焼成温度が600℃を越えてしまい、上限値を越えると、ガラス成分の熱膨張係数が大きくなり、焼成時に割れ、ひび或いは反り等の不具合が生じるからである。このうち、酸化ビスマスの含有割合はガラス粉末を100質量%としたとき好ましくは40〜60質量%、更に好ましくは45〜55質量%である。
また本発明の導電性黒色ペースト組成物に含まれるガラス粉末28の平均粒径は0.05〜1.0μmの範囲内であり、かつガラス粉末28の比表面積は3〜50m2/gの範囲内である。ガラス粉末の平均粒径を上記範囲内としたのは、0.05μm未満では、基板との密着性に優れたバス電極が形成できるものの、現状では、0.05μm未満のガラス粉末を得るにはコストと時間がかかりすぎるためである。また1.0μmを越えると、ガラスが偏在してしまうため、ガラス粉末が軟化して無色透明になった後、遮蔽率の低い箇所が発生する不具合が生じる。このうち、ガラス粉末の平均粒径は0.1〜0.8μmが好ましく、更に好ましくは0.2〜0.7μmである。ガラス粉末の比表面積を上記範囲内としたのは、下限値未満では、粒径が大きくなり、ガラスが偏在することにより遮蔽率の低い箇所が発生したり、精細な電極が形成できなくなるといった不具合が生じ、上限値を越えるとペースト粘度が上昇し、印刷の際に印刷形状が乱れるなどの印刷不良が生じるからである。このうち、ガラス粉末の比表面積は、5〜40m2/gであることが好ましく、更に好ましくは5〜35m2/gである。
黒色酸化物粉末はCo、Cr、Cu、Mn、Fe及びNiからなる群より選ばれた1種の金属元素を含む金属酸化物、又は2種以上の金属元素を含む複合酸化物或いはこれらの混合物であることが好ましい。このうち、Co34粉末、Fe,Mn,Cu複合酸化物又はCu,Cr,Mn複合酸化物が特に好ましい。黒色酸化物粉末の平均粒径は0.01〜0.5μmの範囲であることが好ましい。平均粒径が上記範囲内である微小な黒色酸化物粉末を使用することにより、精細でライン乱れのないパターンを形成することができる。黒色酸化物粉末の平均粒径が下限値未満になると、比表面積が大きくなりすぎて、ペースト中の溶剤や樹脂などの流動性が悪くなり、チキソトロピー性が高いペースト組成物になるからである。一方、平均粒径が上限値よりも大きくなると粒径が大き過ぎるために、ライン乱れが大きくなり、精細なパターンを形成し難くなるからである。
ガラス粉末を構成する成分としては、酸化ビスマスの他、酸化鉛、酸化亜鉛、酸化ホウ素、酸化ケイ素、酸化アルミニウム、酸化リン、酸化カルシウム及び酸化チタンからなる群より選ばれた1種又は2種以上の酸化物が挙げられる。またガラス粉末は400〜550℃の軟化点を有するフリットガラスであることが好適である。軟化点を上記範囲内としたのは、軟化点が下限値未満のフリットガラスでは、ガラス粉末がペースト組成物中の有機系ビヒクルを構成するバインダ樹脂の脱バインダを妨げてしまい、この導電性黒色ペースト組成物を用いて形成したバス電極は、抵抗値が上昇する傾向があるためである。また軟化点が上限値を越えるフリットガラスでは、ガラス粉末がガラス基板との間の十分なアンカーを与え難い傾向があるためである。このうち、フリットガラスの軟化点は450〜550℃が特に好ましい。具体的には、B23−ZnO−Bi23、B23−Bi23、Bi23−B23−SiO2、Bi23−B23−Al23、Bi23−B23−TiO2、Bi23−B23−ZnO−CaO、Bi23−B23−ZnO−BaOなどの組み合わせが挙げられる。
金属粉末は、Au、Ag、Cu、Pd、Ni及びAlからなる群より選ばれた1又は2以上の金属粉末であることが好ましい。金属粉末の平均粒径は0.1〜0.7μmの範囲内であることが好ましい。金属粉末の平均粒径が前記範囲内であれば、精細でライン乱れのないパターンの形成において好適である。
有機系ビヒクルは、アルカリ可溶性樹脂を有機溶剤に溶解することにより調整されたものを使用することが好ましい。黒色酸化物粉末、ガラス粉末及び金属粉末の分散性向上のための分散剤や、ペースト粘度調整のための粘度調整剤等を必要に応じて加える。
本発明のバス電極の製造方法は、先ず上記導電性黒色ペースト組成物を用いてオフセット印刷法又はスクリーン印刷法により基板上に塗布膜25を形成する。本発明の導電性ペースト組成物では平均粒径が0.05〜1.0μm、比表面積3〜50m2/gである微小なガラス粉末を使用しているため、基板との密着性に優れた精細でライン乱れのないパターンの塗布膜を形成することができる。図2は、加熱冷却処理前の塗布膜25の断面を模式的に示した図である。なお図2では、金属粉末26、黒色酸化物粉末27及びガラス粉末28以外の成分は図示していない。塗布膜25における金属粉末26、黒色酸化物粉末27及びガラス粉末28は、この図2に示すように分散状態にある。次に塗布膜25を有する基板を加熱冷却処理する。加熱冷却処理は、先ず昇温速度5〜30℃/minで室温から保持温度500〜600℃まで昇温させ、この保持温度で5〜20分間保持する。その後、冷却速度1〜5℃/minで保持温度から室温まで自然冷却する。
図3は上記方法により形成されたバス電極16の断面を模式的に示した図である。上記加熱冷却処理後のバス電極16には、図2に示すような分散状態にあった黒色酸化物粉末27がガラス粉末28の一部として含まれる酸化ビスマスと反応して、図3に示す針状結晶29を形成し、透明電極23を有するフロントガラス基板11との界面側に膜状の反応層16bが形成される。この反応層16bに形成される針状結晶29は高い遮蔽効果を持つ。黒色酸化物粉末がガラス粉末と反応して針状結晶を形成する技術的な理由については現時点では解明されていないが、黒色酸化物中に含まれる金属元素と、反応性が高いBiとが反応して別の組成の酸化物結晶を作っているためと推察される。一方、形成されるバス電極16のフロントガラス基板11とは反対側の表面側には、導電層16aが形成される。この導電層16aでは、非導電性の成分である黒色酸化物粉末27が針状結晶29の生成に使用されて減少するため、高い導電性を有する。なお図3において、針状結晶29の形成に関与しなかったガラス粉末は、図3では特に示していないが、金属粉末26、黒色酸化物粉末27及び針状結晶29との隙間にマトリックス状に広がっている。
加熱冷却処理における昇温速度を5〜30℃/minとしたのは、導電性の良好な電極を形成するのに好適であるからである。昇温速度が5℃/min未満では、工程のタクトタイムが長くなるため生産性が悪く、また精細に形成した印刷ラインの形状が昇温過程で崩れるなどの不具合を生じる。一方、昇温速度が30℃/minを越えると、印刷によりライン状に形成されたペースト中の有機系ビヒクルに溶剤が完全に抜けず、焼成時の膜の収縮が悪くなり、良好な導電性が得られないなどの不具合が生じる。このうち、昇温速度は5〜10℃/minであることが好ましい。保持温度を上記範囲内としたのは、下限値未満では金属粉末同士の焼結が十分に進まず良好な導電性が得られない、或いはガラス粉末が十分に軟化せず基板との密着性が低下する不具合が生じる。上限値を越えると基板の耐熱温度を超えるため、基板の歪みや損傷が生じるからである。このうち、保持温度は540〜580℃であることが好ましい。また保持時間を上記範囲内としたのは、下限値未満では金属粉末同士の焼結が十分に進まないため良好な導電性が得られず、上限値を越えると基板に歪みや損傷が生じるからである。このうち、保持時間は5〜15分間であることが好ましい。更に保持温度から室温まで冷却する際の冷却速度を1〜5℃/minの範囲内としたのは、下限値未満では工程のタクトタイムが悪くなるため生産性が悪く、上限値を越えると基板に割れが生じるなどの不具合が生じるからである。
次に、本発明のバス電極の製造方法を用いて、PDP用前面基板を形成する方法を説明する。
先ず、図4(a)に示すような、フロントガラス基板11を用意し、図4(b)に示すように、フロントガラス基板11に透明電極23を形成する。ここで形成する透明電極23は、プラズマ放電に必要であり、かつ発光の妨げにならないように透明な材質で形成される。具体的には、透明電極23はITO(Indium Tin Oxide)やSnO2等の酸化膜が使用され、スパッタリング、蒸着等の真空成膜法やCVD(Chemical Vapor Deposition)法によって形成される。
次いで、図4(c)に示すように、形成した透明電極23上に、本発明の導電性黒色ペースト組成物を、オフセット印刷法又はスクリーン印刷法によりフロントガラス基板11上に塗布膜25を形成する。この塗布膜25では、図2に示すように、金属粉末26、黒色酸化物粉末27及びガラス粉末28は分散状態にある。
次いで、図4(d)に示すように、フロントガラス基板11上に形成された塗布膜25の加熱冷却処理を行う。加熱冷却処理は、先ず昇温速度5〜30℃/minで室温から保持温度500〜600℃まで昇温させ、この保持温度で5〜20分間保持する。その後、冷却速度1〜5℃/minで保持温度から室温まで冷却する。この加熱冷却処理により、図3に示すような、導電層16aと反応層16bを有するバス電極16が形成される。反応層16bは、図2に示すような分散状態にあった黒色酸化物粉末27が、ガラス粉末28の一部として含まれる酸化ビスマスと反応してできた針状結晶29を有するため高い遮蔽効果が得られる。一方、導電層16aでは、針状結晶29の形成に使用された非導電性の成分である黒色酸化物粉末27が減少するため、高い導電性が得られる。
次いで、図4(e)に示すように、透明電極23及びバス電極16を覆うように、フロントガラス基板11の全面に透明誘電体層21を形成する。透明誘電体層21は電極の保護と放電時に誘電体層表面に壁電荷を形成してメモリ機能を持たせるために形成するものである。この透明誘電体層21は、バス電極16上に20〜40μmの厚みとなるように形成される。
次に、図5(a)に示すように、形成した透明誘電体層21の上に、黒色ペースト組成物をオフセット印刷法により塗布、焼成することにより、ブラックストライプ24を形成する。ブラックストライプ24を形成することで、外光反射率が低下し、コントラストが改善される。
次に、図5(b)に示すように、透明誘電体層21の上に、ブラックストライプ24と同じ高さになるように、カラーフィルタ22を形成する。続いて、図5(c)に示すように、カラーフィルタ22及びブラックストライプ24の上に、透明誘電体層21を形成する。更に図5(d)に示すように、透明誘電体層21の上に、保護膜19を形成する。
保護膜19を形成するのは、放電によるイオン衝撃で誘電体層がダメージを受け、パネル寿命が短くなるのと、プラズマ放電に必要な二次電子放出の効率が悪いため、放電電圧が高くなるのを防ぐためである。保護膜19はMgOが使用され、電子ビーム蒸着、イオンプレーティング、スパッタリングによって形成することができる。
以上、図4(a)〜図5(d)の各工程を経ることにより、PDP用の前面基板が得られる。
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
次の表1に示すように、黒色酸化物粉末として平均粒径0.2μmのCo34粉末、ガラス粉末として平均粒径0.7μm、比表面積5m2/gのBi23−B23−SiO2、金属粉末としてAg粉末、それから有機系ビヒクルを用意した。ガラス粉末に含まれる酸化ビスマスの含有割合は、ガラス粉末を100質量%としたとき50質量%とした。なお、有機系ビヒクルは、アルカリ可溶性樹脂を有機溶媒に溶解することにより調整した。この有機系ビヒクルには、作製する導電性黒色ペースト組成物に応じて、適宜分散剤や粘度調整剤等の添加剤を加えている。分散剤は、黒色酸化物粉末、ガラス粉末及び金属粉末の分散性向上のために、粘度調整剤は、ペーストの粘度調整のために適宜添加した。次に、Co34粉末5質量%、ガラス粉末15質量%、Ag粉末50質量%、また、有機系ビヒクルとしてアルカリ可溶性樹脂20質量%及び溶剤10質量%を遊星攪拌により予め混合した。更に、この混合物を3本ロールにて十分に混合し、分散させることで導電性黒色ペースト組成物を得た。
<実施例2>
次の表1に示すように、黒色酸化物粉末として平均粒径0.1μmのCo,Cr,Fe複合酸化物粉末、ガラス粉末として平均粒径0.5μm、比表面積12m2/gのBi23−B23、金属粉末としてAg粉末、それから有機系ビヒクルを用意した。ガラス粉末に含まれる酸化ビスマスの含有割合は、ガラス粉末を100質量%としたとき60質量%とした。次に、Co,Cr,Fe複合酸化物粉末4質量%、ガラス粉末18質量%、Ag粉末60質量%、また、有機系ビヒクルとしてアルカリ可溶性樹脂12質量%及び溶剤6質量%の割合で、実施例1と同じ方法により導電性黒色ペースト組成物を得た。
<実施例3>
次の表1に示すように、黒色酸化物粉末として平均粒径0.2μmのCu,Cr,Co複合酸化物粉末、ガラス粉末として平均粒径0.4μm、比表面積25m2/gのBi23−B23、金属粉末としてAg粉末、それから有機系ビヒクルを用意した。ガラス粉末に含まれる酸化ビスマスの含有割合は、ガラス粉末を100質量%としたとき55質量%とした。次に、Cu,Cr,Co複合酸化物粉末5質量%、ガラス粉末20質量%、Ag粉末55質量%、また、有機系ビヒクルとしてアルカリ可溶性樹脂15質量%及び溶剤15質量%の割合で、実施例1と同じ方法により導電性黒色ペースト組成物を得た。
<実施例4>
次の表1に示すように、黒色酸化物粉末として平均粒径0.35μmのCo34粉末、ガラス粉末として平均粒径0.2μm、比表面積35m2/gのBi23−B23−SiO2、金属粉末としてAg粉末、それから有機系ビヒクルを用意した。ガラス粉末に含まれる酸化ビスマスの含有割合は、ガラス粉末を100質量%としたとき45質量%とした。次に、Co34粉末10質量%、ガラス粉末10質量%、Ag粉末62質量%、また、有機系ビヒクルとしてアルカリ可溶性樹脂12質量%及び溶剤6質量%の割合で、実施例1と同じ方法により導電性黒色ペースト組成物を得た。
<比較例1>
次の表1に示すように、黒色酸化物粉末として平均粒径0.2μmのCo34粉末、ガラス粉末として平均粒径1.0μm、比表面積10m2/gのBi23−B23−SiO2、金属粉末としてAg粉末、それから有機系ビヒクルを用意した。ガラス粉末に含まれる酸化ビスマスの含有割合は、ガラス粉末を100質量%としたとき50質量%とした。次に、Co34粉末5質量%、ガラス粉末2質量%、Ag粉末63質量%、また、有機系ビヒクルとしてアルカリ可溶性樹脂20質量%及び溶剤10質量%の割合で、実施例1と同じ方法により導電性黒色ペースト組成物を得た。
<比較例2>
次の表1に示すように、黒色酸化物粉末として平均粒径0.05μmのFe,Mn,Cu複合酸化物粉末、ガラス粉末として平均粒径0.6μm、比表面積15m2/gのBi23−B23、金属粉末としてAg粉末、それから有機系ビヒクルを用意した。ガラス粉末に含まれる酸化ビスマスの含有割合は、ガラス粉末を100質量%としたとき60質量%とした。次に、Fe,Mn,Cu複合酸化物粉末5質量%、ガラス粉末40質量%、Ag粉末35質量%、また、有機系ビヒクルとしてアルカリ可溶性樹脂15質量%及び溶剤5質量%の割合で、実施例1と同じ方法により導電性黒色ペースト組成物を得た。
<比較例3>
次の表1に示すように、黒色酸化物粉末として平均粒径0.1μmのCo34粉末、ガラス粉末として平均粒径0.7μm、比表面積5m2/gのPbO−B23−SiO2、金属粉末としてAg粉末、それから有機系ビヒクルを用意した。次に、Co34粉末5質量%、ガラス粉末15質量%、Ag粉末50質量%、また、有機系ビヒクルとしてアルカリ可溶性樹脂20質量%及び溶剤10質量%の割合で、実施例1と同じ方法により導電性黒色ペースト組成物を得た。即ち、この比較例3のペースト組成物には、ガラス粉末として酸化ビスマスは含まれていない。
<比較例4>
次の表1に示すように、黒色酸化物粉末として平均粒径0.2μmのFe,Mn,Cu複合酸化物粉末、ガラス粉末として平均粒径0.5μm、比表面積10m2/gのZnO−B23−SiO2、金属粉末としてAg粉末、それから有機系ビヒクルを用意した。次に、Fe,Mn,Cu複合酸化物粉末4質量%、ガラス粉末18質量%、Ag粉末60質量%、また、有機系ビヒクルとしてアルカリ可溶性樹脂12質量%及び溶剤6質量%の割合で、実施例1と同じ方法により導電性黒色ペースト組成物を得た。即ち、この比較例4のペースト組成物には、ガラス粉末として酸化ビスマスは含まれていない。
<比較例5>
次の表1に示すように、黒色酸化物粉末として平均粒径0.2μmのCo34粉末、ガラス粉末として平均粒径0.7μm、比表面積5m2/gのBi23−B23−SiO2、金属粉末としてAg粉末、それから有機系ビヒクルを用意した。ガラス粉末に含まれる酸化ビスマスの含有割合は、ガラス粉末を100質量%としたとき70質量%とした。次に、Co34粉末5質量%、ガラス粉末15質量%、Ag粉末50質量%、また、有機系ビヒクルとしてアルカリ可溶性樹脂20質量%及び溶剤10質量%の割合で、実施例1と同じ方法により導電性黒色ペースト組成物を得た。
<比較例6>
次の表1に示すように、黒色酸化物粉末として平均粒径0.2μmのCo34粉末、ガラス粉末として平均粒径0.7μm、比表面積5m2/gのBi23−B23−SiO2、金属粉末としてAg粉末、それから有機系ビヒクルを用意した。ガラス粉末に含まれる酸化ビスマスの含有割合は、ガラス粉末を100質量%としたとき20質量%とした。次に、Co34粉末5質量%、ガラス粉末15質量%、Ag粉末50質量%、また、有機系ビヒクルとしてアルカリ可溶性樹脂20質量%及び溶剤10質量%の割合で、実施例1と同じ方法により導電性黒色ペースト組成物を得た。
<比較例7>
次の表1に示すように、黒色酸化物粉末として平均粒径0.1μmのCo34粉末、ガラス粉末として平均粒径0.7μm、比表面積5m2/gのBi23−B23−SiO2、金属粉末としてAg粉末、それから有機系ビヒクルを用意した。ガラス粉末に含まれる酸化ビスマスの含有割合は、ガラス粉末を100質量%としたとき50質量%とした。次に、Co34粉末2質量%、ガラス粉末18質量%、Ag粉末50質量%、また、有機系ビヒクルとしてアルカリ可溶性樹脂20質量%及び溶剤10質量%の割合で、実施例1と同じ方法により導電性黒色ペースト組成物を得た。
<比較例8>
次の表1に示すように、黒色酸化物粉末として平均粒径0.1μmのCo34粉末、ガラス粉末として平均粒径0.7μm、比表面積5m2/gのBi23−B23−SiO2、金属粉末としてAg粉末、それから有機系ビヒクルを用意した。ガラス粉末に含まれる酸化ビスマスの含有割合は、ガラス粉末を100質量%としたとき50質量%とした。次に、Co34粉末20質量%、ガラス粉末10質量%、Ag粉末40質量%、また、有機系ビヒクルとしてアルカリ可溶性樹脂20質量%及び溶剤10質量%の割合で、実施例1と同じ方法により導電性黒色ペースト組成物を得た。
<比較例9>
次の表1に示すように、黒色酸化物粉末として平均粒径0.1μmのCo34粉末、ガラス粉末として平均粒径0.7μm、比表面積5m2/gのBi23−B23−SiO2、金属粉末としてAg粉末、それから有機系ビヒクルを用意した。ガラス粉末に含まれる酸化ビスマスの含有割合は、ガラス粉末を100質量%としたとき50質量%とした。次に、Co34粉末10質量%、ガラス粉末30質量%、Ag粉末30質量%、また、有機系ビヒクルとしてアルカリ可溶性樹脂20質量%及び溶剤10質量%の割合で、実施例1と同じ方法により導電性黒色ペースト組成物を得た。
<比較例10>
次の表1に示すように、黒色酸化物粉末として平均粒径0.1μmのCo34粉末、ガラス粉末として平均粒径0.7μm、比表面積5m2/gのBi23−B23−SiO2、金属粉末としてAg粉末、それから有機系ビヒクルを用意した。ガラス粉末に含まれる酸化ビスマスの含有割合は、ガラス粉末を100質量%としたとき50質量%とした。次に、Co34粉末3質量%、ガラス粉末2質量%、Ag粉末90質量%、また、有機系ビヒクルとしてアルカリ可溶性樹脂3質量%及び溶剤2質量%の割合で、実施例1と同じ方法により導電性黒色ペースト組成物を得た。
<比較例11>
次の表1に示すように、黒色酸化物粉末として平均粒径0.1μmのCo34粉末、ガラス粉末として平均粒径0.02μm、比表面積65m2/gのBi23−B23−SiO2、金属粉末としてAg粉末、それから有機系ビヒクルを用意した。ガラス粉末に含まれる酸化ビスマスの含有割合は、ガラス粉末を100質量%としたとき55質量%とした。次に、Co34粉末5質量%、ガラス粉末15質量%、Ag粉末50質量%、また、有機系ビヒクルとしてアルカリ可溶性樹脂20質量%及び溶剤10質量%の割合で、実施例1と同じ方法により導電性黒色ペースト組成物を得た。
<比較例12>
次の表1に示すように、黒色酸化物粉末として平均粒径0.1μmのCo34粉末ガラス粉末として平均粒径1.5μm、比表面積2m2/gのBi23−B23−SiO2、金属粉末としてAg粉末、それから有機系ビヒクルを用意した。ガラス粉末に含まれる酸化ビスマスの含有割合は、ガラス粉末を100質量%としたとき55質量%とした。次に、Co34粉末5質量%、ガラス粉末15質量%、Ag粉末50質量%、また、有機系ビヒクルとしてアルカリ可溶性樹脂20質量%及び溶剤10質量%の割合で、実施例1と同じ方法により導電性黒色ペースト組成物を得た。
Figure 2009064561
<比較試験1>
実施例1〜4及び比較例1〜12で得られた導電性黒色ペースト組成物を用いて、以下のオフセット印刷性、最小線幅、抵抗値についての評価を行った。その結果を次の表2に示す。
(1) オフセット印刷性:導電性黒色ペースト組成物をオフセット印刷機(日本電子精機社製)でガラス基板上に印刷した際の転写性等をオフセット印刷性として評価した。オフセット印刷性の具体的な評価は、導電性黒色ペースト組成物がブランケットからガラス基板上に転写される際に、ライン形状に乱れが無く、100%転写され、ブランケットに残留ペーストがない状態を「良好」の評価とし、ライン形状に一部、にじみや乱れが確認されるも、ブランケット上には残留ペースト組成物が無く100%転写できた場合を「可」の評価として、大きな形状乱れや印刷斑、欠損箇所などが確認されたり、ブランケット上に転写できないペーストが残留した場合を「不可」の評価とした。
(2) 最小線幅:オフセット印刷が可能な線幅を50μm、70μm、100μm及び150μmの4種の線幅で表し、この線幅を最小線幅とした。
次に、先ず実施例1〜4及び比較例1〜12で得られた導電性黒色ペースト組成物をスクリーン印刷法によりガラス基板上に塗布し塗布膜を形成した。次にこの塗布膜を有するガラス基板の加熱冷却処理を行った。加熱冷却処理は、昇温速度10℃/minで560℃まで昇温させて10分間この温度で保持した後、冷却速度3℃/minで室温まで冷却することにより行った。このようにして形成されたバス電極について、以下の黒色度、密着性及び導電性についての評価を行った。その結果を次の表2に示す。
(3) 黒色度:形成したバス電極について、カラーコンピュータ(スガ試験器社製)を用いて黒色度を測定した。具体的には、CIELab表示方式によるLab表記方法のL値を求めた。なお、L値が小さいほど黒色度が高い。
(4) 密着性:形成したバス電極について、JIS−K5400に準拠した碁盤目テープテスト法により、バス電極の密着性を評価した。密着性の具体的な評価は、碁盤の目テープテストを実施した際に、テープ側のバス電極が転写されず、ガラス基板上にバス電極が100%密着している場合を「良好」の評価とし、テープとガラス基板の両方にバス電極が内部破壊を起こして付着した場合を「可」の評価とし、テープ側に多くのバス電極が付着し、剥離後の界面にガラス基板が観察された際を「不可」の評価とした。
(5)導電性:形成したバス電極について、ローレスタ(三菱油化製)を用いた表面抵抗値の測定を行い、測定時の膜厚については、形成したバス電極についてレーザー顕微鏡(キーエンス製)を用いた段差測定により算出した。これらを元に比抵抗値を算出した。
Figure 2009064561
表2から明らかなように、実施例1〜4と比較例3,4を比較すると、ガラス粉末に酸化ビスマスを含まない比較例3及び4では、酸化ビスマスを含む実施例1〜4に比べてL値及び比抵抗が大きくなり、バス電極としての十分な遮蔽率及び導電性が得られなかった。このことから、ガラス粉末に酸化ビスマスを含むことが効果的であることが確認された。また実施例1〜4と比較例1,2を比較すると、ガラス粉末が5質量%に満たない比較例1では、焼成後、電極として利用するのに十分な密着性が得られず、ガラス粉末が30質量%を越える比較例2では、組成物中の非導電性成分が占める割合が高くなるため、比抵抗が高くなり、導電性が低下した。このことから、ガラス粉末の含有割合は5〜30質量%の範囲内にすることが効果的であることが確認された。
実施例1〜4と比較例5,6を比較すると、酸化ビスマスの含有割合がガラス粉末を100質量%としたとき65質量%を越える比較例5では、そのガラス組成からガラス成分の熱膨張係数が大きくなり、焼成後の膜に反りやひびが生じて密着性が悪くなった。一方、酸化ビスマスの含有割合がガラス粉末を100質量%としたとき26質量%未満の比較例6では、ガラス粉末の軟化点が上がり、焼成時にガラス粉末がマトリックス状に十分広がることなく残留し、基板との密着に寄与しないため密着性が低下した。このことから、酸化ビスマスの含有割合はガラス粉末を100質量%としたとき26〜65質量%の範囲内にすることが効果的であることが確認された。
実施例1〜4と比較例7,8を比較すると、黒色酸化物粉末の含有割合が3質量%未満の比較例7ではL値が高くなり、十分な黒色度が得られなかった。一方、黒色酸化物粉末の含有割合が15質量%を越える比較例8では、組成物中の非導電性成分が高くなるため、比抵抗が高くなり、導電性が低下した。このことから、黒色酸化物粉末の含有割合は3〜15質量%の範囲内にすることが効果的であることが確認された。
実施例1〜4と比較例9,10を比較すると、金属粉末の含有割合が35質量%未満の比較例9では比抵抗が非常に高くなり、良好な導電性が得られず、一方、金属粉末の含有割合が85質量%を越える比較例10では、良好な導電性は得られるものの、黒色酸化物粉末やガラス粉末の含有割合が少なくなるため、黒色度及び密着性がともに低下した。このことから、金属粉末の含有割合は35〜85質量%の範囲内にすることが効果的であることが確認された。
実施例1〜4と比較例11,12を比較すると、ガラス粉末の平均粒径が0.05μm未満であり、比表面積が50m2/gを越える比較例11では、ペースト粘度が高くなりすぎてオフセット印刷性が悪くなり、最小線幅を確認できなかった。一方、ガラス粉末の平均粒径が1.0μmを越え、かつ比表面積が3m2/g未満の比較例12では、粒径が大きすぎるため、オフセット印刷による精細なパターンの形成できず、最小線幅を確認できなかった。このことから、ガラス粉末の平均粒径が0.05〜1.0μmであり、かつガラス粉末の比表面積が3〜50m2/gであること
効果的であることが確認された。
本発明の導電性ペースト組成物から形成された単一のバス電極で構成されるPDPの放電セルを示す図。 本発明の導電性黒色ペースト組成物を用いて形成された加熱冷却処理前の塗布膜の断面を模式的に示した図。 本発明の導電性黒色ペースト組成物を用いて形成されたバス電極の断面を模式的に示した図。 本発明のPDP用前面基板の製造工程の前段を示す図。 本発明のPDP用前面基板の製造工程の後段を示す図。 従来の黒色層と白色層の2層のバス電極で構成されるPDPの放電セルを示す図。
符号の説明
10 PDP
11 フロントガラス基板
16 バス電極
25 塗布膜
26 金属粉末
27 黒色酸化物粉末
28 ガラス粉末

Claims (5)

  1. プラズマディスプレイパネルを構成するフロントガラス基板上にバス電極を形成するための導電性黒色ペースト組成物であって、
    前記組成物が3〜15質量%の黒色酸化物粉末と、5〜30質量%の酸化ビスマスを含むガラス粉末と、35〜85質量%の金属粉末と、残部が有機系ビヒクルとを含み、
    前記酸化ビスマスの含有割合がガラス粉末を100質量%としたとき26〜65質量%であり、
    前記ガラス粉末の平均粒径が0.05〜1.0μmであり、かつ前記ガラス粉末の比表面積が3〜50m2/gであることを特徴とする導電性黒色ペースト組成物。
  2. 黒色酸化物粉末がCo、Cr、Cu、Mn、Fe及びNiからなる群より選ばれた1種の金属元素を含む金属酸化物、又は2種以上の金属元素を含む複合酸化物或いはこれらの混合物である請求項1記載の導電性黒色ペースト組成物。
  3. ガラス粉末が酸化ビスマス以外に、酸化鉛、酸化亜鉛、酸化ホウ素、酸化ケイ素、酸化リン、酸化カルシウム及び酸化チタンからなる群より選ばれた1又は2以上の酸化物を含む450〜550℃の軟化点を有するフリットガラスである請求項1記載の導電性黒色ペースト組成物。
  4. 金属粉末がAu、Ag、Cu、Pd、Ni及びAlからなる群より選ばれた1又は2以上の金属粉末である請求項1記載の導電性黒色ペースト組成物。
  5. 請求項1ないし4いずれか1項に記載の導電性黒色ペースト組成物を用いてオフセット印刷法又はスクリーン印刷法により基板上に塗布膜を形成し、前記塗布膜を有する基板を加熱冷却処理することにより基板上に膜状のバス電極を形成するバス電極の製造方法において、
    前記加熱冷却処理が前記塗布膜を有する基板を昇温速度5〜30℃/minで室温から保持温度500〜600℃まで昇温させて5〜20分間保持した後、冷却速度1〜5℃/minで前記保持温度から室温まで冷却することにより行われることを特徴とするバス電極の製造方法。
JP2007228590A 2007-09-04 2007-09-04 導電性黒色ペースト組成物及び該組成物を用いたバス電極の製造方法 Expired - Fee Related JP4924304B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007228590A JP4924304B2 (ja) 2007-09-04 2007-09-04 導電性黒色ペースト組成物及び該組成物を用いたバス電極の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007228590A JP4924304B2 (ja) 2007-09-04 2007-09-04 導電性黒色ペースト組成物及び該組成物を用いたバス電極の製造方法

Publications (2)

Publication Number Publication Date
JP2009064561A true JP2009064561A (ja) 2009-03-26
JP4924304B2 JP4924304B2 (ja) 2012-04-25

Family

ID=40558988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007228590A Expired - Fee Related JP4924304B2 (ja) 2007-09-04 2007-09-04 導電性黒色ペースト組成物及び該組成物を用いたバス電極の製造方法

Country Status (1)

Country Link
JP (1) JP4924304B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272240A (ja) * 2009-05-19 2010-12-02 Namics Corp 導電性黒色組成物及びプラズマディスプレイパネルにおけるその使用
CN103794262A (zh) * 2011-12-31 2014-05-14 四川虹欧显示器件有限公司 等离子显示屏用电极浆料、制备方法及由其制得的电极
JP2014220127A (ja) * 2013-05-08 2014-11-20 株式会社村田製作所 導電性ペーストとその製造方法およびそれを用いたセラミック電子部品
JP2015207629A (ja) * 2014-04-18 2015-11-19 ナミックス株式会社 導電性ペースト及び結晶系シリコン太陽電池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326208A (ja) * 1996-04-05 1997-12-16 Namitsukusu Kk 導電性焼成体およびそれを用いるガス放電表示パネル
JP2000260336A (ja) * 1999-01-06 2000-09-22 Toray Ind Inc ディスプレイ用基板およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326208A (ja) * 1996-04-05 1997-12-16 Namitsukusu Kk 導電性焼成体およびそれを用いるガス放電表示パネル
JP2000260336A (ja) * 1999-01-06 2000-09-22 Toray Ind Inc ディスプレイ用基板およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272240A (ja) * 2009-05-19 2010-12-02 Namics Corp 導電性黒色組成物及びプラズマディスプレイパネルにおけるその使用
CN103794262A (zh) * 2011-12-31 2014-05-14 四川虹欧显示器件有限公司 等离子显示屏用电极浆料、制备方法及由其制得的电极
JP2014220127A (ja) * 2013-05-08 2014-11-20 株式会社村田製作所 導電性ペーストとその製造方法およびそれを用いたセラミック電子部品
JP2015207629A (ja) * 2014-04-18 2015-11-19 ナミックス株式会社 導電性ペースト及び結晶系シリコン太陽電池

Also Published As

Publication number Publication date
JP4924304B2 (ja) 2012-04-25

Similar Documents

Publication Publication Date Title
KR101018602B1 (ko) 무연 비스무트 유리
JP4924304B2 (ja) 導電性黒色ペースト組成物及び該組成物を用いたバス電極の製造方法
JP2005140901A (ja) フィルターガラス基板及びその製造方法
JP2005194120A (ja) ガラスセラミック粉末組成物及びガラスペースト
US20090026952A1 (en) Phosphor paste and plasma display panel using the same
JP2009062525A (ja) 導電性インキ及び該導電性インキを用いたプラズマディスプレイパネル用電極基板の製造方法
EP1780181A1 (en) A paste composition, and a green sheet, for forming a dielectric layer, and a method for forming a dielectric layer of plasma display panel
JP2009062524A (ja) オフセット印刷用導電性インキ及び該導電性インキを用いたプラズマディスプレイパネル用電極基板の製造方法
JP2008251318A (ja) プラズマディスプレイパネル
JPH11109888A (ja) 積層電極
JP2009135089A (ja) 導電性黒色膜用ペースト組成物及び該組成物を用いたバス電極の製造方法
JP5092650B2 (ja) 黒色ペースト組成物及び該組成物を用いた黒色膜の製造方法
JP4385480B2 (ja) プラズマディスプレイパネル用部材およびそれを用いたプラズマディスプレイパネル。
JP2009144086A (ja) 黒色ペースト組成物及び該組成物を用いた黒色膜の製造方法
US7471042B2 (en) Plasma display panel with an improved electrode
JP2000119039A (ja) 電極被覆用低融点ガラス粉末およびプラズマディスプレイ装置
JP4013340B2 (ja) プラズマディスプレイ用部材
JP2009135090A (ja) 導電性黒色ペースト組成物及び該組成物を用いたバス電極の製造方法
JP4877247B2 (ja) 黒色膜用ペースト組成物及び該組成物を用いた黒色膜の製造方法
JP2008159360A (ja) プラズマディスプレイパネルの製造方法
JP2008255346A (ja) 黒色ペースト組成物及びこれを用いた黒色膜の製造方法。
JP2009037890A (ja) プラズマディスプレイ用部材の製造方法
JP2007294321A (ja) プラズマディスプレイパネル
JP2003112947A (ja) プラズマディスプレイパネル用ガラスペースト、その焼成方法及びそれを用いた誘電体材料又は障壁材料
JP2008189897A (ja) 黒色ペースト組成物及び該組成物を用いた黒色膜の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4924304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees