JP2009063209A - パルス管冷凍機およびその制御方法 - Google Patents

パルス管冷凍機およびその制御方法 Download PDF

Info

Publication number
JP2009063209A
JP2009063209A JP2007230627A JP2007230627A JP2009063209A JP 2009063209 A JP2009063209 A JP 2009063209A JP 2007230627 A JP2007230627 A JP 2007230627A JP 2007230627 A JP2007230627 A JP 2007230627A JP 2009063209 A JP2009063209 A JP 2009063209A
Authority
JP
Japan
Prior art keywords
pulse tube
temperature end
high temperature
valve
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007230627A
Other languages
English (en)
Other versions
JP5098525B2 (ja
Inventor
Toyohisa Yamada
豊久 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2007230627A priority Critical patent/JP5098525B2/ja
Publication of JP2009063209A publication Critical patent/JP2009063209A/ja
Application granted granted Critical
Publication of JP5098525B2 publication Critical patent/JP5098525B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

【課題】 安定した高い冷凍能力と、量産時においても均一な冷凍能力を有するとともに、パルス管の高温側から低温側方向の循環流が発生した場合でも冷凍機を停止することなくその循環流を解消し、長期間安定した冷凍能力を確保できるコストの安いパルス管冷凍機を提供すること。
【解決手段】 パルス管冷凍機1は、圧縮部2と、切換弁3と、蓄冷器4と、パルス管7と、バイパス回路9と、バッファ回路10とを備え、切換弁3の供給弁3aと戻り弁3bを開閉制御して、パルス管7とバイパス回路9と蓄冷器4とを経由してパルス管7に循環する循環流を発生させ、又は、循環流の発生を抑える。
【選択図】 図5

Description

本発明は、循環流制御を備えたパルス管冷凍機およびその制御方法に関するものである。
従来技術のダブルインレット型パルス管冷凍機では、パルス管高温端から低温端に向かう方向の循環流が起因する熱損失を抑制する手段として、パルス管の高温端と圧縮機の吐出口との間を連通する通路と、該通路の流量を調整する流量調整手段とを備え、流量調整手段は、張り合わせた2枚の基板からなり、一方の穴と他方の基板に成形した第1の穴と他方の基板に成形した第2の穴とを相互に連通させるとともに、第1の穴を圧縮機の吐出口側にむかって徐々に開放する形状とし、且つ、第2の穴をパルス管の高温端部側にほぼ直角近い段差を持って開放する形状とすることで、パルス管の高温端部から低温端部に向かう循環流を抑え、パルス管の低温端部から高温端部に向かう循環流にしてパルス管の高温端部からパルス管の低温端部に流入する常温の温まったガスによる熱損失を防いでいる。(例えば、特許文献1。)。
また、パルス管の低温端と蓄冷器の低温端とを吸熱用連結路を介して連通し、圧縮機から冷媒ガス給排路を介して蓄冷器の高温端に供給される冷媒ガスを蓄冷器、吸熱用連結路を介してパルス管の低温端から高温端に向けて導入し、パルス管の高温端と蓄冷器の高温端とをキャピラリーで構成されたバイパス路で連通し、バイパス路の蓄冷器側での端部を冷媒ガス給排路における冷媒ガスの最大流速安定領域に開放させたダブルインレット型パルス管冷凍機がある。このパルス管冷凍機は、圧縮機から蓄冷器の高温端に向けて導入される冷媒ガスの流れによりキャピラリーの蓄冷器の高温端側のバイパス路の端部に冷媒ガス給排路の通路部分の圧力より低い圧力を生じさせ、パルス管の低温端から高温端に向かう方向の循環流を生じさせ、パルス管の高温端からの常温の温まったガスの流入による熱損失を防いでいる(例えば、特許文献2。)。
また、作業流体の圧縮機から圧力切換弁、蓄冷器、パルス管、及びオリフィスまたは絞り弁を経てバッファタンクに至る流路と、圧力切換弁と蓄冷器とを結ぶ流路とパルス管とオリフィスまたは絞り弁とを結ぶ流路とを連結する短絡流路及び該短絡流路に設けた流路調節機構とからなり、パルス管の低温端における冷凍温度を検出する検出系と、検出された冷凍温度に応じてダブルインレット型パルス管冷凍機の運転の開始と停止を制御する制御系を設けて、冷凍機の運転の開始と停止による温度調節で冷凍温度を一定に保つダブルインレット型パルス管冷凍機がある(例えば、特許文献3。)。
第2749549号公報 特開2000−249415号公報 特開平8−254365号公報
しかしながら、特許文献1のダブルインレット型パルス管冷凍機では、基板に開けた穴の形状で一方方向に流れる流路抵抗と反対方向に流れる流路抵抗を違えることで循環流の制御を行うため、穴の形状や寸法の僅かな違いにより循環流の方向や流量が変化し、パルス管低温端で熱損失が発生したり、熱損失が増大する恐れが生じ、冷凍能力が減少したり、不安定になるといった問題がある。また、穴形状や寸法の僅かな違いよって穴を流動する冷媒ガスの流れが影響を受けるため、冷凍機を量産する場合に均一な冷凍能力を確保することが難しくなると言った問題も生じる。また、一度パルス管の高温端部から低温端部方向の循環流が発生すると冷凍機を停止しなければ循環流が止まらないと言う問題もある。
また、特許文献2のダブルインレット型パルス管冷凍機では、キャピラリーの一端が最大流速安定領域に開かれているが、1サイクル中、キャピラリーの蓄冷器の高温端側が冷媒ガス給排路の通路部分の圧力より低い圧力(以下、負圧)を確保するに必要な冷媒ガスの流速を得られない場合があり、パルス管の低温端から高温端に向かう方向の流れを安定させることができない恐れがあり、パルス管の高温端からの常温の温まった冷媒ガスがパルス管の低温端に流入して冷凍能力を低下させる問題がある。また、ガス給排路の通路部分を流れる冷媒ガスの流れに中にキャピラリーの一端側を流れ方向にほぼ直交して配置する場合は、冷媒ガスの流れが乱され負圧が確保し難い問題もある。
また、特許文献3のダブルインレット型パルス管冷凍機では、長時間運転にともなう循環流の成長による冷凍温度の不安定を解消するために運転の開始と停止による温度調整で冷凍温度を一定温度幅に保っているが、停止中の冷凍を確保するため、連続運転使用の冷凍機より大きな冷凍能力が必要になり、また、低温部の熱容量も大きくしなければならず、冷凍機が大型になり冷凍機のコストが高くなると言った問題がある。
本発明は上記問題点に鑑みてなされたものであり、パルス管の高温側から低温側方向の循環流の発生を抑え、安定した高い冷凍能力と、量産時においても均一な冷凍能力を有するとともに、パルス管の高温側から低温側方向の循環流が生じた場合でも冷凍機を停止することなくその循環流を解消し、長期間安定した冷凍能力を確保できるコストの安いパルス管冷凍機およびその制御方法を提供することを目的とする。
上記課題を解決するため、請求項1に記載の発明は、吸入口より吸入した作動ガスを圧縮して吐出口より吐出する圧縮部と、吐出口からの作動ガスの流れを開閉制御する供給弁と、吸入口への作動ガスの流れを開閉制御する戻り弁と、を有する切換弁と、供給弁と戻り弁とに連通する蓄冷器と、蓄冷器の低温端に連通するパルス管と、一端がパルス管の高温端と連通し他端が供給弁と戻り弁とに連通する第1流量調整手段を有するバイパス回路と、バッファタンクと、一端がバッファタンクと連通し他端がパルス管の高温端と連通する第2流量調整手段と、を有するバッファ回路と、を備えたパルス管冷凍機であって、供給弁と戻り弁の開閉により、パルス管とバイパス回路と蓄冷器とを経由してパルス管に循環する方向の作動ガスの循環流を発生させ、又は、パルス管を循環する作動ガスの発生を抑えた循環流制御を備えた。
また、請求項2に記載の発明は、パルス管の高温端から流入する1サイクル当りの作動ガスのガス量は、流出する1サイクル当りの作動ガス量より少ないか、又は、同じである。
また、請求項3に記載の発明は、切換弁は、供給弁を閉じて戻り弁を開くまでの時間と、戻り弁を閉じて供給弁を開くまでの時間と、を調整する。
また、請求項4に記載の発明は、パルス管は、温度センサを備え、温度センサの信号により切換弁の供給弁と戻り弁とが制御される。
請求項1に記載の発明では、作動ガスがパルス管とバイパス回路と蓄冷器とを経由してパルス管に循環する循環流(以下、パルス管の低温側から高温側方向の循環流)を発生させるか、又は、パルス管を循環する作動ガスの発生を抑えるか、のいずれかになるように切換弁の供給弁と戻り弁を開閉制御することで、蓄冷器とバイパス回路とパルス管とを経由して蓄冷器に循環する循環流(以下、パルス管の高温側から低温側方向の循環流)の発生を防ぐことが出来るので、パルス管の高温端側の温かい作動ガスがパルス管の低温端側に流入せず、安定した高い冷凍能力と、量産時においても均一な冷凍能力を有するパルス管冷凍機を提供できる。また、パルス管の高温側から低温側方向の循環流が発生した場合でも冷凍機を停止することなく、切換弁の供給弁と戻り弁を開閉制御してパルス管の高温側から低温側方向の循環流を解消できる。よって、従来技術のようにパルス管冷凍機を大型にする必要がなく、長期間安定した冷凍能力を確保できるコストの安いパルス管冷凍機を提供できる。
また、請求項2に記載の発明では、パルス管の高温端から流入する1サイクル当りの作動ガスのガス量は流出するガス量より少いか、又は、同じであるので、パルス管の低温側から高温側方向の循環流が発生する場合、又は、循環流が発生しない場合にすることができる。
また、請求項3に記載の発明では、供給弁を閉じて戻り弁を開くまでの時間と、戻り弁を閉じて供給弁を開くまでの時間を調整することで、パルス管の高温端から流入する1サイクル当りの作動ガスのガス量を流出するガス量より少くするか、又は、同じにすることで、パルス管の低温側から高温側方向の循環流が発生する場合と、又は、循環流が発生しない場合になり、パルス管の高温端側の温かい作動ガスがパルス管の低温端側方向に流入せず、安定した高い冷凍能力と、量産時においても均一な冷凍能力を有するパルス管冷凍機を提供できる。
また、請求項4に記載の発明では、パルス管に備えた温度センサで、パルス管内のガス温度が検知でき、パルス管の高温側から低温側方向の循環流の発生の有無が検知できるので、温度センサの信号により切換弁の供給弁と戻り弁を開閉制御することで、パルス管の高温側から低温側方向の循環流が発生した場合でも冷凍機を停止することなく、パルス管の高温側から低温側方向の循環流の発生を解消することができ、長期間安定した冷凍能力を確保できるパルス管冷凍機を提供できる。
(実施形態1)
以下に本発明の実施形態を図面を参照しつつ詳細に説明する。
図1は、本発明に係わる実施形態1のパルス管冷凍機の回路図を示す。パルス管冷凍機1は、圧縮部2と、切換弁3(流量制御手段)と、蓄冷器4と、パルス管7と、バイパス回路9と、バッファ回路10と、配管12、13、14、15とから構成される。また、冷凍部1aは、蓄冷器4と、パルス管7と、バイパス回路9と、バッファ回路10と、配管14、15とから構成される。
圧縮部2は、吐出口2aと吸入口2bとを備え、吸入口2bから吸入したヘリウム(作動ガス)を圧縮して吐出口2aに圧送する。吐出口2aは、配管12を介して切換弁3に設けられた供給弁3aの流入口3dに連通し、吸入口2bは配管13を介して切換弁3に設けられた戻り弁3bの流出口3gに連通する。供給弁3aの流出口3eと、戻り弁3bの流入口3fとは、二つに分岐した配管14を介して蓄冷器4の高温端4aに連通する。蓄冷器4の低温端4bは、配管15を介してパルス管7の低温端7bに連通する。
バイパス回路9は、ニードル弁9a(第1流量調整手段)と、ニードル弁9aの両端に接続した直線形状の配管9b、L字形状の配管9cから構成される。配管9bの端部は配管14に接続され、ニードル弁9aは配管9b、14を介して切換弁3の供給弁3aの流出口3eと戻り弁3bの流入口3fとに接続される。配管9cは、パルス管7の高温端7aに接続される。
切換弁3は、モータや電磁石などの駆動手段3cが設けられ、駆動手段3cで供給弁3a、戻り弁3bを開閉制御して圧縮部2との間を往復流動するヘリウムの流れを制御する。また、切換弁3は、パルス管7の高温側から低温側方向の循環流が発生しないよう事前に供給弁3a、戻り弁3bの開閉時間が設定される。
また、バッファ回路10は、バッファタンク10aと、ニードル弁10b(第2流量調整手段)と、配管10c、10dとから構成され、配管10dの端部は配管9cの途中に接続される。ニードル弁10bは、バッファタンク10aに流出入するガス量の調整と、バッファタンク10aの容積とニードル弁10bの流路抵抗とでパルス管7の圧力の位相を良好にする、即ち、パルス管7の低温端7b側の膨張仕事を大きくする機能を有する。
蓄冷器4には、金網などの蓄冷材4cが充填され、蓄冷器4を往復流動するヘリウムと蓄冷材4cとが熱交換する。また蓄冷器4の低温端4bのヘッド5には、被冷却体22bが固定され、低温端4bのヘッド5は吸熱器を形成する。
パルス管7の低温端7b側には被冷却体22aが固定され、パルス管7の低温端7b側は吸熱器6を形成される。また、パルス管7の高温端7a側の外周面には多数枚のフィン8aが設けられ、パルス管7の高温端7a側とフィン8aとで放熱器8が形成され、放熱器8はヘリウムがパルス管7の高温端7a側でなす圧縮仕事の熱を外部に放熱する。
パルス管7の低温端7b側の外周面と、パルス管7の軸方向ほぼ中間の外周面とに、それぞれ温度センサ21a、21bとが配備され、温度センサ21a、21bの信号は制御装置20に入力される。
制御装置20は、パルス管冷凍機1の冷凍能力と、吸熱器5の温度、吸熱器6の温度、温度センサ21a、21bの設置位置における温度との関係、および冷凍能力と温度センサ21a、21bの設置位置間の軸方向の温度勾配とが事前にメモリされている。
また、制御装置20は、切換弁3の駆動手段3cにより、供給弁3aと、戻り弁3bの開閉制御、および圧縮部2の運転制御とを行うとともに、供給弁3aと、戻り弁3bの開閉時間を事前に設定することができ、さらには、温度センサ21a、21bの検知信号、あるいは温度センサ21aと21bの検知信号から算出したパルス管7の管壁の軸方向の温度勾配によって供給弁3aと、戻り弁3bの開閉制御ができる。
次に、実施形態1の作用と効果について説明する。
図2は、図1の回路において、循環流が発生してない場合のパルス管の圧力波形とパルス管7の低温端7bのガス片11aの容積移動量を示す。図2に示すように、冷凍機1の1サイクルは、切換弁3の供給弁3aが開で戻り弁3bが閉である状態の時間t1の昇圧行程と、供給弁3aと戻り弁3bが共に閉である状態の時間t2の高圧移行行程と、供給弁3aが閉で戻り弁3bが開である状態の時間t3の降圧行程と、供給弁3aと戻り弁3bが共に閉である状態の時間t4の低圧移行行程とから形成される。図3は、各行程のヘリウムの流れを示し、矢印線は、流れがあることと、流れ方向とを示す。矢印線の太さの違いは、各行程においてのガス移動量の違いを示し、矢印極太線は矢印中太線よりガス移動量が多いことを示す。各行程の作用は以下に示す。尚、以下の説明のガス量は1サイクル当りのガス量である。
(時間t1の昇圧行程の作用:供給弁3a開、戻り弁3b閉):図3の(a)、(b)
圧縮部2で圧縮された高圧のヘリウムは、供給弁3aが開き始めてから時間t1の間、供給弁3aを通過して、蓄冷器4の高温端4aと、バイパス回路9のニードル弁9aを通ってパルス管7の高温端7aとに流入する。ニードル弁9の流路抵抗は、蓄冷器4の流路抵抗より大きいので、パルス管7の低温端7bには、蓄冷器4の高温端4aに流入したヘリウムにより押込まれた蓄冷器4の低温端4b側のヘリウムが流入する。
供給弁3aが開き始めてから時間t1a(図2)までの供給初期時間では、図3の(a)に示すように、バッファタンク10aの方がパルス管7の圧力より高いので、バッファタンク10aのヘリウムがニードル弁10bを通過してパルス管7の高温端7aに流入し、時間t1aでバッファタンク10aの圧力とバイパス回路9の配管9cの圧力(=パルス管9の圧力)とが等しくなる。
時間t1から時間t1aの間では、バイパス回路9の配管9cの圧力(=パルス管9の圧力)がバッファタンク10aの圧力より高くなり(図2)、また配管14の圧力はバッファタンク10aの圧力より高いので、図3の(b)に示すように、パルス管7の高温端7aから流出したヘリウムと、圧縮部2の吐出口2aから供給弁3a、ニードル弁9aを通過したヘリウムとは、合流し、バイパス回路9のニードル弁10bを通過してバッファタンク10aへ流入しバッファタンク10aの圧力を高める。配管14から蓄冷器4を通ってパルス管7の低温端7bに流入したヘリウムはパルス管7、及び蓄冷器4の圧力を高め、パルス管7、及び蓄冷器4の圧力は時間の経過とともに圧縮部2の吐出圧(圧縮部の高圧)に漸近する。
質量保存則により、時間t1の行程で圧縮部2から冷凍部1aに供給される1サイクルのヘリウム量Msは、冷凍部1aの各部位に供給される1サイクルのヘリウムの量に等しい。即ち、Msは、蓄冷器4(ガス量M1r)と、バイパス回路9経由のパルス管7(ガス量M1p)と、バイパス回路9経由のバッファタンク10a(ガス量M1b)とへ流入した合計ガス量(Ms=M1r+M1p+M1b)に等しい。
(時間t2の高圧移行行程の作用:供給弁3a閉、戻り弁3b閉)):図3の(c)
図3の(c)に示すように、切換弁3によって、圧縮部2と冷凍部1aとの間のヘリウムのやり取りが断たれるため、冷凍部1aのヘリウムはバッファタンク10aに流入する。蓄冷器4内では、高温端4aから低温端4bに向かうに連れ温度がほぼ直線的に低くなり、これに伴い高温端4aから低温端4bに向かうに連れ、ヘリウムの粘性も低くなり、ヘリウムの密度は高くなることで、蓄冷器4の低温端4b側の方が高温端4a側よりヘリウム量は多く偏在し、且つ、蓄冷器4の低温端4b側の方が高温端4a側より流路抵抗が小さいので、蓄冷器4の低温端4b側の方が高温端4a側より流れ易い。従って、時間t2の高圧移行行程では、蓄冷器4内のヘリウムのうちバッファタンク10aに流入するヘリウムは、僅かしかバイパス回路9には流入せず、ほとんどはパルス管7の低温端7bに流入して、パルス管7内のヘリウム(ガスピストン11b)を押してパルス管7の高温端7a側のヘリウムをバッファタンク10aに充填し、バッファタンク10aの圧力を高める。
(時間t3の降圧行程の作用:供給弁3a閉、戻り弁3b開)):図3の(d)、(e)
蓄冷器4の高温端4a側のヘリウムは、戻り弁3bが開き始めてから時間t3の間、配管14から切換弁3の戻り弁3bを通過して圧縮部2の吸入口2bに流入し、パルス管7の高温端7a側のヘリウムは、バイパス回路9のニードル弁9aを経由し、配管14から切換弁3の戻り弁3bを通過して圧縮部2の吸入口2bに流入する。また、ニードル弁9aの流路抵抗は、蓄冷器4の流路抵抗より大きいので、パルス管7の低温端7b側のヘリウムは、蓄冷器4の低温端4b側に流入する。
戻り弁3bを閉じ始めてから時間t3a(図2)までの戻り初期時間では、パルス管7の圧力がバッファタンク10aより高いので、図3の(d)に示すように、パルス管7の高温端7a側のヘリウムは、バッファタンク10aに流入してバッファタンク10aの圧力を高める。時間t3aではバッファタンク10aの圧力とバイパス回路9の配管9cの圧力(=パルス管9の圧力)とが等しくなる。
時間t3aから時間t3の間では、バイパス回路9の配管9cの圧力(=パルス管9の圧力)がバッファタンク10aの圧力より低くなる(図2)ので、図3の(e)に示すように、バッファタンク10aのヘリウムは、ニードル弁10bを通った後、分岐してバイパス回路9のニードル弁9aと、パルス管7の高温端7aとに流入し、バッファタンク10aの圧力を低める。バイパス回路9のニードル弁9aに流入したヘリウムはパルス管7の低温端7bから蓄冷器4を通ったヘリウムと配管14で合流し、戻り弁3bを通過して圧縮部2の吸入口2bに流入する。パルス管7、及び蓄冷器4の圧力は時間の経過とともに圧縮部2の吸入圧(圧縮部の低圧)に漸近する。
質量保存則により時間t3の行程で冷凍部1aから流出されるヘリウム量は、圧縮部2へ戻されるヘリウムの量Mdに等しい。即ち、Mdは、蓄冷器4(ガス量M3r)と、バイパス回路9経由のパルス管7(ガス量M3p)と、バイパス回路9経由のバッファタンク10a(ガス量M3b)とが配管14で合流したガス量、即ち、合計ガス量(Md=M3r+M3p+M3b)に等しく、また時間t1の行程で圧縮部2から供給されるヘリウム量M1に等しい。
(時間t4の低圧移行行程の作用:供給弁3a閉、戻り弁3b閉):図3の(f)
図3の(f)に示すように、切換弁3によって、圧縮部2と冷凍部1aとの間のヘリウムのやり取りが断たれるため、バッファタンク10aのヘリウムがガス源となってニードル弁10bを経由し、冷凍部1aの各部位に流入する。蓄冷器4の低温端4b側の方が高温端4a側よりヘリウム量は多く偏在し、且つ、蓄冷器4の低温端4b側の方が高温端4a側より流路抵抗が小さいので、蓄冷器4の低温端4b側の方が高温端4a側より流れ易い。従って、時間t4の低圧移行行程では、バッファタンク10aのヘリウムのうち冷凍部1aに流入するヘリウムは、僅かしかバイパス回路9のニードル弁9aには流入せず、ほとんどパルス管7の高温端7aに流入し、パルス管7内のヘリウム(ガスピストン11b)を押してパルス管7の低温端7b側のヘリウムを蓄冷器4の低温端4b側に送込み、パルス管7、蓄冷器4の圧力を高める。以上の4つの行程で1サイクルが終了する。
圧縮部2から供給されるガス量Msは、蓄冷器4の高温端4aに供給されるガス量M1rと、バイパス回路9を経由して、それぞれバッファタンク10aに流入するガス量M1bと、パルス管7の高温端7aに流入するガス量M1pとの合計量Ms=M1r+M1b+M1pであり、圧縮機2に戻されるガス量Mdは、蓄冷器4の高温端4aから圧縮部2に戻されるガス量M3rと、バイパス回路9を経由して、バッファタンク10aとパルス管7の高温端7aとから圧縮部2に戻されるそれぞれのガス量M3b、M3pとの合計量Md=M3r+M3b+M3pで、Ms=Mdである。従って、圧縮部2から蓄冷器4の高温端4aに供給されるガス量M1rと、蓄冷器4の高温端4aから圧縮部2に戻されるガス量M3rの差(M1r−M3r)は、(M1r−M3r)=M3b−M1b+M3p−M1pとなる。
1サイクルにおけるバッファタンクの流入ガス量と流出ガス量は等しくMbであり、バッファタンク10aの流入ガス量Mbは、昇圧行程の時間t1aから時間t1の間に圧縮部2からバイパス回路9のニードル弁9aを通ったヘリウムとパルス管7の高温端7aから流出するヘリウムとが合流してバッファタンク10aに流入するガス量M1b(図3の(b))と、高圧移行行程の時間t2の間にバッファタンク10aに流入するガス量M2(図3の(c))と、降圧行程の戻り初期時間t3aの間にバッファタンク10aに流入するガス量M3a(図3の(d))との合計Mb=M1b+M2+M3aである。
バッファタンクの流出ガス量Mbは、低圧移行行程の時間t3aから時間t3の間にバッファタンク10aからバイパス回路9のニードル弁9aを通って圧縮部2に戻るガス量とパルス管7の高温端7aから流出するガス量とを合計したガス量M3b(図3の(e))と、低圧移行行程の時間t4の間にバッファタンク10aから流出するガス量M4(図3の(f))と、昇圧行程の供給初期時間t1aの間にバッファタンク10aからニードル弁10bを通ってパルス管7の高温端7aに流入するガス量M1a(図3の(a))との合計Mb=M3b+M4+M1aであるので、M3b−M1b=(M2+M3a)−(M4+M1a)となる。従って、前述の(M1r−M3r)は、(M1r−M3r)=(M2+M3a)−(M4+M1a)+(M3p−M1p)となる。
図2の循環流が発生していない場合、蓄冷器4の高温端4aのガス流入量M1rと流出量M3rは等しくM1r=M3rで、パルス管7の高温端7aのガス流入量M1pと流出量M3pも等しくM1p=M3pであるので、M2+M3a=M4+M1aとなる。即ち、図3の(c)、(d)の時間(t2+t3a)間にパルス管7の高温端7aからバッファタンク10aに流入するガス量(M2+M3a)は、図3の(f)、(a)の時間(t4+t1a)間にバッファタンク10aからパルス管7の高温端7aに流入するガス量(M4+M1a)と等しくなる。従って、前述の高圧移行行程の時間t2と降圧行程の戻り初期時間t3aでのパルス管7からバッファタンク10aに流入するガス量と、低圧移行行程の時間t4と高圧行程の供給初期時間t1aでのバッファタンク10aからパルス管7に流出するガス量を等しくなるように時間(t2+t3a)と、時間(t4+t1a)を調整することで、パルス管7の高温端7a側を1サイクルにおいて移動するガス量が互いに打消し合い、蓄冷器4と、バイパス回路9と、パルス管7と、配管15とから形成されるループを循環するヘリウムの循環流を起きなくすることができ、循環流による熱損失は発生しない。
図4は、図2のパルス管低温端側のPV線図を示す。図4に示すように、PV線図は閉じており、閉じていることは、パルス管7の低温端7a側のガス片11a(図1)が所定の位置を中心に所定の振幅量の往復運動をしていることで、循環流が発生していないこと示す。
図5は、図1の回路において、図中、反時計回り(パルス管7の低温側からパルス管7の高温側方向)の循環流が発生している場合のパルス管7の圧力波形とパルス管7の低温端7bのガス片11aの容積移動量を示す。前述と同様に1サイクルの4つの行程、即ち、時間t1の行程、時間t2の行程、時間t3の行程、時間t4の行程での各々の作用は、前述の循環流が生じない場合と同じであるが、循環流が生じない場合と異なる点は次の通りである。バッファタンク10aのヘリウムの流出入に着目すると、1サイクルにおいて、図3の(c)、(d)の時間(t2+t3a)のパルス管7からバッファタンク10aに流入するガス量(M2+M3a)は、図3の(f)、(a)の時間(t4+t1a)のバッファタンク10aからパルス管7の高温端7aに流入するガス量(M4+M1a)より多い。昇圧行程の時間t1aから時間t1の間に圧縮部2からバイパス回路9を経由してバッファタンク10aに流入するガス量M1bは、降圧行程の時間t3aから時間t4の間にバッファタンク10aからバイパス回路9を経由して圧縮部2に戻るガス量M3bより少なくなる(Mb=M1b+(M2+M3a)=Mb3+(M4+M1a)によりM3b−M1b=(M2+M3a)−(M4+M1a)>0)。
前述と同様に、圧縮部2から蓄冷器4の高温端4aに供給されるガス量M1rと、蓄冷器4の高温端4aから圧縮部2に戻されるガス量M3rの差(M1r−M3r)は、(M1r−M3r)=M3b−M1b+M3p−M1p=(M2+M3a)−(M4+M1a)+M3p−M1pとなる。後述のする図6のPV線図が開いていることから、パルス管7の高温端7aからの流出ガス量M3pは、流入ガス量M1pより大きく、M3p−M1p>0である。また上述のM3b−M1b=(M2+M3a)−(M4+M1a)>0とから(M1r−M3r)=(M2+M3a)−(M4+M1a)+(M3p−M1p)>0なる。従って、圧縮部2から蓄冷器4の高温端4aに供給されるガス量は、蓄冷器4の高温端4aから圧縮部2に戻されるガス量より(M2+M3a)―(M4+M1a)+(M3p−M1p)多い。1サイクルにおいて(M2+M3a)―(M4+M1a)+(M3p−M1p)より多いガス量が、図1における反時計回り(パルス管7の低温端7bからパルス管7を通ってパルス管7の高温端7a,バイパス回路9,蓄冷器4の高温端4aを通って蓄冷器4の低温端4b,配管15,パルス管7の低温端7b)の循環流が生じる。反時計回りの循環流は、時計回りの循環流が引き起こすパルス管7の高温端7a側の温かいヘリウムがパルス管7の低温端7b側に流入する熱損失を生じない。
図6は、図5のパルス管低温端側のPV線図を示す。図6に示すように、PV線図は開いており、図中の点Q1がスタート点となって次の1サイクルが始まり、点Q2に至ると1サイクルが終了するが、PV線図は開いている。次の1サイクルは、点Q2がスタート点となって始り、PV線図は開いた状態で1サイクルを終了する。点Q1から点Q2の移動量ΔV(図6)は、パルス管7の低温端7bのガス片11a(図1)がパルス管7の高温端7a方向へ1サイクルにおいて移動する容積量を示す。サイクルが連続して、この容積移動量ΔVは反時計回りの循環流となるので、パルス管7の高温端7a側の温かいヘリウムがパルス管7の低温端7b側に流入することはなく、冷凍能力はほとんど低下しない。また、時間(t2+t3a)が時間(t4+t1a)より短いと、上記の容積移動量ΔVが蓄冷器4の低温端4bの方向へ移動してパルス管7の高温側から低温側方向の循環流となり、パルス管7の高温端7a側の温かいヘリウムがパルス管7の低温端7b側に流入する熱損失となって冷凍能力を低下させる。
以上により、パルス管7の低温側から高温側方向の循環流が発生するようにするか、あるいは、循環流をなくすようにするか、の少なくとも一方になるよう切換弁3の供給弁3aと戻り弁3bを開閉制御することで、パルス管7の高温端7a側の温かいヘリウムがパルス管7の低温端7b側に流入しないので、安定した高い冷凍能力と、量産時においても均一な冷凍能力を有するパルス管冷凍機1を提供できる。また、パルス管7の高温側から低温側方向の循環流が発生した場合でも冷凍機1を停止することなく、切換弁3の供給弁3aと戻り弁3bを開閉制御してパルス管7の高温側から低温側方向の循環流をなくすことが出来るので、従来技術のように、冷凍能力や、低温部の熱容量を大きくする必要はなく、パルス管冷凍機1を大型にする必要がなく、長期間安定した冷凍能力を確保できる安いコストのパルス管冷凍機1と、および、その循環流の制御方法を提供できる。
また、切換弁3の供給弁3aと戻り弁3bを開閉制御して、パルス管7の高温端7aから流入する1サイクル当りのヘリウムのガス量は流出するガス量より少なくするか、あるいはは、同じにするか、の少なくとも一方にすることで、パルス管7の低温側から高温側方向の循環流がある場合と、あるいは、循環流ない場合の少なくとも一方になることから、上述と同様の効果を生じる。
さらには、供給弁3aと戻り弁3bが共に閉である状態の時間t2と、供給弁3aと戻り弁3bが共に閉である状態の時間t4とを制御して、パルス管7の高温端7aから流入する1サイクル当りのヘリウムのガス量を流出するガス量より少くするか、あるいは、同じにするか、の少なくとも一方にすることで、パルス管7の低温側から高温側方向の循環流がある場合と、あるいは、循環流ない場合の少なくとも一方になることから、パルス管7の高温端の温かい作動ガスがパルス管7の低温端7b側に流入せず、安定した高い冷凍能力と、量産時においても均一な冷凍能力を有するパルス管冷凍機1を提供できる。更には、事前にパルス管aの高温側から低温側方向の循環流の発生を防止したパルス管冷凍機1を提供できる。
(パルス管7の高温側から低温側方向の循環流が生じた場合の対応について)
被冷却体22aと22bを冷却する冷却量が時間の経過に対して一定でない場合、パルス管7の高温側から低温側方向の循環流が生じると、パルス管7の低温端7b側に常温の熱が侵入し、パルス管7の軸方向の温度勾配は、この侵入熱と同じ熱量が被冷却体22aに加わった場合のパルス管7の軸方向の温度勾配より傾斜が大きくなるので、高温側から低温側方向の循環流の発生を温度センナ21a、21bで検知できる。また、循環流が発生しており、循環流の流れが変化すると、温度勾配も変化するので循環流の変化も検知できる。従って、制御装置20は、温度センサ21aと21bの検知信号から算出したパルス管7の管壁の軸方向の温度勾配の信号により制御装置20を介して供給弁3aと戻り弁3bを開閉制御することで、パルス管7の高温側から低温側方向の循環流が生じても冷凍機1を停止することなく、供給弁3aと、戻り弁3bを開閉制御してパルス管7の高温側から低温側方向の循環流が発生すると直ぐなくすことができる。従って、従来技術のように冷凍能力や、低温部の熱容量を大きくする必要はなく、冷凍機を大型にする必要もなく、長期間安定した冷凍能力を確保できる安いコストのパルス管冷凍機1を提供できる。
被冷却体22aと22bを冷却する冷却量が時間の経過に対して一定の場合、循環流が発生していないならば、温度センサ21aの検知信号は変化しない。パルス管7に循環流が発生したり、ありは、循環流が発生しており循環流が変化したりすると、パルス管7の低温端7b側の熱負荷も変化して温度センサ21aの検知信号が変化するので、循環流の発生や変化を温度センサ21aで検知できる。制御装置20は、供給弁3aと戻り弁3bを開閉制御してパルス管7の高温側から低温側方向の循環流が発生すると直ぐになくすことができる。従って、上述と同じ効果を生じる。
(実施形態2)
図7は、本発明に係わる実施形態2のパルス管冷凍機の回路図を示す。図7において、図1と同じ形状の部材の符号は、図1と同じ符号を付す。
図7のパルス管冷凍機51は、圧縮部2と切換弁53と冷凍部51aから構成される。図1のパルス管冷凍機1と異なる点は、以下の通りである。図7に示すように、切換弁53の供給弁3aと、戻り弁3bは、それぞれモータや電磁弁などの駆動手段53cと、53dが設けられ、駆動手段53cと、53dは、それぞれ供給弁3aと、戻り弁3bを開閉制御することで、供給弁3aと、戻り弁3bに、それぞれ駆動手段53cと、53dを設けたことで、切換弁53は実施形態1より部品点数が増えるが、きめ細かな開閉制御できる。他の構成、作用、効果は実施形態1と同様である。
蓄冷器4の低温端4bには吸熱器55が設けられ、また、パルス管7の低温端7bのヘッドにも吸熱器56が設けられ、吸熱器55と吸熱器56は配管15を介して互いに連通される。吸熱器55と吸熱器56は、ともに蓄冷器4の低温端4b側とパルス管7の低温端7b側との間を流動するヘリウムによって冷却され、それぞれ被冷却体22b、22aを冷却する。吸熱器55、56を設けることで、実施形態1より部品点数は増えるが、冷却効果は実施形態1より良好である。また、パルス管7の高温端7aに放熱器58が設けられ、放熱器58はバイパス回路9とバッファ回路10に連通している。放熱器58は、パルス管7の高温端7a側でなされるヘリウムの圧縮仕事の熱を放熱する。放熱器58を設けることで、実施形態1より部品点数が増えるが、冷却効果は実施形態1より良好である。他の構成、作用、効果は実施形態1と同様である。
本発明に係わる実施形態1のパルス管冷凍機の回路図を示す。 図1の回路における循環流が発生してい場合のパルス管の圧力波形とパルス管7の低温端のヘリウムの容積移動量を示す。 図1の回路における各行程のヘリウムの流れを示す。 図2のパルス管低温端側のPV線図を示す。 図1の回路におけるパルス管の低温側からパルス管の高温側方向の循環流が発生している場合のパルス管の圧力波形とパルス管の低温端のガス片の容積移動量を示す。 図5のパルス管低温端側のPV線図を示す。 本発明に係わる実施形態2のパルス管冷凍機の回路図を示す。
符号の説明
1、51 パルス管冷凍機
2 圧縮部
2a 吐出口
2b 吸入口
3、53 切換弁
3a 供給弁
3b 戻り弁
4 蓄冷器
4b 低温端
7 パルス管
7a 高温端
9 バイパス回路
9a ニードル弁(第1流量調整手段)
10 バッファ回路
10a バッファタンク
10b ニードル弁(第2流量調整手段)
21a、21b 温度センサ

Claims (4)

  1. 吸入口より吸入した作動ガスを圧縮して吐出口より吐出する圧縮部と、
    前記吐出口からの作動ガスの流れを開閉制御する供給弁と、前記吸入口への作動ガスの流れを開閉制御する戻り弁と、を有する切換弁と、
    前記供給弁と前記戻り弁とに連通する蓄冷器と、
    前記蓄冷器の低温端に連通するパルス管と、
    一端が前記パルス管の高温端と連通し他端が前記供給弁と前記戻り弁とに連通する第1流量調整手段を有するバイパス回路と、
    バッファタンクと、一端が前記バッファタンクと連通し他端が前記パルス管の高温端と連通する第2流量調整手段と、を有するバッファ回路と、
    を備えたパルス管冷凍機であって、
    前記供給弁と前記戻り弁の開閉により、前記パルス管と前記バイパス回路と前記蓄冷器とを経由して前記パルス管に循環する方向の作動ガスの循環流を発生させ、又は、前記パルス管を循環する作動ガスの発生を抑えた循環流制御を備えた、ことを特徴とするパルス管冷凍機。
  2. 前記パルス管の前記高温端から流入する1サイクル当りの作動ガスのガス量は、流出する1サイクル当りの作動ガス量より少ないか、又は、同じである、ことを特徴とする請求項1に記載のパルス管冷凍機。
  3. 前記切換弁は、前記供給弁を閉じて前記戻り弁を開くまでの時間と、前記戻り弁を閉じて前記供給弁を開くまでの時間と、を調整する、ことを特徴とする請求項1又は請求項2に記載のパルス管冷凍機。
  4. 前記パルス管は、温度センサを備え、前記温度センサの信号により前記切換弁の前記供給弁と前記戻り弁とが制御される、ことを特徴とする請求項1乃至請求項3のいずれか一項に記載のパルス管冷凍機。
JP2007230627A 2007-09-05 2007-09-05 パルス管冷凍機およびその制御方法 Expired - Fee Related JP5098525B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007230627A JP5098525B2 (ja) 2007-09-05 2007-09-05 パルス管冷凍機およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230627A JP5098525B2 (ja) 2007-09-05 2007-09-05 パルス管冷凍機およびその制御方法

Publications (2)

Publication Number Publication Date
JP2009063209A true JP2009063209A (ja) 2009-03-26
JP5098525B2 JP5098525B2 (ja) 2012-12-12

Family

ID=40557940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230627A Expired - Fee Related JP5098525B2 (ja) 2007-09-05 2007-09-05 パルス管冷凍機およびその制御方法

Country Status (1)

Country Link
JP (1) JP5098525B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254365A (ja) * 1995-03-15 1996-10-01 Ulvac Japan Ltd ダブルインレット型パルス管冷凍機及びその運転方法
JP2749549B2 (ja) * 1996-02-21 1998-05-13 株式会社移動体通信先端技術研究所 ダブルインレット型パルス管冷凍機
JP2000146334A (ja) * 1998-10-30 2000-05-26 Aisin Seiki Co Ltd Gm型ダブルインレットパルス管冷凍機
JP2002039640A (ja) * 2000-07-28 2002-02-06 Aisin Seiki Co Ltd ダブルインレット型パルス管冷凍機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254365A (ja) * 1995-03-15 1996-10-01 Ulvac Japan Ltd ダブルインレット型パルス管冷凍機及びその運転方法
JP2749549B2 (ja) * 1996-02-21 1998-05-13 株式会社移動体通信先端技術研究所 ダブルインレット型パルス管冷凍機
JP2000146334A (ja) * 1998-10-30 2000-05-26 Aisin Seiki Co Ltd Gm型ダブルインレットパルス管冷凍機
JP2002039640A (ja) * 2000-07-28 2002-02-06 Aisin Seiki Co Ltd ダブルインレット型パルス管冷凍機

Also Published As

Publication number Publication date
JP5098525B2 (ja) 2012-12-12

Similar Documents

Publication Publication Date Title
US8549868B2 (en) Refrigeration cycle apparatus
CN103562656B (zh) 冷冻循环装置
US6260367B1 (en) Refrigerating cycle
KR101990519B1 (ko) 극저온 냉동장치, 및 극저온 냉동장치의 제어방법
US20120304668A1 (en) Regenerator, gm type refrigerator and pulse tube refrigerator
CN101900447B (zh) 带调相机构的g-m制冷机
TWI512195B (zh) Cryogenic pump system, cryopump system operation method and compressor unit
WO2020220988A1 (zh) 一种冷柜设备、制冷系统及其控制方法
US20130247593A1 (en) Pulse tube refrigerator and method of operating thereof
JPWO2022130637A5 (ja)
CN106482303B (zh) 一种空调器及其制冷控制方法
US6351954B1 (en) Pulse tube refrigerator
JP6526926B2 (ja) Gm冷凍機
US20130067936A1 (en) Cryogenic refrigerator
JP5098525B2 (ja) パルス管冷凍機およびその制御方法
JP6091616B2 (ja) 冷凍サイクル装置
CN104006565B (zh) 超低温制冷机
JP2008275225A (ja) ヒートポンプユニットおよび自動販売機
CN109539624A (zh) 一种磁制冷机及其控制方法
JP2005214510A (ja) 冷蔵庫
JP2005214508A (ja) 冷蔵庫
JP2007093120A (ja) パルスチューブ冷凍機
JP2005214505A (ja) 冷蔵庫
JP3694906B2 (ja) パルス管冷凍機
JP2000018741A (ja) パルスチューブ冷凍機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5098525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees