JP2009040621A - Ito sintered body and ito sputtering target - Google Patents

Ito sintered body and ito sputtering target Download PDF

Info

Publication number
JP2009040621A
JP2009040621A JP2007204639A JP2007204639A JP2009040621A JP 2009040621 A JP2009040621 A JP 2009040621A JP 2007204639 A JP2007204639 A JP 2007204639A JP 2007204639 A JP2007204639 A JP 2007204639A JP 2009040621 A JP2009040621 A JP 2009040621A
Authority
JP
Japan
Prior art keywords
ito
sintered body
fine particles
sputtering target
ito sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007204639A
Other languages
Japanese (ja)
Inventor
Kazuo Matsumae
和男 松前
Seiichiro Takahashi
誠一郎 高橋
Hiromitsu Hayashi
博光 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2007204639A priority Critical patent/JP2009040621A/en
Priority to KR1020097011515A priority patent/KR20090082267A/en
Priority to PCT/JP2008/063954 priority patent/WO2009020091A1/en
Priority to CN200880001594A priority patent/CN101622208A/en
Priority to TW097129627A priority patent/TW200925308A/en
Publication of JP2009040621A publication Critical patent/JP2009040621A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ITO sintered body, an ITO sputtering target material and an ITO sputtering target, capable of forming an ITO film having excellent properties with improved yield, especially an ITO sputtering target material and an ITO sputtering target, for obtaining the film having low resistance and excellent amorphous stability by using an ITO sintered body having a low bulk resistance value, and to provide a method for manufacturing the ITO sintered body suitable for the ITO sputtering target material and the ITO sputtering target. <P>SOLUTION: The ITO sintered body is an ITO (Indium-Tin-Oxide) sintered body, wherein a fine particle composed of In<SB>4</SB>Sn<SB>3</SB>O<SB>12</SB>exists in an In<SB>2</SB>O<SB>3</SB>mother phase, i.e., the main crystal grain. The fine particle has a three-dimensional star shape having needle-shaped protruding sections radially from the virtual center of the particles. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ITO焼結体およびITOスパッタリングターゲットに関する。より詳しくは、主結晶粒であるIn23母相内に特定の形状を有するIn4Sn312からなる微細粒子が存在しているITO焼結体、これらを用いたスパッタリングターゲット材およびITOスパッタリングターゲットに関する。 The present invention relates to an ITO sintered body and an ITO sputtering target. More specifically, an ITO sintered body in which fine particles made of In 4 Sn 3 O 12 having a specific shape are present in the In 2 O 3 matrix that is the main crystal grain, a sputtering target material using these, and The present invention relates to an ITO sputtering target.

ITO膜はその高い透過性と電気伝導性を有することから、フラットパネルディスプレイの透明電極として活用されている。このITO膜の形成はITOスパッタリングターゲットをスパッタリングすることにより行われるが、該スパッタリングターゲット材として用いられるITO焼結体については、従来、成膜の歩留まりを良くするために、スパッタリング時におけるアーキングやパーティクルの発生を低減あるいは防止しようと種々の検討がされてきた。たとえば、ITOスパッタリングターゲットの表面粗さを所定の範囲内に収めることでアーキングの発生を防止しようとする試みなどが報告されている(特許文献1および2参照)。   The ITO film is utilized as a transparent electrode for flat panel displays because of its high permeability and electrical conductivity. This ITO film is formed by sputtering an ITO sputtering target. However, with regard to the ITO sintered body used as the sputtering target material, arcing and particles during sputtering have been conventionally used in order to improve the film formation yield. Various studies have been made to reduce or prevent the occurrence of the above. For example, an attempt to prevent the occurrence of arcing by keeping the surface roughness of the ITO sputtering target within a predetermined range has been reported (see Patent Documents 1 and 2).

また、ITO焼結体自体のバルク抵抗を低下させれば、成膜の際におけるスパッタリング時に発生するアーキングを低減でき、かつ成膜速度を向上させることが可能となるため、種々の検討もなされている(特許文献3参照)。   In addition, if the bulk resistance of the ITO sintered body itself is reduced, arcing generated during sputtering during film formation can be reduced and the film formation rate can be improved, so various studies have been made. (See Patent Document 3).

一方、透明電極を形成する際にはITO膜をエッチングする工程を要する。ITO焼結体をスパッタリングすることによって得られるITO膜を結晶化させれば、膜自体の抵抗率を下げることが可能となるが、結晶化したITO膜をエッチング残渣が発生しないようエッチングするには強酸を用いる必要がある。このような強酸を用いたエッチング加工を施すと配線材料を断線させるおそれがあるなど、多くの問題が生じやすく、強酸を用いずともエッチング加工が容易となる非晶質のITO膜が望まれていた。   On the other hand, when forming a transparent electrode, the process of etching an ITO film is required. If the ITO film obtained by sputtering the ITO sintered body is crystallized, the resistivity of the film itself can be lowered. However, in order to etch the crystallized ITO film so that no etching residue is generated. It is necessary to use a strong acid. An etching process using such a strong acid is likely to cause many problems such as disconnection of the wiring material, and an amorphous ITO film that can be easily etched without using a strong acid is desired. It was.

ところで、ITO焼結体をその厚み方向に水平に切断し、得られた切断面をエッチングして、その微細構造を観察すると、主結晶粒であるIn23とその粒界の他に、粒界に沿った状態で存在する化合物相や、In23母相内に存在する微細粒子が見られる場合がある。しかし、本発明者らの知る限り、従来、このようなITO焼結体に存在する微細粒子の組成および形状と、ITO焼結体のバルク抵抗値および成膜した膜物性とに関連があるかどうかについては、何ら検討されていなかった。
特許第2750483号公報 特許第3152108号公報 特開2007−31786号公報
By the way, when the ITO sintered body is cut horizontally in the thickness direction, the obtained cut surface is etched, and the fine structure is observed, in addition to the main crystal grains In 2 O 3 and the grain boundaries, In some cases, a compound phase existing in a state along the grain boundary or fine particles existing in the In 2 O 3 matrix may be seen. However, as far as the present inventors know, is there a conventional relationship between the composition and shape of fine particles present in such an ITO sintered body, the bulk resistance value of the ITO sintered body, and the physical properties of the formed film? No matter was taken into consideration.
Japanese Patent No. 2750483 Japanese Patent No. 3152108 JP 2007-31786 A

本発明は、物性の優れたITO膜をより一層向上した歩留りで成膜できるITO焼結体、ITOスパッタリングターゲット材およびITOスパッタリングターゲット、とくにバルク抵抗値の低いITO焼結体を用いることで、低抵抗かつ非晶質安定性に優れた膜が得られるITOスパッタリングターゲット材およびITOスパッタリングターゲット、ならびにこれらに好適なITO焼結体を製造する方法を提供することを課題としている。   The present invention uses an ITO sintered body, an ITO sputtering target material and an ITO sputtering target, particularly an ITO sintered body having a low bulk resistance value, which can form an ITO film having excellent physical properties with a further improved yield. An object of the present invention is to provide an ITO sputtering target material and an ITO sputtering target from which a film having excellent resistance and amorphous stability can be obtained, and a method for producing an ITO sintered body suitable for them.

本発明者らは、ITO焼結体の主結晶粒であるIn23母相内にIn4Sn312からな
る微細粒子が存在することに着目し、この微細粒子が特定の形状を有することと、成膜の歩留りや成膜した膜物性との間における因果関係について鋭意検討したところ、該In23母相内に存在するIn4Sn312からなる微細粒子の形状を制御したITO焼結体によれば、物性の優れたITO膜をより一層向上した歩留りで成膜できるITOスパッタリングターゲット材およびITOスパッタリングターゲットを提供できることを見出して本発明を完成するに至った。
The inventors pay attention to the presence of fine particles composed of In 4 Sn 3 O 12 in the In 2 O 3 matrix, which is the main crystal grain of the ITO sintered body, and the fine particles have a specific shape. And a causal relationship between the yield and the film formation yield and the physical properties of the film formed, the shape of fine particles composed of In 4 Sn 3 O 12 present in the In 2 O 3 matrix was determined. It was found that according to the controlled ITO sintered body, it is possible to provide an ITO sputtering target material and an ITO sputtering target capable of forming an ITO film having excellent physical properties with a further improved yield, and the present invention has been completed.

すなわち、本発明に係るITO焼結体は、主結晶粒であるIn23母相内にIn4Sn312からなる微細粒子が存在し、該微細粒子が粒子の仮想中心から放射線状に針状突起が形成された立体星状形状を有することを特徴とする。 That is, in the ITO sintered body according to the present invention, fine particles composed of In 4 Sn 3 O 12 are present in the main crystal grains of In 2 O 3 , and the fine particles are radial from the virtual center of the particles. It has a three-dimensional star shape in which needle-like projections are formed.

また、本発明に係るITO焼結体は、バルク抵抗値が1.35×10-4Ω・cm以下であるのが好ましい。
さらに、前記微細粒子の水平フィレ径の平均値が0.25μm以上であるのが好ましく、前記微細粒子の円形度係数の平均値が0.8未満であるのが好ましい。
The ITO sintered body according to the present invention preferably has a bulk resistance value of 1.35 × 10 −4 Ω · cm or less.
Further, the average value of the horizontal fillet diameter of the fine particles is preferably 0.25 μm or more, and the average value of the circularity coefficient of the fine particles is preferably less than 0.8.

これらのITO焼結体は、スパッタリングターゲット材として好ましく用いることができ、本発明に係るITOスパッタリングターゲットは、前記ITO焼結体と、バッキングプレートとを備えてなることを特徴としている。   These ITO sintered bodies can be preferably used as a sputtering target material, and the ITO sputtering target according to the present invention is characterized by comprising the ITO sintered body and a backing plate.

これらのITO焼結体は、インジウム酸化物と錫酸化物からなる混合物を成形し、得られた成形体を最高焼結温度1580〜1700℃となるよう加熱して該最高焼結温度の保持時間を300s以下とし、次いで第2次焼結温度1400〜1550℃まで降温して第2次焼結温度の保持時間を3〜18hourとし、その後室温まで降温する工程であって、該第2次焼結温度の保持時間が少なくとも1〜4hour経過した時点で非酸化性雰囲気とする工程を含み、かつ、該最高焼結温度から400℃までを平均降温速度10〜100℃/hourで降温する工程を含むことを特徴とする、本発明に係るITO焼結体の製造方法によって得ることができる。   These ITO sintered bodies are molded from a mixture of indium oxide and tin oxide, and the obtained molded body is heated to a maximum sintering temperature of 1580 to 1700 ° C. to maintain the maximum sintering temperature. The secondary sintering temperature is lowered to 1400 to 1550 ° C., the holding time of the secondary sintering temperature is set to 3 to 18 hours, and then the temperature is lowered to room temperature. Including a step of forming a non-oxidizing atmosphere when the holding time of the sintering temperature has passed at least 1 to 4 hours, and lowering the temperature from the maximum sintering temperature to 400 ° C. at an average temperature reduction rate of 10 to 100 ° C./hour. It can obtain by the manufacturing method of the ITO sintered compact concerning this invention characterized by including.

なお、本明細書中、ITO(Indium-Tin-Oxide)とは、通常、酸化インジウム(In23)に1〜35重量%の酸化スズ(SnO2)を添加して得られた材料を意味する。 In this specification, ITO (Indium-Tin-Oxide) is usually a material obtained by adding 1 to 35 wt% tin oxide (SnO 2 ) to indium oxide (In 2 O 3 ). means.

本発明のITO焼結体は、In23母相内に存在するIn4Sn312からなる微細粒子が特定の形状を有しているため、ITO焼結体自体のバルク抵抗値を低く抑えることができる。このため、これをスパッタリングターゲットに用いた場合にはスパッタリングに要する電圧が低く抑えられ、安定した成膜工程が可能となる。 In the ITO sintered body of the present invention, since the fine particles made of In 4 Sn 3 O 12 present in the In 2 O 3 matrix have a specific shape, the bulk resistance value of the ITO sintered body itself is reduced. It can be kept low. For this reason, when this is used for a sputtering target, the voltage required for sputtering can be kept low, and a stable film forming process can be performed.

また、このようなITOスパッタリングターゲットを使用して得られるスパッタ膜は、高温下においても非晶質安定性に優れるという膜特性を有しているため、その後のエッチング加工が容易となる。   Moreover, since the sputtered film obtained by using such an ITO sputtering target has a film characteristic that is excellent in amorphous stability even at high temperatures, subsequent etching processing becomes easy.

次に本発明について、必要に応じて図面を参照しながら具体的に説明する。
本発明に係るITO焼結体は、主結晶粒であるIn23母相内にIn4Sn312からなる微細粒子が存在する。図1は、このITO焼結体を走査型電子顕微鏡(SEM:JSM-6380A、JEOL製)を用いて倍率3,000倍とした場合に得られる像を表す図であり、図2はこれを模式的に示したものである。これらの図に示されるように、本発明に係るITO焼結体には主結晶粒であるIn23母相1が存在し、この母相1内にIn4Sn312からなる微細粒子2が複数個分散して析出した状態で存在する。
Next, the present invention will be specifically described with reference to the drawings as necessary.
In the ITO sintered body according to the present invention, fine particles composed of In 4 Sn 3 O 12 are present in the In 2 O 3 matrix which is the main crystal grain. FIG. 1 is a view showing an image obtained when this ITO sintered body is set to a magnification of 3,000 times using a scanning electron microscope (SEM: JSM-6380A, manufactured by JEOL). FIG. It is shown schematically. As shown in these figures, the ITO sintered body according to the present invention has an In 2 O 3 parent phase 1 which is a main crystal grain, and the parent phase 1 has a fine structure composed of In 4 Sn 3 O 12. A plurality of particles 2 are dispersed and precipitated.

微細粒子2は、図3に示すように、SEMを用いて倍率30,000倍とした場合に得られる像において観察される粒子である。本発明に係るITO焼結体において、この微細粒子2の組成はIn4Sn312であるが、このことは、透過電子顕微鏡(FE−TEM:JEM−2100F、日本電子製)を用い、以下のような組成分析により微細粒子2を分析することによって、In4Sn312であることを特定することができる。 As shown in FIG. 3, the fine particles 2 are particles observed in an image obtained when the magnification is set to 30,000 using an SEM. In the ITO sintered body according to the present invention, the composition of the fine particles 2 is In 4 Sn 3 O 12 , which uses a transmission electron microscope (FE-TEM: JEM-2100F, manufactured by JEOL Ltd.) By analyzing the fine particles 2 by the composition analysis as described below, it can be identified as In 4 Sn 3 O 12 .

《微細粒子の組成分析》
FE−TEM付属のEDXによって得られる微細粒子2のSTEM像(0.5×0.5μm2視野)内において、任意の点を複数抽出して、各点における分析結果を元に微細粒子2の元素分析を行い、In、Sn、Oからなることを確認する。また、TEMを用いた電子回折像から回折パターンを抽出し、これらが微細粒子2からの回折パターンであることを確認する。
<Composition analysis of fine particles>
In the STEM image (0.5 × 0.5 μm 2 field of view) of the fine particle 2 obtained by EDX attached to the FE-TEM, a plurality of arbitrary points are extracted, and the fine particle 2 is extracted based on the analysis result at each point. Elemental analysis is performed to confirm that it is composed of In, Sn, and O. Moreover, a diffraction pattern is extracted from the electron diffraction image using TEM, and it confirms that these are the diffraction patterns from the fine particle 2. FIG.

次に、上記回折パターンを含む逆格子ユニットを抽出して、逆格子面間隔を測定し、さらにIn、Sn、Oからなる結晶をICDDカードからすべて抽出する。これらの結果をもとに、解析ソフト(電子回折パターン解析ソフト、日鉄テクノリサーチ製)によって物質同定を行う。   Next, the reciprocal lattice unit including the diffraction pattern is extracted, the reciprocal lattice spacing is measured, and all crystals of In, Sn, and O are extracted from the ICDD card. Based on these results, substance identification is performed by analysis software (electron diffraction pattern analysis software, manufactured by Nippon Steel Techno Research).

上記組成分析により、微細粒子2がIn4Sn312であることが特定される。
本発明のITO焼結体において、上記微細粒子2は粒子の仮想中心から放射線状に針状突起が形成された立体星状形状を有している。立体星状形状であるので、1つの微細粒子2からは少なくとも2個以上の針状突起が突出している。これら針状突起の先端は鋭利であっても丸みを帯びていてもよく、1つの微細粒子2に存在する各針状突起の大きさは均一でなくてもよい。このような形状を有した微細粒子2は、SEM観察したときの3×4μm2視野内において、少なくとも80〜300個確認される。
The composition analysis specifies that the fine particles 2 are In 4 Sn 3 O 12 .
In the ITO sintered body of the present invention, the fine particles 2 have a three-dimensional star shape in which needle-like protrusions are formed radially from the virtual center of the particles. Since it has a three-dimensional star shape, at least two needle-like protrusions protrude from one fine particle 2. The tips of these acicular protrusions may be sharp or rounded, and the size of each acicular protrusion existing in one fine particle 2 may not be uniform. At least 80 to 300 fine particles 2 having such a shape are confirmed in a 3 × 4 μm 2 visual field when observed by SEM.

微細粒子2がこのような形状を有する理由は定かではないが、In4Sn312に起因するなんらかの結晶配向性が影響しているものと推定される。また、微細粒子2がこのような形状を有することにより、針状突起間に生じる間隙をぬって互いの針状突起が成長することができる。このような形状を有する微細粒子2であると、単に球体形状を有する粒子よりも限られた母相領域を有効活用して互いに容易に重なり合うことができるので、ある程度互いの粒子成長を阻害することなく微細粒子2の密着性を向上させることが可能となり、このことが得られる膜の物性になんらかの影響を与えるものとも推定される。 The reason why the fine particles 2 have such a shape is not clear, but it is presumed that some crystal orientation attributed to In 4 Sn 3 O 12 has an influence. Further, since the fine particles 2 have such a shape, each needle-like protrusion can grow through a gap generated between the needle-like protrusions. Since the fine particles 2 having such a shape can be easily overlapped with each other by effectively using a limited matrix region rather than simply having a spherical shape, the mutual growth of the particles is inhibited to some extent. Therefore, the adhesion of the fine particles 2 can be improved, and it is presumed that this has some influence on the physical properties of the resulting film.

上述のように、本発明に係るITO焼結体にはIn23母相1内にこのような特定の形状に制御されたIn4Sn312からなる微細粒子2が存在するため、ITO焼結体のバルク抵抗値を低く抑えることができるので、成膜の際におけるスパッタリング時のアーキング発生を抑制しつつ、成膜速度を向上させることが可能となる。さらに、このようなITO焼結体をスパッタリングターゲットとして用いた際に得られる膜は、高温下においても優れた非晶質安定性を有するため、エッチング加工の速度を向上させることができるとともに、パターン形状を良好なものとすることが容易となる。さらに、エッチング残渣の量を低減することもできる。 As described above, since the ITO sintered body according to the present invention has fine particles 2 made of In 4 Sn 3 O 12 controlled in such a specific shape in the In 2 O 3 matrix 1, Since the bulk resistance value of the ITO sintered body can be kept low, it is possible to improve the film formation rate while suppressing the occurrence of arcing during sputtering during film formation. Furthermore, since the film obtained when such an ITO sintered body is used as a sputtering target has excellent amorphous stability even at high temperatures, the etching process speed can be improved and the pattern can be improved. It becomes easy to make the shape good. Furthermore, the amount of etching residue can be reduced.

本発明のITO焼結体において、上記微細粒子2はさらに水平フィレ径の平均値が0.25μm以上であるのが望ましく、好ましくは0.27〜0.50μm、より好ましくは0.30〜0.45μmである。水平フィレ径とは、上記SEM観察における粒子解析により求められる値であり、水平フィレ径の平均値とはSEM観察したときの3×4μm2視野内において、微細粒子2をランダムに20個抽出して求めた水平フィレ径の値を平均したものを意味する。 In the ITO sintered body of the present invention, it is desirable that the fine particles 2 have an average horizontal fillet diameter of 0.25 μm or more, preferably 0.27 to 0.50 μm, more preferably 0.30 to 0. .45 μm. The horizontal fillet diameter is a value obtained by particle analysis in the above SEM observation, and the average value of the horizontal fillet diameter is a random extraction of 20 fine particles 2 within a 3 × 4 μm 2 field of view when SEM observation is performed. Means the average value of horizontal fillet diameters obtained in this way.

水平フェレ径の値は、具体的には以下のようにして求められる。粒子解析ソフト(粒子解析Version3.0、住友金属テクノロジー株式会社製)を用い、まず微細粒子2のSEM像をトレースしてスキャナで画像認識させ、この画像を二値化する。この際、1画素がμm単位で表示されるように換算値を設定する。次いで、計測項目として水平フェレ径を選択することにより、図4に示すように微細粒子2の水平方向の全画素数より算出した水平フェレ径(μm)の値を得ることができる。   Specifically, the value of the horizontal ferret diameter is obtained as follows. Using particle analysis software (particle analysis Version 3.0, manufactured by Sumitomo Metal Technology Co., Ltd.), first, an SEM image of the fine particles 2 is traced and image recognition is performed by a scanner, and this image is binarized. At this time, the conversion value is set so that one pixel is displayed in units of μm. Next, by selecting the horizontal ferret diameter as a measurement item, the value of the horizontal ferret diameter (μm) calculated from the total number of pixels in the horizontal direction of the fine particles 2 can be obtained as shown in FIG.

微細粒子2がこのような水平フィレ径の平均値を示すと、In23母相1内に存在する微細粒子2の大きさがある程度制御され、微細粒子2が特定の形状を有することに加えてさらに粒子間の密着性が向上するので、該ITO焼結体をスパッタリングターゲットとして用いてスパッタリングをした場合に、安定したスパッタリングが期待できる。また、電子の流れを阻害しにくくなるため、得られるITO焼結体のバルク抵抗値を低減することが可能となる。 When the fine particle 2 shows such an average value of the horizontal fillet diameter, the size of the fine particle 2 existing in the In 2 O 3 matrix 1 is controlled to some extent, and the fine particle 2 has a specific shape. In addition, since the adhesion between the particles is further improved, stable sputtering can be expected when sputtering is performed using the ITO sintered body as a sputtering target. Moreover, since it becomes difficult to inhibit the flow of electrons, it is possible to reduce the bulk resistance value of the obtained ITO sintered body.

本発明のITO焼結体において、上記微細粒子2はさらに円形度係数の平均値が0.8未満であるのが望ましく、好ましくは0.76〜0.4、より好ましくは0.73〜0.49である。円形度係数とは、上記水平フェレ径と同様、SEM観察における粒子解析により求められる値であり、円形度係数の平均値とはSEM観察したときの3×4μm2視野内において、微細粒子2をランダムに20個抽出して求めた円形度係数の値を平均したものを意味する。 In the ITO sintered body of the present invention, it is desirable that the fine particles 2 have an average circularity coefficient of less than 0.8, preferably 0.76 to 0.4, more preferably 0.73 to 0. .49. Similar to the horizontal ferret diameter, the circularity coefficient is a value obtained by particle analysis in SEM observation, and the average value of the circularity coefficient is the fine particle 2 in the 3 × 4 μm 2 field of view when observed by SEM. It means the average of the circularity coefficient values obtained by extracting 20 randomly.

円形度係数の値は、具体的には以下のようにして求められる。上記水平フェレ径と同様、粒子解析ソフトを用い、まず微細粒子2のSEM像をトレースしてスキャナで画像認識させ、この画像を二値化する。この際、1画素がμm単位で表示されるように換算値を設定する。次いで、計測項目として面積を選択することにより、図5に示すように、微細粒子2を形成する全画素数から粒子面積(μm2)を得る。さらに、計測項目として周囲長を選択することにより、図6に示すように、微細粒子2の周囲を形成する全画素数から周囲長(μm)を得る。これら面積および周囲長の値から、下記式(1)に基づいて算出される円形度係数の値を得ることができる。 Specifically, the value of the circularity coefficient is obtained as follows. Similar to the horizontal ferret diameter, particle analysis software is used to first trace the SEM image of the fine particles 2 and recognize the image with a scanner, and binarize the image. At this time, the conversion value is set so that one pixel is displayed in units of μm. Next, by selecting an area as a measurement item, the particle area (μm 2 ) is obtained from the total number of pixels forming the fine particles 2 as shown in FIG. Further, by selecting the peripheral length as a measurement item, the peripheral length (μm) is obtained from the total number of pixels forming the periphery of the fine particle 2 as shown in FIG. From these values of area and perimeter, the value of the circularity coefficient calculated based on the following formula (1) can be obtained.

このような円形度係数の値は、1.0に近似するほど、測定対象である微細粒子2の形状が球状に近づくことを示すものである。
したがって、本発明のITO焼結体における微細粒子2の円形度係数の平均値は1.0に近似しないことを示し、このことからも微細粒子2は球状からはかけ離れた形状であって、粒子の仮想中心から放射線状に針状突起が形成された立体星状形状を有することが裏付けられる。
The value of such a circularity coefficient indicates that the shape of the fine particle 2 to be measured approaches a sphere as it approximates to 1.0.
Therefore, it is shown that the average value of the circularity coefficient of the fine particles 2 in the ITO sintered body of the present invention is not close to 1.0. Also from this, the fine particles 2 have a shape far from spherical, It is proved that it has a three-dimensional star shape in which needle-like projections are formed radially from the virtual center.

本発明に係るITO焼結体は、バルク抵抗値が1.35×10-4Ω・cm以下、好ましくは1.30×10-4Ω・cm以下である。バルク抵抗値の下限値は特に制限はないが、通常9×10-5Ω・cm以上である。 The ITO sintered body according to the present invention has a bulk resistance value of 1.35 × 10 −4 Ω · cm or less, preferably 1.30 × 10 −4 Ω · cm or less. The lower limit value of the bulk resistance value is not particularly limited, but is usually 9 × 10 −5 Ω · cm or more.

このようなバルク抵抗値を示すことにより、本発明に係るITO焼結体をスパッタリングターゲットとして用いた場合に、アーキングの発生を有効に抑制できるとともにスパッ
タリングに要する電圧を低く抑えることができるので、安定した成膜工程が可能となる。こうしたバルク抵抗値を実現できるのは、上述したように、本発明のITO焼結体において、上記微細粒子2が粒子の仮想中心から放射線状に針状突起が形成された立体星状形状を有していることに起因するものであると考えられる。
By showing such a bulk resistance value, when the ITO sintered body according to the present invention is used as a sputtering target, generation of arcing can be effectively suppressed and the voltage required for sputtering can be suppressed to a low level. The film forming process can be performed. As described above, such a bulk resistance value can be realized in the ITO sintered body of the present invention, in which the fine particles 2 have a three-dimensional star shape in which needle-like protrusions are formed radially from the virtual center of the particles. This is thought to be due to the fact that

なお、倍率3,000倍でSEM観察したときに微細粒子2が観察されないIn23母相1内の領域(ただし、粒界に沿った状態で存在する化合物相の領域は含まない)には微細粒子フリーゾーン5が存在する。In23母相1の粒界3からの微細粒子フリーゾーン5の幅の平均値は、0.3μm以上、好ましくは0.4〜3μmの範囲にある。 It should be noted that the region within the In 2 O 3 matrix 1 where the fine particles 2 are not observed when SEM observation is performed at a magnification of 3,000 times (however, the region of the compound phase existing along the grain boundary is not included). Has a fine particle free zone 5. The average width of the fine particle free zone 5 from the grain boundary 3 of the In 2 O 3 matrix 1 is 0.3 μm or more, preferably in the range of 0.4 to 3 μm.

ここで、In23母相1の粒界3からの微細粒子フリーゾーン5の幅の平均値とは、ダイヤモンドカッターを用いて、ITO焼結体をその厚み方向に水平に切断して得られた切断面をエメリー紙#170、#320、#800、#1500、#2000を用いて段階的に研磨し、最後にバフ研磨して鏡面に仕上げた後、40℃のエッチング液(硝酸(60〜61%水溶液、関東化学(株)製、硝酸1.38 鹿1級 製品番号28161-03)、塩酸(35.0〜37.0%水溶液、関東化学(株)製、塩酸 鹿1級 製品番号18078-01)および水を体積比でHCl:H2O:HNO3=1:1:0.08の割合で混合)に9分間浸漬してエッチングし、現れる面を倍率3,000倍でSEM観察し、撮影したSEM写真を用い、該写真でIn23母相粒断面の全体が観察できるすべてのもの(写真の端にあり、In23母相粒断面の一部が写っていないものは対象外とする)を測定の対象とし、In23母相粒界から法線方向の微細粒子2までの距離のうち、最短と最長のものの和の1/2をそのIn23母相粒子における微細粒子フリーゾーン5の幅とし、これを測定対象としたIn23母相粒の数で割ったものである。 Here, the average value of the width of the fine particle free zone 5 from the grain boundary 3 of the In 2 O 3 matrix 1 is obtained by cutting the ITO sintered body horizontally in the thickness direction using a diamond cutter. The resulting cut surface is polished step by step using emery paper # 170, # 320, # 800, # 1500, # 2000, and finally buffed to give a mirror surface. 60-61% aqueous solution, manufactured by Kanto Chemical Co., Ltd., nitric acid 1.38 deer grade 1, product number 28161-03), hydrochloric acid (35.0-37.0% aqueous solution, manufactured by Kanto Chemical Co., Ltd., deer hydrochloric acid grade 1, product number 18078-01) And water are mixed for 9 minutes in a volume ratio of HCl: H 2 O: HNO 3 = 1: 1: 0.08) and etched, and the appearing surface is observed by SEM at a magnification of 3,000 times and photographed SEM using photographic, located on everything (end pictures a whole can be observed in the in 2 O 3 matrix particle cross section by the photograph, in 2 O 3 In which a part of the phase grains sectional Implied is the object of measuring is excluded), of the distance from In 2 O 3 matrix grain boundaries to the normal direction of the fine particles 2, the shortest and the longest ones 1/2 of the sum as the width of the in 2 O 3 matrix microparticles free zone in the particles 5, in which it was divided by the number of the in 2 O 3 matrix grains measured.

In23母相1の粒界3からの微細粒子フリーゾーン5の幅の平均値が上記範囲内であると、主結晶粒であるIn23母相1内における微細粒子2の存在しない領域が広くなるため、微細粒子2の存在する領域との境界がより明確となり、限られた領域内で微細粒子2が可能な限り密接度を増して存在することになる。その結果、このようなITO焼結体をスパッタリングターゲットとして用いることで、物性のばらつきの少ない優れたITO膜の提供が可能となる。 If the average value of the width of the fine particle free zone 5 from the grain boundary 3 of the In 2 O 3 matrix 1 is within the above range, the presence of the fine particles 2 in the In 2 O 3 matrix 1 that is the main crystal grain Since the area that is not to be widened, the boundary with the area in which the fine particles 2 are present becomes clearer, and the fine particles 2 are present in the limited area with the highest possible density. As a result, by using such an ITO sintered body as a sputtering target, it is possible to provide an excellent ITO film with little variation in physical properties.

次に、本発明に係るITO焼結体の製造方法について詳細に説明する。
本発明のITO焼結体はいわゆる粉末冶金法により製造することができる。粉末冶金法では、一般に、原料粉末に必要によりバインダーを加えて圧縮成形し、得られた成形体を必要に応じて脱脂した後、該成形体を焼成処理し、焼結体を得るが、このうちの焼成処理を特定の条件下で行うことが必要である。
Next, the manufacturing method of the ITO sintered body according to the present invention will be described in detail.
The ITO sintered body of the present invention can be produced by a so-called powder metallurgy method. In the powder metallurgy method, generally, a binder is added to a raw material powder if necessary, and the resulting molded body is degreased as necessary, and then the molded body is fired to obtain a sintered body. It is necessary to perform the firing process under specific conditions.

具体的には、酸化インジウム(In23)、酸化錫(SnO2)などの原料粉末を所望の割合で混合し、必要に応じてバインダーを加えて、圧縮成形して成形体を得て、得られた成形体を必要に応じて脱脂するまでの工程は、通常行われている公知の手段および条件によって行うことができる。 Specifically, raw material powders such as indium oxide (In 2 O 3 ) and tin oxide (SnO 2 ) are mixed in a desired ratio, a binder is added as necessary, and a compact is obtained by compression molding. The steps until the obtained molded body is degreased as necessary can be performed by commonly known means and conditions.

具体的に例示すると、原料粉末は必要に応じて、仮焼、分級処理を施してもよく、その後の原料粉末の混合は、たとえば、ボールミルなどで行うことができる。その後、混合した原料粉末を成形型に充填して圧縮成形し、成形体を作製し、大気雰囲気下または酸素雰囲気下で脱脂してもよく、あるいは、特開平11-286002号公報に記載の濾過式成形法のように、セラミックス原料スラリーから水分を減圧排水して成形体を得るための非水溶性材料からなる濾過式成形型に、混合した原料粉末、イオン交換水、有機添加剤とからなるスラリーを注入し、スラリー中の水分を減圧排水して成形体を作製し、この成形体を乾燥脱脂してもよい。   Specifically, the raw material powder may be subjected to calcination and classification as necessary, and the subsequent mixing of the raw material powder can be performed by, for example, a ball mill. Thereafter, the mixed raw material powder is filled in a mold and compression-molded to produce a molded body, which may be degreased in an air atmosphere or an oxygen atmosphere, or the filtration described in JP-A-11-286002. It consists of mixed raw material powder, ion-exchanged water, and organic additives in a filter-type mold made of a water-insoluble material to obtain a compact by draining water from the ceramic raw material slurry under reduced pressure as in the conventional molding method. The slurry may be injected, and water in the slurry may be drained under reduced pressure to produce a molded body, and the molded body may be dried and degreased.

このようにして得られた成形体を以下に説明する特定の条件下で焼成処理することで、本発明のITO焼結体を得ることができる。
焼成処理は、通常、加熱工程、保温工程および冷却工程からなる。焼成処理に使用できる炉は、公知の構造の炉であればよく特に限定されない。
The ITO sintered body of the present invention can be obtained by firing the molded body thus obtained under specific conditions described below.
The firing treatment usually includes a heating step, a heat retention step, and a cooling step. The furnace that can be used for the firing treatment is not particularly limited as long as it has a known structure.

加熱工程では、上記成形体を炉内に入れ、炉内を連続的にあるいは段階的に、通常、最高焼結温度1580〜1700℃、好ましくは1600〜1650℃まで加熱する。この際、必要に応じて成形体を焼成板に載置してもよい。得られるITO焼結体の生産効率の点からは、加熱工程全体を通して炉内の平均昇温速度は50〜400℃/hourであることが好ましい。   In the heating step, the molded body is placed in a furnace, and the inside of the furnace is heated to a maximum sintering temperature of 1580 to 1700 ° C., preferably 1600 to 1650 ° C. continuously or stepwise. Under the present circumstances, you may mount a molded object on a baking board as needed. From the viewpoint of the production efficiency of the obtained ITO sintered body, the average heating rate in the furnace is preferably 50 to 400 ° C./hour throughout the heating process.

また、得られるITO焼結体の密度向上の観点からは、前記加熱工程は、炉内に酸素を導入して酸素雰囲気内で行うことが望ましい。炉内に導入する酸素の流量は、炉内体積1m3あたり、通常0.1〜500m3/hourの範囲内の量である。 Further, from the viewpoint of improving the density of the obtained ITO sintered body, the heating step is preferably performed in an oxygen atmosphere by introducing oxygen into the furnace. The flow rate of oxygen introduced into the furnace is usually in the range of 0.1 to 500 m 3 / hour per 1 m 3 of the furnace volume.

上記加熱工程において最高焼結温度に到達した際、300s以下、好ましくは150s以下の時間、該最高焼結温度を保持する。該保持時間の下限値は特に制限はなく、瞬時であるのがもっとも望ましい。一般に最高焼結温度の保持時間は3〜20時間程度であるが、本発明ではこのように最高焼結温度の保持時間を極短時間にすることで、得られるITO焼結体の密度をより向上させることが可能となる。該保持工程でも加熱工程と同じ条件で炉内に酸素を導入することが好ましい。   When the maximum sintering temperature is reached in the heating step, the maximum sintering temperature is maintained for 300 s or less, preferably 150 s or less. The lower limit of the holding time is not particularly limited, and is most preferably instantaneous. Generally, the holding time of the maximum sintering temperature is about 3 to 20 hours, but in the present invention, the density of the obtained ITO sintered body can be further increased by making the holding time of the maximum sintering temperature extremely short. It becomes possible to improve. In the holding step, it is preferable to introduce oxygen into the furnace under the same conditions as in the heating step.

次いで、第2次焼結温度1400〜1550℃、好ましくは1500〜1550まで降温し、該第2次焼結温度を3〜18hour、より好ましくは5〜15hourの時間保持する。このとき、この該第2次焼結温度の保持時間が少なくとも1〜4hour、好ましくは2〜3hour経過した時点で炉内を非酸化性雰囲気とする。ただし、非酸化性雰囲気とする時点は上記第2次焼結温度の保持時間内である。たとえば、第2次焼結温度の保持時間を3hourとした場合、非酸化性雰囲気とするのはこの保持時間が1hour以上3hour未満の時間経過した時点となる。   Next, the secondary sintering temperature is lowered to 1400 to 1550 ° C., preferably 1500 to 1550, and the secondary sintering temperature is maintained for 3 to 18 hours, more preferably 5 to 15 hours. At this time, when the holding time of the secondary sintering temperature has passed at least 1 to 4 hours, preferably 2 to 3 hours, the inside of the furnace is set to a non-oxidizing atmosphere. However, the time when the non-oxidizing atmosphere is set is within the holding time of the secondary sintering temperature. For example, when the holding time of the secondary sintering temperature is 3 hours, the non-oxidizing atmosphere is set when the holding time has elapsed from 1 hour to less than 3 hours.

ここで、非酸化性雰囲気とは、上記第2次焼結温度の保持時間終了時における炉内の酸素濃度が13%以下となる雰囲気を意味し、具体的には酸素以外のアルゴン、窒素などの不活性ガスに置換した雰囲気が挙げられ、この雰囲気内で焼結を行うのが好ましい。   Here, the non-oxidizing atmosphere means an atmosphere in which the oxygen concentration in the furnace at the end of the holding time of the secondary sintering temperature is 13% or less, specifically argon, nitrogen other than oxygen, etc. An atmosphere substituted with the inert gas is mentioned, and sintering is preferably performed in this atmosphere.

さらに冷却工程では、上記炉内を連続的にあるいは段階的に室温まで冷却し、上記加熱工程及び保温工程を経た成形体を冷却する。得られるITO焼結体の主結晶粒であるIn23母相1内に存在する微細粒子2の形状のみならず、該粒子の水平フェレ径および円形度係数の平均値、ならびにIn23母相1の粒界3からの微細粒子フリーゾーン5の幅の平均値を制御する観点から、上記冷却工程のうち、最高焼結温度から400℃までの温度領域の降温速度を調整する。この温度領域における平均降温速度は、通常10〜100℃/hour、好ましくは10〜40℃/hourである。すなわち、最高焼結温度から保温工程における最高温度までの降温速度と、加熱工程における最高温度から400℃までの温度領域の平均降温速度を上記範囲内とする。上記温度領域の平均降温速度が上記範囲内であると、加熱工程を経た後の成形体がゆっくり冷却され、In23母相1内の微細粒子2の成長を促進しやすくなるとともに粒成長の方向性がある程度制御されるため、これに起因して該微細粒子2の形状を特定のものに制御できる。また、該粒子の水平フェレ径および円形度係数の平均値を特定値に制御しやすくなる。さらには、微細粒子2がある程度凝集するため、In23母相の粒界からの微細粒子フリーゾーン5の幅の平均値を0.3μm以上に制御できる。 Furthermore, in the cooling step, the inside of the furnace is cooled continuously or stepwise to room temperature, and the molded body that has undergone the heating step and the heat retaining step is cooled. Not only the shape of the fine particles 2 present in the In 2 O 3 matrix 1 which is the main crystal grain of the obtained ITO sintered body, but also the average value of the horizontal ferret diameter and circularity coefficient of the particles, and In 2 O From the viewpoint of controlling the average value of the width of the fine particle free zone 5 from the grain boundary 3 of the mother phase 1, the cooling rate in the temperature region from the maximum sintering temperature to 400 ° C. is adjusted in the cooling step. The average temperature decreasing rate in this temperature region is usually 10 to 100 ° C./hour, preferably 10 to 40 ° C./hour. That is, the rate of temperature decrease from the maximum sintering temperature to the maximum temperature in the heat retention step and the average temperature decrease rate in the temperature region from the maximum temperature in the heating step to 400 ° C. are within the above range. When the average temperature drop rate in the above temperature range is within the above range, the compact after the heating step is cooled slowly, facilitating the growth of fine particles 2 in the In 2 O 3 matrix 1 and grain growth. Because of this, the shape of the fine particles 2 can be controlled to be specific. Moreover, it becomes easy to control the average value of the horizontal ferret diameter and the circularity coefficient of the particles to a specific value. Furthermore, since the fine particles 2 are aggregated to some extent, the average value of the width of the fine particle free zone 5 from the grain boundary of the In 2 O 3 matrix can be controlled to 0.3 μm or more.

上記冷却工程のうち、400℃未満から室温までの温度領域の降温速度はとくに限定されない。このような温度領域では、実質的にIn23母相1内の微粒子2は成長しないためである。具体的には、降温速度を適宜設定してもよく、とくに降温速度を調整せずに放冷し、室温まで自然冷却してもよい。冷却工程においても前工程で導入した非酸化性雰囲気を維持する。炉内に導入する不活性ガスの流量は、炉内体積1m3あたり、通常0.1〜500m3/hourの範囲内の量である。 In the cooling step, the temperature lowering rate in the temperature region from less than 400 ° C. to room temperature is not particularly limited. This is because, in such a temperature region, the fine particles 2 in the In 2 O 3 matrix 1 do not substantially grow. Specifically, the temperature lowering rate may be set as appropriate. In particular, the temperature may be allowed to cool without adjusting the temperature lowering rate and may be naturally cooled to room temperature. Even in the cooling step, the non-oxidizing atmosphere introduced in the previous step is maintained. The flow rate of the inert gas introduced into the furnace is usually in the range of 0.1 to 500 m 3 / hour per 1 m 3 of the furnace volume.

理由は定かでないが、酸素雰囲気内で上記冷却工程を行うと、粒子の水平フィレ径および円形度係数の平均値が特定の数値範囲外となるおそれがあるほか、粒子の形状を制御しにくくなるおそれがある。これに対し、非酸化性雰囲気とすることで、該微細粒子2がIn23母相1の中心部に凝集して析出しやすくなり、本発明のITO焼結体を得ることが容易となる。 The reason is not clear, but if the above cooling process is performed in an oxygen atmosphere, the average value of the horizontal fillet diameter and circularity coefficient of the particles may be out of a specific numerical range, and it becomes difficult to control the particle shape. There is a fear. In contrast, the non-oxidizing atmosphere makes it easy for the fine particles 2 to agglomerate and precipitate at the center of the In 2 O 3 matrix 1 and to easily obtain the ITO sintered body of the present invention. Become.

このようにして得られたITO焼結体を、必要に応じて所望の形状に切り出し、研削等した後、スパッタリングターゲット材として好ましく用いることができる。
さらに、前記ITO焼結体と、冷却板であるバッキングプレートとを接合することで、ITOスパッタリングターゲットを得ることができる。
The ITO sintered body thus obtained can be preferably used as a sputtering target material after being cut into a desired shape and ground, if necessary.
Furthermore, an ITO sputtering target can be obtained by joining the ITO sintered body and a backing plate that is a cooling plate.

この場合、バッキングプレートは、通常スパッタリングターゲットのバッキングプレートとして用いられるものであればよく、銅製や銅合金製のバッキングプレートが挙げられる。またその形状も公知のものでよく、とくに限定されない。   In this case, the backing plate may be any one that is normally used as a backing plate for a sputtering target, and examples thereof include a copper or copper alloy backing plate. Moreover, the shape may be a known one and is not particularly limited.

ITO焼結体とバッキングプレートとの接合は、公知の方法で適宜行うことができ、特に限定されないが、コストや生産性の点からは、In半田などのボンディング剤を介して接合する方法が好ましく挙げられる。具体的には、ITO焼結体を必要に応じて所望の形状に切り出し、必要に応じて研削等した後、In半田の融点以上の温度に加熱し、該温度を保持した状態で、該ITO焼結体のバッキングプレートと接合する面に溶融したIn半田を塗布し、バッキングプレートと貼り合せ、加圧しながら放冷して室温まで冷却するなどの方法により接合できる。   Joining of the ITO sintered body and the backing plate can be appropriately performed by a known method and is not particularly limited, but from the viewpoint of cost and productivity, a method of joining via a bonding agent such as In solder is preferable. Can be mentioned. Specifically, the ITO sintered body is cut into a desired shape as necessary, and after grinding or the like as necessary, the ITO sintered body is heated to a temperature equal to or higher than the melting point of In solder, and the ITO is maintained while maintaining the temperature. Bonding can be performed by applying a molten In solder to the surface of the sintered body to be bonded to the backing plate, bonding it to the backing plate, allowing to cool while being pressurized, and cooling to room temperature.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.

[実施例1]
酸化インジウム(In23)、の粉末と酸化錫(SnO2)の粉末とを90:10(重量比)の割合とし、バインダーとしてポリビニルアルコール(PVA)を加えてボールミル混合を行った。得られた混合粉末をプレス圧800kg/cm2で圧縮成形し、大気中で脱脂して成形体を得た。
[Example 1]
Ball mill mixing was performed by adding indium oxide (In 2 O 3 ) powder and tin oxide (SnO 2 ) powder at a ratio of 90:10 (weight ratio) and adding polyvinyl alcohol (PVA) as a binder. The obtained mixed powder was compression molded at a press pressure of 800 kg / cm 2 and degreased in the air to obtain a molded body.

このようにして得られた成形体を焼成板に載置した状態でバッチ炉内に入れ、炉内に酸素濃度100%の酸素ガスを流しながら(炉内体積1m3あたりに1m3/h)、炉内を1600℃まで加熱し、該温度での保持時間を0s(瞬時)に設定してすぐに1550℃まで降温した。次いで、1550℃で2時間保持した後、炉内の酸素ガスをアルゴンに置換してさらに6時間保持した。このときの炉内の酸素濃度は10.8%であった。その後、炉内のガスをアルゴンにしたまま室温まで冷却し、ITO焼結体を得た。 The molded body thus obtained is placed on a fired plate and placed in a batch furnace, and oxygen gas with an oxygen concentration of 100% is allowed to flow into the furnace (1 m 3 / h per 1 m 3 of furnace volume). The inside of the furnace was heated to 1600 ° C., the holding time at the temperature was set to 0 s (instantaneous), and the temperature was immediately lowered to 1550 ° C. Next, after maintaining at 1550 ° C. for 2 hours, the oxygen gas in the furnace was replaced with argon, and the temperature was further maintained for 6 hours. At this time, the oxygen concentration in the furnace was 10.8%. Then, it cooled to room temperature, keeping the gas in a furnace argon, and obtained the ITO sintered compact.

このときの加熱工程の平均昇温速度は、117℃/hour、1600℃から1400℃の温度領域における冷却工程の平均降温速度は、10℃/hour、1400℃から3
00℃の温度領域における冷却工程の平均降温速度は、30℃/hourであった。
The average heating rate of the heating process at this time is 117 ° C./hour, and the average cooling rate of the cooling process in the temperature region of 1600 ° C. to 1400 ° C.
The average cooling rate of the cooling process in the temperature region of 00 ° C. was 30 ° C./hour.

焼成条件を下記に示す。
《焼成条件》
室温(酸素雰囲気)→(50℃/hr)→400℃→(100℃/hr)→800℃×4hr→(400℃/hr)→1600℃(瞬時)→1550℃×2hr→(アルゴン雰囲気に変更)→(−10℃/hr)→1400℃→(−30℃/hr)→300℃→放冷→室温
得られたITO焼結体のバルク抵抗率を四探針法に基づき、定電流電圧測定装置(ケースレー製;SMU236)と測定架台(共和理研製;K-504RS)および四探針プローブ(共和理研製;K89PS150μ)を使用して測定したところ、1.34×10-4(Ω・cm)であった。
The firing conditions are shown below.
<< Baking conditions >>
Room temperature (oxygen atmosphere) → (50 ° C./hr)→400° C. → (100 ° C./hr)→800° C. × 4 hr → (400 ° C./hr)→1600° C. (instantaneous) → 1550 ° C. × 2 hr → (Argon atmosphere Change) → (−10 ° C./hr)→1400° C. → (−30 ° C./hr)→300° C. → cooling → room temperature Based on the four-probe method, the bulk resistivity of the obtained ITO sintered body was constant current When measured using a voltage measuring device (manufactured by Keithley; SMU236), a measurement stand (manufactured by Kyowa Riken; K-504RS) and a four-probe probe (manufactured by Kyowa Riken; K89PS150μ), 1.34 × 10 −4 (Ω Cm).

ついで、該ITO焼結体をその焼結時の上面から5mmの位置で厚み方向に水平に、ダイヤモンドカッターにより、切断して得られた切断面を、エメリー紙#170、#320、#800、#1500、#2000を用いてそれぞれ90度ずつ回転させながら段階的に研磨し、最後にバフ研磨して鏡面に仕上げた後、40℃のエッチング液(硝酸(60〜61%水溶液、関東化学(株)製、硝酸1.38 鹿1級 製品番号28161-03)、塩酸(35.0〜37.0%水溶液、関東化学(株)製、塩酸 鹿1級 製品番号18078-01)および水を体積比でHCl:H2O:HNO3=1:1:0.08の割合で混合)に9分間浸漬してエッチングし、現れた面を倍率3,000倍および30,000倍でSEM観察(JSM-6380A;JEOL製)した。得られたSEM像(倍率;3,000倍)を図1に、さらにその微細粒子群部分を拡大したSEM像(倍率;30,000倍)を図3に示す。 Next, the cut surface obtained by cutting the ITO sintered body with a diamond cutter horizontally in the thickness direction at a position 5 mm from the upper surface at the time of sintering was used as an emery paper # 170, # 320, # 800, Using # 1500 and # 2000, each of them is polished stepwise by rotating 90 degrees, and finally buffed to give a mirror finish. Then, an etching solution of 40 ° C. (nitric acid (60-61% aqueous solution, Kanto Chemical ( Nitric acid 1.38 Deer grade 1 product number 28161-03), hydrochloric acid (35.0-37.0% aqueous solution, manufactured by Kanto Chemical Co., Ltd., deer grade 1 product number 18078-01) and water in HCl: H by volume ratio 2 O: HNO 3 = 1: 1: 0.08) and soaked for 9 minutes to etch, and the exposed surface was observed with SEM at magnifications of 3,000 and 30,000 (JSM-6380A; manufactured by JEOL) did. The obtained SEM image (magnification: 3,000 times) is shown in FIG. 1, and the SEM image (magnification: 30,000 times) obtained by further enlarging the fine particle group portion is shown in FIG.

得られたSEM像から、In23母相の粒界からの微細粒子フリーゾーン5の幅の平均値を求めた結果、In23母相の粒界からの微細粒子フリーゾーンの幅の平均値は1μmであった。 From the obtained SEM image, an In 2 O 3 results an average value of widths of micro particles free zone 5 from the grain boundary of the matrix phase, In 2 O 3 widths of micro particles free zone from the grain boundary of the matrix phase The average value of was 1 μm.

次に、上記微細粒子2を解析するために、FE−TEM(JEM−2100F、日本電子製)を用いて上記微細粒子2を観察した。このときの加速電圧を200kvとした。まず、図7に示すように、上記微細粒子2の入ったSTEM像(0.5×0.5μm2視野)から任意の微細粒子を6点抽出した。これらについて、FE−TEM付属のEDXを用いて定量分析を行った。結果を表1に示す。 Next, in order to analyze the fine particles 2, the fine particles 2 were observed using FE-TEM (JEM-2100F, manufactured by JEOL Ltd.). The acceleration voltage at this time was 200 kv. First, as shown in FIG. 7, six arbitrary fine particles were extracted from the STEM image (0.5 × 0.5 μm 2 visual field) containing the fine particles 2. About these, the quantitative analysis was performed using EDX attached to FE-TEM. The results are shown in Table 1.

この結果より、検出されたおもな元素は、In、Sn、Oであり、微細粒子2はこれらの元素より構成されていることがわかった。
図7に示された部分のTEM像を図8に、図8の電子線回折像を図9に示す。
From this result, it was found that the main elements detected were In, Sn, and O, and the fine particles 2 were composed of these elements.
FIG. 8 shows a TEM image of the portion shown in FIG. 7, and FIG. 9 shows an electron diffraction image of FIG.

図9に示される電子回折像のうち、微細粒子2からと思われる回折パターンDFを抽出した。DFの暗視野像を図10に示す。これは微細粒子2からの回折パターンであることが確認された。   From the electron diffraction image shown in FIG. 9, a diffraction pattern DF that seems to be from the fine particles 2 was extracted. A dark field image of DF is shown in FIG. This was confirmed to be a diffraction pattern from the fine particles 2.

さらに、DFを含む逆格子ユニットを抽出し、逆格子面間隔を測定した。また、In、Sn、Oからなる結晶をICDDカードからすべて抽出した。これらのデータをもとに解析ソフト(電子線回折パターンの物質同定支援システム、日鉄テクノリサーチ製)によって物質同定を行った。この際、逆格子面間隔の誤差を5%、その角度の誤差を2°に設定した。   Furthermore, the reciprocal lattice unit including DF was extracted, and the reciprocal lattice spacing was measured. Moreover, all the crystals made of In, Sn, and O were extracted from the ICDD card. Based on these data, the substance was identified by analysis software (substance identification support system for electron diffraction patterns, manufactured by Nippon Steel Techno Research). At this time, the error of the reciprocal lattice spacing was set to 5%, and the error of the angle was set to 2 °.

その結果、微細粒子2の組成は、ICDDカードのIn4Sn312であると同定された。
次いで上記試料をTEM観察し、3×4μm2視野内において、粒子の仮想中心から放射線状に針状突起が形成された立体星状形状を有する微細粒子2は83個以上存在することが確認された。さらにこれらの微細粒子2の中から20個をランダムに抽出し、上記粒子解析ソフトを用いて各々の粒子の水平フィレ径および円形度係数を測定した。得られた測定値から、水平フィレ径および円形度係数の平均値を算出した。その結果、In23母相内に存在する微細粒子2の水平フィレ径の平均値は0.37μm、円形度係数の平均値は0.6であった。
As a result, the composition of the fine particles 2 was identified as In 4 Sn 3 O 12 of the ICDD card.
Next, the sample was observed with a TEM, and it was confirmed that there are 83 or more fine particles 2 having a three-dimensional star shape in which needle-like projections are radially formed from the virtual center of the particle within a 3 × 4 μm 2 visual field. It was. Furthermore, 20 of these fine particles 2 were randomly extracted, and the horizontal fillet diameter and circularity coefficient of each particle were measured using the particle analysis software. The average value of the horizontal fillet diameter and the circularity coefficient was calculated from the obtained measured values. As a result, the average value of the horizontal fillet diameter of the fine particles 2 present in the In 2 O 3 matrix was 0.37 μm, and the average value of the circularity coefficient was 0.6.

このようなITOスパッタリングターゲットを用いて、下記の条件でスパッタリングを行い、150℃のガラス基板(コーニング社製;コーニング#1737、50mm×50mm×0.8mm)上にITO膜を成膜した。   Using such an ITO sputtering target, sputtering was performed under the following conditions, and an ITO film was formed on a 150 ° C. glass substrate (manufactured by Corning; Corning # 1737, 50 mm × 50 mm × 0.8 mm).

《スパッタリング条件》
成膜条件:
装置;DCマグネトロンスパッタ装置、排気系;クライオポンプ、ロータリーポンプ
到達真空度;3.0×10-6Pa
スパッタ圧力;0.4Pa(窒素換算値、Ar圧力)、
酸素分圧;1.0×10-3Pa
得られた膜をX線回折により測定した結果、ピークが観察されず、非晶質であることが確認された。
<< Sputtering conditions >>
Deposition conditions:
Equipment: DC magnetron sputtering equipment, exhaust system; cryopump, rotary pump Ultimate vacuum: 3.0 × 10 −6 Pa
Sputtering pressure: 0.4 Pa (nitrogen conversion value, Ar pressure),
Oxygen partial pressure: 1.0 × 10 −3 Pa
As a result of measuring the obtained film | membrane by X-ray diffraction, the peak was not observed but it was confirmed that it is amorphous.

[参考例1]
実施例1と同様にしてITO成形体を作製し、得られた成形体を焼成板に載置した状態でバッチ炉内に入れ、炉内に酸素濃度100%の酸素ガスを流しながら(炉内体積1m3あたりに1m3/h)、炉内を1600℃まで加熱し、該温度に8時間保持した後、炉内の酸素ガスを大気に置換して、大気を流しながら(炉内体積1m3あたりに1m3/h)、室温まで冷却し、ITO焼結体を得た。
[Reference Example 1]
An ITO molded body was produced in the same manner as in Example 1, and the obtained molded body was placed in a batch furnace in a state of being placed on a fired plate, and oxygen gas having an oxygen concentration of 100% was allowed to flow into the furnace (in the furnace 1 m 3 / h per volume of 1 m 3 ), the furnace was heated to 1600 ° C. and held at that temperature for 8 hours, and then the oxygen gas in the furnace was replaced with the atmosphere, and the atmosphere was flowing (volume in the furnace 1 m 1 m 3 / h) per 3, cooled to room temperature to obtain an ITO sintered body.

このときの加熱工程の平均昇温速度は、117℃/hour、1600℃から400℃の温度領域における冷却工程の平均降温速度は、30℃/hourであった。
焼成条件を下記に示す。
The average temperature increase rate of the heating process at this time was 117 ° C./hour, and the average temperature decrease rate of the cooling process in the temperature region of 1600 ° C. to 400 ° C. was 30 ° C./hour.
The firing conditions are shown below.

《焼成条件》
室温→(50℃/hr)→400℃→(100℃/hr)→800℃×4hr→(400℃/hr)→1600℃×8hr→(−30℃/hr)→300℃→放冷→室温(全工程を通じて酸素フロー雰囲気)
次いで、得られたITO焼結体のバルク抵抗率を実施例1と同様の方法により測定したところ、1.68×10-4(Ω・cm)であった。
<< Baking conditions >>
Room temperature → (50 ° C./hr)→400° C. → (100 ° C./hr)→800° C. × 4 hr → (400 ° C./hr)→1600° C. × 8 hr → (−30 ° C./hr)→300° C. → cooling → Room temperature (oxygen flow atmosphere throughout the entire process)
Subsequently, when the bulk resistivity of the obtained ITO sintered body was measured by the same method as in Example 1, it was 1.68 × 10 −4 (Ω · cm).

図1は、実施例1のITO焼結体のSEM像を表す図である。1 is a view showing an SEM image of the ITO sintered body of Example 1. FIG. 図2は、ITO焼結体組織の模式図である。FIG. 2 is a schematic view of an ITO sintered body structure. 図3は、実施例1のITO焼結体のSEM像を表す図である。3 is a view showing an SEM image of the ITO sintered body of Example 1. FIG. 図4は、二値化された微細粒子2のSEM像を用い、水平方向の全画素数から水平フェレ径が求められる原理を表した模式図である。FIG. 4 is a schematic diagram showing the principle that the horizontal Ferre diameter is obtained from the total number of pixels in the horizontal direction using the binarized SEM image of the fine particles 2. 図5は、二値化された微細粒子2のSEM像を用い、粒子を形成する全画素数から粒子の面積が求められる原理を表した模式図である。FIG. 5 is a schematic diagram showing the principle that the area of the particle is obtained from the total number of pixels forming the particle, using the SEM image of the binarized fine particle 2. 図6は、二値化された微細粒子2のSEM像を用い、粒子の周囲を形成する全画素数から周囲長が求められる原理を表した模式図である。FIG. 6 is a schematic diagram showing the principle that the peripheral length is obtained from the total number of pixels forming the periphery of the particle using the binarized SEM image of the fine particle 2. 図7は、微細粒子2の入ったSTEM像である。FIG. 7 is a STEM image containing the fine particles 2. 図8は、微細粒子2のTEM像である。FIG. 8 is a TEM image of the fine particles 2. 図9は、図8のTEM像の電子回折像である。FIG. 9 is an electron diffraction image of the TEM image of FIG. 図10は、図9において抽出した回折パターンDFの暗視野像である。FIG. 10 is a dark field image of the diffraction pattern DF extracted in FIG.

符号の説明Explanation of symbols

1: In23母相
2: 微細粒子
3: 粒界
4: 化合物相
5: 微細粒子フリーゾーン
10: ITO焼結体
1: In 2 O 3 matrix 2: Fine particles 3: Grain boundary 4: Compound phase 5: Fine particle free zone 10: ITO sintered body

Claims (7)

主結晶粒であるIn23母相内にIn4Sn312からなる微細粒子が存在するITO(Indium-Tin-Oxide)焼結体であって、該微細粒子が粒子の仮想中心から放射線状に針状突起が形成された立体星状形状を有することを特徴とするITO焼結体。 An ITO (Indium-Tin-Oxide) sintered body in which fine particles composed of In 4 Sn 3 O 12 are present in the main crystal grain In 2 O 3 matrix, and the fine particles are separated from the virtual center of the particles. An ITO sintered body having a three-dimensional star shape in which needle-like protrusions are radially formed. バルク抵抗値が1.35×10-4Ω・cm以下であることを特徴とする請求項1に記載のITO焼結体。 The ITO sintered body according to claim 1, wherein a bulk resistance value is 1.35 × 10 −4 Ω · cm or less. 前記微細粒子の水平フィレ径の平均値が0.25μm以上であることを特徴とする請求項1または2に記載のITO焼結体。   3. The ITO sintered body according to claim 1, wherein an average value of a horizontal fillet diameter of the fine particles is 0.25 μm or more. 前記微細粒子の円形度係数の平均値が0.8未満であることを特徴とする請求項1〜3のいずれかに記載のITO焼結体。   The ITO sintered body according to any one of claims 1 to 3, wherein an average value of a circularity coefficient of the fine particles is less than 0.8. スパッタリングターゲット材であることを特徴とする請求項1〜4のいずれかに記載のITO焼結体。   It is a sputtering target material, The ITO sintered compact in any one of Claims 1-4 characterized by the above-mentioned. 請求項1〜4のいずれかに記載のITO焼結体と、バッキングプレートとを備えてなることを特徴とするITOスパッタリングターゲット。   An ITO sputtering target comprising the ITO sintered body according to claim 1 and a backing plate. ITO(Indium-Tin-Oxide)焼結体を製造する方法において、
インジウム酸化物と錫酸化物からなる混合物を成形し、得られた成形体を最高焼結温度1580〜1700℃となるよう加熱して該最高焼結温度の保持時間を300s以下とし、次いで第2次焼結温度1400〜1550℃まで降温して第2次焼結温度の保持時間を3〜18hourとし、その後室温まで降温する工程であって、
該第2次焼結温度の保持時間が少なくとも1〜4hour経過した時点で非酸化性雰囲気とする工程を含み、かつ、
該最高焼結温度から400℃までを平均降温速度10〜100℃/hourで降温する工程を含むことを特徴とするITO焼結体の製造方法。
In the method of manufacturing an ITO (Indium-Tin-Oxide) sintered body,
A mixture composed of indium oxide and tin oxide is molded, and the obtained molded body is heated to a maximum sintering temperature of 1580 to 1700 ° C. to keep the maximum sintering temperature at 300 s or less, and then the second A step of lowering the secondary sintering temperature to 1400 to 1550 ° C. and setting the holding time of the secondary sintering temperature to 3 to 18 hours, and then lowering the temperature to room temperature,
Including a step of setting a non-oxidizing atmosphere when the holding time of the secondary sintering temperature has passed at least 1 to 4 hours; and
The manufacturing method of the ITO sintered compact characterized by including the process of temperature-falling from this highest sintering temperature to 400 degreeC with the average temperature-fall rate of 10-100 degreeC / hour.
JP2007204639A 2007-08-06 2007-08-06 Ito sintered body and ito sputtering target Pending JP2009040621A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007204639A JP2009040621A (en) 2007-08-06 2007-08-06 Ito sintered body and ito sputtering target
KR1020097011515A KR20090082267A (en) 2007-08-06 2008-08-04 Ito sintered body and ito sputtering target
PCT/JP2008/063954 WO2009020091A1 (en) 2007-08-06 2008-08-04 Ito sintered body and ito sputtering target
CN200880001594A CN101622208A (en) 2007-08-06 2008-08-04 ITO sintered body and ITO sputtering target
TW097129627A TW200925308A (en) 2007-08-06 2008-08-05 ITO sinter and ITO sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007204639A JP2009040621A (en) 2007-08-06 2007-08-06 Ito sintered body and ito sputtering target

Publications (1)

Publication Number Publication Date
JP2009040621A true JP2009040621A (en) 2009-02-26

Family

ID=40341324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204639A Pending JP2009040621A (en) 2007-08-06 2007-08-06 Ito sintered body and ito sputtering target

Country Status (5)

Country Link
JP (1) JP2009040621A (en)
KR (1) KR20090082267A (en)
CN (1) CN101622208A (en)
TW (1) TW200925308A (en)
WO (1) WO2009020091A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102910900A (en) * 2012-10-31 2013-02-06 中南大学 Preparation method of indium tin oxide targets
CN103922703A (en) * 2014-04-15 2014-07-16 广西华锡集团股份有限公司 Indium tin oxide target material and sintering preparation method thereof
KR20160148593A (en) 2014-11-07 2016-12-26 제이엑스금속주식회사 Ito sputtering target and method for manufacturing same, ito transparent electroconductive film, and method for manufacturing ito transparent electroconductive film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107253855A (en) * 2014-02-18 2017-10-17 三井金属矿业株式会社 ITO sputtering target materials and its manufacture method
WO2016174877A1 (en) * 2015-04-30 2016-11-03 三井金属鉱業株式会社 Ito sputtering target material
CN110002853A (en) * 2019-04-28 2019-07-12 郑州大学 The method that twice sintering process prepares IGZO ceramic target

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100253A (en) * 1997-09-25 1999-04-13 Tosoh Corp Method for regenerating ito sintered body and application thereof
JP2000233969A (en) * 1998-12-08 2000-08-29 Tosoh Corp Production of ito sputtering target and transparent electrically conductive film
JP2007211265A (en) * 2006-02-07 2007-08-23 Mitsui Mining & Smelting Co Ltd Ito sintered body and ito sputtering target
JP2007230853A (en) * 2006-03-03 2007-09-13 Tosoh Corp Ito powder, its production method and method for producing ito sputtering target

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100253A (en) * 1997-09-25 1999-04-13 Tosoh Corp Method for regenerating ito sintered body and application thereof
JP2000233969A (en) * 1998-12-08 2000-08-29 Tosoh Corp Production of ito sputtering target and transparent electrically conductive film
JP2007211265A (en) * 2006-02-07 2007-08-23 Mitsui Mining & Smelting Co Ltd Ito sintered body and ito sputtering target
JP2007230853A (en) * 2006-03-03 2007-09-13 Tosoh Corp Ito powder, its production method and method for producing ito sputtering target

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102910900A (en) * 2012-10-31 2013-02-06 中南大学 Preparation method of indium tin oxide targets
CN103922703A (en) * 2014-04-15 2014-07-16 广西华锡集团股份有限公司 Indium tin oxide target material and sintering preparation method thereof
KR20160148593A (en) 2014-11-07 2016-12-26 제이엑스금속주식회사 Ito sputtering target and method for manufacturing same, ito transparent electroconductive film, and method for manufacturing ito transparent electroconductive film
KR20180093140A (en) 2014-11-07 2018-08-20 제이엑스금속주식회사 Ito sputtering target and method for manufacturing same, ito transparent electroconductive film, and method for manufacturing ito transparent electroconductive film

Also Published As

Publication number Publication date
CN101622208A (en) 2010-01-06
KR20090082267A (en) 2009-07-29
WO2009020091A1 (en) 2009-02-12
TW200925308A (en) 2009-06-16

Similar Documents

Publication Publication Date Title
JP2009040620A (en) Ito sintered body and ito sputtering target
JP2009040621A (en) Ito sintered body and ito sputtering target
JP6291593B2 (en) ITO sputtering target, manufacturing method thereof, and manufacturing method of ITO transparent conductive film
KR20200019654A (en) Indium zinc oxide (izo) based sputtering target, and method for producing same
KR20140034931A (en) Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
KR100433482B1 (en) Sputtering target using high-density sintered ITO compact and manufacturing method
TWI522332B (en) Ito sputtering target material and method of manufacturing the same
KR102089842B1 (en) Target for forming transparent conductive film, transparent conductive film, method of manufacturing target for forming transparent conductive film and method of manufacturing transparent conductive film
TWI491580B (en) Tablet for vapor depositing and method for producing the same
JP4562664B2 (en) ITO sintered body and ITO sputtering target
JP7158102B2 (en) ITO sputtering target, manufacturing method thereof, ITO transparent conductive film, and manufacturing method of ITO transparent conductive film
JP4403591B2 (en) Conductive metal oxide sintered body and use thereof
JP6453990B2 (en) Sintered body, sputtering target and manufacturing method thereof
KR20200032097A (en) MgO sintered sputtering target
JP6144858B1 (en) Oxide sintered body, sputtering target, and production method thereof
JP6254308B2 (en) Oxide sintered body, sputtering target, and production method thereof
WO2012124840A1 (en) Method for manufacturing titanium powder for manufacturing oxide-dispersion strengthening-type titanium material
TW201510244A (en) Method for preparing platinum-rhodium-oxide based alloy
KR101157123B1 (en) Ito sintered body and ito sputtering target
JP2007231381A (en) Ito sputtering target and production method therefor
JP5967016B2 (en) Vapor deposition tablet and manufacturing method thereof
KR20160073216A (en) Manufacturing method of nickel alloy targetfor semiconductor and nickel alloy target for semiconductor manufactured thereby
JPWO2014083909A1 (en) Method for producing zinc oxide based sputtering target
KR101099472B1 (en) Ito sintered body, sputtering target, and method for manufacturing sputtering target material
TW201527546A (en) Sputtering target and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218