JP2007211265A - Ito sintered body and ito sputtering target - Google Patents

Ito sintered body and ito sputtering target Download PDF

Info

Publication number
JP2007211265A
JP2007211265A JP2006029680A JP2006029680A JP2007211265A JP 2007211265 A JP2007211265 A JP 2007211265A JP 2006029680 A JP2006029680 A JP 2006029680A JP 2006029680 A JP2006029680 A JP 2006029680A JP 2007211265 A JP2007211265 A JP 2007211265A
Authority
JP
Japan
Prior art keywords
ito
sintered body
matrix
fine particles
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006029680A
Other languages
Japanese (ja)
Inventor
Seiichiro Takahashi
誠一郎 高橋
Junichi Kiyoto
純一 清遠
Hiromitsu Hayashi
博光 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2006029680A priority Critical patent/JP2007211265A/en
Priority to KR1020070012236A priority patent/KR101157123B1/en
Publication of JP2007211265A publication Critical patent/JP2007211265A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ITO sputtering target material and an ITO sputtering target capable of depositing an ITO film having excellent physical properties at low cost, and an ITO sintered body suitable for the same. <P>SOLUTION: In the ITO sintered body, the mean value of the maximum diameter of fine particles present in a mother phase of In<SB>2</SB>O<SB>3</SB>as main crystal grains is ≥0.2 μm; or the mean value of the width of the fine particle free zone from the grain boundary of the mother phase of In<SB>2</SB>O<SB>3</SB>as the main crystal grains is ≥0.3 μm; or the mean value of the maximum diameter of fine particles present in the mother phase of In<SB>2</SB>O<SB>3</SB>as the main crystal grains is ≥0.2 μm, and the mean value of the width of the fine particle free zone from the grain boundary of the mother phase of In<SB>2</SB>O<SB>3</SB>is ≥0.3 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ITO焼結体およびITOスパッタリングターゲットに関する。より詳しくは、主結晶粒であるIn23母相内に特定の大きさの微細粒子が存在しているITO焼結体、In23母相内の特定の領域に微細粒子が存在しているITO焼結体、当該母相内の特定の領域に特定の大きさの微細粒子が存在しているITO焼結体、これらを用いたスパッタリングターゲット材およびITOスパッタリングターゲットに関する。 The present invention relates to an ITO sintered body and an ITO sputtering target. More specifically, an ITO sintered body in which fine particles of a specific size are present in the main crystal grains, In 2 O 3 matrix, and fine particles are present in specific areas in the In 2 O 3 matrix. The present invention relates to an ITO sintered body, an ITO sintered body in which fine particles of a specific size are present in a specific region in the matrix, a sputtering target material using these, and an ITO sputtering target.

ITOスパッタリングターゲット材として用いられるITO焼結体については、従来、成膜の歩留まりを良くするために、スパッタリング時におけるアーキングやパーティクルの発生を低減あるいは防止しようと種々の検討がされてきた。たとえば、ITOスパッタリングターゲットの表面粗さを所定の範囲内に収めることでアーキングの発生を防止しようとする試みなどが報告されている(特許文献1および2参照)。   Conventionally, various studies have been made on ITO sintered bodies used as an ITO sputtering target material in order to reduce or prevent arcing and generation of particles during sputtering in order to improve the yield of film formation. For example, an attempt to prevent the occurrence of arcing by keeping the surface roughness of the ITO sputtering target within a predetermined range has been reported (see Patent Documents 1 and 2).

さらに近年では、このような成膜の歩留まり改善もさることながら、ITO膜の用途の拡大に伴い、スパッタリングによる成膜で得られたITO膜自体の物性の向上が求められている。たとえば、より低い抵抗率を示すITO膜などが望まれている。   Further, in recent years, in addition to the improvement of the film formation yield, improvement in the physical properties of the ITO film itself obtained by the film formation by sputtering has been demanded with the expansion of the use of the ITO film. For example, an ITO film showing a lower resistivity is desired.

通常、スパッタリングによる成膜においては、スパッタリング時の雰囲気、具体的にはアルゴンなどの不活性ガスに混合される酸素の分圧に依存して、得られるITO膜の抵抗率が変化することが知られており、ITO膜の抵抗率が最小となる酸素分圧を見出して、該酸素分圧になるように、スパッタリング装置への導入酸素量をコントロールしてスパッタリングを行っている。この最適酸素分圧が低いと、すなわち、低い酸素分圧でより低い抵抗率のITO膜が成膜できるとコスト的に有利である。   Usually, in film formation by sputtering, it is known that the resistivity of the obtained ITO film changes depending on the atmosphere during sputtering, specifically, the partial pressure of oxygen mixed in an inert gas such as argon. The oxygen partial pressure at which the resistivity of the ITO film is minimized is found, and the amount of oxygen introduced into the sputtering apparatus is controlled so that the oxygen partial pressure is controlled. If this optimum oxygen partial pressure is low, that is, if an ITO film having a lower resistivity can be formed at a low oxygen partial pressure, it is advantageous in terms of cost.

現在までのところ、ITO膜での再現性のあるトップデータは、細野秀雄教授らにより以下の条件で成膜された、抵抗率7.7×10-5(Ω・cm)のITO膜である(非特許文献
1、非特許文献2参照)。 成膜条件; 基板:超平坦なYSZ(イットリア安定化ジルコニア)基板、 基板温度:900℃、 成膜方法:PLD法(Pulse Laser Deposition)によるエピタキシャル成長
しかしながら、このような特異な成膜条件は、工業的な生産には適さず、実用化できないという問題があった。
Up to now, the top data with reproducibility in ITO film is ITO film with resistivity of 7.7 × 10 -5 (Ω · cm) formed by Prof. Hideo Hosono et al. (See Patent Document 1 and Non-Patent Document 2). Deposition conditions; Substrate: Ultra flat YSZ (yttria stabilized zirconia) substrate, Substrate temperature: 900 ° C. Deposition method: Epitaxial growth by PLD method (Pulse Laser Deposition) There is a problem that it is not suitable for practical production and cannot be put into practical use.

ところで、ITO焼結体をその厚み方向に水平に切断し、得られた切断面をエッチングして、その微細構造を観察すると、主結晶粒であるIn23とその粒界の他に、粒界に沿った状態で存在する化合物相や、In23母相内に存在する微細粒子が見られる場合がある。しかし、本発明者らの知る限り、従来、このようなITO焼結体の微細構造と、成膜の歩留りや成膜した膜物性とに関連があるかどうかについては、何ら検討されていなかった。
特許第2750483号公報 特許第3152108号公報 Hiromichi Ohta, Masahiro Orita, Masahiro Hirano, Hiroaki Tanji, Hiroshi Kawazoe and Hideo Hosono, “Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition”, Appl. Phys. Lett. 76 (2000) p.2740-2742. H. OHTA, M. ORITA, M. HIRANO, and H. HOSONO, “Surface morphology and crystal quality of low resistive indium tin oxide grown on yttria-stabilized zirconia”, Journal of Applied Physics, 91 (2002) p.3547
By the way, when the ITO sintered body is cut horizontally in the thickness direction, the obtained cut surface is etched, and the fine structure is observed, in addition to the main crystal grains In 2 O 3 and the grain boundaries, In some cases, a compound phase existing in a state along the grain boundary or fine particles existing in the In 2 O 3 matrix may be seen. However, as far as the present inventors know, no investigation has been made on whether or not there is a relation between the microstructure of such an ITO sintered body and the film formation yield and film physical properties. .
Japanese Patent No. 2750483 Japanese Patent No. 3152108 Hiromichi Ohta, Masahiro Orita, Masahiro Hirano, Hiroaki Tanji, Hiroshi Kawazoe and Hideo Hosono, “Highly conductive conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition”, Appl. Phys. Lett. 76 (2000) p.2740-2742. H. OHTA, M. ORITA, M. HIRANO, and H. HOSONO, “Surface morphology and crystal quality of low resistive indium tin oxide grown on yttria-stabilized zirconia”, Journal of Applied Physics, 91 (2002) p.3547

本発明は、より物性の優れたITO膜を低コストで成膜できるITOスパッタリングターゲット材およびITOスパッタリングターゲット、とくに工業的な生産に適した条件で低抵抗な膜が得られるITOスパッタリングターゲット材およびITOスパッタリングターゲット、ならびにこれらに好適なITO焼結体を提供することを課題としている。   The present invention relates to an ITO sputtering target material and an ITO sputtering target capable of forming an ITO film having more excellent physical properties at a low cost, and in particular, an ITO sputtering target material and an ITO capable of obtaining a low resistance film under conditions suitable for industrial production. It is an object to provide a sputtering target and an ITO sintered body suitable for them.

本発明者らは、ITO焼結体の主結晶粒であるIn23母相内の微細粒子と、成膜の歩留りや成膜した膜物性との関係に着目し、鋭意検討したところ、該In23母相内に存在する微細粒子の大きさ、該微細粒子の存在する領域などを制御したITO焼結体によれば、より物性の優れたITO膜、とくに低抵抗なITO膜を工業的な生産に適した条件で成膜できるITOスパッタリングターゲット材およびITOスパッタリングターゲットを提供できることを見出して本発明を完成するに至った。 The inventors of the present invention focused on the relationship between the fine particles in the In 2 O 3 matrix, which are the main crystal grains of the ITO sintered body, and the film formation yield and film physical properties. According to the ITO sintered body in which the size of the fine particles present in the In 2 O 3 matrix, the region where the fine particles are present, and the like are controlled, the ITO film having more excellent physical properties, particularly the low resistance ITO film As a result, it was found that an ITO sputtering target material and an ITO sputtering target capable of forming a film under conditions suitable for industrial production can be provided.

すなわち、本発明は以下の事項に関する。
本発明に係るITO焼結体は、主結晶粒であるIn23母相内に存在する微細粒子の最大径の平均値が0.2μm以上であることを特徴としている。
That is, the present invention relates to the following matters.
The ITO sintered body according to the present invention is characterized in that the average value of the maximum diameters of the fine particles present in the In 2 O 3 matrix which is the main crystal grain is 0.2 μm or more.

また、本発明に係るITO焼結体は、主結晶粒であるIn23母相の粒界からの微細粒子フリーゾーンの幅の平均値が0.3μm以上であることを特徴としている。
また、本発明に係るITO焼結体は、主結晶粒であるIn23母相内に存在する微細粒子の最大径の平均値が0.2μm以上であり、かつ、該In23母相の粒界からの微細粒子フリーゾーンの幅の平均値が0.3μm以上であることを特徴としている。
The ITO sintered body according to the present invention is characterized in that the average value of the width of the fine particle free zone from the grain boundary of the In 2 O 3 parent phase which is the main crystal grain is 0.3 μm or more.
In the ITO sintered body according to the present invention, the average value of the maximum diameters of the fine particles present in the In 2 O 3 matrix, which is the main crystal grain, is 0.2 μm or more, and the In 2 O 3 The average value of the width of the fine particle free zone from the grain boundary of the parent phase is 0.3 μm or more.

これらのITO焼結体は、スパッタリングターゲット材として好ましく用いることができる。
また、本発明に係るITOスパッタリングターゲットは、前記ITO焼結体と、バッキングプレートとを備えてなることを特徴としている。
These ITO sintered bodies can be preferably used as a sputtering target material.
In addition, an ITO sputtering target according to the present invention includes the ITO sintered body and a backing plate.

本発明のITO焼結体をスパッタリングターゲットとして用いると、より抵抗率の低い優れたITO膜を、特異な条件を要さずに工業的な生産に適した条件下で低い酸素分圧で得ることができ、コスト的に有利である。   When the ITO sintered body of the present invention is used as a sputtering target, an excellent ITO film having a lower resistivity can be obtained at a low oxygen partial pressure under conditions suitable for industrial production without requiring specific conditions. This is advantageous in terms of cost.

以下、本発明について具体的に説明する。
本発明に係るITO焼結体は、(1)主結晶粒であるIn23母相内に存在する微細粒子の最大径の平均値が0.2μm以上であるか、あるいは、(2)主結晶粒であるIn2
3母相の粒界からの微細粒子フリーゾーンの幅の平均値が0.3μm以上であるか、あ
るいは、(3)主結晶粒であるIn23母相内に存在する微細粒子の最大径の平均値が0.2μm以上であり、かつ、該In23母相の粒界からの微細粒子フリーゾーンの幅の平均値が0.3μm以上であることを特徴としている。
Hereinafter, the present invention will be specifically described.
In the ITO sintered body according to the present invention, (1) the average value of the maximum diameters of the fine particles present in the In 2 O 3 matrix which is the main crystal grain is 0.2 μm or more, or (2) In 2 which is the main crystal grain
The average value of the fine particle free zone width from the grain boundary of the O 3 matrix is 0.3 μm or more, or (3) the fine particles present in the In 2 O 3 matrix that is the main crystal grain The average value of the maximum diameter is 0.2 μm or more, and the average value of the width of the fine particle free zone from the grain boundary of the In 2 O 3 matrix is 0.3 μm or more.

ここで、In23母相内に存在する微細粒子の最大径の平均値とは、ダイヤモンドカッターを用いて、ITO焼結体をその厚み方向に水平に切断して得られた切断面をエメリー紙#170、#320、#800、#1500、#2000を用いて段階的に研磨し、最後にバフ研磨して
鏡面に仕上げた後、40℃のエッチング液(硝酸(60〜61%水溶液、関東化学(株)製、
硝酸1.38 鹿1級 製品番号28161-03)、塩酸(35.0〜37.0%水溶液、関東化学(株)製、塩酸 鹿1級 製品番号18078-01)および水を体積比でHCl:H2O:HNO3=1:1:0.08の割合で混合)に9分間浸漬してエッチングし、現れる面の任意の2μm×2μmの領域(ただし、粒界、粒界に沿った状態で存在する化合物相、後に定義するフリーゾーンのいずれをも含まない領域)において観察される、微細粒子の最大径の平均値をいう。なお、微細粒子の最大径とは、観察される微細粒子断面の任意の2点を結ぶ直線(径)のうち最大のものをいうものとする。微細粒子の観察は、SEM(走査型電子顕微鏡)によって行なう(倍率30,000倍)。なお、In23母相内に存在する微細粒子は、そのSEM像からIn23とは異種の化合物であると考えられ、おそらくはIn4Sn312であると推測される。
Here, the average value of the maximum diameters of the fine particles present in the In 2 O 3 matrix is a cut surface obtained by cutting the ITO sintered body horizontally in the thickness direction using a diamond cutter. Polishing step by step using Emery paper # 170, # 320, # 800, # 1500, # 2000, and finally buffing to a mirror finish, followed by etching at 40 ° C. (nitric acid (60-61% aqueous solution) , Manufactured by Kanto Chemical Co., Ltd.
Nitric acid 1.38 Deer grade 1 product number 28161-03), hydrochloric acid (35.0-37.0% aqueous solution, manufactured by Kanto Chemical Co., Ltd., hydrochloric acid deer grade 1 product number 18078-01) and water by volume ratio HCl: H 2 O: HNO 3 = 1: 1: 0.08) for 9 minutes to etch and etch, appear 2 μm × 2 μm area on the appearing surface (however, the grain boundary, the compound phase existing along the grain boundary, The average value of the maximum diameter of the fine particles observed in a region that does not include any of the defined free zones). The maximum diameter of the fine particles refers to the largest of the straight lines (diameters) connecting any two points on the observed cross section of the fine particles. Observation of fine particles is performed by SEM (scanning electron microscope) (magnification 30,000 times). Note that the fine particles present in the In 2 O 3 matrix are considered to be compounds different from In 2 O 3 from the SEM image, and are presumably In 4 Sn 3 O 12 .

また、微細粒子フリーゾーンとは、上記の観察方法において、倍率3,000倍でSEM観察したときに微細粒子が観察されないIn23母相内の領域(ただし、粒界に沿った状態で存在する化合物相の領域は含まない)を意味する。In23母相の粒界からの微細粒子フリーゾーンの幅の平均値は、上述したIn23母相内に存在する微細粒子の最大径の平均値を求める際と同じ条件で、ITO焼結体を切断およびエッチングして現れた面を倍率3,000倍でSEM観察し、撮影したSEM写真を用い、該写真でIn23母相粒断面の全体が観察できるすべてのもの(写真の端にあり、In23母相粒断面の一部が写っていないものは対象外とする)を測定の対象とし、In23母相粒界から法線方向の微細粒子までの距離のうち、最短と最長のものの和の1/2をそのIn23母相粒子における微細粒子フリーゾーンの幅とし、これを測定対象としたIn23母相粒の数で割ったものである。 The fine particle free zone is a region in the In 2 O 3 matrix in which fine particles are not observed when SEM observation is performed at a magnification of 3,000 in the above observation method (however, in a state along the grain boundary). Does not include the region of the compound phase present). In 2 O 3 average of widths of micro particles free zone from the grain boundary of the matrix phase in the same conditions as in obtaining an average value of the maximum diameter of the fine particles present in the In 2 O 3 matrix in the above, SEM observation of the surface that appears after cutting and etching the ITO sintered body at a magnification of 3,000, and using the photographed SEM photograph, all of the cross section of the In 2 O 3 matrix phase grain can be observed Fine particles in the normal direction from the In 2 O 3 parent phase grain boundary (measured at (at the end of the photo, and those where a portion of the In 2 O 3 parent phase cross section is not shown) are excluded) of the distance to, the half of the sum of the shortest and longest ones and widths of micro particles free zone at the in 2 O 3 matrix particles, which in the number of measurement target was in 2 O 3 matrix grains Divided.

以下に、本発明に含まれる3つの態様である上記(1)〜(3)のITO焼結体と、その製造方法について詳細に説明する。
本発明の一態様のITO焼結体は、(1)主結晶粒であるIn23母相内に存在する微細粒子の最大径の平均値が0.2μm以上、好ましくは0.3μm以上、より好ましくは0.3〜2μmの範囲にあるITO焼結体である。
Below, the ITO sintered compact of said (1)-(3) which is three aspects included in this invention, and its manufacturing method are demonstrated in detail.
In the ITO sintered body of one embodiment of the present invention, (1) the average value of the maximum diameter of the fine particles present in the In 2 O 3 matrix which is the main crystal grain is 0.2 μm or more, preferably 0.3 μm or more. More preferably, the ITO sintered body is in the range of 0.3 to 2 μm.

また、本発明の一態様のITO焼結体は、(2)主結晶粒であるIn23母相の粒界からの微細粒子フリーゾーンの幅の平均値が0.3μm以上、好ましくは0.4μm以上、より好ましくは0.5〜3μmの範囲にあるITO焼結体である。上記微細粒子フリーゾーンの幅の平均値が、上記特定値以上、より好ましくは上記特定範囲以内であると、主結晶粒であるIn23母相内における微細粒子の存在しない領域が広くなるため、微細粒子の存在する領域との境界がより明確となる。 In the ITO sintered body of one embodiment of the present invention, (2) the average value of the width of the fine particle free zone from the grain boundary of the In 2 O 3 matrix which is the main crystal grain is 0.3 μm or more, preferably It is an ITO sintered body in the range of 0.4 μm or more, more preferably 0.5 to 3 μm. When the average value of the width of the fine particle free zone is equal to or larger than the specific value, more preferably within the specific range, a region in which fine particles are not present in the main crystal grain In 2 O 3 matrix is widened. Therefore, the boundary with the region where the fine particles are present becomes clearer.

また、本発明の一態様のITO焼結体は、(3)主結晶粒であるIn23母相内に存在する微細粒子の最大径の平均値が0.2μm以上、好ましくは0.3μm以上、より好ましくは0.3〜2μmの範囲にあり、かつ、該In23母相の粒界からの微細粒子フリーゾーンの幅の平均値が0.3μm以上、好ましくは0.4μm以上、より好ましくは0.5〜3μmの範囲にある、ITO焼結体である。このように、該In23母相内の特定の領域に特定の大きさの微細粒子が存在していると、上記(1)(2)のITO焼結体の長所を共に有することが期待される。したがって、このようなITO焼結体をスパッタリングターゲットとして用いた場合には、スパッタリングによる成膜時の酸素分圧に対する応答が鋭くなり、比較的低い酸素分圧でより低い抵抗率のITO膜を成膜できるものと推測される。 In the ITO sintered body of one embodiment of the present invention, (3) the average value of the maximum diameters of the fine particles present in the In 2 O 3 matrix which is the main crystal grain is 0.2 μm or more, preferably 0.8 μm. 3 μm or more, more preferably in the range of 0.3 to 2 μm, and the average value of the width of the fine particle free zone from the grain boundary of the In 2 O 3 matrix is 0.3 μm or more, preferably 0.4 μm As described above, the ITO sintered body is more preferably in the range of 0.5 to 3 μm. Thus, when fine particles of a specific size are present in a specific region in the In 2 O 3 matrix, both of the advantages of the ITO sintered body (1) and (2) can be obtained. Be expected. Therefore, when such an ITO sintered body is used as a sputtering target, the response to the oxygen partial pressure during film formation by sputtering becomes sharp, and an ITO film having a lower resistivity can be formed at a relatively low oxygen partial pressure. It is assumed that a film can be formed.

これら(1)〜(3)のITO焼結体はいわゆる粉末冶金法により製造することができる。粉末冶金法では、一般に、原料粉末に必要によりバインダーを加えて圧縮成形し、得られた成形体を必要に応じて脱脂した後、該成形体を焼成処理し、焼結体を得るが、上記
(1)〜(3)のITO焼結体を得るためには、このうちの焼成処理を特定の条件下で行うことが必要である。
These ITO sintered bodies (1) to (3) can be produced by a so-called powder metallurgy method. In the powder metallurgy method, in general, a binder is added to the raw material powder as necessary, and compression molding is performed. After degreasing the obtained molded body as necessary, the molded body is fired to obtain a sintered body. In order to obtain the ITO sintered body of (1) to (3), it is necessary to perform the firing treatment among these under specific conditions.

具体的には、酸化インジウム(In23)、酸化錫(SnO2)などの原料粉末を所望
の割合で混合し、必要に応じてバインダーを加えて、圧縮成形して成形体を得て、得られた成形体を必要に応じて脱脂するまでの工程は、通常行われている公知の手段および条件によって行うことができる。なお、本明細書中、ITOとは、通常、酸化インジウム(In23)に1〜35重量%の酸化スズ(SnO2)を添加して得られた材料を意味する。
Specifically, raw material powders such as indium oxide (In 2 O 3 ) and tin oxide (SnO 2 ) are mixed in a desired ratio, a binder is added as necessary, and a compact is obtained by compression molding. The steps until the obtained molded body is degreased as necessary can be performed by commonly known means and conditions. In the present specification, ITO usually means a material obtained by adding 1 to 35% by weight of tin oxide (SnO 2 ) to indium oxide (In 2 O 3 ).

具体的に例示すると、原料粉末は必要に応じて、仮焼、分級処理を施してもよく、その後の原料粉末の混合は、たとえば、ボールミルなどで行うことができる。その後、混合した原料粉末を成形型に充填して圧縮成形し、成形体を作製し、大気雰囲気下または酸素雰囲気下で脱脂してもよく、あるいは、特開平11-286002号公報に記載の濾過式成
形法のように、セラミックス原料スラリーから水分を減圧排水して成形体を得るための非水溶性材料からなる濾過式成形型に、混合した原料粉末、イオン交換水、有機添加剤とからなるスラリーを注入し、スラリー中の水分を減圧排水して成形体を作製し、この成形体を乾燥脱脂してもよい。
Specifically, the raw material powder may be subjected to calcination and classification as necessary, and the subsequent mixing of the raw material powder can be performed by, for example, a ball mill. Thereafter, the mixed raw material powder is filled in a mold and compression-molded to produce a molded body, which may be degreased in an air atmosphere or an oxygen atmosphere, or the filtration described in JP-A-11-286002. It consists of mixed raw material powder, ion-exchanged water, and organic additives in a filter-type mold made of a water-insoluble material to obtain a compact by draining water from the ceramic raw material slurry under reduced pressure as in the conventional molding method. The slurry may be injected, and water in the slurry may be drained under reduced pressure to produce a molded body, and the molded body may be dried and degreased.

このようにして得られた成形体を以下に説明する特定の条件下で焼成処理することで、本発明のITO焼結体を得ることができる。
焼成処理は、通常、加熱工程、保温工程および冷却工程からなる。焼成処理に使用できる炉は、公知の構造の炉であればよく特に限定されない。
The ITO sintered body of the present invention can be obtained by firing the molded body thus obtained under specific conditions described below.
The firing treatment usually includes a heating step, a heat retention step, and a cooling step. The furnace that can be used for the firing treatment is not particularly limited as long as it has a known structure.

加熱工程では、上記成形体を炉内に入れ、炉内を連続的にあるいは段階的に、通常1400〜1600℃、好ましくは1550〜1600℃まで加熱する。この際、必要に応じて成形体を焼成板に載置してもよい。得られるITO焼結体の生産効率の点からは、加熱工程全体を通しての炉内の昇温レートの平均は50〜400℃/hourであることが好ましい。   In the heating step, the molded body is placed in a furnace, and the inside of the furnace is heated to 1400 to 1600 ° C, preferably 1550 to 1600 ° C, continuously or stepwise. Under the present circumstances, you may mount a molded object on a baking board as needed. From the viewpoint of production efficiency of the obtained ITO sintered body, it is preferable that the average temperature rising rate in the furnace throughout the heating process is 50 to 400 ° C./hour.

また、得られるITO焼結体の密度向上の観点からは、前記加熱工程は、炉内に酸素を導入して酸素雰囲気内で行うことが望ましい。炉内に導入する酸素の流量は、炉内体積1m3あたり、通常0.1〜500m3/hourの範囲内の量である。 Further, from the viewpoint of improving the density of the obtained ITO sintered body, the heating step is preferably performed in an oxygen atmosphere by introducing oxygen into the furnace. The flow rate of oxygen introduced into the furnace is usually in the range of 0.1 to 500 m 3 / hour per 1 m 3 of the furnace volume.

ついで、保温工程では、加熱工程で加熱した最高温度を所定の時間保持する。保持時間は生産効率を考慮すると通常2〜30時間である。該保持工程でも加熱工程と同じ条件で炉内に酸素を導入することが好ましい。   Next, in the heat retaining step, the maximum temperature heated in the heating step is maintained for a predetermined time. The holding time is usually 2 to 30 hours considering production efficiency. In the holding step, it is preferable to introduce oxygen into the furnace under the same conditions as in the heating step.

ついで、冷却工程では、上記炉内を連続的にあるいは段階的に室温まで冷却し、上記加熱工程及び保温工程を経た成形体を冷却する。得られるITO焼結体の主結晶粒であるIn23母相内に存在する微細粒子の最大径の平均値およびIn23母相の粒界からの微細粒子フリーゾーンの幅の平均値を制御する観点からは、上記冷却工程のうち、保温工程における最高温度(加熱工程における最高温度と同じ)から400℃までの温度領域の降温レートを調整することが望ましい。この温度領域における降温レートの平均は、通常30℃/hour以上100℃/hour未満であり、好ましくは30〜40℃/hourである。上記温度領域の降温レートが上記範囲内であると、加熱工程を経た後の成形体がゆっくり冷却されるため、In23母相内の微細粒子の成長が促進されて粗大化し、該微細粒子の最大径の平均値を0.2μm以上に制御でき、さらには、微細粒子がある程度凝集するため、In23母相の粒界からの微細粒子フリーゾーンの幅の平均値を0.3μm以上に制御できる。 Next, in the cooling step, the inside of the furnace is cooled continuously or stepwise to room temperature, and the molded body that has undergone the heating step and the heat retaining step is cooled. The average value of the maximum diameter of fine particles existing in the In 2 O 3 matrix, which is the main crystal grain of the obtained ITO sintered body, and the average width of the fine particle free zone from the grain boundary of the In 2 O 3 matrix From the viewpoint of controlling the value, it is desirable to adjust the rate of temperature decrease in the temperature range from the highest temperature in the heat retaining step (same as the highest temperature in the heating step) to 400 ° C. in the cooling step. The average rate of temperature drop in this temperature region is usually 30 ° C./hour or more and less than 100 ° C./hour, preferably 30 to 40 ° C./hour. When the temperature drop rate in the temperature range is within the above range, the molded body after the heating step is slowly cooled, and thus the growth of fine particles in the In 2 O 3 matrix is promoted and coarsened. The average value of the maximum diameter of the particles can be controlled to 0.2 μm or more, and furthermore, since the fine particles are aggregated to some extent, the average value of the width of the fine particle free zone from the grain boundary of the In 2 O 3 matrix is set to 0. It can be controlled to 3 μm or more.

一方、上記冷却工程のうち、400℃未満から室温までの温度領域の降温レートはとくに限定されない。このような温度領域では、実質的にIn23母相内の微粒子は成長しないためである。具体的には、降温レートを適宜設定してもよく、とくに降温レートを調整せずに放冷し、室温まで自然冷却してもよい。 On the other hand, the cooling rate in the temperature region from less than 400 ° C. to room temperature is not particularly limited in the cooling step. This is because, in such a temperature region, the fine particles in the In 2 O 3 matrix do not substantially grow. Specifically, the temperature lowering rate may be set as appropriate, and in particular, the temperature may be allowed to cool without adjusting the temperature lowering rate and then naturally cooled to room temperature.

また、得られるITO焼結体の主結晶粒であるIn23母相内に存在する微細粒子の最大径の平均値、In23母相の粒界からの微細粒子フリーゾーンの幅の平均値を制御する観点からは、前記冷却工程は、加熱工程と同じ条件で酸素を導入して酸素雰囲気内で行うことが望ましい。 Further, the average value of the maximum diameter of fine particles existing in the In 2 O 3 matrix, which is the main crystal grain of the obtained ITO sintered body, the width of the fine particle free zone from the grain boundary of the In 2 O 3 matrix From the viewpoint of controlling the average value, it is desirable that the cooling step be performed in an oxygen atmosphere by introducing oxygen under the same conditions as the heating step.

理由は定かでないが、酸素雰囲気下で上記冷却工程を行うと、In23母相内の微細粒子の成長が促進され、その最大径の平均値が増加するほか、該微細粒子がIn23母相の中心部に凝集して析出し、本発明のITO焼結体を得ることが容易となる。 Although the reason is not clear, when an oxygen atmosphere perform the cooling step, In 2 O 3 growth of the fine particles in the matrix phase is promoted, in addition to the average value of the maximum diameter is increased, is the fine particles In 2 It becomes easy to obtain the ITO sintered body of the present invention by aggregating and precipitating at the center of the O 3 matrix.

このようにして得られたITO焼結体を、必要に応じて所望の形状に切り出し、研削等した後、スパッタリングターゲット材として好ましく用いることができる。
さらに、前記ITO焼結体と、冷却板であるバッキングプレートとを接合することで、ITOスパッタリングターゲットを得ることができる。
The ITO sintered body thus obtained can be preferably used as a sputtering target material after being cut into a desired shape and ground, if necessary.
Furthermore, an ITO sputtering target can be obtained by joining the ITO sintered body and a backing plate that is a cooling plate.

この場合、バッキングプレートは、通常スパッタリングターゲットのバッキングプレートとして用いられるものであればよく、銅製や銅合金製のバッキングプレートが挙げられる。またその形状も公知のものでよく、とくに限定されない。   In this case, the backing plate may be any one that is normally used as a backing plate for a sputtering target, and examples thereof include a copper or copper alloy backing plate. Moreover, the shape may be a known one and is not particularly limited.

ITO焼結体とバッキングプレートとの接合は、公知の方法で適宜行うことができ、特に限定されないが、コストや生産性の点からは、In半田などのボンディング剤を介して接合する方法が好ましく挙げられる。具体的には、ITO焼結体を必要に応じて所望の形状に切り出し、必要に応じて研削等した後、In半田の融点以上の温度に加熱し、該温度を保持した状態で、該ITO焼結体のバッキングプレートと接合する面に溶融したIn半田を塗布し、バッキングプレートと貼り合せ、加圧しながら放冷して室温まで冷却するなどの方法により接合できる。   Joining of the ITO sintered body and the backing plate can be appropriately performed by a known method and is not particularly limited, but from the viewpoint of cost and productivity, a method of joining via a bonding agent such as In solder is preferable. Can be mentioned. Specifically, the ITO sintered body is cut into a desired shape as necessary, and after grinding or the like as necessary, the ITO sintered body is heated to a temperature equal to or higher than the melting point of In solder, and the ITO is maintained while maintaining the temperature. Bonding can be performed by applying a molten In solder to the surface of the sintered body to be bonded to the backing plate, bonding it to the backing plate, allowing to cool while being pressurized, and cooling to room temperature.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.

[実施例1]
脱脂したITO成形体(In23:SnO2(重量比)=90:10)を焼成板に載置した
状態でバッチ炉内に入れ、炉内に酸素濃度100%の酸素ガスを流しながら(炉内体積1m3あたりに1m3/h)、炉内を1600℃まで加熱し、該温度に8時間保持した後、、室温まで冷却し、ITO焼結体を得た。
[Example 1]
A degreased ITO molded body (In 2 O 3 : SnO 2 (weight ratio) = 90: 10) is placed in a batch furnace in a state of being placed on a fired plate, and an oxygen gas having an oxygen concentration of 100% is allowed to flow into the furnace. (1 m 3 / h per 1 m 3 in the furnace volume), the inside of the furnace was heated to 1600 ° C., kept at this temperature for 8 hours, and then cooled to room temperature to obtain an ITO sintered body.

このときの加熱工程の平均昇温レートは、117℃/hour、1600℃から400
℃の温度領域における冷却工程の平均降温レートは、30℃/hourであった。
焼成条件を下記に示す。
The average heating rate of the heating process at this time is 117 ° C./hour, 1600 ° C. to 400
The average temperature drop rate of the cooling process in the temperature range of 30 ° C. was 30 ° C./hour.
The firing conditions are shown below.

焼成条件;
室温→(50℃/hr)→400℃→(100℃/hr)→800℃×4hr→(400℃/hr
)→1600℃×8hr→(−30℃/hr)→300℃→放冷→室温(全工程を通じて酸素
フロー雰囲気)
Firing conditions;
Room temperature → (50 ° C./hr)→400° C. → (100 ° C./hr)→800° C. × 4 hr → (400 ° C./hr
) → 1600 ° C. × 8 hr → (−30 ° C./hr)→300° C. → cooling → room temperature (oxygen flow atmosphere throughout the whole process)

ついで、該ITO焼結体をその焼結時の上面から5mmの位置で厚み方向に水平に、ダイヤモンドカッターにより、切断して得られた切断面を、エメリー紙#170、#320、#800、#1500、#2000を用いてそれぞれ90度ずつ回転させながら段階的に研磨し、最後に
バフ研磨して鏡面に仕上げた後、40℃のエッチング液(硝酸(60〜61%水溶液、関東化学(株)製、硝酸1.38 鹿1級 製品番号28161-03)、塩酸(35.0〜37.0%水溶液、関東化学(株)製、塩酸 鹿1級 製品番号18078-01)および水を体積比でHCl:H2O:HNO3=1:1:0.08の割合で混合)に9分間浸漬してエッチングし、現れた面を倍率3,000倍および30,000倍でSEM観察(JSM-6380A;JEOL製)し、In23母相内に
存在する微細粒子の最大径の平均値および該In23母相の粒界からの微細粒子フリーゾーンの幅の平均値をそれぞれ求めた。
Next, the cut surface obtained by cutting the ITO sintered body with a diamond cutter horizontally in the thickness direction at a position 5 mm from the upper surface at the time of sintering was used as an emery paper # 170, # 320, # 800, Using # 1500 and # 2000, each of them is polished stepwise by rotating 90 degrees, and finally buffed to give a mirror finish. Then, an etching solution of 40 ° C. (nitric acid (60-61% aqueous solution, Kanto Chemical ( Nitric acid 1.38 Deer grade 1 product number 28161-03), hydrochloric acid (35.0-37.0% aqueous solution, manufactured by Kanto Chemical Co., Ltd., deer grade 1 product number 18078-01) and water in HCl: H by volume ratio 2 O: HNO 3 = 1: 1: 0.08) and soaked for 9 minutes to etch, and the exposed surface was observed with SEM at magnifications of 3,000 and 30,000 (JSM-6380A; manufactured by JEOL) and, the average value of the maximum diameter of the fine particles present in the in 2 O 3 matrix and in the in 2 O 3 matrix The average value of widths of micro particles free zone from the field were determined, respectively.

その結果、In23母相内に存在する微細粒子の最大径の平均値は0.3μmであり、In23母相の粒界からの微細粒子フリーゾーンの幅の平均値は1μmであった。
このときのITO焼結体のSEM像(倍率;3,000倍)を図1に、さらにその微細粒子群部分を拡大したSEM像(倍率;30,000倍)を図2に示す。
As a result, the average value of the maximum diameter of the fine particles present in the In 2 O 3 matrix in is 0.3 [mu] m, In 2 O 3 average of widths of micro particles free zone from the grain boundary of the matrix phase is 1μm Met.
The SEM image (magnification: 3,000 times) of the ITO sintered body at this time is shown in FIG. 1, and the SEM image (magnification: 30,000 times) obtained by further enlarging the fine particle group portion is shown in FIG.

また、ITO焼結体の組織の一部を模式化したものを図3に示す(ただし、図3は、説明のために、ITO焼結体の組織を誇張して模式的に表したものであり、各構成要素の寸法、比率などは実物とは異なる)。この図3中、10は全体でITO焼結体を示し、該ITO焼結体10の主結晶であるIn23母相1内には微細粒子2が存在しており、さらに粒界3に沿った状態で化合物相4が存在している。また、微細粒子2が観察されないIn23母相1内の領域である微細粒子フリーゾーン5も存在している。 FIG. 3 schematically shows a part of the structure of the ITO sintered body (however, FIG. 3 schematically shows the structure of the ITO sintered body in an exaggerated manner for the purpose of explanation). Yes, the dimensions and ratios of each component are different from the actual product). In FIG. 3, reference numeral 10 denotes an ITO sintered body as a whole. Fine particles 2 are present in the In 2 O 3 matrix 1 which is the main crystal of the ITO sintered body 10, and further, a grain boundary 3 The compound phase 4 exists in the state along. There is also a fine particle free zone 5 which is a region in the In 2 O 3 matrix 1 where no fine particles 2 are observed.

ついで、上記ITO焼結体を適当な大きさに切り出して、平面研削盤で研削し、直径200mm×厚さ8mmのITOスパッタリングターゲット材を得た。得られたITOスパッタリングターゲット材を、In半田を介して銅製バッキングプレートと接合し、ITOスパッタリングターゲットを作製した。   Next, the ITO sintered body was cut out to an appropriate size and ground with a surface grinder to obtain an ITO sputtering target material having a diameter of 200 mm and a thickness of 8 mm. The obtained ITO sputtering target material was joined to a copper backing plate via In solder to produce an ITO sputtering target.

このITOスパッタリングターゲットを用いて、下記の条件でスパッタリング装置内の酸素分圧を変化させてスパッタリングを行い、100℃または250℃のガラス基板(コーニング社製;コーニング#1737、50mm×50mm×0.8mm)上にITO膜を成膜した。このITO膜の抵抗率をvan der Pauw法に基づき、ResiTest8308(東陽テクニカ製)にて測定した。   Using this ITO sputtering target, sputtering was performed by changing the oxygen partial pressure in the sputtering apparatus under the following conditions, and a glass substrate at 100 ° C. or 250 ° C. (manufactured by Corning; Corning # 1737, 50 mm × 50 mm × 0. 8 mm), an ITO film was formed. The resistivity of the ITO film was measured by ResiTest 8308 (manufactured by Toyo Technica) based on the van der Pauw method.

その結果、ガラス基板温度100℃の場合の最適酸素分圧は9.3×10-3(Pa)、そのときのITO膜の抵抗率は3.74×10-4(Ω・cm)であった。また、ガラス基板温度250℃の場合の最適酸素分圧は8.1×10-3(Pa)、そのときのITO膜の抵抗率は1.99×10-4(Ω・cm)であった。
結果をまとめて、表1、表2および図4、図5に示す。
As a result, the optimum oxygen partial pressure at a glass substrate temperature of 100 ° C. was 9.3 × 10 −3 (Pa), and the resistivity of the ITO film at that time was 3.74 × 10 −4 (Ω · cm). It was. The optimum oxygen partial pressure at a glass substrate temperature of 250 ° C. was 8.1 × 10 −3 (Pa), and the resistivity of the ITO film at that time was 1.99 × 10 −4 (Ω · cm). .
The results are summarized and shown in Tables 1 and 2 and FIGS.

<スパッタリング条件>
成膜条件:
装置;DCマグネトロンスパッタ装置、排気系;クライオポンプ、ロータリーポンプ
到達真空度;3.0×10-6Pa
スパッタ圧力;0.4Pa(窒素換算値、Ar圧力)、
酸素分圧;4.5〜13×10-3Pa
投入電力;600W(1.85W/cm2
基板温度;100℃、250℃
膜厚;1200Å
ガラス基板;コーニング#1737(板厚0.8mm)
<Sputtering conditions>
Deposition conditions:
Equipment: DC magnetron sputtering equipment, exhaust system; cryopump, rotary pump Ultimate vacuum: 3.0 × 10 −6 Pa
Sputtering pressure: 0.4 Pa (nitrogen conversion value, Ar pressure),
Oxygen partial pressure; 4.5-13 × 10 −3 Pa
Input power: 600 W (1.85 W / cm 2 )
Substrate temperature: 100 ° C, 250 ° C
Film thickness: 1200mm
Glass substrate; Corning # 1737 (plate thickness 0.8mm)

[比較例1]
下記に示す焼成条件に従い、1600℃から400℃の温度領域における冷却工程の平均降温レートを175℃/hourとし、冷却工程の際に、炉内の酸素ガスを大気に置換
して、大気を炉内体積1m3あたり1m3/hで流した他は、実施例1と同様にしてITO焼結体を得た。
[Comparative Example 1]
In accordance with the firing conditions shown below, the average temperature drop rate of the cooling process in the temperature range of 1600 ° C. to 400 ° C. is set to 175 ° C./hour, and the oxygen gas in the furnace is replaced with the atmosphere during the cooling process. An ITO sintered body was obtained in the same manner as in Example 1 except that the flow rate was 1 m 3 / h per 1 m 3 of the internal volume.

焼成条件;
室温→(50℃/hr)→400℃→(100℃/hr)→800℃×4hr→(400℃/hr
)→1600℃×8hr→(−175℃/hr)→300℃→放冷→室温
得られたITO焼結体を、実施例1と同様に処理して、現れた面をSEM観察し、In23母相内に存在する微細粒子の最大径の平均値および該In23母相の粒界からの微細粒子フリーゾーンの幅の平均値を求めた。
Firing conditions;
Room temperature → (50 ° C./hr)→400° C. → (100 ° C./hr)→800° C. × 4 hr → (400 ° C./hr
) → 1600 ° C. × 8 hr → (−175 ° C./hr)→300° C. → cooling → room temperature The obtained ITO sintered body was treated in the same manner as in Example 1, and the surface that appeared was observed by SEM. 2 O 3 to obtain an average value of the average value and the in 2 O 3 widths of micro particles free zone from the grain boundary of the matrix phase of the maximum diameter of the fine particles present in the mother phase.

その結果、In23母相内に存在する微細粒子の最大径の平均値は0.13μmであり、In23母相の粒界からの微細粒子フリーゾーンの幅の平均値は0.2μmであった。このときのSEM像(倍率;3,000倍)を図6に、さらに微細粒子群部分を拡大したSEM像(倍率;30,000倍)を図7に示す。 As a result, an In 2 O 3 average value of the maximum diameter of the fine particles present in the mother phase is 0.13μm, In 2 O 3 average of widths of micro particles free zone from the grain boundary of the matrix phase is 0 .2 μm. The SEM image (magnification: 3,000 times) at this time is shown in FIG. 6, and the SEM image (magnification: 30,000 times) obtained by further enlarging the fine particle group portion is shown in FIG.

ついで、実施例1と同様にして、同じ形状及び同じ大きさのITOスパッタリングターゲットを作製した。このITOスパッタリングターゲットを用いた他は、実施例1と同じ条件及び方法でITO膜を成膜し、このITO膜の抵抗率を測定した。   Subsequently, an ITO sputtering target having the same shape and the same size was produced in the same manner as in Example 1. An ITO film was formed under the same conditions and method as in Example 1 except that this ITO sputtering target was used, and the resistivity of this ITO film was measured.

その結果、ガラス基板温度100℃の場合の最適酸素分圧は1.18×10-2(Pa)でITO膜の抵抗率は3.96×10-4(Ω・cm)であった。また、ガラス基板温度250℃の場合の最適酸素分圧は1.06×10-2(Pa)、そのときのITO膜の抵抗率は2.03×10-4(Ω・cm)であった
結果を、まとめて表1、表2および図4、図5に示す。
As a result, the optimum oxygen partial pressure at a glass substrate temperature of 100 ° C. was 1.18 × 10 −2 (Pa), and the resistivity of the ITO film was 3.96 × 10 −4 (Ω · cm). The optimum oxygen partial pressure at a glass substrate temperature of 250 ° C. was 1.06 × 10 −2 (Pa), and the resistivity of the ITO film at that time was 2.03 × 10 −4 (Ω · cm). The results are collectively shown in Tables 1 and 2 and FIGS. 4 and 5.

表1、表2および図4、図5より、実施例1のITO焼結体を用いたITOスパッタリングターゲットでは、比較例1のものと比べて、成膜時の酸素分圧に対する応答が鋭く、特異な成膜条件を設定せずとも工業的な生産に適した条件下でスパッタリングの際に適切な酸素分圧制御をすることで、より抵抗率の低い導電性に優れたITO膜を成膜できることがわかる。   From Tables 1 and 2 and FIGS. 4 and 5, the ITO sputtering target using the ITO sintered body of Example 1 has a sharper response to the oxygen partial pressure during film formation than that of Comparative Example 1, An ITO film with low resistivity and excellent conductivity can be formed by controlling oxygen partial pressure appropriately during sputtering under conditions suitable for industrial production without setting specific film formation conditions. I understand that I can do it.

図1は、実施例1のITO焼結体のSEM像を表す図である。1 is a view showing an SEM image of the ITO sintered body of Example 1. FIG. 図2は、実施例1のITO焼結体のSEM像を表す図である。2 is a view showing an SEM image of the ITO sintered body of Example 1. FIG. 図3は、ITO焼結体組織の模式図である。FIG. 3 is a schematic view of an ITO sintered body structure. 図4は、100℃のガラス基板上に成膜したITO膜の抵抗率の酸素分圧との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the resistivity of an ITO film formed on a glass substrate at 100 ° C. and the oxygen partial pressure. 図5は、250℃のガラス基板上に成膜したITO膜の抵抗率の酸素分圧との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the resistivity of the ITO film formed on a glass substrate at 250 ° C. and the oxygen partial pressure. 図6は、比較例1のITO焼結体のSEM像を表す図である。6 is a view showing an SEM image of the ITO sintered body of Comparative Example 1. FIG. 図7は、比較例1のITO焼結体のSEM像を表す図である。FIG. 7 is a view showing an SEM image of the ITO sintered body of Comparative Example 1.

符号の説明Explanation of symbols

1: In23母相
2: 微細粒子
3: 粒界
4: 化合物相
5: 微細粒子フリーゾーン
10: ITO焼結体
1: In 2 O 3 matrix 2: Fine particles 3: Grain boundary 4: Compound phase 5: Fine particle free zone 10: ITO sintered body

Claims (5)

主結晶粒であるIn23母相内に存在する微細粒子の最大径の平均値が0.2μm以上であることを特徴とするITO(Indium-Tin-Oxide)焼結体。 An ITO (Indium-Tin-Oxide) sintered body characterized in that the average value of the maximum diameter of fine particles present in the In 2 O 3 matrix, which is the main crystal grain, is 0.2 μm or more. 主結晶粒であるIn23母相の粒界からの微細粒子フリーゾーンの幅の平均値が0.3μm以上であることを特徴とするITO(Indium-Tin-Oxide)焼結体。 An ITO (Indium-Tin-Oxide) sintered body characterized in that the average value of the fine particle free zone width from the grain boundary of the In 2 O 3 matrix which is the main crystal grain is 0.3 μm or more. 主結晶粒であるIn23母相内に存在する微細粒子の最大径の平均値が0.2μm以上であり、かつ、該In23母相の粒界からの微細粒子フリーゾーンの幅の平均値が0.3μm以上であることを特徴とするITO(Indium-Tin-Oxide)焼結体。 The average value of the maximum diameter of the fine particles existing in the In 2 O 3 matrix which is the main crystal grain is 0.2 μm or more, and the fine particle free zone from the grain boundary of the In 2 O 3 matrix An ITO (Indium-Tin-Oxide) sintered body having an average width of 0.3 μm or more. スパッタリングターゲット材であることを特徴とする請求項1〜3のいずれかに記載のITO焼結体。   It is a sputtering target material, The ITO sintered compact in any one of Claims 1-3 characterized by the above-mentioned. 請求項1〜3のいずれかに記載のITO焼結体と、バッキングプレートとを備えてなることを特徴とするITOスパッタリングターゲット。   An ITO sputtering target comprising the ITO sintered body according to any one of claims 1 to 3 and a backing plate.
JP2006029680A 2006-02-07 2006-02-07 Ito sintered body and ito sputtering target Pending JP2007211265A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006029680A JP2007211265A (en) 2006-02-07 2006-02-07 Ito sintered body and ito sputtering target
KR1020070012236A KR101157123B1 (en) 2006-02-07 2007-02-06 Ito sintered body and ito sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006029680A JP2007211265A (en) 2006-02-07 2006-02-07 Ito sintered body and ito sputtering target

Publications (1)

Publication Number Publication Date
JP2007211265A true JP2007211265A (en) 2007-08-23

Family

ID=38489967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006029680A Pending JP2007211265A (en) 2006-02-07 2006-02-07 Ito sintered body and ito sputtering target

Country Status (2)

Country Link
JP (1) JP2007211265A (en)
KR (1) KR101157123B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009020091A1 (en) * 2007-08-06 2009-02-12 Mitsui Mining & Smelting Co., Ltd. Ito sintered body and ito sputtering target

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193263A (en) * 1995-01-13 1996-07-30 Hitachi Metals Ltd Indium oxide sintered compact for forming transparent electrically conductive film
JPH09124364A (en) * 1995-10-30 1997-05-13 Hitachi Metals Ltd Ito sintered compact for forming transparent electroconductive film and its production
JPH10330169A (en) * 1997-05-29 1998-12-15 Tosoh Corp Production of ceramic sintered compact
JP2000233969A (en) * 1998-12-08 2000-08-29 Tosoh Corp Production of ito sputtering target and transparent electrically conductive film
JP2004359982A (en) * 2003-06-03 2004-12-24 Nikko Materials Co Ltd Ito sputtering target and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727242B1 (en) * 2003-08-20 2007-06-11 닛코킨조쿠 가부시키가이샤 Ito sputtering target

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193263A (en) * 1995-01-13 1996-07-30 Hitachi Metals Ltd Indium oxide sintered compact for forming transparent electrically conductive film
JPH09124364A (en) * 1995-10-30 1997-05-13 Hitachi Metals Ltd Ito sintered compact for forming transparent electroconductive film and its production
JPH10330169A (en) * 1997-05-29 1998-12-15 Tosoh Corp Production of ceramic sintered compact
JP2000233969A (en) * 1998-12-08 2000-08-29 Tosoh Corp Production of ito sputtering target and transparent electrically conductive film
JP2004359982A (en) * 2003-06-03 2004-12-24 Nikko Materials Co Ltd Ito sputtering target and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009020091A1 (en) * 2007-08-06 2009-02-12 Mitsui Mining & Smelting Co., Ltd. Ito sintered body and ito sputtering target
JP2009040621A (en) * 2007-08-06 2009-02-26 Mitsui Mining & Smelting Co Ltd Ito sintered body and ito sputtering target

Also Published As

Publication number Publication date
KR20070080576A (en) 2007-08-10
KR101157123B1 (en) 2012-06-22

Similar Documents

Publication Publication Date Title
US10844475B2 (en) Method for manufacturing sputtering target
JP6822362B2 (en) Manufacturing method of silicon nitride substrate and silicon nitride substrate
JP2009040620A (en) Ito sintered body and ito sputtering target
CN1409773A (en) process for producing sputtering target materials
KR100433482B1 (en) Sputtering target using high-density sintered ITO compact and manufacturing method
WO2010125801A1 (en) Sintered body for zno-ga2o3 sputtering target and method for producing same
JP5354906B2 (en) Nickel-based semi-finished product having a cubic texture and its manufacturing method
JP2009040621A (en) Ito sintered body and ito sputtering target
JPH11256320A (en) Zno base sintered compact
JP4562664B2 (en) ITO sintered body and ITO sputtering target
KR102099197B1 (en) Oxide sintered bodies and sputtering targets, and methods for manufacturing them
JPH09125236A (en) Indium oxide sintered compact, its production and indium oxide target
JP2007211265A (en) Ito sintered body and ito sputtering target
CN110770191B (en) Oxide sintered body, sputtering target, and method for producing oxide thin film
JPH11256321A (en) Zno base sintered compact
JP2000129432A (en) Electroconductive metallic oxide sinetred body and its use
JP5672252B2 (en) Cu-Ga sputtering target and manufacturing method thereof
JP7086514B2 (en) Cobalt or cobalt-based alloy sputtering target and its manufacturing method
JP4026194B2 (en) ZnO-Ga2O3-based sintered body for sputtering target and method for producing the same
TW201510244A (en) Method for preparing platinum-rhodium-oxide based alloy
JP2004175616A (en) Zinc oxide-type sintered compact and its manufacturing method
JP2017193478A (en) Oxide sintered body and sputtering target, and methods for producing same
JP5091414B2 (en) ITO sintered body, sputtering target material, sputtering target, and method for producing sputtering target material
KR20120103908A (en) Method of manufacturing a platinum powder for an oxide dispersion strengthened platinum materials
JPH10297964A (en) Production of zno-ga2o3-based sintered compact for sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405