KR20200019654A - Indium zinc oxide (izo) based sputtering target, and method for producing same - Google Patents

Indium zinc oxide (izo) based sputtering target, and method for producing same Download PDF

Info

Publication number
KR20200019654A
KR20200019654A KR1020200017636A KR20200017636A KR20200019654A KR 20200019654 A KR20200019654 A KR 20200019654A KR 1020200017636 A KR1020200017636 A KR 1020200017636A KR 20200017636 A KR20200017636 A KR 20200017636A KR 20200019654 A KR20200019654 A KR 20200019654A
Authority
KR
South Korea
Prior art keywords
target
temperature
sputtering
bulk resistivity
sintered compact
Prior art date
Application number
KR1020200017636A
Other languages
Korean (ko)
Other versions
KR102322184B1 (en
Inventor
다카시 가케노
Original Assignee
제이엑스금속주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엑스금속주식회사 filed Critical 제이엑스금속주식회사
Publication of KR20200019654A publication Critical patent/KR20200019654A/en
Application granted granted Critical
Publication of KR102322184B1 publication Critical patent/KR102322184B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The disclosed sputtering target is a sputtering target composed of In, Zn, and O, and an atomic ratio of Zn and In satisfies 0.05 <= Zn/(In + Zn) <= 0.30. Moreover, according to the present invention, standard deviation of bulk resistivity on the sputtering surface of the target is equal to or less than 0.1 mΩ·cm. The present invention provides a manufacturing method of an indium oxide-zinc oxide-based oxide (IZO) sintered body target, which has less warpage of a sintered body and wherein in-plane deviation of the bulk resistivity rate due to grinding for reducing the warpage is suppressed.

Description

산화인듐-산화아연계 (IZO) 스퍼터링 타깃 및 그 제조 방법{INDIUM ZINC OXIDE (IZO) BASED SPUTTERING TARGET, AND METHOD FOR PRODUCING SAME}Indium oxide-zinc oxide (IZO) sputtering target and manufacturing method thereof {INDIUM ZINC OXIDE (IZO) BASED SPUTTERING TARGET, AND METHOD FOR PRODUCING SAME}

본 발명은, 산화인듐-산화아연계 (IZO) 스퍼터링 타깃 및 그 제조 방법에 관한 것으로, 특히, 타깃의 스퍼터 면 내에 있어서의 벌크 저항률의 차가 작고, 막의 형성에 바람직한 스퍼터링 타깃 및 그 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to an indium zinc oxide-based (IZO) sputtering target and a method for producing the same, and particularly, to a sputtering target suitable for formation of a film having a small difference in bulk resistivity in the sputtering surface of the target and a method for producing the same. will be.

몇 가지의 금속 복합 산화물로 이루어지는 투명 도전막은, 고도전성과 가시광 투과성을 가지고 있으므로, 액정 표시 장치, 박막 일렉트로루미네선스 표시 장치, 유기 EL, 방사성 검출 장치, 단말 기기의 투명 태블릿, 창유리의 결로 방지용 발열막, 대전 방지막 혹은 태양광 집열기용 선택 투과막, 터치 패널의 전극 등의 다방면에 걸친 용도로 사용되고 있다. 이와 같은 금속 복합 산화물로 이루어지는 투명 도전막 중에서도 가장 보급되어 있는 것은 ITO 로 불리고 있는 산화인듐-산화주석으로 이루어지는 투명 도전막이다.Since the transparent conductive film which consists of several metal composite oxides has high electrical conductivity and visible light transmittance, it is a liquid crystal display device, a thin film electroluminescence display device, organic electroluminescence, a radiation detection apparatus, the transparent tablet of terminal equipment, and the dew condensation prevention of window glass. It is used for the various uses, such as a heat generating film, an antistatic film, the selective permeable film for solar collectors, and an electrode of a touch panel. Among the transparent conductive films made of such a metal composite oxide, the most prevalent one is a transparent conductive film made of indium tin oxide-tin oxide called ITO.

한편, ITO 막보다 에칭 속도가 큰 인듐 및 아연의 복합 산화물 (「IZO」라고 칭한다) 을 주성분으로 하는 투명 도전막의 수요가 증가하고 있다. IZO 막을 제조할 때에는, 소결체 스퍼터링 타깃이 사용되지만, 이 IZO 소결체는, 소결 과정에서 휨이 발생한다는 문제가 있었다. 휨이 발생한 타깃은, 제품 형상을 가지런히 하기 위해, 그 양면을, 평면이 되도록 연삭할 필요가 있는데, 연삭 처리에 의해 타깃 면 내의 벌크 저항률이 크게 변동되어, 스퍼터링시, 이상 방전 등이 발생한다는 문제가 있었다.On the other hand, the demand for the transparent conductive film whose main component is a complex oxide of indium and zinc (called "IZO") which is larger than an ITO film is increasing. When manufacturing an IZO film | membrane, although the sintered compact sputtering target is used, this IZO sintered compact had the problem that a curvature generate | occur | produced in the sintering process. It is necessary to grind both sides of the target to be warped so as to have a flat surface in order to prepare the product shape, but the bulk resistivity in the target surface is greatly changed by the grinding process, and abnormal discharge or the like occurs during sputtering. There was a problem.

다음으로, IZO 소결체 스퍼터링에 관한 선행 기술에 대해 설명한다. 특허문헌 1 에는, 산화인듐과 산화아연을 혼합하고, 이것을 콜드 프레스 및 정수압 냉간 압축에 의해 성형한 후, 산소 분위기 중 또는 대기 중에서 1300 ∼ 1500 ℃ 에서 가열 소결하는 것이 개시되어 있다. 또, 특허문헌 2 에는, In2O3 과 ZnO 의 분말을 혼합하기에 앞서 ZnO 분말만을 가소 (假燒) 하는 것이 개시되어 있다.Next, the prior art regarding IZO sintered compact sputtering is demonstrated. Patent Literature 1 discloses mixing indium oxide and zinc oxide, and molding them by cold press and hydrostatic cold compression, and then heating and sintering at 1300 to 1500 ° C. in an oxygen atmosphere or in the atmosphere. In addition, Patent Document 2 discloses calcining only ZnO powder prior to mixing In 2 O 3 and the powder of ZnO.

특허문헌 3 에는, 산화인듐 분말과 산화아연 분말을 특정한 성상으로 하는 것이 기재되어 있다. 또, 특허문헌 4 에는, IZO 를 소결할 때, 1200 ℃ 에 도달할 때까지, 산소 농도 21 %용량 이상으로 하고, 1200 ∼ 1450 ℃ 에서는, 산소 농도 21 %용량 미만의 분위기에서 소결하는 것이 기재되어 있다. 특허문헌 5 에는, 원료 분말을 미세하게 분쇄함으로써 타깃에 있어서의 결정 입경을 제어하는 것이 기재되어 있다.Patent Document 3 describes that the indium oxide powder and the zinc oxide powder have specific properties. Moreover, when sintering IZO, patent document 4 makes it oxygen content 21% or more until reaching 1200 degreeC, and in 1200-1450 degreeC, it sinters in the atmosphere of less than 21% capacity of oxygen concentration, it is described. have. Patent Literature 5 describes controlling the grain size of the target by finely pulverizing the raw material powder.

그러나, 이들 종래의 제조 공정 하에서는, 소결시의 가열에 의한 열 팽창, 열 수축에 수반하여, 제작한 소결체에 휨이 발생하고 있었다. 휨이 큰 소결체는 타깃 형상으로 가공할 때, 타깃의 스퍼터 면에 있어서의 저항률의 차가 커지는 경우가 있었다. 이와 같은, 타깃 면 내의 저항률의 편차는 스퍼터시에 아킹 (이상 방전) 등을 일으켜, 제품의 제조 수율을 저하시키는 문제가 있었다. 특히, 최근의 스퍼터링 타깃의 대면적화에 수반하여, 상기와 같은 문제는 현저해졌다.However, under these conventional manufacturing processes, warpage occurred in the produced sintered compact with thermal expansion and thermal contraction by heating at the time of sintering. When processing the sintered compact with large warpage to a target shape, the difference in resistivity in the sputter | spatter surface of a target may become large. Such variation in resistivity in the target surface causes arcing (abnormal discharge) or the like at the time of sputtering, and has a problem of lowering the production yield of the product. In particular, with the recent large area of the sputtering target, the above problems have become remarkable.

일본 공개특허공보 2001-131736호Japanese Laid-Open Patent Publication 2001-131736 일본 공개특허공보 평9-111444호Japanese Patent Laid-Open No. 9-111444 일본 공개특허공보 2007-8780호Japanese Unexamined Patent Publication No. 2007-8780 일본 공개특허공보 2007-8772호Japanese Unexamined Patent Publication No. 2007-8772 국제 공개 제2001/038599호International Publication No. 2001/038599

본 발명은 상기 과제를 해결하기 위해서 이루어진 것으로, 스퍼터링시에 아킹 (이상 방전) 의 발생을 억제할 수 있는, 스퍼터 면 내의 벌크 저항률의 차가 작은, 스퍼터링 타깃 및 그 제조 방법을 제공하는 것을 과제로 한다. 특히, 대면적이어도, 벌크 저항률의 면내의 차가 작은 스퍼터링 타깃을 제공하는 것을 과제로 한다. This invention is made | formed in order to solve the said subject, Comprising: It aims at providing the sputtering target and the manufacturing method which are small in the difference of the bulk resistivity in the sputter surface which can suppress generation | occurrence | production of arcing at the time of sputtering. . In particular, the object is to provide a sputtering target having a small in-plane difference in bulk resistivity even in a large area.

본 발명자는, 상기 과제를 해결하기 위해서 예의 연구를 실시한 결과, IZO 의 수축이 개시되거나 혹은 개시된 상태에서 일단 온도를 유지하여, 소결체 내의 온도 분포를 작게 하고, 이로써, 소결체의 휨량을 대폭 억제할 수 있는 것을 알아내었다. 그 결과, 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭하거나 해도, 면내의 벌크 저항률의 차가 작은 스퍼터링 타깃을 얻을 수 있다는 지견이 얻어졌다.MEANS TO SOLVE THE PROBLEM As a result of earnestly researching in order to solve the said subject, as a result, when IZO shrinkage is started or started, it maintains temperature once, and makes small temperature distribution in a sintered compact, and can suppress a curvature amount of a sintered compact significantly by this. I found out. As a result, even if both surfaces were ground so that it might become a planar surface in order to prepare to a target shape, the knowledge that the sputtering target with a small difference of the in-plane bulk resistivity was acquired was obtained.

이와 같은 지견에 기초하여, 본원은, 이하의 발명을 제공한다.Based on such knowledge, this application provides the following invention.

1) In, Zn, O 로 이루어지는 스퍼터링 타깃으로서, Zn 과 In 의 원자비가 0.05 ≤ Zn/(In + Zn) ≤ 0.30 을 만족시키고, 그 타깃의 스퍼터 면에 있어서의 벌크 저항률의 표준 편차가 1.0 mΩ·㎝ 이하인 것을 특징으로 하는 스퍼터링 타깃.1) As a sputtering target consisting of In, Zn and O, the atomic ratio of Zn and In satisfies 0.05 ≦ Zn / (In + Zn) ≦ 0.30, and the standard deviation of the bulk resistivity on the sputtering surface of the target is 1.0 mΩ. A sputtering target, which is cm or less.

2) 벌크 저항률이 1.0 ∼ 10 mΩ·㎝ 인 것을 특징으로 하는 상기 1) 에 기재된 스퍼터링 타깃.2) The bulk resistivity is 1.0-10 mΩ * cm, The sputtering target as described in said 1) characterized by the above-mentioned.

3) 상대 밀도가 98 % 이상인 것을 특징으로 하는 상기 1) 또는 2) 에 기재된 스퍼터링 타깃.3) The sputtering target according to the above 1) or 2), wherein the relative density is 98% or more.

4) 스퍼터 면의 면적이 60000 ㎟ ∼ 400000 ㎟ 인 것을 특징으로 하는 상기 1) ∼ 3) 중 어느 하나에 기재된 스퍼터링 타깃.4) The sputtering target according to any one of 1) to 3) above, wherein the area of the sputter face is 60000 mm 2 to 400000 mm 2.

5) In, Zn, O 로 이루어지는 소결체로서, Zn 과 In 의 원자비가 0.05 ≤ Zn/(In + Zn) ≤ 0.30 을 만족시키고, 휨량이 2.0 ㎜ 이내인 것을 특징으로 하는 IZO 소결체.5) A sintered body composed of In, Zn and O, wherein an atomic ratio between Zn and In satisfies 0.05 ≦ Zn / (In + Zn) ≦ 0.30, and the warpage amount is within 2.0 mm.

6) 원료 분말을 프레스 성형한 성형체를 소결하여 제조되는, IZO 소결체로 이루어지는 스퍼터링 타깃의 제조 방법으로서, 실온으로부터 소결 온도까지 승온시키는 공정에 있어서, 도중 유지 온도를 600 ∼ 800 ℃ 로 하고, 1 ∼ 10 시간 유지하는 공정, 당해 도중 유지 온도로부터 소결 온도까지 0.2 ∼ 2.0 ℃/min 로 승온시키는 공정, 소결 온도를 1350 ∼ 1500 ℃ 로 하고, 소결 유지 시간을 1 ∼ 100 시간으로 소결하는 공정으로 이루어지는 것을 특징으로 하는 스퍼터링 타깃의 제조 방법.6) A method for producing a sputtering target made of an IZO sintered body, which is produced by sintering a molded body press-molded with a raw material powder, and in the step of raising the temperature from room temperature to the sintering temperature, the intermediate holding temperature is set to 600 to 800 ° C, It consists of the process which hold | maintains for 10 hours, the process of heating up at 0.2-2.0 degreeC / min from the holding temperature to the sintering temperature in this middle, the process of making sintering temperature into 1350-1500 degreeC, and sintering holding time in 1 to 100 hours. The manufacturing method of the sputtering target characterized by the above-mentioned.

7) 소결 온도를 1380 ∼ 1420 ℃ 로 하는 것을 특징으로 하는 상기 6) 에 기재된 스퍼터링 타깃의 제조 방법.7) Sintering temperature is 1380-1420 degreeC, The manufacturing method of the sputtering target as described in said 6) characterized by the above-mentioned.

8) 소결 유지 시간을 5 ∼ 30 시간으로 소결하는 것을 특징으로 하는 상기 6) 또는 7) 에 기재된 스퍼터링 타깃의 제조 방법.8) Sintering holding time is sintered for 5 to 30 hours, The manufacturing method of the sputtering target as described in said 6) or 7) characterized by the above-mentioned.

9) 1.0 ∼ 5.0 ℃/min 로 강온시키는 것을 특징으로 하는 상기 6) ∼ 8) 중 어느 하나에 기재된 스퍼터링 타깃의 제조 방법.9) The method for producing a sputtering target according to any one of 6) to 8), wherein the temperature is decreased to 1.0 to 5.0 ° C / min.

10) 도중 유지 온도로부터 소결 온도까지 0.5 ∼ 1.5 ℃/min 로 승온시키는 것을 특징으로 하는 상기 6) ∼ 9) 중 어느 하나에 기재된 스퍼터링 타깃의 제조 방법.10) The method for producing a sputtering target according to any one of 6) to 9), wherein the temperature is raised from 0.5 to 1.5 ° C / min from the holding temperature to the sintering temperature.

본 발명은, 산화인듐-산화아연계 산화물 (IZO) 소결체의 제조 방법에 있어서, 종래와 상이한 제조 조건, 즉, 소결 조건 중, 특정한 온도에서 유지하는 것이 휨의 저감에 유효한 것을 알아내어, 스퍼터 면 내에 있어서의 벌크 저항률 차가 작은 타깃을 제작할 수 있고, 그 결과, 아킹 등의 발생이 적어 양호한 스퍼터링을 가능하게 하고, 형성한 막의 특성을 향상시킬 수 있다는 우수한 효과를 갖는다. 본 발명은, 특히 대면적의 IZO 스퍼터링 타깃에 있어서 유효하다.In the manufacturing method of an indium zinc oxide type | system | group oxide (IZO) sintered compact, this invention finds that it is effective to reduce curvature to hold | maintain at a specific temperature among manufacturing conditions different from the conventional, ie, sintering conditions, and sputter surface It is possible to produce a target having a small difference in bulk resistivity in the interior, and as a result, there is little occurrence of arcing and the like, thereby enabling excellent sputtering and improving the characteristics of the formed film. The present invention is particularly effective in a large-area IZO sputtering target.

도 1 은, 본 발명의 스퍼터링 타깃 (각형) 의 벌크 저항률의 측정 지점을 나타내는 도면이다.
도 2 는, 본 발명의 스퍼터링 타깃 (원반형) 의 벌크 저항률의 측정 지점을 나타내는 도면이다.
도 3 은, 본 발명의 스퍼터링 타깃의 휨량의 측정을 나타내는 모식도이다.
BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the measuring point of the bulk resistivity of the sputtering target (square) of this invention.
It is a figure which shows the measuring point of the bulk resistivity of the sputtering target (disk type) of this invention.
It is a schematic diagram which shows the measurement of the curvature amount of the sputtering target of this invention.

본 발명의 스퍼터링 타깃의 성분 조성은, 인듐 (In), 아연 (Zn), 산소 (O) 로 이루어지고, Zn 과 In 의 원자비가 0.05 ≤ Zn/(In + Zn) ≤ 0.30 인 조건을 만족시키는 것이다. 본 발명의 타깃은, 주로 인듐과 아연의 복합 산화물로 구성되어 있지만, 산화인듐이나 산화아연의 단독의 산화물을 함유해도 된다. 또, 본 발명의 특성을 해치지 않는 범위에서 그 밖의 원소를 함유해도 된다. 상기 Zn 의 원자비는 타깃을 사용하여 형성되는 막의 도전성 등의 관점에서 결정되는 것으로, 이 범위를 초과하면 원하는 특성이 얻어지지 않는다.The component composition of the sputtering target of this invention consists of indium (In), zinc (Zn), and oxygen (O), and satisfy | fills the conditions which the atomic ratio of Zn and In is 0.05 <= Zn / (In + Zn) <= 0.30. will be. The target of the present invention is mainly composed of a complex oxide of indium and zinc, but may contain an oxide of indium oxide or zinc oxide alone. Moreover, you may contain another element in the range which does not impair the characteristic of this invention. The atomic ratio of Zn is determined from the viewpoint of conductivity and the like of the film formed by using the target, and when it exceeds this range, desired characteristics are not obtained.

본 발명은, 상기 스퍼터링 타깃의 스퍼터 면에 있어서의 벌크 저항률의 표준 편차가 1.0 mΩ·㎝ 이하인 것을 특징으로 한다. 소결체의 휨이 큰 경우, 타깃의 스퍼터 면의 벌크 저항률의 편차가 커지기 때문에, 형성한 막 특성 (특히 막 저항) 의 균일성을 저해하는 문제가 있었다. 본 발명에서는, 소결 조건을 조정함으로써 소결체의 휨을 현저하게 저감시키고, 이로써, 스퍼터 면 내의 벌크 저항률의 표준 편차를 1.0 mΩ·㎝ 이하까지 저감시키는 것을 가능하게 하고 있다. 또한, 스퍼터 면이란, 소결체를 연삭하고, 스퍼터링 타깃으로 가공한 결과, 스퍼터 장치에서 스퍼터되는 면을 의미한다.The present invention is characterized in that the standard deviation of the bulk resistivity on the sputtering surface of the sputtering target is 1.0 mΩ · cm or less. In the case where the warpage of the sintered body is large, the variation in the bulk resistivity of the sputter face of the target becomes large, and thus there is a problem of inhibiting the uniformity of the formed film properties (particularly film resistance). In this invention, curvature of a sintered compact is remarkably reduced by adjusting sintering conditions, thereby making it possible to reduce the standard deviation of the bulk resistivity in sputter surface to 1.0 m (ohm) * cm or less. In addition, a sputter surface means the surface sputtered by a sputter apparatus as a result of grinding a sintered compact and processing into a sputtering target.

본 발명의 벌크 저항률은, 1.0 mΩ·㎝ 이상, 10 mΩ·㎝ 이하인 것이 바람직하다. 벌크 저항률이 높은 경우, 스퍼터 방전을 불안정하게 하는 경우가 있다. 본 발명의 벌크 저항률은, 4 탐침법에 의해, 타깃의 스퍼터 면을 등간격으로 16 점 이상 (각형 타깃의 경우) 또는 9 점 이상 (원반형 타깃의 경우) 을 측정하고, 그 평균치 및 표준 편차를 산출한다. 예를 들어, 도 1, 2 에 나타내는 바와 같이, 타깃 끝에서부터 20 ㎜ 이상 내측의 부분을 50 ㎜ ∼ 60 ㎜ 의 등간격으로 가로세로 15 ㎜ 의 부위를 3 회 측정하고, 그 평균을 그 부위의 벌크 저항률로 한다. 단, 타깃의 면적이 작은 경우에는, 측정 간격을 좁힘으로써, 측정 점수를 9 점 이상 또는 16 점 이상 확보한다. 또한, 타깃의 벌크 저항률을 측정할 때에는, 필요에 따라 연삭해도 된다.The bulk resistivity of the present invention is preferably 1.0 mΩ · cm or more and 10 mΩ · cm or less. When bulk resistivity is high, sputter discharge may become unstable. The bulk resistivity of the present invention measures at least 16 points (for square targets) or 9 points or more (for discoid targets) at equal intervals on the sputter face of the target by four probe method, and the average value and standard deviation are measured. Calculate. For example, as shown to FIG. 1, 2, the site | part of 15 mm in length and width is measured 3 times at equal intervals of 50 mm-60 mm from the target part 20 mm or more inside, and the average of the site | part Let it be bulk resistivity. However, when the area of a target is small, a measurement score is secured 9 or more points or 16 points or more by narrowing a measurement space | interval. In addition, when measuring the bulk resistivity of a target, you may grind as needed.

일반적으로, 소결체의 면적이 커질수록, 휨량도 커진다. 본 발명은, 대면적의 소결체여도, 그 휨량을 2.0 ㎜ 이내로 억제할 수 있는 것을 특징으로 하는 것이다. 본 발명은, 특히, 타깃의 스퍼터 면에 있어서의 면적이 60000 ㎟ ∼ 400000 ㎟ 로 대면적이어도, 스퍼터 면 내의 저항률 차를 상기 범위에 들어가게 할 수 있는 점에서 우수한 것이다. 여기서, 휨의 측정에는, 레이저식 변위 센서를 사용하고, 그 레이저를 프로브로 하여 소결체의 크기에 맞추어, 도 2 에 나타내는 바와 같이 소결체의 어느 일방의 면을 레이저로 주사하면서, 그 높이를 측정한다. 그리고, 면내에 있어서의 최대 높이와 최소 높이의 차이를 최대 휨량으로 한다.In general, the larger the area of the sintered body, the larger the amount of warpage. This invention can suppress the curvature amount within 2.0 mm even if it is a sintered compact of large area. It is characterized by the above-mentioned. This invention is especially excellent in the point which can make the resistivity difference in a sputter surface fall in the said range, even if the area in the sputter surface of a target is 60000 mm <2> -400000 mm <2>. Here, a laser displacement sensor is used for the measurement of the warp, and the height is measured while scanning one surface of the sintered body with a laser as shown in FIG. 2 in accordance with the size of the sintered body using the laser as a probe. . And the difference of the maximum height and minimum height in surface inside is made into the largest deflection amount.

또, 본 발명의 스퍼터링 타깃은, 상대 밀도가 98 % 이상으로 고밀도인 것을 특징으로 하는 것이다. 고밀도 타깃은, 스퍼터링시의 파티클 등을 저감시킬 수 있어, 양호한 특성을 구비한 막을 형성하는 것이 가능해진다. 상대 밀도는, (아르키메데스법으로 측정한 소결체의 실제 밀도)/(산화물의 조성으로부터 계산한 이론 밀도) × 100 = 상대 밀도 (%) 로 나타낸 것이다. 여기서, 산화물의 조성으로부터 계산한 이론 밀도란, 원료를 구성하는 원소로부터 산출한 이론적인 밀도이며, 예를 들어 산화인듐 (In2O3) 분말, 산화아연 (ZnO) 분말을 원료로 하고, 산화인듐:산화아연의 중량비를 90 wt%:10 wt% 로 한 경우, 산화물의 조성으로부터 계산한 이론 밀도 = (산화인듐의 이론 밀도 × 90 + 산화아연의 이론 밀도 × 10)/100 (g/㎤) 으로 하여 산출한다.Moreover, the sputtering target of this invention is a relative density being 98% or more, It is characterized by the high density. A high density target can reduce the particle | grains at the time of sputtering, and can form the film | membrane with favorable characteristic. The relative density is represented by (the actual density of the sintered body measured by the Archimedes method) / (theoretical density calculated from the composition of the oxide) x 100 = relative density (%). Here, the theoretical density calculated from the composition of the oxide is, the theoretical density calculated from the elements constituting the material, for example indium oxide (In 2 O 3) powder, a zinc oxide (ZnO) powder as a raw material oxide and oxide When the weight ratio of indium: zinc oxide is 90 wt%: 10 wt%, the theoretical density calculated from the composition of the oxide = (theoretical density of indium oxide x 90 + theoretical density of zinc oxide x 10) / 100 (g / cm 3) Calculated by

본 발명의 산화인듐-산화아연계 산화물 (IZO) 소결체 타깃은, 이하, 원료의 혼합, 분쇄, 성형, 소결의 각 프로세스를 거쳐 제작할 수 있다.The indium oxide-zinc oxide-based oxide (IZO) sintered compact target of this invention can be produced through the processes of mixing, grinding | pulverizing, shaping | molding, and sintering a raw material hereafter.

(원료의 혼합, 분쇄, 조립 (造粒), 성형의 조건)(Conditions for Mixing, Grinding, Granulating, and Forming Raw Materials)

원료 분말로서, 산화인듐 (In2O3) 분말, 산화아연 (ZnO) 분말을 준비한다. 원료 분말은, 비표면적이 약 5 ㎡/g 인 것을 사용하는 것이 바람직하다.Indium oxide (In 2 O 3 ) powder and zinc oxide (ZnO) powder are prepared as raw material powders. It is preferable to use a raw material powder whose specific surface area is about 5 m <2> / g.

구체적으로는, 산화인듐 분말은, 부피 밀도:0.5 ∼ 0.7 g/㎤, 메디안 직경 (D50) :1.0 ∼ 2.1 ㎛, 비표면적:4.0 ∼ 5.7 ㎡/g, 산화아연 분말:부피 밀도:0.2 ∼ 0.6 g/㎤, 메디안 직경 (D50):1.0 ∼ 2.5 ㎛, 비표면적:3.0 ∼ 6.0 ㎡/g 를 사용한다.Specifically, indium oxide powder has a bulk density of 0.5 to 0.7 g / cm 3, median diameter (D 50 ) of 1.0 to 2.1 μm, specific surface area of 4.0 to 5.7 m 2 / g, and zinc oxide powder of 0.2 to 0.2 m. 0.6 g / ㎤, median diameter (D 50): 1.0 ~ 2.5 ㎛, specific surface area: use 3.0 ~ 6.0 ㎡ / g.

다음으로, 각 원료 분말을 원하는 조성비가 되도록 칭량 후, 혼합 분쇄를 실시한다. 분쇄 방법에는 구하는 입도, 피분쇄 물질에 따라 여러 가지 방법이 있지만, 비즈 밀 등의 습식 매체 교반 밀이 적합하다. 이것은, 분말체를 물에 분산시킨 슬러리를, 경도가 높은 재료인 지르코니아, 알루미나 등의 분쇄 매체와 함께 강제적으로 교반하는 것으로, 고효율로 분쇄 분말을 얻을 수 있다. 그러나, 이 때에 분쇄 매체도 마모되기 때문에, 분쇄 분말에 분쇄 매체 자체가 불순물로서 혼입되므로, 장시간의 처리는 바람직하지 않다.Next, after mixing each raw material powder to a desired composition ratio, mixed grinding is performed. There are various methods for the pulverization method depending on the particle size and the material to be pulverized, but a wet medium stirring mill such as a bead mill is suitable. This is forcibly stirring the slurry which disperse | distributed the powder body to water with the grinding media, such as zirconia and alumina which are high hardness materials, and can obtain a grinding powder with high efficiency. However, at this time, since the grinding medium also wears, the grinding powder itself is mixed as impurities in the grinding powder, so that a long time treatment is not preferable.

분쇄량을 분쇄 전후의 비표면적의 차로 정의하면, 습식 매체 교반 밀에서는 분쇄량은 분말체에 대한 투입 에너지에 거의 비례한다. 따라서, 분쇄를 실시할 때에는, 습식 매체 교반 밀은 적산 전력을 관리하는 것이 중요하다. 분쇄 전후의 비표면적의 차 (ΔBET) 는, 0.5 ∼ 3.0 ㎡/g, 분쇄 후의 메디안 직경 (D50) 은, 1.0 ㎛ 이하로 한다.When the grinding amount is defined as the difference of the specific surface area before and after grinding, in the wet medium stirring mill, the grinding amount is almost proportional to the input energy to the powder. Therefore, when carrying out grinding | pulverization, it is important for a wet medium stirring mill to manage integration power. The difference (ΔBET) of the specific surface area before and after grinding is 0.5 to 3.0 m 2 / g, and the median diameter (D 50 ) after grinding is set to 1.0 µm or less.

다음으로, 미세 분쇄한 슬러리의 조립을 실시한다. 이것은, 조립에 의해 분말체의 유동성을 향상시킴으로써, 다음 공정의 프레스 성형시에 분말체를 균일하게 금형에 충전하고, 균질한 성형체를 얻기 위해서이다. 조립에는 여러 가지 방식이 있지만, 프레스 성형에 적합한 조립 분말을 얻는 방법 중 하나로, 분무식 건조 장치 (스프레이 드라이어) 를 사용하는 방법이 있다. 이것은 분말체를 슬러리로 하여, 열풍 중에 액적으로서 분산시키고, 순간적으로 건조시키는 방법으로, 10 ∼ 500 ㎛ 의 구상의 조립 분말을 연속적으로 얻을 수 있다.Next, the finely ground slurry is granulated. This is to improve the fluidity of the powder by granulation, so that the powder is uniformly filled in the mold during press molding of the next step, and a homogeneous molded body is obtained. Although there are various methods of granulation, one method of obtaining granulated powder suitable for press molding is a method of using a spray drying apparatus (spray dryer). This can continuously obtain a 10-500 micrometer spherical granulated powder by making a powder into a slurry, disperse | distributing as a droplet in hot air, and instantaneously drying.

스프레이 드라이어에 의한 건조로는, 열풍의 입구 온도, 및 출구 온도의 관리가 중요하다. 입구와 출구의 온도차가 크면 단위 시간당의 건조량이 증가하여 생산성이 향상되지만, 입구 온도가 지나치게 높은 경우에는 분말체, 및 첨가한 바인더가 열에 의해 변질되어, 원하는 특성이 얻어지지 않는 경우가 있다. 또, 출구 온도가 지나치게 낮은 경우에는 조립 분말이 충분히 건조되지 않는 경우가 있다.In the drying furnace by the spray dryer, it is important to manage the inlet temperature and the outlet temperature of the hot air. If the temperature difference between the inlet and the outlet is large, the amount of drying per unit time increases and productivity is improved. However, if the inlet temperature is too high, the powder and the added binder may be deteriorated by heat, and desired characteristics may not be obtained. Moreover, when an exit temperature is too low, granulated powder may not dry enough.

또, 슬러리 중에 폴리비닐알코올 (PVA) 등의 바인더를 첨가하여 조립 분말 중에 함유시킴으로써, 성형체 강도를 향상시킬 수 있다. PVA 의 첨가량은, PVA 6 wt% 함유 수용액을 원료 분말에 대해 50 ∼ 250 cc/kg 첨가한다. 또한, 바인더에 적합한 가소제도 첨가함으로써, 프레스 성형시의 조립 분말의 압괴 강도를 조절할 수도 있다. 또, 얻어진 조립 분말에, 소량의 물을 첨가하여 습윤시킴으로써 성형체 강도를 향상시키는 방법도 있다.Moreover, molded body strength can be improved by adding a binder, such as polyvinyl alcohol (PVA), to a slurry and containing it in granulated powder. The addition amount of PVA adds 50-250 cc / kg of PVA 6 wt% containing aqueous solution with respect to raw material powder. In addition, by adding a plasticizer suitable for the binder, the crush strength of the granulated powder during press molding can be adjusted. Moreover, there also exists a method of improving a molded object strength by adding a small amount of water to the granulated powder obtained, and making it wet.

다음으로, 프레스 성형을 실시한다. 조립 분말을 금형에 충전하고, 400 ∼ 1000 kgf/㎠ 의 압력을, 1 ∼ 3 분간 유지하여 성형한다. 압력 400 kgf/㎠ 미만이면, 충분한 강도와 밀도의 성형체를 얻을 수 없고, 또 압력 1000 kgf/㎠ 이상에서는, 성형체를 금형으로부터 꺼낼 때에, 성형체 자체가 압력으로부터 해방되는 것에 의한 변형때문에 파괴되는 경우가 있어, 생산상 바람직하지 않다.Next, press molding is performed. The granulated powder is filled into a mold, and the pressure of 400-1000 kgf / cm <2> is hold | maintained for 1-3 minutes and shape | molding. If the pressure is less than 400 kgf / cm 2, a molded product having sufficient strength and density cannot be obtained, and at a pressure of 1000 kgf / cm 2 or more, when the molded body is taken out of the mold, the molded body itself may be destroyed due to deformation due to release from pressure. It is not preferable in production.

(소결 공정)(Sintering process)

전기로를 사용하여, 산소 분위기 중에서 성형체를 소결하여, 소결체를 얻는다. 소결 온도 1350 ∼ 1500 ℃ 까지 승온시킨다. 승온 도중에, 소결체 내의 온도 분포를 작게 하기 위해서 유지 공정을 도입한다. 도중 유지 온도는, 반응이 시작되기 전의 온도대에서 소결체 내의 온도 분포를 작게 하기 위해, 600 ∼ 800 ℃ 의 온도에서 도입하면 된다. 600 ℃ 미만에서는 온도가 지나치게 저온이어서 효과가 나타나지 않고, 800 ℃ 보다 고온인 경우에는, 이미 어느 정도 반응이 진행되고 있기 때문에, 휨 저감의 효과가 얻어지지 않는다. 도중 유지 시간은 1 ∼ 10 시간, 바람직하게는 4 ∼ 6 시간으로 한다. 유지 시간이 지나치게 짧으면, 반응의 진행을 충분히 억제하지 못하고, 한편, 유지 시간이 지나치게 길면 생산성이 저하되기 때문에 바람직하지 않다.Using an electric furnace, the molded body is sintered in an oxygen atmosphere to obtain a sintered body. It raises to sintering temperature 1350-1500 degreeC. During the temperature increase, a holding step is introduced in order to reduce the temperature distribution in the sintered compact. The holding temperature may be introduced at a temperature of 600 to 800 ° C. in order to reduce the temperature distribution in the sintered body in the temperature range before the reaction starts. If it is less than 600 degreeC, temperature is too low and an effect does not appear, and when it is higher than 800 degreeC, since reaction has already advanced to some extent, the effect of curvature reduction is not acquired. The holding time is 1 to 10 hours, preferably 4 to 6 hours. If the holding time is too short, the progress of the reaction cannot be sufficiently suppressed. On the other hand, if the holding time is too long, the productivity is lowered, which is not preferable.

그리고, 도중 유지 온도로부터 소결 온도까지 0.2 ∼ 2.0 ℃/min 로 승온시킨다. 도중 유지 온도로부터 소결 온도까지 승온 속도가 0.2 ℃/min 보다 작으면, 소정 온도가 되기까지 불필요하게 시간을 요해 버리는 경우와, 밀도가 높아지지 않는 경우가 있고, 승온 속도가 2.0 ℃/min 보다 크면, 소결체 내의 온도 분포가 작아지지 않고, 불균일이 발생하거나 소결체가 균열되어 버리거나 한다. 바람직하게는, 0.5 ∼ 1.5 ℃/min 이다.And it raises at 0.2-2.0 degreeC / min from the holding temperature to the sintering temperature in the middle. If the temperature increase rate from the holding temperature to the sintering temperature is smaller than 0.2 ° C / min, the time may be unnecessarily required to reach a predetermined temperature, the density may not increase, and the temperature increase rate is higher than 2.0 ° C / min. The temperature distribution in the sintered compact does not become small, and nonuniformity occurs or the sintered compact cracks. Preferably, it is 0.5-1.5 degreeC / min.

소결 온도는 1350 ∼ 1500 ℃ 로 하여, 1 ∼ 100 시간 정도 유지하고, 그 후, 노랭 또는 강온 속도 1.0 ∼ 5.0 ℃/min 로 강온시킨다. 소결 온도가 1350 ℃ 보다 낮으면 고밀도의 소결체를 얻을 수 없다. 또, 1500 ℃ 이상의 소결 온도에서는, 산화아연의 휘발에 의해, 소결 밀도의 저하나 조성 편차가 발생하고, 또 노 히터 수명이 저하되어 버린다는 비용적 문제도 있으므로, 상한은 1500 ℃ 로 하는 것이 바람직하다. 바람직하게는, 1380 ∼ 1420 ℃ 이다. 또 소결 온도에 있어서의 유지 시간이 1 시간보다 짧으면 소결이 충분히 진행되지 않아, 소결체의 밀도가 충분히 높아지지 않거나, 소결체가 휘어져 버리거나 한다. 유지 시간이 100 시간을 초과해도, 불필요한 에너지와 시간을 요하는 비효율성이 발생하여 생산상 바람직하지 않다. 바람직하게는 5 ∼ 30 시간이다.Sintering temperature shall be 1350-1500 degreeC, hold | maintain for about 1 to 100 hours, and it temperature-falls at a furnace cooling or temperature-fall rate 1.0-5.0 degreeC / min after that. If the sintering temperature is lower than 1350 ° C., a high density sintered body cannot be obtained. Moreover, at the sintering temperature of 1500 degreeC or more, since the zinc oxide volatilizes, there also exists a cost problem that a sinter density decreases and a composition deviation arises, and furnace heater lifetime falls, so it is preferable to set an upper limit to 1500 degreeC. Do. Preferably, it is 1380-1420 degreeC. When the holding time at the sintering temperature is shorter than 1 hour, the sintering does not proceed sufficiently, and the density of the sintered compact does not sufficiently increase or the sintered compact is bent. Even if the holding time exceeds 100 hours, unnecessary energy and time inefficiency occur, which is undesirable in production. Preferably it is 5 to 30 hours.

실시예Example

다음으로, 본 발명의 실시예에 대해 설명한다. 실시예, 비교예에서는, 산화인듐-산화아연계 산화물 (IZO) 소결체의 원료 분말을 프레스 성형한 성형체를 제작하는 공정은, 상기 식별번호 [0033] ∼ [0040] 에 기재하는 조건에서 실시하고, 나아가 소결 공정은, 식별번호 [0041] ∼ 식별번호 [0044] 에 기재하는 조건의 범위에서 적절히 설정하여 실시하였다. 각각의 소결체의 조성은 표 1 에 나타내는 바와 같다.Next, the Example of this invention is described. In Examples and Comparative Examples, the step of producing a molded article press-molded the raw material powder of the indium zinc oxide-based oxide (IZO) sintered body is carried out under the conditions described in the above identification numbers, Further, the sintering step was carried out by appropriately set within the range of the conditions described in the identification number-identification number. The composition of each sintered compact is as showing in Table 1.

실시예 등에 있어서의 아킹 시험은, 신크론 제조 마그네트론 스퍼터 장치 (형번:BSC7011) 를 사용하고, DC 파워 밀도:2.3 W/㎠, 가스압:0.6 Pa, 가스 유량 300 sccm 의 조건에서, 아르곤 분위기 중, 35 시간 연속하여 스퍼터를 실시하여, 아킹의 발생 상태를 조사하였다. 아킹의 검출은, 랜드마크 테크놀로지 제조 마이크로 아크 모니터 (MAM genesis) 를 사용하여, 아킹 (마이크로 아크) 발생 횟수 (회) 를 측정하였다. 아킹 판정 기준은, 검출 전압 100 V 이상, 방출 에너지 (아크 방전이 발생하고 있을 때의 스퍼터 전압 × 스퍼터 전류 × 발생 시간) 가 20 mJ 이하인 아킹을 카운트하여, 10 회 이하이면 ○, 그것을 초과하는 경우에는 × 로 하였다.In the arcing test in Examples and the like, a magnetron sputtering device (model number: BSC7011) manufactured by Cyntron was used in an argon atmosphere under the conditions of DC power density: 2.3 W / cm 2, gas pressure: 0.6 Pa, and a gas flow rate of 300 sccm. Sputtering was performed continuously for 35 hours to investigate the state of occurrence of arcing. As for the detection of arcing, the number of times of arcing (micro arc) occurrence (times) was measured using a landmark technology micro arc monitor (MAM genesis). The arcing criterion counts arcing with a detection voltage of 100 V or more and emission energy (sputtering voltage at the time of arc discharge x sputter current x generation time) of 20 mJ or less, and if it is 10 times or less, ○ It was made into x.

(실시예 1)(Example 1)

실시예 1 에서는, 최고 소결 온도를 1400 ℃, 소결 유지 시간을 10 시간, 도중 유지 온도를 800 ℃ 로 하였다. 그 결과, 소결체의 밀도는 98.41 % 이고, 최대 휨 값은 1.39 ㎜ 가 되었다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률은, 2.43 mΩ·㎝, 그 표준 편차는 0.78 mΩ·㎝ 였다. 실시예 1 에서는, 이와 같이 소결체의 휨량이 적고, 타깃의 벌크 저항률의 편차가 작다는 양호한 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생은 거의 보이지 않았다. 이상의 결과를, 표 1 에 나타낸다.In Example 1, maximum sintering temperature was 1400 degreeC, sintering holding time was 10 hours, and middle holding temperature was 800 degreeC. As a result, the density of the sintered compact was 98.41%, and the maximum deflection value was 1.39 mm. Moreover, in order to prepare the sintered compact in target shape, both surfaces were ground so that it might become planar, As a result, the bulk resistivity of the target was 2.43 m (ohm) * cm, and the standard deviation was 0.78 m (ohm) * cm. In Example 1, favorable results were obtained that the warpage amount of the sintered compact was small and the variation in the bulk resistivity of the target was small. Moreover, as a result of sputtering the target produced in this way, generation | occurrence | production of arcing was hardly seen. The above results are shown in Table 1.

Figure pat00001
Figure pat00001

(실시예 2 ∼ 15) (Examples 2 to 15)

실시예 2 ∼ 15 에서는, 소결체의 조성, 최고 소결 온도, 소결 유지 시간, 도중 유지 온도, 도중 유지 시간, 도중 유지 온도로부터 소결 유지 온도까지의 승온 속도, 소결체의 면적의 각 조건을 각각 변화시켰다. 그 결과, 표 1 에 나타내는 바와 같이, 어느 소결체도 밀도가 98 % 이상이며, 최대 휨 값은 2.0 ㎜ 이내였다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 어느 타깃의 벌크 저항률은, 1.0 ∼ 10.0 mΩ·㎝ 이고, 그 표준 편차는 1.0 mΩ·㎝ 이내였다. 실시예 2 ∼ 15 에서는, 이와 같이 소결체의 휨량이 적고, 타깃의 벌크 저항률의 편차가 작다는 양호한 결과가 얻어졌다. 또, 이들 타깃을 스퍼터한 결과, 아킹의 발생은 거의 보이지 않았다.In Examples 2-15, the conditions of the composition of a sintered compact, maximum sintering temperature, sintering holding time, middle holding temperature, middle holding time, intermediate holding temperature to sintering holding temperature, and the conditions of the area of a sintered compact were changed, respectively. As a result, as shown in Table 1, all the sintered bodies had a density of 98% or more, and the maximum warpage value was within 2.0 mm. Moreover, in order to prepare the sintered compact in target shape, both surfaces were ground so that it might become planar, As a result, the bulk resistivity of the target was 1.0-10.0 m (ohm) -cm, The standard deviation was within 1.0 m (ohm) * cm. In Examples 2-15, the favorable result that the curvature amount of a sintered compact was small and the variation of the bulk resistivity of a target is small was obtained. Moreover, as a result of sputtering these targets, generation | occurrence | production of arcing was hardly seen.

(비교예 1)(Comparative Example 1)

비교예 1 에서는, 최고 소결 온도를 1400 ℃, 소결 유지 시간을 10 시간으로 하고, 도중 유지는 실시하지 않았다. 그 결과, 소결체의 최대 휨 값은 2.30 ㎜ 가 되었다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률의 표준 편차는 1.40 mΩ·㎝ 였다. 비교예 1 에서는, 이와 같이 소결체의 휨량이 크고, 타깃의 벌크 저항률의 편차가 크다는 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생이 많았다.In Comparative Example 1, the maximum sintering temperature was 1400 ° C., the sintering holding time was 10 hours, and the middle holding was not performed. As a result, the maximum curvature value of the sintered compact became 2.30 mm. Moreover, in order to prepare the sintered compact in target shape, both surfaces were ground so that it might become a flat surface, and as a result, the standard deviation of the bulk resistivity of a target was 1.40 m (ohm) * cm. In Comparative Example 1, a result was obtained in which the amount of warpage of the sintered body was large and the variation in the bulk resistivity of the target was large. Moreover, as a result of sputtering the target thus produced, there were many occurrences of arcing.

(비교예 2)(Comparative Example 2)

비교예 2 에서는, 최고 소결 온도를 1400 ℃, 소결 유지 시간을 10 시간으로 하고, 도중 유지 온도를 500 ℃ 로 낮게 하였다. 그 결과, 소결체의 최대 휨 값은 2.06 ㎜ 가 되었다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률의 표준 편차는 1.18 mΩ·㎝ 였다. 비교예 2 에서는, 이와 같이 소결체의 휨량이 크고, 타깃의 벌크 저항률의 편차가 크다는 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생이 많았다.In Comparative Example 2, the maximum sintering temperature was 1400 ° C, the sintering holding time was 10 hours, and the middle holding temperature was lowered to 500 ° C. As a result, the maximum curvature value of the sintered compact was 2.06 mm. Moreover, in order to prepare the sintered compact in target shape, both surfaces were ground so that it might become a flat surface, and as a result, the standard deviation of the bulk resistivity of the target was 1.18 mΩ * cm. In Comparative Example 2, a result was obtained in which the amount of warpage of the sintered body was large and the variation in the bulk resistivity of the target was large. Moreover, as a result of sputtering the target thus produced, there were many occurrences of arcing.

(비교예 3)(Comparative Example 3)

비교예 3 에서는, 최고 소결 온도를 1400 ℃, 소결 유지 시간을 10 시간으로 하고, 도중 유지 온도를 900 ℃ 로 높게 하였다. 그 결과, 소결체의 최대 휨 값은 2.14 ㎜ 가 되었다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률의 표준 편차는 1.24 mΩ·㎝ 였다. 비교예 3 에서는, 이와 같이 소결체의 휨량이 크고, 타깃의 벌크 저항률의 편차가 크다는 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생이 많았다.In Comparative Example 3, the maximum sintering temperature was 1400 ° C, the sintering holding time was 10 hours, and the middle holding temperature was high at 900 ° C. As a result, the maximum curvature value of the sintered compact became 2.14 mm. Moreover, in order to prepare the sintered compact in target shape, both surfaces were ground so that it might become planar, and the standard deviation of the bulk resistivity of a target was 1.24 m (ohm) * cm. In Comparative Example 3, a result was obtained in which the amount of warpage of the sintered body was large and the variation in the bulk resistivity of the target was large. Moreover, as a result of sputtering the target thus produced, there were many occurrences of arcing.

(비교예 4)(Comparative Example 4)

비교예 4 에서는, 최고 소결 온도를 1400 ℃, 소결 유지 시간을 10 시간으로 하고, 도중 유지 온도를 1100 ℃ 로 높게 하였다. 그 결과, 소결체의 최대 휨 값은 2.11 ㎜ 가 되었다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률의 표준 편차는 1.11 mΩ·㎝ 였다. 비교예 4 에서는, 이와 같이 소결체의 휨량이 크고, 타깃의 벌크 저항률의 편차가 크다는 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생이 많았다.In Comparative Example 4, the maximum sintering temperature was 1400 ° C, the sintering holding time was 10 hours, and the middle holding temperature was high at 1100 ° C. As a result, the maximum curvature value of the sintered compact became 2.11 mm. Moreover, in order to prepare the sintered compact in target shape, both surfaces were ground so that it might become a flat surface, and as a result, the standard deviation of the bulk resistivity of the target was 1.11 mΩ * cm. In Comparative Example 4, a result was obtained in which the amount of warpage of the sintered body was large and the variation in the bulk resistivity of the target was large. Moreover, as a result of sputtering the target thus produced, there were many occurrences of arcing.

(비교예 5)(Comparative Example 5)

비교예 5 에서는, 최고 소결 온도를 1400 ℃, 소결 유지 시간을 10 시간, 도중 유지 온도를 800 ℃ 로 하고, 도중 유지 온도로부터 최고 소결 온도까지의 승온 속도를 5 ℃/min 로 빠르게 하였다. 그 결과, 소결체의 최대 휨 값은 2.23 ㎜ 가 되었다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률의 표준 편차는 1.26 mΩ·㎝ 였다. 비교예 5 에서는, 이와 같이 소결체의 휨량이 크고, 타깃의 벌크 저항률의 편차가 크다는 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생이 많았다.In Comparative Example 5, the maximum sintering temperature was 1400 ° C, the sintering holding time was 10 hours, the middle holding temperature was 800 ° C, and the temperature increase rate from the middle holding temperature to the maximum sintering temperature was accelerated to 5 ° C / min. As a result, the maximum curvature value of the sintered compact became 2.23 mm. Moreover, in order to prepare the sintered compact in target shape, both surfaces were ground so that it might become a flat surface, and as a result, the standard deviation of the bulk resistivity of the target was 1.26 mΩ * cm. In Comparative Example 5, a result was obtained in which the amount of warpage of the sintered body was large and the variation in the bulk resistivity of the target was large. Moreover, as a result of sputtering the target thus produced, there were many occurrences of arcing.

(비교예 6)(Comparative Example 6)

비교예 6 에서는, 최고 소결 온도를 1400 ℃, 소결 유지 시간을 10 시간, 도중 유지 온도를 800 ℃ 로 하고, 도중 유지 시간을 1 시간으로 짧게 하였다. 그 결과, 소결체의 최대 휨 값은 2.31 ㎜ 가 되었다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률의 표준 편차는 1.31 mΩ·㎝ 였다. 비교예 6 에서는, 이와 같이 소결체의 휨량이 크고, 타깃의 벌크 저항률의 편차가 크다는 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생이 많았다.In Comparative Example 6, the maximum sintering temperature was 1400 ° C., the sintering holding time was 10 hours, the middle holding temperature was 800 ° C., and the middle holding time was shortened to 1 hour. As a result, the maximum curvature value of the sintered compact became 2.31 mm. Moreover, in order to prepare the sintered compact in target shape, both surfaces were ground so that it might become planar, and the standard deviation of the bulk resistivity of a target was 1.31 m (ohm) * cm. In Comparative Example 6, a result was obtained in which the amount of warpage of the sintered body was large and the variation in the bulk resistivity of the target was large. Moreover, as a result of sputtering the target thus produced, there were many occurrences of arcing.

(비교예 7)(Comparative Example 7)

비교예 7 에서는, 도중 유지 온도를 800 ℃ 로 하고, 최고 소결 온도를 1600 ℃ 로 높게 하였다. 그 결과, 소결체의 최대 휨량은 2.33 ㎜ 이며, 상대 밀도가 97.5 % 였다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률의 표준 편차는 1.42 mΩ·㎝ 였다. 비교예 7 에서는, 이와 같이 소결체의 휨량이 크고, 타깃의 벌크 저항률의 편차가 크다는 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생이 많았다.In the comparative example 7, the holding | maintenance temperature was 800 degreeC and the highest sintering temperature was made high at 1600 degreeC. As a result, the maximum curvature amount of the sintered compact was 2.33 mm, and the relative density was 97.5%. Moreover, in order to prepare the sintered compact in target shape, both surfaces were ground so that it might become a flat surface, and as a result, the standard deviation of the bulk resistivity of the target was 1.42 mΩ * cm. In Comparative Example 7, thus, a large amount of warpage of the sintered compact and a large variation in the bulk resistivity of the target were obtained. Moreover, as a result of sputtering the target thus produced, there were many occurrences of arcing.

(비교예 8)(Comparative Example 8)

비교예 8 에서는, 도중 유지 온도를 800 ℃ 로 하고, 최고 소결 온도를 1500 ℃ 로 높게 하였다. 그 결과, 소결체의 최대 휨량은 2.37 ㎜ 였다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률의 표준 편차는 1.53 mΩ·㎝ 였다. 비교예 8 에서는, 이와 같이 소결체의 휨량이 크고, 타깃의 벌크 저항률의 편차가 크다는 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생이 많았다.In the comparative example 8, middle hold | maintenance temperature was 800 degreeC and the highest sintering temperature was made high at 1500 degreeC. As a result, the maximum curvature amount of the sintered compact was 2.37 mm. Moreover, in order to prepare the sintered compact in target shape, both surfaces were ground so that it might become planar, and the standard deviation of the bulk resistivity of a target was 1.53 m (ohm) * cm. In Comparative Example 8, a result was obtained in which the amount of warpage of the sintered body was large and the variation in the bulk resistivity of the target was large. Moreover, as a result of sputtering the target thus produced, there were many occurrences of arcing.

상기와 같이, 본 발명은, 종래와 상이한 소결 조건에 따라, 휨이 작은 소결체를 양호한 수율로 제작할 수 있고, 이로 인해, 생산성을 현저하게 향상시킬 수 있다는 우수한 효과를 갖는다. 또, 본 발명은, 소결체의 휨을 저감시킴으로써, 그 소결체를 가공한 후의 타깃의 스퍼터 면의 벌크 저항률의 편차가 작을 수 있어, 특성이 균일한 막을 형성할 수 있다는 우수한 효과를 갖는다. 본 발명의 스퍼터링 타깃은, 액정 표시 장치, 박막 일렉트로루미네선스 표시 장치, 유기 EL 등에 사용되는 투명 도전막의 형성에 유용하다.As mentioned above, this invention has the outstanding effect that a sintered compact with a small curvature can be manufactured in a favorable yield according to the sintering conditions different from the past, and this can improve productivity remarkably. Moreover, this invention has the outstanding effect that the dispersion | variation in the bulk resistivity of the sputter | spatter surface of the target after processing the sintered compact can be made small by reducing the curvature of the sintered compact, and can form a film | membrane with a uniform characteristic. The sputtering target of this invention is useful for formation of the transparent conductive film used for a liquid crystal display device, a thin film electroluminescence display device, organic EL, etc.

Claims (3)

In, Zn, O 로 이루어지는 스퍼터링 타깃으로서,
Zn 과 In 의 원자비가 0.05 ≤ Zn/(In + Zn) ≤ 0.30 을 만족시키고, 그 타깃의 스퍼터 면의 면적이 60000 ㎟ 이상이고, 스퍼터 면에 있어서의 벌크 저항률의 표준 편차가 1.0 mΩ·㎝ 이하이고, 상대 밀도가 98 % 이상인 것을 특징으로 하는 스퍼터링 타깃.
As a sputtering target consisting of In, Zn, O,
The atomic ratio of Zn and In satisfies 0.05 ≦ Zn / (In + Zn) ≦ 0.30, the area of the sputter face of the target is 60000 mm 2 or more, and the standard deviation of the bulk resistivity on the sputter face is 1.0 mΩ · cm or less The relative density is 98% or more, the sputtering target characterized by the above-mentioned.
제 1 항에 있어서,
벌크 저항률이 1.0 ∼ 10 mΩ·㎝ 인 것을 특징으로 하는 스퍼터링 타깃.
The method of claim 1,
The bulk resistivity is 1.0-10 mΩ * cm, The sputtering target characterized by the above-mentioned.
제 1 항 또는 제 2 항에 있어서,
스퍼터 면의 면적이 60000 ㎟ ∼ 400000 ㎟ 인 것을 특징으로 하는 스퍼터링 타깃.
The method according to claim 1 or 2,
The sputtering target is characterized in that the area of the sputter face is 60000 mm 2 to 400000 mm 2.
KR1020200017636A 2016-03-31 2020-02-13 Indium zinc oxide (izo) based sputtering target, and method for producing same KR102322184B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016071381A JP6125689B1 (en) 2016-03-31 2016-03-31 Indium oxide-zinc oxide (IZO) sputtering target
JPJP-P-2016-071381 2016-03-31
KR1020190017109A KR20190019104A (en) 2016-03-31 2019-02-14 Indium zinc oxide (izo) based sputtering target, and method for producing same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190017109A Division KR20190019104A (en) 2016-03-31 2019-02-14 Indium zinc oxide (izo) based sputtering target, and method for producing same

Publications (2)

Publication Number Publication Date
KR20200019654A true KR20200019654A (en) 2020-02-24
KR102322184B1 KR102322184B1 (en) 2021-11-04

Family

ID=58704743

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020160163661A KR20170112970A (en) 2016-03-31 2016-12-02 Indium zinc oxide (izo) based sputtering target, and method for producing same
KR1020180077156A KR101956506B1 (en) 2016-03-31 2018-07-03 Indium zinc oxide (izo) based sputtering target, and method for producing same
KR1020190017109A KR20190019104A (en) 2016-03-31 2019-02-14 Indium zinc oxide (izo) based sputtering target, and method for producing same
KR1020200017636A KR102322184B1 (en) 2016-03-31 2020-02-13 Indium zinc oxide (izo) based sputtering target, and method for producing same

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020160163661A KR20170112970A (en) 2016-03-31 2016-12-02 Indium zinc oxide (izo) based sputtering target, and method for producing same
KR1020180077156A KR101956506B1 (en) 2016-03-31 2018-07-03 Indium zinc oxide (izo) based sputtering target, and method for producing same
KR1020190017109A KR20190019104A (en) 2016-03-31 2019-02-14 Indium zinc oxide (izo) based sputtering target, and method for producing same

Country Status (4)

Country Link
JP (1) JP6125689B1 (en)
KR (4) KR20170112970A (en)
CN (3) CN107267936A (en)
TW (2) TWI645059B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6523510B1 (en) * 2018-03-30 2019-06-05 Jx金属株式会社 Sputtering target
JP2020143359A (en) * 2019-03-08 2020-09-10 Jx金属株式会社 Manufacturing method of sputtering target member, and sputtering target member
CN113555451A (en) * 2020-04-23 2021-10-26 南方科技大学 Preparation method of transparent photoelectric device and transparent photoelectric device
JP7162647B2 (en) * 2020-09-15 2022-10-28 Jx金属株式会社 Cu-W-O sputtering target and oxide thin film
CN113956022A (en) * 2021-11-30 2022-01-21 郑州大学 Zinc-doped indium oxide powder, sputtering target material and preparation method thereof
CN116199496A (en) * 2022-12-15 2023-06-02 先导薄膜材料(广东)有限公司 Indium zinc oxide doped rare earth metal target material and preparation method thereof
CN116162908A (en) * 2022-12-15 2023-05-26 先导薄膜材料(广东)有限公司 Indium zinc oxide target and preparation method thereof
CN116041047B (en) * 2022-12-15 2024-05-17 先导薄膜材料(广东)有限公司 IZO doped target material for sputtering and preparation method thereof
CN116219375A (en) * 2022-12-15 2023-06-06 先导薄膜材料(广东)有限公司 Indium zinc oxide target and preparation method thereof
CN116177993A (en) * 2022-12-15 2023-05-30 先导薄膜材料(广东)有限公司 Indium zinc oxide sintered target and preparation method thereof
CN117247273B (en) * 2023-11-17 2024-02-23 江苏迪纳科精细材料股份有限公司 Preparation method and device of X-IZO magnetron sputtering target material with high mobility

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111444A (en) 1995-10-13 1997-04-28 Mitsui Mining & Smelting Co Ltd Production of indium oxide-zinc oxide based sintered body target
JP2001131736A (en) 1999-11-09 2001-05-15 Nikko Materials Co Ltd Sputtering target and method of manufacture
WO2001038599A1 (en) 1999-11-25 2001-05-31 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive oxide, and method for preparing sputtering target
JP2007008780A (en) 2005-07-01 2007-01-18 Idemitsu Kosan Co Ltd Manufacturing method of izo sputtering target
JP2007008772A (en) 2005-06-30 2007-01-18 Idemitsu Kosan Co Ltd Manufacturing method of indium oxide-zinc oxide sintered body
JP2010024087A (en) * 2008-07-18 2010-02-04 Idemitsu Kosan Co Ltd Method for manufacturing oxide sintered compact, methods for manufacturing oxide sintered compact, sputtering target, oxide thin film and thin film transistor, and semiconductor device
JP2013147423A (en) * 2008-06-06 2013-08-01 Idemitsu Kosan Co Ltd Sputtering target for oxide thin film and process for producing the same
KR20140027241A (en) * 2011-05-10 2014-03-06 이데미쓰 고산 가부시키가이샤 In??o??-zno sputtering target
JP2014043598A (en) * 2012-08-24 2014-03-13 Ulvac Japan Ltd METHOD FOR MANUFACTURING InZnO BASED SPUTTERING TARGET
JP2015021165A (en) * 2013-07-19 2015-02-02 三菱マテリアル株式会社 Sputtering target and production method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100603128B1 (en) * 1999-05-10 2006-07-20 닛코킨조쿠 가부시키가이샤 Sputtering target
KR100744017B1 (en) * 2001-06-26 2007-07-30 미츠이 긴조쿠 고교 가부시키가이샤 Sputtering target for forming transparent conductive film of high electric resistance and method for producing transparent conductive film of high electric resistance
CN100585752C (en) * 2003-05-20 2010-01-27 出光兴产株式会社 Amorphous transparent conductive film, sputtering target as raw material for amorphous transparent conductive film, amorphous transparent electrode substrate, method for producing amorphous transparent electrode substrate, and color filter for liquid crystal display
TWI390062B (en) * 2004-03-05 2013-03-21 Tosoh Corp Cylindrical sputtering target, ceramic sintered body, and process for producing sintered body
JP4762062B2 (en) * 2006-06-22 2011-08-31 出光興産株式会社 Sintered body, film, and organic electroluminescence element
CN102191465A (en) * 2010-03-18 2011-09-21 中国科学院福建物质结构研究所 Indium-doped zinc oxide target material and preparation method of transparent conducting film
JP5883990B2 (en) * 2013-03-29 2016-03-15 Jx金属株式会社 IGZO sputtering target

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111444A (en) 1995-10-13 1997-04-28 Mitsui Mining & Smelting Co Ltd Production of indium oxide-zinc oxide based sintered body target
JP2001131736A (en) 1999-11-09 2001-05-15 Nikko Materials Co Ltd Sputtering target and method of manufacture
WO2001038599A1 (en) 1999-11-25 2001-05-31 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive oxide, and method for preparing sputtering target
JP2007008772A (en) 2005-06-30 2007-01-18 Idemitsu Kosan Co Ltd Manufacturing method of indium oxide-zinc oxide sintered body
JP2007008780A (en) 2005-07-01 2007-01-18 Idemitsu Kosan Co Ltd Manufacturing method of izo sputtering target
JP2013147423A (en) * 2008-06-06 2013-08-01 Idemitsu Kosan Co Ltd Sputtering target for oxide thin film and process for producing the same
JP2010024087A (en) * 2008-07-18 2010-02-04 Idemitsu Kosan Co Ltd Method for manufacturing oxide sintered compact, methods for manufacturing oxide sintered compact, sputtering target, oxide thin film and thin film transistor, and semiconductor device
KR20140027241A (en) * 2011-05-10 2014-03-06 이데미쓰 고산 가부시키가이샤 In??o??-zno sputtering target
JP2014043598A (en) * 2012-08-24 2014-03-13 Ulvac Japan Ltd METHOD FOR MANUFACTURING InZnO BASED SPUTTERING TARGET
JP2015021165A (en) * 2013-07-19 2015-02-02 三菱マテリアル株式会社 Sputtering target and production method thereof

Also Published As

Publication number Publication date
TWI645059B (en) 2018-12-21
TWI661069B (en) 2019-06-01
JP6125689B1 (en) 2017-05-10
CN108930015A (en) 2018-12-04
JP2017179536A (en) 2017-10-05
TW201837222A (en) 2018-10-16
KR20190019104A (en) 2019-02-26
KR20170112970A (en) 2017-10-12
KR101956506B1 (en) 2019-03-08
CN107267936A (en) 2017-10-20
KR20180081686A (en) 2018-07-17
CN114752901A (en) 2022-07-15
KR102322184B1 (en) 2021-11-04
TW201805457A (en) 2018-02-16

Similar Documents

Publication Publication Date Title
KR20200019654A (en) Indium zinc oxide (izo) based sputtering target, and method for producing same
JP5205696B2 (en) Gallium oxide based sintered body and method for producing the same
JP6291593B2 (en) ITO sputtering target, manufacturing method thereof, and manufacturing method of ITO transparent conductive film
KR102493208B1 (en) Cylindrical sputtering target, cylindrical compact, manufacturing method of cylindrical sputtering target, manufacturing method of cylindrical sintered compact and manufacturing method of cylindrical compact
KR102045661B1 (en) Izo sintered compact sputtering target and method for producing same
JP5987105B2 (en) ITO sputtering target and manufacturing method thereof
KR102089842B1 (en) Target for forming transparent conductive film, transparent conductive film, method of manufacturing target for forming transparent conductive film and method of manufacturing transparent conductive film
JP2020164930A (en) Ito sputtering target, method for manufacturing the same, ito transparent conductive film and method for manufacturing the same
JP6343695B2 (en) Indium oxide-zinc oxide (IZO) sputtering target and method for producing the same
JP2005126766A (en) Indium-oxide-based target and manufacturing method therefor
JP5399344B2 (en) Method for producing composite oxide sintered body
KR102188415B1 (en) Sputtering target
JP5967016B2 (en) Vapor deposition tablet and manufacturing method thereof
JP5115249B2 (en) Vapor deposition material and method for forming a vapor deposition film using the vapor deposition material
JP5809542B2 (en) Sputtering target material and manufacturing method thereof

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant