JP7162647B2 - Cu-W-O sputtering target and oxide thin film - Google Patents

Cu-W-O sputtering target and oxide thin film Download PDF

Info

Publication number
JP7162647B2
JP7162647B2 JP2020154239A JP2020154239A JP7162647B2 JP 7162647 B2 JP7162647 B2 JP 7162647B2 JP 2020154239 A JP2020154239 A JP 2020154239A JP 2020154239 A JP2020154239 A JP 2020154239A JP 7162647 B2 JP7162647 B2 JP 7162647B2
Authority
JP
Japan
Prior art keywords
sputtering target
work function
sputtering
volume resistivity
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020154239A
Other languages
Japanese (ja)
Other versions
JP2022048423A (en
Inventor
慧 宗安
幸三 長田
淳史 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2020154239A priority Critical patent/JP7162647B2/en
Priority to TW110108651A priority patent/TWI837462B/en
Priority to CN202110422866.1A priority patent/CN114182216A/en
Priority to KR1020210120384A priority patent/KR20220036347A/en
Publication of JP2022048423A publication Critical patent/JP2022048423A/en
Application granted granted Critical
Publication of JP7162647B2 publication Critical patent/JP7162647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Description

本発明は、仕事関数の高い酸化物薄膜を成膜するのに適したCu-W-Oスパッタリングターゲットに関する。 The present invention relates to a Cu--WO sputtering target suitable for forming an oxide thin film with a high work function.

有機エレクトロルミネッセンス(有機EL)素子などの発光素子における透明電極(陽極)としてITO(インジウム・スズ酸化物)が用いられている。陽極に電圧を印加することで注入された正孔は、正孔輸送層を経由して、発光層で電子と結合する。近年、正孔輸送層への電荷注入効率を向上させる目的で、ITOよりも仕事関数が高い酸化物を用いることが研究されている。たとえば、非特許文献1には、有機半導体デバイスにおける酸化物薄膜として、TiO2、MoO2、CuO、NiO、WO3、V25、CrO3、Ta25、Co34などの高い仕事関数のものが報告されている。 BACKGROUND ART ITO (indium tin oxide) is used as a transparent electrode (anode) in a light-emitting element such as an organic electroluminescence (organic EL) element. Holes injected by applying a voltage to the anode combine with electrons in the light emitting layer via the hole transport layer. In recent years, research has been conducted on using an oxide having a higher work function than ITO for the purpose of improving the efficiency of charge injection into the hole transport layer. For example, Non-Patent Document 1 describes oxide thin films in organic semiconductor devices such as TiO 2 , MoO 2 , CuO, NiO, WO 3 , V 2 O 5 , CrO 3 , Ta 2 O 5 and Co 3 O 4 . High work functions have been reported.

非特許文献1に示されるように、WO3は比較的高い仕事関数を有する。このWO3膜は酸化タングステン焼結体からなるスパッタリングターゲットを用いて成膜することができるが(特許文献1、2)、WO3単相では焼結体の高密度化が困難であり、また、体積抵抗率が高いために、DCスパッタリングが困難であった。そのため、特許文献2には、WO3にWO2を添加することで、焼結体の高密度化を達成し、導電性を高めてDCスパッタリングを可能とすることが開示されている。また、特許文献1には、酸素供給雰囲気中、WO3粉末をホットプレスすることで、焼結体の密度を高めることが開示されている。 As shown in Non-Patent Document 1 , WO3 has a relatively high work function. This WO 3 film can be formed using a sputtering target made of a tungsten oxide sintered body (Patent Documents 1 and 2), but it is difficult to increase the density of the sintered body with a single WO 3 phase. , DC sputtering was difficult due to high volume resistivity. Therefore, Patent Literature 2 discloses that by adding WO2 to WO3 , the density of the sintered body is increased and the electrical conductivity is increased to enable DC sputtering. Further, Patent Document 1 discloses that the density of a sintered body is increased by hot - pressing WO3 powder in an oxygen-supplied atmosphere.

特開平3-150357号公報JP-A-3-150357 特開2013-76163号公報JP 2013-76163 A

Mark T Greiner and Zheng-Hong Lu, "Thin-Film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces", NPG Asia Materials (2013) 5,e55, 19 July 2013Mark T Greiner and Zheng-Hong Lu, "Thin-Film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces", NPG Asia Materials (2013) 5,e55, 19 July 2013

上述の通り、有機ELなどの有機半導体デバイスを構成する膜として、仕事関数の高い酸化物膜が求められている。高い仕事関数を示す材料としてWO3などが挙げられるが、WO3などの膜を形成する場合、成膜に使用するスパッタリングターゲットの体積抵抗率が高いため、高速成膜が可能なDCスパッタリングができないという問題があった。このようなことから、本発明は、上述の課題を解決するために提案されたものであって、仕事関数の高い膜を成膜することが可能な、体積抵抗率の低いスパッタリングターゲットを提供することを課題とする。 As described above, an oxide film having a high work function is required as a film constituting an organic semiconductor device such as an organic EL. WO3 is an example of a material that exhibits a high work function, but when forming a film of WO3 , DC sputtering , which enables high-speed film formation, cannot be used because the sputtering target used for film formation has a high volume resistivity. There was a problem. Therefore, the present invention has been proposed to solve the above-described problems, and provides a sputtering target with low volume resistivity that can form a film with a high work function. The challenge is to

本発明は、上記課題を解決するために提案されたものであって、その課題を解決できる本発明の態様は、タングステン(W)、銅(Cu)、酸素(O)及び不可避的不純物からなるスパッタリングターゲットであり、体積抵抗率が1.0×103Ω・cm以下であるCu-W-Oスパッタリングターゲットである。 The present invention has been proposed to solve the above problems, and an aspect of the present invention that can solve the problems consists of tungsten (W), copper (Cu), oxygen (O) and unavoidable impurities The sputtering target is a Cu--WO sputtering target having a volume resistivity of 1.0×10 3 Ω·cm or less.

本発明によれば、仕事関数の高い膜を成膜することができるスパッタリングターゲットであって、体積抵抗率が低いため、DCスパッタリングが可能となり、それにより、高速成膜が可能という優れた効果を有する。 According to the present invention, there is provided a sputtering target capable of forming a film having a high work function, and because of its low volume resistivity, DC sputtering is possible, thereby achieving an excellent effect of enabling high-speed film formation. have.

上述の通り、WO3は高い仕事関数を有するが、WO3単相では、DCスパッタリングが可能な体積抵抗率の低いスパッタリングターゲットを作製することは困難であった。また、他の仕事関数が高い酸化物の材料(例えば、CuO単相)を用いた場合も同様に、体積抵抗率が高く、DCスパッタリングが困難であった。このような問題に対して、本発明者らは鋭意研究したところ、CuOとWO3の混合系を作製することにより、高い仕事関数を維持しつつ、DCスパッタリングが可能な体積抵抗率の低いスパッタリングターゲットを得ることができるとの知見が得られ、本発明に至った。 As described above , WO3 has a high work function, but it has been difficult to produce a sputtering target with a low volume resistivity that can be used for DC sputtering with a WO3 single phase. Also, when other oxide materials with a high work function (for example, single-phase CuO) are used, the volume resistivity is similarly high, making DC sputtering difficult. As a result of intensive research by the present inventors in response to such problems, sputtering with low volume resistivity that enables DC sputtering while maintaining a high work function by producing a mixed system of CuO and WO The knowledge that the target can be obtained was obtained, leading to the present invention.

本発明の実施形態に係るスパッタリングターゲット(Cu-W-Oスパッタリングターゲットという。)は、タングステン(W)、銅(Cu)、酸素(O)及び不可避的不純物からなり、体積抵抗率が1.0×103Ω・cm以下である。スパッタリングターゲットの体積抵抗率が1.0×103Ω・cm以下であれば、DCスパッタリングが可能となり、それによる高速成膜が可能となる。好ましくは体積抵抗率が1.0×102Ωcm以下である。これにより、さらに安定したDCスパッタリングによる高速成膜が可能となる。 A sputtering target (referred to as a Cu—W—O sputtering target) according to an embodiment of the present invention is composed of tungsten (W), copper (Cu), oxygen (O), and unavoidable impurities, and has a volume resistivity of 1.0. ×10 3 Ω·cm or less. If the sputtering target has a volume resistivity of 1.0×10 3 Ω·cm or less, DC sputtering becomes possible, thereby enabling high-speed film formation. Preferably, the volume resistivity is 1.0×10 2 Ωcm or less. This enables high-speed film formation by more stable DC sputtering.

本実施形態に係るスパッタリングターゲットは、W、Cu、O及び不可避的不純物からなり、WとCuの含有比率は、原子比でW/(Cu+W)≧0.5であることが好ましい。
W/(Cu+W)<0.5の場合、体積抵抗率が高くなり、また所望する高い仕事関数が得られないということがある。好ましくは、W/(Cu+W)≧0.7、より好ましくは、W/(Cu+W)≧0.8、さらに好ましくはW/(Cu+W)≧0.9である。また、WO3単相であると、上述の通り、スパッタリングターゲットの体積抵抗率が高いため、W/(Cu+W)<1とする。なお、前記不可避的不純物は、原料や製造過程などで混入する不純物であって、仕事関数などの特性に特に影響を及ぼさない量を含んでいてもよく、0.1wt%以下であれば、特に問題はないといえる。
The sputtering target according to the present embodiment is composed of W, Cu, O and unavoidable impurities, and the content ratio of W and Cu is preferably W/(Cu+W)≧0.5 in terms of atomic ratio.
When W/(Cu+W)<0.5, the volume resistivity increases and a desired high work function may not be obtained. Preferably, W/(Cu+W)≧0.7, more preferably W/(Cu+W)≧0.8, still more preferably W/(Cu+W)≧0.9. Further , when the WO3 single phase is used, the volume resistivity of the sputtering target is high as described above, so that W/(Cu+W)<1. In addition, the unavoidable impurities are impurities mixed in raw materials, manufacturing processes, etc., and may contain an amount that does not particularly affect characteristics such as work function. It can be said that there is no problem.

本実施形態に係るスパッタリングターゲットは、相対密度が95%以上であることが好ましい。好ましくは相対密度98%以上である。このような高密度のスパッタリングターゲットは、スパッタリングの際にクラックや割れを防ぐことができ、成膜時のパーティクルを低減することができる。また、スパッタリングターゲットの相対密度は、体積抵抗率とも関連し、相対密度の値が低くなると、体積抵抗率が高くなる傾向にある。そのため、体積抵抗率を下げるためには、スパッタリングターゲットのWとCuの含有比率のほか、スパッタリングターゲットの製造方法や製造条件を厳格に調整して、相対密度を高める必要がある。 The sputtering target according to this embodiment preferably has a relative density of 95% or more. Preferably, the relative density is 98% or more. Such a high-density sputtering target can prevent cracks and fractures during sputtering, and can reduce particles during film formation. The relative density of the sputtering target is also related to volume resistivity, and the lower the relative density value, the higher the volume resistivity. Therefore, in order to lower the volume resistivity, it is necessary to increase the relative density by strictly adjusting the content ratio of W and Cu in the sputtering target as well as the manufacturing method and manufacturing conditions of the sputtering target.

本発明の一実施形態に係るスパッタリングターゲットは、仕事関数が4.5eV以上である。このような高い仕事関数を有するスパッタリングターゲットを用いることにより、高い仕事関数を有する膜を作製することができる。そして、このような仕事関数が高い膜は、例えば、有機EL、有機太陽電池などの有機半導体デバイスにおいて正孔輸送層への電荷注入効率を向上させることができ、発光効率あるいは変換効率などの向上が期待できる。 A sputtering target according to an embodiment of the present invention has a work function of 4.5 eV or more. A film having a high work function can be produced by using a sputtering target having such a high work function. And such a film with a high work function can improve the efficiency of charge injection into the hole transport layer in organic semiconductor devices such as organic EL and organic solar cells, and improve luminous efficiency or conversion efficiency. can be expected.

以下に、本実施形態に係るスパッタリングターゲットの製造方法を示す。但し、以下の製造条件等は開示した範囲に限定するものではなく、いくらかの省略や変更を行ってもよいことは明らかである。 A method for manufacturing a sputtering target according to this embodiment will be described below. However, it is clear that the following manufacturing conditions and the like are not limited to the disclosed range, and that some omissions and changes may be made.

原料粉末として、酸化タングステン(WO3)粉末、酸化銅(CuO)粉末を準備し、これらの原料粉末を所望の組成比となるように秤量する。酸化銅としては、CuOの他、Cu2Oなどを用いることもできる。次に、ボール径が0.5~3.0mmのジルコニアビーズを用いて、湿式粉砕を行う。そして、粒径の中央値が0.1~5.0μmとなるまで粉砕を行い、その後、造粒を行う。次に得られた造粒粉をプレス成型する。プレス圧は300~400kgf/cm2で行うのが好ましい。その後、冷間静水圧加圧(CIP)を行う。CIP圧力は1000~2000kgf/cm2で行うのが好ましい。次に、得られた成型体を、酸素フロー中、10~20時間、常圧焼結を行う。このとき、焼結温度は900℃以上950℃未満とするのが好ましい。900℃未満であると、高密度の焼結体が得られず、一方、950℃以上であると、WO3とCuOと複合酸化物であるCuWO4が、アルミナの焼結部材と反応し、また熔解するため好ましくない。その後は、得られた焼結体をターゲット形状に切削、研磨などして、スパッタリングターゲットを作製することができる。なお、ホットプレス焼結を用いた場合、カーボンの焼結部材によって、CuOがCuに還元されて、部材の消耗が激しいということがある。 Tungsten oxide (WO 3 ) powder and copper oxide (CuO) powder are prepared as raw material powders, and these raw material powders are weighed so as to have a desired composition ratio. As the copper oxide, Cu 2 O or the like can be used in addition to CuO. Next, wet pulverization is performed using zirconia beads having a ball diameter of 0.5 to 3.0 mm. Then, pulverization is performed until the median particle size reaches 0.1 to 5.0 μm, and then granulation is performed. Next, the obtained granulated powder is press-molded. The pressing pressure is preferably 300-400 kgf/cm 2 . Cold isostatic pressing (CIP) is then performed. CIP pressure is preferably 1000 to 2000 kgf/cm 2 . Next, the obtained compact is sintered at normal pressure for 10 to 20 hours in oxygen flow. At this time, the sintering temperature is preferably 900°C or higher and lower than 950°C. If the temperature is less than 900°C, a high - density sintered body cannot be obtained. Moreover, it is not preferable because it melts. After that, the obtained sintered body is cut into a target shape, polished, or the like, so that a sputtering target can be produced. When hot press sintering is used, CuO may be reduced to Cu by the carbon sintering member, resulting in rapid wear of the member.

本願明細書において、スパッタリングターゲット等の各種物性は、以下の測定方法を用いて解析した。
(スパッタリングターゲット及び膜の成分組成)
装置:SII社製SPS3500DD
方法:ICP-OES(高周波誘導結合プラズマ発光分析法)
(膜の成分組成)
装置:JEOL製JXA-8500F
方法:EPMA(電子線マイクロアナライザー)
加速電圧:5~10keV
照射電流:2.0×10-7~2.0~10-8
プローブ径:10μm
ゴミ等の付着がなく、基板面がみえていない平滑な成膜部分を5点選択し、点分析を行って、それらの平均組成を算出した。
In the specification of the present application, various physical properties of sputtering targets and the like were analyzed using the following measurement methods.
(Component Composition of Sputtering Target and Film)
Device: SPS3500DD manufactured by SII
Method: ICP-OES (Inductively Coupled Plasma Emission Spectrometry)
(Component composition of film)
Device: JXA-8500F made by JEOL
Method: EPMA (electron probe microanalyzer)
Acceleration voltage: 5-10keV
Irradiation current: 2.0×10 −7 to 2.0 to 10 −8 A
Probe diameter: 10 μm
Five smooth film-forming portions where no dust or the like adhered and the substrate surface was not visible were selected, point analysis was performed, and the average composition was calculated.

(スパッタリングターゲットの体積抵抗率)
スパッタリングターゲットの体積抵抗率は、スパッタリングターゲットの表面を5点(中心1点、外周付近4点)測定し、それらの平均値とした。測定には、以下の装置を使用した。
装置:NPS社製 抵抗率測定器 Σ-5+
方式:定電流印加方式
方法:直流4探針法
(Volume resistivity of sputtering target)
The volume resistivity of the sputtering target was obtained by measuring the surface of the sputtering target at 5 points (1 point at the center and 4 points near the outer periphery) and taking the average value thereof. The following equipment was used for the measurement.
Apparatus: Resistivity measuring instrument Σ-5+ manufactured by NPS
Method: Constant current application method Method: DC 4-probe method

(スパッタリングターゲットの相対密度について)
相対密度(%)=アルキメデス密度/真密度×100
アルキメデス密度:スパッタリングターゲットターゲットから小片を切り出して、その小片からアルキメデス法を用いて密度を算出する。
真密度:元素分析からCu、Wの原子比を計算し、原子比からCuのCuO換算重量をa(wt%)、WのWO3換算重量をb(wt%)とし、CuO、WO3の理論密度をそれぞれdCuO、dWO3として、真密度(g/cm3)=100/(a/dCuO+b/dWO3)を計算する。なお、CuOの理論密度dCuO=6.31g/cm3、WO3の理論密度をdWO3=7.16g/cm3、とする。
(Regarding the relative density of the sputtering target)
Relative density (%) = Archimedes density / true density x 100
Archimedes Density: A small piece is cut from the sputtering target and the density is calculated from the piece using the Archimedes method.
True density: Calculate the atomic ratio of Cu and W from elemental analysis. Assuming that the theoretical densities are d CuO and d WO3 , the true density (g/cm 3 )=100/(a/d CuO +b/d WO3 ) is calculated. The theoretical density of CuO is d CuO =6.31 g/cm 3 , and the theoretical density of WO 3 is d WO3 =7.16 g/cm 3 .

(仕事関数について)
バルク体(スパッタリングターゲット)については、縦:20mm、横:10mm、厚み:5~10mmのサンプルを作製した。測定面は番手2000番の研磨紙を用いて研磨を行った。また、スパッタ膜についてはSi基板上に成膜した20×20mmのサンプルを作製し、以下の条件で測定を実施した。なお、仕事関数の測定結果はサンプルのサイズに依存しないものである。また、測定面を研磨しない或いは番手の低い研磨紙で研磨し、表面の研磨が不十分な場合には、仕事関数を正確に測定することができず、その値が高く測定されることがある。
方式:大気中光電子分光法
装置:理研計器製 AC-5装置
条件:測定可能な仕事関数の範囲:3.4eV~6.2eV
光源パワー:2000W
(About work function)
As for the bulk body (sputtering target), a sample having a length of 20 mm, a width of 10 mm, and a thickness of 5 to 10 mm was produced. The surface to be measured was polished using abrasive paper of No. 2000 count. As for the sputtered film, a sample of 20×20 mm formed on a Si substrate was prepared and measured under the following conditions. It should be noted that the measurement result of the work function does not depend on the size of the sample. In addition, if the surface to be measured is not polished or is polished with a low-grade abrasive paper and the surface is insufficiently polished, the work function cannot be measured accurately, and its value may be measured high. .
Method: Atmospheric photoelectron spectroscopy Apparatus: Riken Keiki AC-5 apparatus Conditions: Measurable work function range: 3.4 eV to 6.2 eV
Light source power: 2000W

以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, description will be made based on examples and comparative examples. It should be noted that this embodiment is merely an example, and the present invention is not limited by this example. That is, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.

(実施例1)
CuO粉とWO3粉を準備し、これらの粉末をCuO:WO3=50:50(mol%)で秤量した。次に、3.0mmのジルコニアビーズを用いて24時間湿式ボールミル混合粉砕を実施し、メジアン径0.8μm以下の混合粉末を得た。次に、この混合粉末を面圧400kgf/cm2の条件で加圧した後に圧力1800kgf/cm2の条件でCIPを行い、成型体を作製した。
次に、酸素フロー中、焼結温度940℃で10時間、常圧焼結して焼結体を作製した。その後、この焼結体を機械加工してスパッタリングターゲット形状に仕上げた。
実施例1で得られたスパッタリングターゲットについて評価した結果、相対密度は103.3%であり、体積抵抗率は1.0×103Ω・cmであった。また、スパッタリングターゲットについて仕事関数を測定した結果、4.5eVと高仕事関数のものが得られた。以上の結果を表1に示す。なお、スパッタリングターゲットについて成分分析した結果、原料の仕込み時の比率とほとんど変化がないことを確認した。
(Example 1)
CuO powder and WO3 powder were prepared, and these powders were weighed at CuO :WO3 = 50:50 (mol%). Next, wet ball mill mixing pulverization was performed for 24 hours using zirconia beads of 3.0 mm to obtain a mixed powder having a median diameter of 0.8 μm or less. Next, this mixed powder was pressurized at a surface pressure of 400 kgf/cm 2 and then subjected to CIP at a pressure of 1800 kgf/cm 2 to produce a compact.
Next, normal pressure sintering was performed at a sintering temperature of 940° C. for 10 hours in an oxygen flow to produce a sintered body. After that, this sintered body was machined and finished into a sputtering target shape.
As a result of evaluating the sputtering target obtained in Example 1, the relative density was 103.3% and the volume resistivity was 1.0×10 3 Ω·cm. Moreover, as a result of measuring the work function of the sputtering target, a high work function of 4.5 eV was obtained. Table 1 shows the above results. As a result of component analysis of the sputtering target, it was confirmed that there was almost no change from the ratio of the raw materials when they were charged.

Figure 0007162647000001
Figure 0007162647000001

(実施例2~5)
CuO粉とWO3粉を準備し、これらの粉末を表1に記載するモル比となるように秤量した。次に、3.0mmのジルコニアビーズを用いて24時間湿式ボールミル混合粉砕を実施し、メジアン径0.8μm以下の混合粉末を得た。次に、この混合粉末を面圧400kgf/cm2の条件で加圧した後に、圧力1800kgf/cm2の条件でCIPを行い、成型体を作製した。
次に、酸素フロー中、焼結温度940℃で、10時間、常圧焼結して焼結体を作製した。その後、それぞれの焼結体を機械加工してスパッタリングターゲット形状に仕上げた。
実施例2~5のスパッタリングターゲットは、いずれも相対密度が99%以上であり、体積抵抗率は1.0×103Ω・cm以下であった。また、スパッタリングターゲットについて仕事関数を測定した結果、いずれも4.5eVと高仕事関数であった。なお、スパッタリングターゲットについて成分分析した結果、いずれも原料の仕込み時の比率とほとんど変化がないことを確認した。
(Examples 2-5)
CuO powder and WO 3 powder were prepared, and these powders were weighed so as to have the molar ratios shown in Table 1. Next, wet ball mill mixing pulverization was performed for 24 hours using zirconia beads of 3.0 mm to obtain a mixed powder having a median diameter of 0.8 μm or less. Next, after pressurizing this mixed powder under the condition of a surface pressure of 400 kgf/cm 2 , CIP was performed under the condition of a pressure of 1800 kgf/cm 2 to produce a compact.
Next, normal pressure sintering was performed at a sintering temperature of 940° C. for 10 hours in an oxygen flow to produce a sintered body. After that, each sintered body was machined and finished into a sputtering target shape.
The sputtering targets of Examples 2 to 5 all had relative densities of 99% or more and volume resistivities of 1.0×10 3 Ω·cm or less. Moreover, as a result of measuring the work function of the sputtering targets, all of them had a high work function of 4.5 eV. As a result of component analysis of the sputtering target, it was confirmed that there was almost no change from the ratio of the raw materials when they were charged.

(比較例1)
比較例1では、CuO粉のみとし、WO3粉は使用しなかった。Cu粉を3.0mmのジルコニアビーズを用いて24時間湿式ボールミル混合粉砕を実施し、メジアン径0.8μm以下の混合粉を得た。次に、この混合粉末を面圧400kgf/cm2の条件で加圧した後に、圧力1800kgf/cm2の条件でCIPを行い、成型体を作製した。
次に、酸素フロー中、焼結温度950℃で、10時間、常圧焼結して焼結体を作製した。その後、この焼結体を機械加工してスパッタリングターゲット形状に仕上げた。
比較例1で得られたスパッタリングターゲットについて評価した結果、相対密度は98.3%であり、体積抵抗率は3.3×105 Ω・cmであった。また、スパッタリングターゲットについて仕事関数を測定した結果、4.2eVであった。なお、スパッタリングターゲットについて成分分析した結果、いずれも原料の仕込み時の比率とほとんど変化がないことを確認した。
(Comparative example 1)
In Comparative Example 1, only CuO powder was used, and WO3 powder was not used. The Cu powder was mixed and pulverized by a wet ball mill for 24 hours using zirconia beads of 3.0 mm to obtain a mixed powder having a median diameter of 0.8 μm or less. Next, after pressurizing this mixed powder under the condition of a surface pressure of 400 kgf/cm 2 , CIP was performed under the condition of a pressure of 1800 kgf/cm 2 to produce a compact.
Next, a sintered body was produced by normal pressure sintering at a sintering temperature of 950° C. for 10 hours in an oxygen flow. After that, this sintered body was machined and finished into a sputtering target shape.
As a result of evaluating the sputtering target obtained in Comparative Example 1, the relative density was 98.3% and the volume resistivity was 3.3×10 5 Ω·cm. Moreover, the work function of the sputtering target was measured and found to be 4.2 eV. As a result of component analysis of the sputtering target, it was confirmed that there was almost no change from the ratio of the raw materials when they were charged.

(比較例2、3)
比較例2、3では、WO3粉のみとし、CuO粉は使用しなかった。WO3粉を3.0mmのジルコニアビーズを用いて24時間湿式ボールミル混合粉砕を実施し、メジアン径0.8μm以下の混合粉末を得た。次に、この混合粉末を面圧400kgf/cm2の条件で加圧した後に、圧力1800kgf/cm2の条件でCIPを行い、成型体を作製した。
次に、酸素フロー中、焼結温度を1100℃(比較例2)、940℃(比較例3)とし、10時間、常圧焼結して焼結体を作製した。その後、この焼結体を機械加工してスパッタリングターゲット形状に仕上げた。
比較例2、3で得られたスパッタリングターゲットについて評価した結果、いずれも相対密度は95%未満であり、体積抵抗率は1.0×103 Ω・cm超であった。また、スパッタリングターゲットについて仕事関数を測定した結果、4.4eVであった。なお、スパッタリングターゲットについて成分分析した結果、いずれも原料の仕込み時の比率とほとんど変化がないことを確認した。
(Comparative Examples 2 and 3)
In Comparative Examples 2 and 3 , only WO3 powder was used, and CuO powder was not used. The WO 3 powder was subjected to wet ball mill mixing pulverization for 24 hours using zirconia beads of 3.0 mm to obtain mixed powder having a median diameter of 0.8 μm or less. Next, after pressurizing this mixed powder under the condition of a surface pressure of 400 kgf/cm 2 , CIP was performed under the condition of a pressure of 1800 kgf/cm 2 to produce a compact.
Next, the sintering temperature was set to 1100° C. (Comparative Example 2) and 940° C. (Comparative Example 3) in an oxygen flow for 10 hours at normal pressure to produce sintered bodies. After that, this sintered body was machined and finished into a sputtering target shape.
As a result of evaluating the sputtering targets obtained in Comparative Examples 2 and 3, the relative density was less than 95% and the volume resistivity was more than 1.0×10 3 Ω·cm. Moreover, the work function of the sputtering target was measured and found to be 4.4 eV. As a result of component analysis of the sputtering target, it was confirmed that there was almost no change from the ratio of the raw materials when they were charged.

(比較例4)
CuO粉とWO3粉を準備し、これらの粉末をCuO:WO3=30:70(mol%)で秤量した。次に、3.0mmのジルコニアビーズを用いて24時間湿式ボールミル混合粉砕を実施し、メジアン径0.8μm以下の混合粉末を得た。この混合粉末を面圧400kgf/cm2の条件で加圧した後に、圧力1800kgf/cm2の条件でCIPを行い、成型体を作製した。
次に、酸素フロー中、焼結温度850℃で、10時間、常圧焼結して焼結体を作製した。その後、この焼結体を機械加工してスパッタリングターゲット形状に仕上げた。
比較例4で得られたスパッタリングターゲットについて評価した結果、体積抵抗率は3.1×104Ω・cmであった。
(Comparative Example 4)
CuO powder and WO3 powder were prepared, and these powders were weighed at CuO :WO3 = 30:70 (mol%). Next, wet ball mill mixing pulverization was performed for 24 hours using zirconia beads of 3.0 mm to obtain a mixed powder having a median diameter of 0.8 μm or less. After pressurizing this mixed powder at a surface pressure of 400 kgf/cm 2 , CIP was performed at a pressure of 1800 kgf/cm 2 to produce a compact.
Next, a sintered body was produced by normal pressure sintering at a sintering temperature of 850° C. for 10 hours in an oxygen flow. After that, this sintered body was machined and finished into a sputtering target shape.
As a result of evaluating the sputtering target obtained in Comparative Example 4, the volume resistivity was 3.1×10 4 Ω·cm.

次に、実施例3のスパッタリングターゲットを用いてスパッタ成膜を行った。なお、成膜条件は以下の通りとした。得られたスパッタ膜について、仕事関数を測定した結果、Arガス下では4.6eVであり、Arガス+6%O2下では4.8eV、と所望の高い仕事関数が得られた。なお、スパッタ膜について成分分析した結果、原料の仕込み時の比率とほとんど変化がないことを確認した。
(成膜条件)
装置:キャノンアネルバ製 SPL-500スパッタ装置
基板:シリコン基板
成膜パワー密度:1.0W/cm2
成膜雰囲気:Ar又はAr+6%O2
ガス圧:0.5Pa
膜厚:50nm
Next, using the sputtering target of Example 3, sputtering film formation was performed. The film formation conditions were as follows. As a result of measuring the work function of the obtained sputtered film, it was 4.6 eV under Ar gas and 4.8 eV under Ar gas + 6% O 2 , which were the desired high work functions. As a result of component analysis of the sputtered film, it was confirmed that there was almost no change from the ratio of the raw materials when they were charged.
(Deposition conditions)
Apparatus: SPL-500 sputtering apparatus manufactured by Canon ANELVA Substrate: Silicon substrate Deposition power density: 1.0 W/cm 2
Deposition atmosphere: Ar or Ar+6% O 2
Gas pressure: 0.5 Pa
Film thickness: 50 nm

本発明の実施形態に係るCu-W-Oスパッタリングターゲットは、体積抵抗率が低く、DCスパッタリングが可能であり、さらに相対密度が高く、成膜時にターゲットに割れやクラックが発生することがなく、実用的、商業的レベルで使用することができる。本発明は、特に有機エレクトロルミネッセンス素子などの発光素子における透明電極を形成するために有用である。 The Cu—W—O sputtering target according to the embodiment of the present invention has a low volume resistivity, is capable of DC sputtering, has a high relative density, and does not cause cracks or cracks in the target during film formation. It can be used on a practical, commercial level. INDUSTRIAL APPLICABILITY The present invention is particularly useful for forming transparent electrodes in light-emitting devices such as organic electroluminescence devices.

Claims (4)

タングステン(W)、銅(Cu)、酸素(O)及び不可避的不純物からなるスパッタリングターゲットであって、体積抵抗率が1.0×10Ω・cm以下であり、仕事関数が4.5eV以上を満たすCu-W-Oスパッタリングターゲット。 A sputtering target comprising tungsten (W), copper (Cu), oxygen (O) and unavoidable impurities, having a volume resistivity of 1.0×10 3 Ω·cm or less and a work function of 4.5 eV A Cu—W—O sputtering target that satisfies the above . 相対密度が95%以上である請求項1に記載のCu-W-Oスパッタリングターゲット。 The Cu-WO sputtering target according to claim 1, having a relative density of 95% or more. WとCuの含有比率が原子比で0.5≦W/(Cu+W)<1を満たす請求項1又は2記載のCu-W-Oスパッタリングターゲット。 3. The Cu-WO sputtering target according to claim 1, wherein the content ratio of W and Cu satisfies the atomic ratio of 0.5≦W/(Cu+W)<1. タングステン(W)、銅(Cu)、酸素(O)及び不可避的不純物からなる薄膜であって、WとCuの含有比率が原子比で0.5≦W/(Cu+W)<1を満たし、仕事関数が4.5eV以上を満たす酸化物薄膜。 A thin film composed of tungsten (W), copper (Cu), oxygen (O) and unavoidable impurities, wherein the content ratio of W and Cu satisfies 0.5 ≤ W / (Cu + W) < 1 in atomic ratio, An oxide thin film having a work function of 4.5 eV or more .
JP2020154239A 2020-09-15 2020-09-15 Cu-W-O sputtering target and oxide thin film Active JP7162647B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020154239A JP7162647B2 (en) 2020-09-15 2020-09-15 Cu-W-O sputtering target and oxide thin film
TW110108651A TWI837462B (en) 2020-09-15 2021-03-11 Cu-W-O sputtering target and oxide film
CN202110422866.1A CN114182216A (en) 2020-09-15 2021-04-20 Cu-W-O sputtering target and oxide thin film
KR1020210120384A KR20220036347A (en) 2020-09-15 2021-09-09 Cu-W-O CuW-O SPUTTERING TARGET AND OXIDE THIN FILM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020154239A JP7162647B2 (en) 2020-09-15 2020-09-15 Cu-W-O sputtering target and oxide thin film

Publications (2)

Publication Number Publication Date
JP2022048423A JP2022048423A (en) 2022-03-28
JP7162647B2 true JP7162647B2 (en) 2022-10-28

Family

ID=80601322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020154239A Active JP7162647B2 (en) 2020-09-15 2020-09-15 Cu-W-O sputtering target and oxide thin film

Country Status (3)

Country Link
JP (1) JP7162647B2 (en)
KR (1) KR20220036347A (en)
CN (1) CN114182216A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180449A (en) 2009-02-04 2010-08-19 Sumitomo Metal Mining Co Ltd Target material of composite tungsten oxide, and method for manufacturing the same
JP2011084804A (en) 2009-09-18 2011-04-28 Kobelco Kaken:Kk Metal oxide-metal composite sputtering target
JP2012023388A (en) 2005-02-16 2012-02-02 Massachusetts Inst Of Technol <Mit> Light emitting devices including semiconductor nanocrystals
JP2012142569A5 (en) 2011-12-15 2014-12-18
JP6377230B1 (en) 2017-10-20 2018-08-22 デクセリアルズ株式会社 Mn-W-Cu-O-based sputtering target and method for producing the same
US20190123292A1 (en) 2017-10-20 2019-04-25 Lg Display Co., Ltd. Anisotropic nanorod-applied light-emitting diode and light-emitting device including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2693599B2 (en) 1989-11-06 1997-12-24 日本タングステン株式会社 Target and its manufacturing method
US9202822B2 (en) * 2010-12-17 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2013076163A (en) 2011-09-15 2013-04-25 Mitsubishi Materials Corp Sputtering target and method for manufacturing the same
JP6125689B1 (en) * 2016-03-31 2017-05-10 Jx金属株式会社 Indium oxide-zinc oxide (IZO) sputtering target

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023388A (en) 2005-02-16 2012-02-02 Massachusetts Inst Of Technol <Mit> Light emitting devices including semiconductor nanocrystals
JP2010180449A (en) 2009-02-04 2010-08-19 Sumitomo Metal Mining Co Ltd Target material of composite tungsten oxide, and method for manufacturing the same
JP2011084804A (en) 2009-09-18 2011-04-28 Kobelco Kaken:Kk Metal oxide-metal composite sputtering target
JP2012142569A5 (en) 2011-12-15 2014-12-18
JP6377230B1 (en) 2017-10-20 2018-08-22 デクセリアルズ株式会社 Mn-W-Cu-O-based sputtering target and method for producing the same
US20190123292A1 (en) 2017-10-20 2019-04-25 Lg Display Co., Ltd. Anisotropic nanorod-applied light-emitting diode and light-emitting device including the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Le Chen, Sudhakar Shet, Houwen Tang, Kwang-soon Ahn, Heli Wang, Yanfa Yan, John Turner, and Mowafak Al-Jassim,Amorphous coppertungsten oxide with tunable band gaps,Journal of Applied Physics,米国,2010年08月16日,vol.108, No.4,043502
Yuancheng Chang, Artur Braun, Alexander Deangelis, Jess Kaneshiro, and Nicolas Gaillard,Effect of Thermal Treatment on the Crystallographic, Surface Energetics, and Photoelectrochemical Properties of Reactively Cosputtered Copper Tungstate for Water Splitting,The Journal of Physical Chemistry,米国,2011年11月14日,vol.115, No.51,25490-25495

Also Published As

Publication number Publication date
TW202212595A (en) 2022-04-01
JP2022048423A (en) 2022-03-28
KR20220036347A (en) 2022-03-22
CN114182216A (en) 2022-03-15

Similar Documents

Publication Publication Date Title
KR102367663B1 (en) Oxide sputtering target, manufacturing method thereof, and oxide thin film formed using the sputtering target
CN110637102B (en) Oxide thin film and oxide sintered body for sputtering target for producing the same
JP6291593B2 (en) ITO sputtering target, manufacturing method thereof, and manufacturing method of ITO transparent conductive film
WO2015122417A1 (en) Sintered oxide and sputtering target
JP5082928B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5082927B2 (en) Method for producing ZnO vapor deposition material
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
JP7162647B2 (en) Cu-W-O sputtering target and oxide thin film
JP4962355B2 (en) ZnO vapor deposition material and ZnO film formed thereby
WO2007055231A1 (en) SnO2 SPUTTERING TARGET AND PROCESS FOR PRODUCING SAME
JP5532093B2 (en) ZnO vapor deposition material and method of forming ZnO film using the same
TWI837462B (en) Cu-W-O sputtering target and oxide film
JP5018553B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
KR20080069193A (en) Fired material and process for producing the same
JP5907086B2 (en) Indium oxide-based oxide sintered body and method for producing the same
JP7436409B2 (en) Oxide sputtering target, its manufacturing method, and oxide thin film
JP4962356B2 (en) ZnO vapor deposition material and ZnO film formed thereby
JP5018552B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP2004339607A (en) Transparent electroconductive film and sputtering target
TWI768149B (en) Oxide sintered body, sputtering target and transparent conductive film
CN111364011B (en) Sputtering target member, sputtering film, method for producing same, sputtering target, and film body
WO2022255266A1 (en) Sputtering target and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220617

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221018

R150 Certificate of patent or registration of utility model

Ref document number: 7162647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150