JP2022048423A - Cu-W-O SPUTTERING TARGET AND OXIDE THIN FILM - Google Patents

Cu-W-O SPUTTERING TARGET AND OXIDE THIN FILM Download PDF

Info

Publication number
JP2022048423A
JP2022048423A JP2020154239A JP2020154239A JP2022048423A JP 2022048423 A JP2022048423 A JP 2022048423A JP 2020154239 A JP2020154239 A JP 2020154239A JP 2020154239 A JP2020154239 A JP 2020154239A JP 2022048423 A JP2022048423 A JP 2022048423A
Authority
JP
Japan
Prior art keywords
sputtering target
work function
volume resistivity
sputtering
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020154239A
Other languages
Japanese (ja)
Other versions
JP7162647B2 (en
Inventor
慧 宗安
Kei Soan
幸三 長田
Kozo Osada
淳史 奈良
Atsushi Nara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2020154239A priority Critical patent/JP7162647B2/en
Priority to TW110108651A priority patent/TWI837462B/en
Priority to CN202110422866.1A priority patent/CN114182216A/en
Priority to KR1020210120384A priority patent/KR20220036347A/en
Publication of JP2022048423A publication Critical patent/JP2022048423A/en
Application granted granted Critical
Publication of JP7162647B2 publication Critical patent/JP7162647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

To provide a low-volume resistivity sputtering target capable of depositing a film with a high work function.SOLUTION: A sputtering target is composed of tungsten (W), copper (Cu), oxygen (O) and an inevitable impurity, and has a volume resistivity of 1.0×103 Ω cm or less, preferably 1.0×102 Ω cm or less. In addition, the sputtering target has a relative density of 95% or more and satisfies 0.5≤W/(Cu+W)<1, an inclusion ratio of W and Cu in an atomic ratio. A sputtering target with a volume resistivity of 1.0×103 Ω cm or less allows a DC sputtering, enabling a high-rate deposition.SELECTED DRAWING: None

Description

本発明は、仕事関数の高い酸化物薄膜を成膜するのに適したCu-W-Oスパッタリングターゲットに関する。 The present invention relates to a Cu—W—O sputtering target suitable for forming an oxide thin film having a high work function.

有機エレクトロルミネッセンス(有機EL)素子などの発光素子における透明電極(陽極)としてITO(インジウム・スズ酸化物)が用いられている。陽極に電圧を印加することで注入された正孔は、正孔輸送層を経由して、発光層で電子と結合する。近年、正孔輸送層への電荷注入効率を向上させる目的で、ITOよりも仕事関数が高い酸化物を用いることが研究されている。たとえば、非特許文献1には、有機半導体デバイスにおける酸化物薄膜として、TiO2、MoO2、CuO、NiO、WO3、V25、CrO3、Ta25、Co34などの高い仕事関数のものが報告されている。 ITO (indium tin oxide) is used as a transparent electrode (anode) in a light emitting element such as an organic electroluminescence (organic EL) element. The holes injected by applying a voltage to the anode pass through the hole transport layer and combine with electrons in the light emitting layer. In recent years, it has been studied to use an oxide having a higher work function than ITO for the purpose of improving the charge injection efficiency into the hole transport layer. For example, Non-Patent Document 1 describes oxide thin films in organic semiconductor devices such as TiO 2 , MoO 2 , CuO, NiO, WO 3 , V 2 O 5 , CrO 3 , Ta 2 O 5 , and Co 3 O 4 . Those with high work functions have been reported.

非特許文献1に示されるように、WO3は比較的高い仕事関数を有する。このWO3膜は酸化タングステン焼結体からなるスパッタリングターゲットを用いて成膜することができるが(特許文献1、2)、WO3単相では焼結体の高密度化が困難であり、また、体積抵抗率が高いために、DCスパッタリングが困難であった。そのため、特許文献2には、WO3にWO2を添加することで、焼結体の高密度化を達成し、導電性を高めてDCスパッタリングを可能とすることが開示されている。また、特許文献1には、酸素供給雰囲気中、WO3粉末をホットプレスすることで、焼結体の密度を高めることが開示されている。 As shown in Non-Patent Document 1, WO 3 has a relatively high work function. This WO 3 film can be formed by using a sputtering target made of a tungsten oxide sintered body (Patent Documents 1 and 2), but it is difficult to increase the density of the sintered body with the WO 3 single phase. DC sputtering was difficult due to the high volume resistance. Therefore, Patent Document 2 discloses that by adding WO 2 to WO 3 , the high density of the sintered body is achieved, the conductivity is enhanced, and DC sputtering is possible. Further, Patent Document 1 discloses that the density of the sintered body is increased by hot-pressing the WO 3 powder in an oxygen supply atmosphere.

特開平3-150357号公報Japanese Unexamined Patent Publication No. 3-150357 特開2013-76163号公報Japanese Unexamined Patent Publication No. 2013-76163

Mark T Greiner and Zheng-Hong Lu, "Thin-Film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces", NPG Asia Materials (2013) 5,e55, 19 July 2013Mark T Greiner and Zheng-Hong Lu, "Thin-Film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces", NPG Asia Materials (2013) 5,e55, 19 July 2013

上述の通り、有機ELなどの有機半導体デバイスを構成する膜として、仕事関数の高い酸化物膜が求められている。高い仕事関数を示す材料としてWO3などが挙げられるが、WO3などの膜を形成する場合、成膜に使用するスパッタリングターゲットの体積抵抗率が高いため、高速成膜が可能なDCスパッタリングができないという問題があった。このようなことから、本発明は、上述の課題を解決するために提案されたものであって、仕事関数の高い膜を成膜することが可能な、体積抵抗率の低いスパッタリングターゲットを提供することを課題とする。 As described above, an oxide film having a high work function is required as a film constituting an organic semiconductor device such as an organic EL. WO 3 etc. can be mentioned as a material showing a high work function, but when forming a film such as WO 3 , DC sputtering capable of high-speed film formation cannot be performed because the volume resistivity of the sputtering target used for film formation is high. There was a problem. Therefore, the present invention has been proposed to solve the above-mentioned problems, and provides a sputtering target having a low volume resistivity, which can form a film having a high work function. That is the issue.

本発明は、上記課題を解決するために提案されたものであって、その課題を解決できる本発明の態様は、タングステン(W)、銅(Cu)、酸素(O)及び不可避的不純物からなるスパッタリングターゲットであり、体積抵抗率が1.0×103Ω・cm以下であるCu-W-Oスパッタリングターゲットである。 The present invention has been proposed to solve the above problems, and the embodiment of the present invention capable of solving the problems comprises tungsten (W), copper (Cu), oxygen (O) and unavoidable impurities. It is a sputtering target and is a Cu—W—O sputtering target having a volume resistivity of 1.0 × 10 3 Ω · cm or less.

本発明によれば、仕事関数の高い膜を成膜することができるスパッタリングターゲットであって、体積抵抗率が低いため、DCスパッタリングが可能となり、それにより、高速成膜が可能という優れた効果を有する。 According to the present invention, it is a sputtering target capable of forming a film having a high work function, and since it has a low volume resistivity, DC sputtering becomes possible, thereby achieving an excellent effect of enabling high-speed film formation. Have.

上述の通り、WO3は高い仕事関数を有するが、WO3単相では、DCスパッタリングが可能な体積抵抗率の低いスパッタリングターゲットを作製することは困難であった。また、他の仕事関数が高い酸化物の材料(例えば、CuO単相)を用いた場合も同様に、体積抵抗率が高く、DCスパッタリングが困難であった。このような問題に対して、本発明者らは鋭意研究したところ、CuOとWO3の混合系を作製することにより、高い仕事関数を維持しつつ、DCスパッタリングが可能な体積抵抗率の低いスパッタリングターゲットを得ることができるとの知見が得られ、本発明に至った。 As described above, WO 3 has a high work function, but it has been difficult to prepare a sputtering target having a low volume resistivity capable of DC sputtering with WO 3 single phase. Further, when another oxide material having a high work function (for example, CuO single phase) is used, the volume resistivity is also high and DC sputtering is difficult. As a result of diligent research on such problems, the present inventors have conducted diligent research, and by producing a mixed system of CuO and WO 3 , sputtering with a low volume resistance capable of DC sputtering while maintaining a high work function. The finding that a target can be obtained has led to the present invention.

本発明の実施形態に係るスパッタリングターゲット(Cu-W-Oスパッタリングターゲットという。)は、タングステン(W)、銅(Cu)、酸素(O)及び不可避的不純物からなり、体積抵抗率が1.0×103Ω・cm以下である。スパッタリングターゲットの体積抵抗率が1.0×103Ω・cm以下であれば、DCスパッタリングが可能となり、それによる高速成膜が可能となる。好ましくは体積抵抗率が1.0×102Ωcm以下である。これにより、さらに安定したDCスパッタリングによる高速成膜が可能となる。 The sputtering target (referred to as Cu—W—O sputtering target) according to the embodiment of the present invention is composed of tungsten (W), copper (Cu), oxygen (O) and unavoidable impurities, and has a volume resistance of 1.0. × 10 3 Ω · cm or less. If the volume resistivity of the sputtering target is 1.0 × 10 3 Ω · cm or less, DC sputtering is possible, and high-speed film formation is possible. Preferably, the volume resistivity is 1.0 × 10 2 Ωcm or less. This enables more stable high-speed film formation by DC sputtering.

本実施形態に係るスパッタリングターゲットは、W、Cu、O及び不可避的不純物からなり、WとCuの含有比率は、原子比でW/(Cu+W)≧0.5であることが好ましい。
W/(Cu+W)<0.5の場合、体積抵抗率が高くなり、また所望する高い仕事関数が得られないということがある。好ましくは、W/(Cu+W)≧0.7、より好ましくは、W/(Cu+W)≧0.8、さらに好ましくはW/(Cu+W)≧0.9である。また、WO3単相であると、上述の通り、スパッタリングターゲットの体積抵抗率が高いため、W/(Cu+W)<1とする。なお、前記不可避的不純物は、原料や製造過程などで混入する不純物であって、仕事関数などの特性に特に影響を及ぼさない量を含んでいてもよく、0.1wt%以下であれば、特に問題はないといえる。
The sputtering target according to the present embodiment is composed of W, Cu, O and unavoidable impurities, and the content ratio of W and Cu is preferably W / (Cu + W) ≧ 0.5 in atomic ratio.
When W / (Cu + W) <0.5, the volume resistivity may be high and the desired high work function may not be obtained. W / (Cu + W) ≧ 0.7, more preferably W / (Cu + W) ≧ 0.8, and even more preferably W / (Cu + W) ≧ 0.9. Further, in the case of WO 3 single phase, since the volume resistivity of the sputtering target is high as described above, W / (Cu + W) <1 is set. The unavoidable impurities are impurities mixed in the raw material, the manufacturing process, etc., and may contain an amount that does not particularly affect the characteristics such as the work function, and if it is 0.1 wt% or less, in particular. It can be said that there is no problem.

本実施形態に係るスパッタリングターゲットは、相対密度が95%以上であることが好ましい。好ましくは相対密度98%以上である。このような高密度のスパッタリングターゲットは、スパッタリングの際にクラックや割れを防ぐことができ、成膜時のパーティクルを低減することができる。また、スパッタリングターゲットの相対密度は、体積抵抗率とも関連し、相対密度の値が低くなると、体積抵抗率が高くなる傾向にある。そのため、体積抵抗率を下げるためには、スパッタリングターゲットのWとCuの含有比率のほか、スパッタリングターゲットの製造方法や製造条件を厳格に調整して、相対密度を高める必要がある。 The sputtering target according to this embodiment preferably has a relative density of 95% or more. The relative density is preferably 98% or more. Such a high-density sputtering target can prevent cracks and cracks during sputtering, and can reduce particles during film formation. Further, the relative density of the sputtering target is also related to the volume resistivity, and the volume resistivity tends to increase as the value of the relative density decreases. Therefore, in order to reduce the volume resistivity, it is necessary to strictly adjust the W and Cu content ratio of the sputtering target, as well as the manufacturing method and manufacturing conditions of the sputtering target, to increase the relative density.

本発明の一実施形態に係るスパッタリングターゲットは、仕事関数が4.5eV以上である。このような高い仕事関数を有するスパッタリングターゲットを用いることにより、高い仕事関数を有する膜を作製することができる。そして、このような仕事関数が高い膜は、例えば、有機EL、有機太陽電池などの有機半導体デバイスにおいて正孔輸送層への電荷注入効率を向上させることができ、発光効率あるいは変換効率などの向上が期待できる。 The sputtering target according to the embodiment of the present invention has a work function of 4.5 eV or more. By using a sputtering target having such a high work function, a film having a high work function can be produced. A film having such a high work function can improve the charge injection efficiency into the hole transport layer in an organic semiconductor device such as an organic EL or an organic solar cell, and improve the luminous efficiency or the conversion efficiency. Can be expected.

以下に、本実施形態に係るスパッタリングターゲットの製造方法を示す。但し、以下の製造条件等は開示した範囲に限定するものではなく、いくらかの省略や変更を行ってもよいことは明らかである。 The method for manufacturing the sputtering target according to the present embodiment is shown below. However, the following manufacturing conditions, etc. are not limited to the disclosed scope, and it is clear that some omissions or changes may be made.

原料粉末として、酸化タングステン(WO3)粉末、酸化銅(CuO)粉末を準備し、これらの原料粉末を所望の組成比となるように秤量する。酸化銅としては、CuOの他、Cu2Oなどを用いることもできる。次に、ボール径が0.5~3.0mmのジルコニアビーズを用いて、湿式粉砕を行う。そして、粒径の中央値が0.1~5.0μmとなるまで粉砕を行い、その後、造粒を行う。次に得られた造粒粉をプレス成型する。プレス圧は300~400kgf/cm2で行うのが好ましい。その後、冷間静水圧加圧(CIP)を行う。CIP圧力は1000~2000kgf/cm2で行うのが好ましい。次に、得られた成型体を、酸素フロー中、10~20時間、常圧焼結を行う。このとき、焼結温度は900℃以上950℃未満とするのが好ましい。900℃未満であると、高密度の焼結体が得られず、一方、950℃以上であると、WO3とCuOと複合酸化物であるCuWO4が、アルミナの焼結部材と反応し、また熔解するため好ましくない。その後は、得られた焼結体をターゲット形状に切削、研磨などして、スパッタリングターゲットを作製することができる。なお、ホットプレス焼結を用いた場合、カーボンの焼結部材によって、CuOがCuに還元されて、部材の消耗が激しいということがある。 Tungsten oxide (WO 3 ) powder and copper oxide (CuO) powder are prepared as raw material powders, and these raw material powders are weighed so as to have a desired composition ratio. As the copper oxide, Cu 2 O or the like can be used in addition to Cu O. Next, wet pulverization is performed using zirconia beads having a ball diameter of 0.5 to 3.0 mm. Then, pulverization is performed until the median particle size becomes 0.1 to 5.0 μm, and then granulation is performed. Next, the obtained granulated powder is press-molded. The press pressure is preferably 300 to 400 kgf / cm 2 . Then, cold hydrostatic pressure pressurization (CIP) is performed. The CIP pressure is preferably 1000 to 2000 kgf / cm 2 . Next, the obtained molded body is subjected to normal pressure sintering for 10 to 20 hours in an oxygen flow. At this time, the sintering temperature is preferably 900 ° C. or higher and lower than 950 ° C. If the temperature is lower than 900 ° C, a high-density sintered body cannot be obtained, while if the temperature is 950 ° C or higher, WO 3 and CuO and Cu WO 4 , which is a composite oxide, react with the sintered member of alumina. Moreover, it is not preferable because it melts. After that, the obtained sintered body can be cut into a target shape, polished, or the like to produce a sputtering target. When hot press sintering is used, CuO may be reduced to Cu by the carbon sintering member, and the member may be heavily consumed.

本願明細書において、スパッタリングターゲット等の各種物性は、以下の測定方法を用いて解析した。
(スパッタリングターゲット及び膜の成分組成)
装置:SII社製SPS3500DD
方法:ICP-OES(高周波誘導結合プラズマ発光分析法)
(膜の成分組成)
装置:JEOL製JXA-8500F
方法:EPMA(電子線マイクロアナライザー)
加速電圧:5~10keV
照射電流:2.0×10-7~2.0~10-8
プローブ径:10μm
ゴミ等の付着がなく、基板面がみえていない平滑な成膜部分を5点選択し、点分析を行って、それらの平均組成を算出した。
In the specification of the present application, various physical properties such as a sputtering target were analyzed by using the following measuring methods.
(Sputtering target and film composition)
Equipment: SII SPS3500DD
Method: ICP-OES (High Frequency Inductively Coupled Plasma Emission Analysis)
(Membrane composition)
Equipment: JEOL JXA-8500F
Method: EPMA (Electron Microanalyzer)
Acceleration voltage: 5-10keV
Irradiation current: 2.0 × 10 -7 to 2.0 to 10 -8 A
Probe diameter: 10 μm
Five points of smooth film-forming portions where no dust or the like adhered and the substrate surface was not visible were selected, and point analysis was performed to calculate their average composition.

(スパッタリングターゲットの体積抵抗率)
スパッタリングターゲットの体積抵抗率は、スパッタリングターゲットの表面を5点(中心1点、外周付近4点)測定し、それらの平均値とした。測定には、以下の装置を使用した。
装置:NPS社製 抵抗率測定器 Σ-5+
方式:定電流印加方式
方法:直流4探針法
(Volume resistivity of sputtering target)
The volume resistivity of the sputtering target was measured at 5 points (1 point at the center and 4 points near the outer periphery) on the surface of the sputtering target and used as an average value thereof. The following equipment was used for the measurement.
Equipment: NPS resistivity measuring instrument Σ-5 +
Method: Constant current application method Method: DC 4 probe method

(スパッタリングターゲットの相対密度について)
相対密度(%)=アルキメデス密度/真密度×100
アルキメデス密度:スパッタリングターゲットターゲットから小片を切り出して、その小片からアルキメデス法を用いて密度を算出する。
真密度:元素分析からCu、Wの原子比を計算し、原子比からCuのCuO換算重量をa(wt%)、WのWO3換算重量をb(wt%)とし、CuO、WO3の理論密度をそれぞれdCuO、dWO3として、真密度(g/cm3)=100/(a/dCuO+b/dWO3)を計算する。なお、CuOの理論密度dCuO=6.31g/cm3、WO3の理論密度をdWO3=7.16g/cm3、とする。
(Relative density of sputtering target)
Relative density (%) = Archimedes density / true density x 100
Archimedes Density: Sputtering Target A small piece is cut out from the target, and the density is calculated from the small piece using the Archimedes method.
True density: The atomic ratios of Cu and W are calculated from the elemental analysis, and the CuO equivalent weight of Cu is a (wt%) and the WO 3 equivalent weight of W is b ( wt%) from the atomic ratio. Let the theoretical densities be d CuO and d WO3 , respectively, and calculate the true density (g / cm 3 ) = 100 / (a / d CuO + b / d WO3 ). The theoretical density of CuO is d CuO = 6.31 g / cm 3 , and the theoretical density of WO 3 is d WO 3 = 7.16 g / cm 3 .

(仕事関数について)
バルク体(スパッタリングターゲット)については、縦:20mm、横:10mm、厚み:5~10mmのサンプルを作製した。測定面は番手2000番の研磨紙を用いて研磨を行った。また、スパッタ膜についてはSi基板上に成膜した20×20mmのサンプルを作製し、以下の条件で測定を実施した。なお、仕事関数の測定結果はサンプルのサイズに依存しないものである。また、測定面を研磨しない或いは番手の低い研磨紙で研磨し、表面の研磨が不十分な場合には、仕事関数を正確に測定することができず、その値が高く測定されることがある。
方式:大気中光電子分光法
装置:理研計器製 AC-5装置
条件:測定可能な仕事関数の範囲:3.4eV~6.2eV
光源パワー:2000W
(About work function)
As for the bulk body (sputtering target), a sample having a length of 20 mm, a width of 10 mm, and a thickness of 5 to 10 mm was prepared. The measurement surface was polished using a polishing paper having a count of 2000. As for the sputtered film, a 20 × 20 mm sample formed on a Si substrate was prepared and measured under the following conditions. The measurement result of the work function does not depend on the size of the sample. In addition, if the measurement surface is not polished or is polished with low-count polishing paper and the surface is not sufficiently polished, the work function cannot be measured accurately, and the value may be measured high. ..
Method: Atmospheric photoelectron spectroscopy Equipment: AC-5 equipment manufactured by RIKEN Keiki Condition: Range of work functions that can be measured: 3.4 eV to 6.2 eV
Light source power: 2000W

以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, the description will be given based on Examples and Comparative Examples. It should be noted that this embodiment is merely an example, and is not limited by this example. That is, the present invention is limited only by the scope of claims, and includes various modifications other than the examples included in the present invention.

(実施例1)
CuO粉とWO3粉を準備し、これらの粉末をCuO:WO3=50:50(mol%)で秤量した。次に、3.0mmのジルコニアビーズを用いて24時間湿式ボールミル混合粉砕を実施し、メジアン径0.8μm以下の混合粉末を得た。次に、この混合粉末を面圧400kgf/cm2の条件で加圧した後に圧力1800kgf/cm2の条件でCIPを行い、成型体を作製した。
次に、酸素フロー中、焼結温度940℃で10時間、常圧焼結して焼結体を作製した。その後、この焼結体を機械加工してスパッタリングターゲット形状に仕上げた。
実施例1で得られたスパッタリングターゲットについて評価した結果、相対密度は103.3%であり、体積抵抗率は1.0×103Ω・cmであった。また、スパッタリングターゲットについて仕事関数を測定した結果、4.5eVと高仕事関数のものが得られた。以上の結果を表1に示す。なお、スパッタリングターゲットについて成分分析した結果、原料の仕込み時の比率とほとんど変化がないことを確認した。
(Example 1)
CuO powder and WO 3 powder were prepared, and these powders were weighed at CuO: WO 3 = 50: 50 (mol%). Next, wet ball mill mixing and pulverization was carried out using 3.0 mm zirconia beads for 24 hours to obtain a mixed powder having a median diameter of 0.8 μm or less. Next, after pressurizing this mixed powder under the condition of a surface pressure of 400 kgf / cm 2 , CIP was performed under the condition of a pressure of 1800 kgf / cm 2 to prepare a molded body.
Next, a sintered body was prepared by normal pressure sintering for 10 hours at a sintering temperature of 940 ° C. in an oxygen flow. Then, this sintered body was machined to form a sputtering target shape.
As a result of evaluating the sputtering target obtained in Example 1, the relative density was 103.3%, and the volume resistivity was 1.0 × 10 3 Ω · cm. Moreover, as a result of measuring the work function of the sputtering target, the one having a high work function of 4.5 eV was obtained. The above results are shown in Table 1. As a result of component analysis of the sputtering target, it was confirmed that there was almost no change in the ratio at the time of charging the raw materials.

Figure 2022048423000001
Figure 2022048423000001

(実施例2~5)
CuO粉とWO3粉を準備し、これらの粉末を表1に記載するモル比となるように秤量した。次に、3.0mmのジルコニアビーズを用いて24時間湿式ボールミル混合粉砕を実施し、メジアン径0.8μm以下の混合粉末を得た。次に、この混合粉末を面圧400kgf/cm2の条件で加圧した後に、圧力1800kgf/cm2の条件でCIPを行い、成型体を作製した。
次に、酸素フロー中、焼結温度940℃で、10時間、常圧焼結して焼結体を作製した。その後、それぞれの焼結体を機械加工してスパッタリングターゲット形状に仕上げた。
実施例2~5のスパッタリングターゲットは、いずれも相対密度が99%以上であり、体積抵抗率は1.0×103Ω・cm以下であった。また、スパッタリングターゲットについて仕事関数を測定した結果、いずれも4.5eVと高仕事関数であった。なお、スパッタリングターゲットについて成分分析した結果、いずれも原料の仕込み時の比率とほとんど変化がないことを確認した。
(Examples 2 to 5)
CuO powder and WO 3 powder were prepared and weighed these powders to the molar ratios shown in Table 1. Next, wet ball mill mixing and pulverization was carried out using 3.0 mm zirconia beads for 24 hours to obtain a mixed powder having a median diameter of 0.8 μm or less. Next, after pressurizing this mixed powder under the condition of a surface pressure of 400 kgf / cm 2 , CIP was performed under the condition of a pressure of 1800 kgf / cm 2 to prepare a molded body.
Next, a sintered body was prepared by normal pressure sintering for 10 hours at a sintering temperature of 940 ° C. in an oxygen flow. After that, each sintered body was machined to form a sputtering target shape.
The sputtering targets of Examples 2 to 5 had a relative density of 99% or more and a volume resistivity of 1.0 × 10 3 Ω · cm or less. Moreover, as a result of measuring the work function for the sputtering target, all of them had a high work function of 4.5 eV. As a result of component analysis of the sputtering target, it was confirmed that there was almost no change in the ratio at the time of charging the raw materials.

(比較例1)
比較例1では、CuO粉のみとし、WO3粉は使用しなかった。Cu粉を3.0mmのジルコニアビーズを用いて24時間湿式ボールミル混合粉砕を実施し、メジアン径0.8μm以下の混合粉を得た。次に、この混合粉末を面圧400kgf/cm2の条件で加圧した後に、圧力1800kgf/cm2の条件でCIPを行い、成型体を作製した。
次に、酸素フロー中、焼結温度950℃で、10時間、常圧焼結して焼結体を作製した。その後、この焼結体を機械加工してスパッタリングターゲット形状に仕上げた。
比較例1で得られたスパッタリングターゲットについて評価した結果、相対密度は98.3%であり、体積抵抗率は3.3×105 Ω・cmであった。また、スパッタリングターゲットについて仕事関数を測定した結果、4.2eVであった。なお、スパッタリングターゲットについて成分分析した結果、いずれも原料の仕込み時の比率とほとんど変化がないことを確認した。
(Comparative Example 1)
In Comparative Example 1, only CuO powder was used, and WO 3 powder was not used. The Cu powder was mixed and pulverized with a wet ball mill for 24 hours using 3.0 mm zirconia beads to obtain a mixed powder having a median diameter of 0.8 μm or less. Next, after pressurizing this mixed powder under the condition of a surface pressure of 400 kgf / cm 2 , CIP was performed under the condition of a pressure of 1800 kgf / cm 2 to prepare a molded body.
Next, a sintered body was prepared by normal pressure sintering for 10 hours at a sintering temperature of 950 ° C. in an oxygen flow. Then, this sintered body was machined to form a sputtering target shape.
As a result of evaluating the sputtering target obtained in Comparative Example 1, the relative density was 98.3% and the volume resistivity was 3.3 × 105 Ω · cm. Moreover, as a result of measuring the work function for the sputtering target, it was 4.2 eV. As a result of component analysis of the sputtering target, it was confirmed that there was almost no change in the ratio at the time of charging the raw materials.

(比較例2、3)
比較例2、3では、WO3粉のみとし、CuO粉は使用しなかった。WO3粉を3.0mmのジルコニアビーズを用いて24時間湿式ボールミル混合粉砕を実施し、メジアン径0.8μm以下の混合粉末を得た。次に、この混合粉末を面圧400kgf/cm2の条件で加圧した後に、圧力1800kgf/cm2の条件でCIPを行い、成型体を作製した。
次に、酸素フロー中、焼結温度を1100℃(比較例2)、940℃(比較例3)とし、10時間、常圧焼結して焼結体を作製した。その後、この焼結体を機械加工してスパッタリングターゲット形状に仕上げた。
比較例2、3で得られたスパッタリングターゲットについて評価した結果、いずれも相対密度は95%未満であり、体積抵抗率は1.0×103 Ω・cm超であった。また、スパッタリングターゲットについて仕事関数を測定した結果、4.4eVであった。なお、スパッタリングターゲットについて成分分析した結果、いずれも原料の仕込み時の比率とほとんど変化がないことを確認した。
(Comparative Examples 2 and 3)
In Comparative Examples 2 and 3, only WO 3 powder was used, and CuO powder was not used. The WO 3 powder was mixed and pulverized with a wet ball mill for 24 hours using 3.0 mm zirconia beads to obtain a mixed powder having a median diameter of 0.8 μm or less. Next, after pressurizing this mixed powder under the condition of a surface pressure of 400 kgf / cm 2 , CIP was performed under the condition of a pressure of 1800 kgf / cm 2 to prepare a molded body.
Next, in the oxygen flow, the sintering temperatures were set to 1100 ° C. (Comparative Example 2) and 940 ° C. (Comparative Example 3), and the sintered body was prepared by normal pressure sintering for 10 hours. Then, this sintered body was machined to form a sputtering target shape.
As a result of evaluating the sputtering targets obtained in Comparative Examples 2 and 3, the relative density was less than 95% and the volume resistivity was more than 1.0 × 10 3 Ω · cm. Moreover, as a result of measuring the work function for the sputtering target, it was 4.4 eV. As a result of component analysis of the sputtering target, it was confirmed that there was almost no change in the ratio at the time of charging the raw materials.

(比較例4)
CuO粉とWO3粉を準備し、これらの粉末をCuO:WO3=30:70(mol%)で秤量した。次に、3.0mmのジルコニアビーズを用いて24時間湿式ボールミル混合粉砕を実施し、メジアン径0.8μm以下の混合粉末を得た。この混合粉末を面圧400kgf/cm2の条件で加圧した後に、圧力1800kgf/cm2の条件でCIPを行い、成型体を作製した。
次に、酸素フロー中、焼結温度850℃で、10時間、常圧焼結して焼結体を作製した。その後、この焼結体を機械加工してスパッタリングターゲット形状に仕上げた。
比較例4で得られたスパッタリングターゲットについて評価した結果、体積抵抗率は3.1×104Ω・cmであった。
(Comparative Example 4)
CuO powder and WO 3 powder were prepared, and these powders were weighed at CuO: WO 3 = 30: 70 (mol%). Next, wet ball mill mixing and pulverization was carried out using 3.0 mm zirconia beads for 24 hours to obtain a mixed powder having a median diameter of 0.8 μm or less. After pressurizing this mixed powder under the condition of a surface pressure of 400 kgf / cm 2 , CIP was performed under the condition of a pressure of 1800 kgf / cm 2 to prepare a molded body.
Next, a sintered body was prepared by normal pressure sintering for 10 hours at a sintering temperature of 850 ° C. in an oxygen flow. Then, this sintered body was machined to form a sputtering target shape.
As a result of evaluating the sputtering target obtained in Comparative Example 4, the volume resistivity was 3.1 × 10 4 Ω · cm.

次に、実施例3のスパッタリングターゲットを用いてスパッタ成膜を行った。なお、成膜条件は以下の通りとした。得られたスパッタ膜について、仕事関数を測定した結果、Arガス下では4.6eVであり、Arガス+6%O2下では4.8eV、と所望の高い仕事関数が得られた。なお、スパッタ膜について成分分析した結果、原料の仕込み時の比率とほとんど変化がないことを確認した。
(成膜条件)
装置:キャノンアネルバ製 SPL-500スパッタ装置
基板:シリコン基板
成膜パワー密度:1.0W/cm2
成膜雰囲気:Ar又はAr+6%O2
ガス圧:0.5Pa
膜厚:50nm
Next, sputter film formation was performed using the sputtering target of Example 3. The film forming conditions were as follows. As a result of measuring the work function of the obtained sputter film, a desired high work function was obtained, which was 4.6 eV under Ar gas and 4.8 eV under Ar gas + 6% O 2 . As a result of component analysis of the sputtered film, it was confirmed that there was almost no change in the ratio at the time of charging the raw materials.
(Film formation conditions)
Equipment: Cannon Anerva SPL-500 Sputtering equipment Substrate: Silicon substrate Film formation power density: 1.0 W / cm 2
Film formation atmosphere: Ar or Ar + 6% O 2
Gas pressure: 0.5Pa
Film thickness: 50 nm

本発明の実施形態に係るCu-W-Oスパッタリングターゲットは、体積抵抗率が低く、DCスパッタリングが可能であり、さらに相対密度が高く、成膜時にターゲットに割れやクラックが発生することがなく、実用的、商業的レベルで使用することができる。本発明は、特に有機エレクトロルミネッセンス素子などの発光素子における透明電極を形成するために有用である。 The Cu—W—O sputtering target according to the embodiment of the present invention has a low volume resistivity, is capable of DC sputtering, has a high relative density, and does not cause cracks or cracks in the target during film formation. It can be used at a practical and commercial level. The present invention is particularly useful for forming transparent electrodes in light emitting devices such as organic electroluminescence devices.

Claims (6)

タングステン(W)、銅(Cu)、酸素(O)及び不可避的不純物からなるスパッタリングターゲットであって、体積抵抗率が1.0×103Ω・cm以下であるCu-W-Oスパッタリングターゲット。 A Cu—W—O sputtering target composed of tungsten (W), copper (Cu), oxygen (O) and unavoidable impurities and having a volume resistivity of 1.0 × 10 3 Ω · cm or less. 相対密度が95%以上である請求項1に記載のCu-W-Oスパッタリングターゲット。 The Cu—WO sputtering target according to claim 1, wherein the relative density is 95% or more. WとCuの含有比率が原子比で0.5≦W/(Cu+W)<1を満たす請求項1又は2記載のCu-W-Oスパッタリングターゲット。 The Cu—W—O sputtering target according to claim 1 or 2, wherein the content ratio of W and Cu satisfies 0.5 ≦ W / (Cu + W) <1 in atomic ratio. 仕事関数が4.3eV以上を満たす請求項1~3のいずれか一項に記載のCu-W-Oスパッタリングターゲット。 The Cu—W—O sputtering target according to any one of claims 1 to 3, wherein the work function satisfies 4.3 eV or more. タングステン(W)、銅(Cu)、酸素(O)及び不可避的不純物からなる薄膜であって、WとCuの含有比率が原子比で0.5≦W/(Cu+W)<1を満たす酸化物薄膜。 An oxide thin film composed of tungsten (W), copper (Cu), oxygen (O) and unavoidable impurities, in which the content ratio of W and Cu satisfies 0.5 ≦ W / (Cu + W) <1 in atomic ratio. Thin film. 仕事関数が4.5eV以上を満たす請求項5に記載の酸化物薄膜。 The oxide thin film according to claim 5, wherein the work function satisfies 4.5 eV or more.
JP2020154239A 2020-09-15 2020-09-15 Cu-W-O sputtering target and oxide thin film Active JP7162647B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020154239A JP7162647B2 (en) 2020-09-15 2020-09-15 Cu-W-O sputtering target and oxide thin film
TW110108651A TWI837462B (en) 2020-09-15 2021-03-11 Cu-W-O sputtering target and oxide film
CN202110422866.1A CN114182216A (en) 2020-09-15 2021-04-20 Cu-W-O sputtering target and oxide thin film
KR1020210120384A KR20220036347A (en) 2020-09-15 2021-09-09 Cu―W-O SPUTTERING TARGET AND OXIDE THIN FILM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020154239A JP7162647B2 (en) 2020-09-15 2020-09-15 Cu-W-O sputtering target and oxide thin film

Publications (2)

Publication Number Publication Date
JP2022048423A true JP2022048423A (en) 2022-03-28
JP7162647B2 JP7162647B2 (en) 2022-10-28

Family

ID=80601322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020154239A Active JP7162647B2 (en) 2020-09-15 2020-09-15 Cu-W-O sputtering target and oxide thin film

Country Status (3)

Country Link
JP (1) JP7162647B2 (en)
KR (1) KR20220036347A (en)
CN (1) CN114182216A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180449A (en) * 2009-02-04 2010-08-19 Sumitomo Metal Mining Co Ltd Target material of composite tungsten oxide, and method for manufacturing the same
JP2011084804A (en) * 2009-09-18 2011-04-28 Kobelco Kaken:Kk Metal oxide-metal composite sputtering target
JP2012023388A (en) * 2005-02-16 2012-02-02 Massachusetts Inst Of Technol <Mit> Light emitting devices including semiconductor nanocrystals
JP2012142569A (en) * 2010-12-17 2012-07-26 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method of the same
JP6377230B1 (en) * 2017-10-20 2018-08-22 デクセリアルズ株式会社 Mn-W-Cu-O-based sputtering target and method for producing the same
US20190123292A1 (en) * 2017-10-20 2019-04-25 Lg Display Co., Ltd. Anisotropic nanorod-applied light-emitting diode and light-emitting device including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2693599B2 (en) 1989-11-06 1997-12-24 日本タングステン株式会社 Target and its manufacturing method
JP2013076163A (en) 2011-09-15 2013-04-25 Mitsubishi Materials Corp Sputtering target and method for manufacturing the same
JP6125689B1 (en) * 2016-03-31 2017-05-10 Jx金属株式会社 Indium oxide-zinc oxide (IZO) sputtering target

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023388A (en) * 2005-02-16 2012-02-02 Massachusetts Inst Of Technol <Mit> Light emitting devices including semiconductor nanocrystals
JP2010180449A (en) * 2009-02-04 2010-08-19 Sumitomo Metal Mining Co Ltd Target material of composite tungsten oxide, and method for manufacturing the same
JP2011084804A (en) * 2009-09-18 2011-04-28 Kobelco Kaken:Kk Metal oxide-metal composite sputtering target
JP2012142569A (en) * 2010-12-17 2012-07-26 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method of the same
JP6377230B1 (en) * 2017-10-20 2018-08-22 デクセリアルズ株式会社 Mn-W-Cu-O-based sputtering target and method for producing the same
US20190123292A1 (en) * 2017-10-20 2019-04-25 Lg Display Co., Ltd. Anisotropic nanorod-applied light-emitting diode and light-emitting device including the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LE CHEN, SUDHAKAR SHET, HOUWEN TANG, KWANG-SOON AHN, HELI WANG, YANFA YAN, JOHN TURNER, AND MOWAFAK: "Amorphous coppertungsten oxide with tunable band gaps", JOURNAL OF APPLIED PHYSICS, vol. 108, no. 4, JPN7022001868, 16 August 2010 (2010-08-16), US, pages 043502, ISSN: 0004753860 *
YUANCHENG CHANG, ARTUR BRAUN, ALEXANDER DEANGELIS, JESS KANESHIRO, AND NICOLAS GAILLARD: "Effect of Thermal Treatment on the Crystallographic, Surface Energetics, and Photoelectrochemical Pr", THE JOURNAL OF PHYSICAL CHEMISTRY, vol. 115, no. 51, JPN6022015161, 14 November 2011 (2011-11-14), US, pages 25490 - 25495, ISSN: 0004753859 *

Also Published As

Publication number Publication date
JP7162647B2 (en) 2022-10-28
KR20220036347A (en) 2022-03-22
TW202212595A (en) 2022-04-01
CN114182216A (en) 2022-03-15

Similar Documents

Publication Publication Date Title
TWI761664B (en) Oxide sputtering target, manufacturing method thereof, and oxide thin film formed using the oxide sputtering target
TWI395231B (en) A transparent conductive film for a transparent conductive film and a transparent conductive film produced by using the transparent conductive film and a transparent conductive film
KR101006037B1 (en) Gallium oxide/zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
TW200538395A (en) Oxide sintered body, sputtering target, transparent conductive thin film and manufacturing method
JP6767723B2 (en) Oxide thin film and oxide sintered body for sputtering target for producing the thin film
JP5082928B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5082927B2 (en) Method for producing ZnO vapor deposition material
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
JP4962355B2 (en) ZnO vapor deposition material and ZnO film formed thereby
JP5532093B2 (en) ZnO vapor deposition material and method of forming ZnO film using the same
JP7162647B2 (en) Cu-W-O sputtering target and oxide thin film
JP5018553B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
TWI837462B (en) Cu-W-O sputtering target and oxide film
JP7436409B2 (en) Oxide sputtering target, its manufacturing method, and oxide thin film
JP4962356B2 (en) ZnO vapor deposition material and ZnO film formed thereby
TWI768149B (en) Oxide sintered body, sputtering target and transparent conductive film
JP5018552B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP2004339607A (en) Transparent electroconductive film and sputtering target
CN111364011B (en) Sputtering target member, sputtering film, method for producing same, sputtering target, and film body
JP2013147710A (en) Transparent film and method for producing the same, and sputtering target for transparent film formation
TW202314012A (en) Sputtering target and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220617

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221018

R150 Certificate of patent or registration of utility model

Ref document number: 7162647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150