KR20220036347A - Cu―W-O SPUTTERING TARGET AND OXIDE THIN FILM - Google Patents

Cu―W-O SPUTTERING TARGET AND OXIDE THIN FILM Download PDF

Info

Publication number
KR20220036347A
KR20220036347A KR1020210120384A KR20210120384A KR20220036347A KR 20220036347 A KR20220036347 A KR 20220036347A KR 1020210120384 A KR1020210120384 A KR 1020210120384A KR 20210120384 A KR20210120384 A KR 20210120384A KR 20220036347 A KR20220036347 A KR 20220036347A
Authority
KR
South Korea
Prior art keywords
sputtering target
work function
volume resistivity
sputtering
thin film
Prior art date
Application number
KR1020210120384A
Other languages
Korean (ko)
Inventor
게이 무네야스
고조 오사다
아츠시 나라
Original Assignee
제이엑스금속주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엑스금속주식회사 filed Critical 제이엑스금속주식회사
Publication of KR20220036347A publication Critical patent/KR20220036347A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

텅스텐(W), 구리(Cu), 산소(O) 및 불가피적 불순물을 포함하는 스퍼터링 타깃이며, 체적 저항률이 1.0×103Ω·cm 이하인 Cu-W-O 스퍼터링 타깃. 텅스텐(W), 구리(Cu), 산소(O) 및 불가피적 불순물을 포함하는 박막이며, W와 Cu의 함유 비율이 원자비로 0.5≤W/(Cu+W)<1을 만족시키는 산화물 박막. 본 발명은, 일함수가 높은 막을 성막하는 것이 가능한, 체적 저항률이 낮은 스퍼터링 타깃을 제공하는 것을 과제로 한다.A sputtering target containing tungsten (W), copper (Cu), oxygen (O) and inevitable impurities, and a Cu-WO sputtering target with a volume resistivity of 1.0×10 3 Ω·cm or less. It is a thin film containing tungsten (W), copper (Cu), oxygen (O) and inevitable impurities, and is an oxide thin film in which the content ratio of W and Cu satisfies 0.5≤W/(Cu+W)<1 in atomic ratio. . The object of the present invention is to provide a sputtering target with a low volume resistivity that is capable of forming a film with a high work function.

Description

Cu-W-O 스퍼터링 타깃 및 산화물 박막{Cu―W-O SPUTTERING TARGET AND OXIDE THIN FILM}Cu-W-O sputtering target and oxide thin film {Cu―W-O SPUTTERING TARGET AND OXIDE THIN FILM}

본 발명은, 일함수가 높은 산화물 박막을 성막하는데 적합한 Cu-W-O 스퍼터링 타깃에 관한 것이다.The present invention relates to a Cu-W-O sputtering target suitable for forming an oxide thin film with a high work function.

유기 일렉트로 루미네센스(유기 EL) 소자 등의 발광 소자에 있어서의 투명 전극(양극)으로서 ITO(인듐·주석 산화물)가 사용되고 있다. 양극에 전압을 인가함으로써 주입된 정공은, 정공 수송층을 경유하여, 발광층에서 전자와 결합한다. 근년, 정공 수송층으로의 전하 주입 효율을 향상시키는 목적으로, ITO보다도 일함수가 높은 산화물을 사용하는 것이 연구되고 있다. 예를 들어, 비특허문헌 1에는, 유기 반도체 디바이스에 있어서의 산화물 박막으로서, TiO2, MoO2, CuO, NiO, WO3, V2O5, CrO3, Ta2O5, Co3O4 등의 높은 일함수의 것이 보고되어 있다.ITO (indium tin oxide) is used as a transparent electrode (anode) in light-emitting devices such as organic electroluminescence (organic EL) devices. Holes injected by applying voltage to the anode combine with electrons in the light-emitting layer via the hole transport layer. In recent years, the use of oxides with a higher work function than ITO has been studied for the purpose of improving charge injection efficiency into the hole transport layer. For example, in Non-Patent Document 1, as an oxide thin film in an organic semiconductor device, TiO 2 , MoO 2 , CuO, NiO, WO 3 , V 2 O 5 , CrO 3 , Ta 2 O 5 , Co 3 O 4 High work functions such as those have been reported.

비특허문헌 1에 나타낸 바와 같이, WO3는 비교적 높은 일함수를 갖는다. 이 WO3막은 산화텅스텐 소결체로 이루어지는 스퍼터링 타깃을 사용하여 성막할 수 있지만(특허문헌 1, 2), WO3 단상에서는 소결체의 고밀도화가 곤란하고, 또한, 체적 저항률이 높기 때문에, DC 스퍼터링이 곤란하였다. 그 때문에, 특허문헌 2에는, WO3에 WO2를 첨가함으로써, 소결체의 고밀도화를 달성하고, 도전성을 높여서 DC 스퍼터링을 가능하게 하는 것이 개시되어 있다. 또한, 특허문헌 1에는, 산소 공급 분위기 중, WO3 분말을 핫 프레스함으로써, 소결체의 밀도를 높이는 것이 개시되어 있다.As shown in Non-Patent Document 1, WO 3 has a relatively high work function. This WO 3 film can be formed using a sputtering target made of a tungsten oxide sintered body (Patent Documents 1 and 2), but in the WO 3 single phase, it is difficult to increase the density of the sintered body, and the volume resistivity is high, making DC sputtering difficult. . Therefore, Patent Document 2 discloses that adding WO 2 to WO 3 achieves higher density of the sintered body, increases conductivity, and makes DC sputtering possible. Additionally, Patent Document 1 discloses increasing the density of the sintered body by hot pressing WO 3 powder in an oxygen supply atmosphere.

일본 특허 공개 평3-150357호 공보Japanese Patent Publication No. 3-150357 일본 특허 공개 제2013-76163호 공보Japanese Patent Publication No. 2013-76163

Mark T Greiner and Zheng-Hong Lu, "Thin-Film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces", NPG Asia Materials(2013) 5, e55, 19 July 2013Mark T Greiner and Zheng-Hong Lu, "Thin-Film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces", NPG Asia Materials (2013) 5, e55, 19 July 2013

상술한 바와 같이, 유기 EL 등의 유기 반도체 디바이스를 구성하는 막으로서, 일함수가 높은 산화물 막이 요구되고 있다. 높은 일함수를 나타내는 재료로서 WO3 등을 들 수 있지만, WO3 등의 막을 형성하는 경우, 성막에 사용하는 스퍼터링 타깃의 체적 저항률이 높기 때문에, 고속 성막이 가능한 DC 스퍼터링을 할 수 없다는 문제가 있었다. 이러한 점에서, 본 발명은, 상술한 과제를 해결하기 위하여 제안된 것으로서, 일함수가 높은 막을 성막하는 것이 가능한, 체적 저항률이 낮은 스퍼터링 타깃을 제공하는 것을 과제로 한다.As described above, as a film constituting an organic semiconductor device such as organic EL, an oxide film with a high work function is required. Materials that exhibit a high work function include WO 3 and the like. However, when forming a film of WO 3 or the like, there is a problem that DC sputtering capable of high-speed film formation cannot be performed because the volume resistivity of the sputtering target used for film formation is high. . In this regard, the present invention has been proposed to solve the above-mentioned problems, and its object is to provide a sputtering target with a low volume resistivity that is capable of forming a film with a high work function.

본 발명은, 상기 과제를 해결하기 위하여 제안된 것으로서, 그 과제를 해결할 수 있는 본 발명의 양태는, 텅스텐(W), 구리(Cu), 산소(O) 및 불가피적 불순물을 포함하는 스퍼터링 타깃이고, 체적 저항률이 1.0×103Ω·cm 이하인 Cu-W-O 스퍼터링 타깃이다.The present invention has been proposed to solve the above problems, and an aspect of the present invention that can solve the problems is a sputtering target containing tungsten (W), copper (Cu), oxygen (O) and inevitable impurities. , a Cu-WO sputtering target with a volume resistivity of 1.0×10 3 Ω·cm or less.

본 발명에 따르면, 일함수가 높은 막을 성막할 수 있는 스퍼터링 타깃이며, 체적 저항률이 낮기 때문에, DC 스퍼터링이 가능하게 되고, 그것에 의하여, 고속 성막이 가능하다고 하는 우수한 효과를 갖는다.According to the present invention, it is a sputtering target capable of forming a film with a high work function, and since the volume resistivity is low, DC sputtering is possible, which has the excellent effect of enabling high-speed film formation.

상술한 바와 같이, WO3는 높은 일함수를 갖지만, WO3 단상에서는, DC 스퍼터링이 가능한 체적 저항률이 낮은 스퍼터링 타깃을 제작하는 것은 곤란하였다. 또한, 기타의 일함수가 높은 산화물의 재료(예를 들어, CuO 단상)를 사용한 경우도 마찬가지로, 체적 저항률이 높고, DC 스퍼터링이 곤란하였다. 이러한 문제에 대하여, 본 발명자들은 예의 연구한 바, CuO와 WO3의 혼합계를 제작함으로써, 높은 일함수를 유지하면서, DC 스퍼터링이 가능한 체적 저항률이 낮은 스퍼터링 타깃을 얻을 수 있다는 지견이 얻어져, 본 발명에 이르렀다.As described above, WO 3 has a high work function, but it was difficult to manufacture a sputtering target with a low volume resistivity capable of DC sputtering in a WO 3 single phase. In addition, when other oxide materials with a high work function (for example, CuO single phase) were used, the volume resistivity was similarly high and DC sputtering was difficult. With regard to this problem, the present inventors have conducted extensive research, and have obtained the knowledge that by producing a mixed system of CuO and WO 3 , a sputtering target with a low volume resistivity capable of DC sputtering can be obtained while maintaining a high work function. This has led to the present invention.

본 발명의 실시 형태에 관한 스퍼터링 타깃(Cu-W-O 스퍼터링 타깃이라고 한다.)은, 텅스텐(W), 구리(Cu), 산소(O) 및 불가피적 불순물을 포함하고, 체적 저항률이 1.0×103Ω·cm 이하이다. 스퍼터링 타깃의 체적 저항률이 1.0×103Ω·cm 이하이면, DC 스퍼터링이 가능하게 되고, 그것에 의한 고속 성막이 가능하게 된다. 바람직하게는 체적 저항률이 1.0×102Ωcm 이하이다. 이에 의해, 더 안정된 DC 스퍼터링에 의한 고속 성막이 가능하게 된다.The sputtering target (referred to as Cu-WO sputtering target) according to the embodiment of the present invention contains tungsten (W), copper (Cu), oxygen (O) and inevitable impurities, and has a volume resistivity of 1.0 × 10 3 It is less than Ω·cm. If the volume resistivity of the sputtering target is 1.0×10 3 Ω·cm or less, DC sputtering becomes possible and high-speed film formation thereby becomes possible. Preferably, the volume resistivity is 1.0×10 2 Ωcm or less. As a result, high-speed film formation by more stable DC sputtering becomes possible.

본 실시 형태에 관한 스퍼터링 타깃은, W, Cu, O 및 불가피적 불순물을 포함하고, W와 Cu의 함유 비율은, 원자비로 W/(Cu+W)≥0.5인 것이 바람직하다. W/(Cu+W)<0.5의 경우, 체적 저항률이 높아지고, 또한 원하는 높은 일함수가 얻어지지 않는다고 하는 경우가 있다. 바람직하게는, W/(Cu+W)≥0.7, 보다 바람직하게는, W/(Cu+W)≥0.8, 더욱 바람직하게는 W/(Cu+W)≥0.9이다. 또한, WO3 단상이면, 상술한 바와 같이, 스퍼터링 타깃의 체적 저항률이 높기 때문에, W/(Cu+W)<1로 한다. 또한, 상기 불가피적 불순물은, 원료나 제조 과정 등에서 혼입되는 불순물이며, 일함수 등의 특성에 특별히 영향을 미치지 않는 양을 포함하고 있어도 되고, 0.1wt% 이하이면, 특별히 문제는 없다고 할 수 있다.The sputtering target according to the present embodiment contains W, Cu, O, and inevitable impurities, and the content ratio of W and Cu is preferably W/(Cu+W)≥0.5 in atomic ratio. In the case of W/(Cu+W)<0.5, there are cases where the volume resistivity becomes high and the desired high work function cannot be obtained. Preferably, W/(Cu+W)≥0.7, more preferably, W/(Cu+W)≥0.8, and even more preferably W/(Cu+W)≥0.9. In addition, in the case of WO 3 single phase, as described above, the volume resistivity of the sputtering target is high, so W/(Cu+W)<1. In addition, the above-mentioned unavoidable impurities are impurities mixed in raw materials, manufacturing processes, etc., and may contain an amount that does not particularly affect characteristics such as work function, and as long as it is 0.1 wt% or less, there is no particular problem.

본 실시 형태에 관한 스퍼터링 타깃은, 상대 밀도가 95% 이상인 것이 바람직하다. 바람직하게는 상대 밀도 98% 이상이다. 이러한 고밀도의 스퍼터링 타깃은, 스퍼터링 시에 크랙이나 균열을 방지할 수 있고, 성막 시의 파티클을 저감할 수 있다. 또한, 스퍼터링 타깃의 상대 밀도는, 체적 저항률과도 관련하고, 상대 밀도의 값이 낮아지면, 체적 저항률이 높아지는 경향이 있다. 그 때문에, 체적 저항률을 낮추기 위해서는, 스퍼터링 타깃의 W와 Cu의 함유 비율 이외에, 스퍼터링 타깃의 제조 방법이나 제조 조건을 엄격하게 조정하여, 상대 밀도를 높일 필요가 있다.The sputtering target according to this embodiment preferably has a relative density of 95% or more. Preferably, the relative density is 98% or more. Such a high-density sputtering target can prevent cracks or fissures during sputtering and reduce particles during film formation. Additionally, the relative density of the sputtering target is also related to the volume resistivity, and as the value of the relative density decreases, the volume resistivity tends to increase. Therefore, in order to lower the volume resistivity, it is necessary to strictly adjust the manufacturing method and manufacturing conditions of the sputtering target in addition to the W and Cu content ratio of the sputtering target to increase the relative density.

본 발명의 일 실시 형태에 관한 스퍼터링 타깃은, 일함수가 4.5eV 이상이다. 이러한 높은 일함수를 갖는 스퍼터링 타깃을 사용함으로써, 높은 일함수를 갖는 막을 제작할 수 있다. 그리고, 이러한 일함수가 높은 막은, 예를 들어 유기 EL, 유기 태양 전지 등의 유기 반도체 디바이스에 있어서 정공 수송층으로의 전하 주입 효율을 향상시킬 수 있고, 발광 효율 혹은 변환 효율 등의 향상을 기대할 수 있다.The sputtering target according to one embodiment of the present invention has a work function of 4.5 eV or more. By using a sputtering target with such a high work function, a film with a high work function can be produced. And, such a high work function film can improve the charge injection efficiency into the hole transport layer in organic semiconductor devices such as organic EL and organic solar cells, and can be expected to improve luminous efficiency or conversion efficiency. .

이하에, 본 실시 형태에 관한 스퍼터링 타깃의 제조 방법을 나타낸다. 단, 이하의 제조 조건 등은 개시한 범위로 한정되는 것은 아니고, 몇 가지의 생략이나 변경을 행하여도 되는 것은 명확하다.Below, the manufacturing method of the sputtering target according to this embodiment is shown. However, it is clear that the following manufacturing conditions, etc. are not limited to the disclosed range, and that some omissions or changes may be made.

원료 분말로서, 산화텅스텐(WO3) 분말, 산화구리(CuO) 분말을 준비하고, 이들의 원료 분말을 원하는 조성비가 되도록 칭량한다. 산화구리로서는, CuO 이외에, Cu2O 등을 사용할 수도 있다. 이어서, 볼 직경이 0.5 내지 3.0mm의 지르코니아 비즈를 사용하여, 습식 분쇄를 행한다. 그리고, 입경의 중앙값이 0.1 내지 5.0㎛가 될 때까지 분쇄를 행하고, 그 후, 조립을 행한다. 다음으로 얻어진 조립 분말을 프레스 성형한다. 프레스압은 300 내지 400kgf/㎠로 행하는 것이 바람직하다. 그 후, 냉간 정수압 가압(CIP)을 행한다. CIP 압력은 1000 내지 2000kgf/㎠로 행하는 것이 바람직하다. 이어서, 얻어진 성형체를, 산소 플로 중, 10 내지 20시간, 상압 소결을 행한다. 이때, 소결 온도는 900℃ 이상 950℃ 미만으로 하는 것이 바람직하다. 900℃ 미만이면, 고밀도의 소결체가 얻어지지 않고, 한편, 950℃ 이상이면 WO3와 CuO와 복합 산화물인 CuWO4가, 알루미나의 소결 부재와 반응하고, 또한 용해하기 때문에 바람직하지 않다. 그 후는, 얻어진 소결체를 타깃 형상으로 절삭, 연마하거나 하여, 스퍼터링 타깃을 제작할 수 있다. 또한, 핫 프레스 소결을 사용한 경우, 카본의 소결 부재에 의해, CuO가 Cu로 환원되어서, 부재의 소모가 심하다고 하는 경우가 있다.As raw material powder, tungsten oxide (WO 3 ) powder and copper oxide (CuO) powder are prepared, and these raw material powders are weighed so that the desired composition ratio is obtained. As copper oxide, in addition to CuO, Cu 2 O and the like can also be used. Next, wet grinding is performed using zirconia beads with a ball diameter of 0.5 to 3.0 mm. Then, pulverization is performed until the median particle size becomes 0.1 to 5.0 μm, and then granulation is performed. Next, the obtained granulated powder is press molded. The press pressure is preferably 300 to 400 kgf/cm2. Afterwards, cold isostatic pressing (CIP) is performed. The CIP pressure is preferably 1000 to 2000 kgf/cm2. Next, the obtained molded body is sintered at normal pressure in an oxygen flow for 10 to 20 hours. At this time, the sintering temperature is preferably 900°C or more and less than 950°C. If it is below 900°C, a high-density sintered body cannot be obtained. On the other hand, if it is above 950°C, it is not preferable because CuWO 4 , which is a complex oxide of WO 3 and CuO, reacts with the alumina sintered member and further dissolves. After that, the obtained sintered body can be cut or polished into the target shape to produce a sputtering target. Additionally, when hot press sintering is used, there are cases where CuO is reduced to Cu by the carbon sintered member, resulting in severe consumption of the member.

본원 명세서에 있어서, 스퍼터링 타깃 등의 각종 물성은, 이하의 측정 방법을 사용하여 해석하였다.In the present specification, various physical properties of sputtering targets and the like were analyzed using the following measurement methods.

(스퍼터링 타깃 및 막의 성분 조성)(Composition of sputtering target and film)

장치: SII사제 SPS3500DDDevice: SPS3500DD manufactured by SII

방법: ICP-OES(고주파 유도 결합 플라스마 발광 분석법)Method: ICP-OES (Inductively Coupled Plasma Luminescence Spectrometry)

(막의 성분 조성)(Component composition of the membrane)

장치: JEOL제 JXA-8500FDevice: JXA-8500F made by JEOL

방법: EPMA(전자선 마이크로 애널라이저)Method: Electron Beam Microanalyzer (EPMA)

가속 전압: 5 내지 10keV Acceleration voltage: 5 to 10 keV

조사 전류: 2.0×10-7 내지 2.0 내지 10-8A Irradiation current: 2.0×10 -7 to 2.0 to 10 -8 A

프로브 직경: 10㎛ Probe diameter: 10㎛

티끌 등의 부착이 없고, 기판면이 보이지 않고 있는 평활한 성막 부분을 5점 선택하고, 점 분석을 행하여, 그것들의 평균 조성을 산출하였다.Five smooth film-forming areas without adhesion of dust or the like and where the substrate surface was not visible were selected, point analysis was performed, and their average composition was calculated.

(스퍼터링 타깃의 체적 저항률)(Volume resistivity of sputtering target)

스퍼터링 타깃의 체적 저항률은, 스퍼터링 타깃의 표면을 5점(중심 1점, 외주 부근 4점) 측정하고, 그것들의 평균값으로 하였다. 측정에는, 이하의 장치를 사용하였다.The volume resistivity of the sputtering target was measured at 5 points on the surface of the sputtering target (1 point at the center and 4 points near the outer periphery), and was taken as the average value. For the measurement, the following device was used.

장치: NPS사제 저항률 측정기 Σ-5+Device: Resistivity meter Σ-5+ manufactured by NPS

방식: 정전류 인가 방식Method: Constant current application method

방법: 직류 4 탐침법Method: Direct current four probe method

(스퍼터링 타깃의 상대 밀도에 대해서)(About the relative density of the sputtering target)

상대 밀도(%)=아르키메데스 밀도/진밀도×100Relative density (%) = Archimedes density / true density × 100

아르키메데스 밀도: 스퍼터링 타깃으로부터 소편을 잘라내고, 그 소편으로부터 아르키메데스법을 사용하여 밀도를 산출한다.Archimedes density: A small piece is cut from the sputtering target, and the density is calculated from the small piece using the Archimedes method.

진밀도: 원소 분석으로부터 Cu, W의 원자비를 계산하고, 원자비로부터 Cu의 CuO 환산 중량을 a(wt%), W의 WO3 환산 중량을 b(wt%)로 하고, CuO, WO3의 이론 밀도를 각각 dCuO, dWO3로 하여, 진밀도(g/㎤)=100/(a/dCuO+b/dWO3)를 계산한다. 또한, CuO의 이론 밀도 dCuO=6.31g/㎤, WO3의 이론 밀도를 dWO3=7.16g/㎤로 한다.True density: Calculate the atomic ratio of Cu and W from elemental analysis. From the atomic ratio, the weight of Cu in terms of CuO is set to a (wt%), and the weight of W in terms of WO 3 is set to b (wt%), and the weight of Cu in terms of WO 3 is set to b (wt %). Calculate the true density (g/cm3)=100/(a/d CuO +b/d WO3 ) by setting the theoretical densities as d CuO and d WO3 , respectively. Additionally, the theoretical density of CuO is set to dCuO = 6.31g/cm3, and the theoretical density of WO3 is set to dWO3 = 7.16g/cm3.

(일함수에 대해서)(about work function)

벌크체(스퍼터링 타깃)에 대해서는, 세로: 20mm, 가로: 10mm, 두께: 5 내지 10mm의 샘플을 제작하였다. 측정면은 번수 2000번의 연마지를 사용하여 연마를 행하였다. 또한, 스퍼터막에 대해서는 Si 기판 상에 성막한 20×20mm의 샘플을 제작하고, 이하의 조건에서 측정을 실시하였다. 또한, 일함수의 측정 결과는 샘플의 사이즈에 의존하지 않는 것이다. 또한, 측정면을 연마하지 않거나 혹은 번수가 낮은 연마지로 연마하고, 표면의 연마가 불충분한 경우에는, 일함수를 정확하게 측정할 수 없어, 그 값이 높게 측정되는 경우가 있다.For the bulk body (sputtering target), samples with a length of 20 mm, a width of 10 mm, and a thickness of 5 to 10 mm were produced. The measurement surface was polished using No. 2000 polishing paper. Additionally, regarding the sputtered film, a sample of 20 x 20 mm formed on a Si substrate was produced and measured under the following conditions. Additionally, the work function measurement result does not depend on the sample size. Additionally, if the measurement surface is not polished or is polished with low-count abrasive paper and the polishing of the surface is insufficient, the work function cannot be measured accurately, and the value may be measured to be high.

방식: 대기 중 광전자 분광법Method: Atmospheric photoelectron spectroscopy

장치: 리켄 게이키제 AC-5 장치Device: Ricken Geikise AC-5 device

조건: 측정 가능한 일함수의 범위: 3.4eV 내지 6.2eVConditions: Range of measurable work function: 3.4eV to 6.2eV

광원 파워: 2000WLight source power: 2000W

[실시예][Example]

이하, 실시예 및 비교예에 기초하여 설명한다. 또한, 본 실시예는 어디까지나 일례이고, 이 예에 의해 전혀 제한되는 것은 아니다. 즉, 본 발명은 특허 청구 범위에 의해서만 제한되는 것이고, 본 발명에 포함되는 실시예 이외의 다양한 변형을 포함하는 것이다.Hereinafter, description will be made based on examples and comparative examples. In addition, this embodiment is only an example and is not limited by this example at all. In other words, the present invention is limited only by the scope of the patent claims, and includes various modifications other than the embodiments included in the present invention.

(실시예 1)(Example 1)

CuO분과 WO3분을 준비하고, 이들의 분말을 CuO:WO3=50:50(mol%)으로 칭량하였다. 이어서, 3.0mm의 지르코니아 비즈를 사용하여 24시간 습식 볼 밀 혼합 분쇄를 실시하고, 메디안 직경 0.8㎛ 이하의 혼합 분말을 얻었다. 이어서, 이 혼합 분말을 면압 400kgf/㎠의 조건에서 가압한 후에 압력 1800kgf/㎠의 조건에서 CIP를 행하고, 성형체를 제작하였다.CuO powder and WO 3 powder were prepared, and their powders were weighed as CuO:WO 3 =50:50 (mol%). Next, wet ball mill mixing and grinding was performed for 24 hours using 3.0 mm zirconia beads, and mixed powder with a median diameter of 0.8 μm or less was obtained. Next, this mixed powder was pressed under the conditions of a surface pressure of 400 kgf/cm 2 and then CIP was performed under the conditions of a pressure of 1800 kgf/cm 2 to produce a molded body.

이어서, 산소 플로 중, 소결 온도 940℃에서 10시간, 상압 소결하여 소결체를 제작하였다. 그 후, 이 소결체를 기계 가공하여 스퍼터링 타깃 형상으로 마무리하였다.Next, a sintered body was produced by sintering at normal pressure in an oxygen flow at a sintering temperature of 940°C for 10 hours. Afterwards, this sintered body was machined and finished into a sputtering target shape.

실시예 1에서 얻어진 스퍼터링 타깃에 대하여 평가한 결과, 상대 밀도는 103.3%이고, 체적 저항률은 1.0×103Ω·cm였다. 또한, 스퍼터링 타깃에 대하여 일함수를 측정한 결과, 4.5eV와 고일함수의 것이 얻어졌다. 이상의 결과를 표 1에 나타낸다. 또한, 스퍼터링 타깃에 대하여 성분 분석한 결과, 원료의 투입 시의 비율과 거의 변화가 없는 것을 확인하였다.As a result of evaluating the sputtering target obtained in Example 1, the relative density was 103.3% and the volume resistivity was 1.0×10 3 Ω·cm. Additionally, as a result of measuring the work function of the sputtering target, a work function of 4.5 eV and a high work function was obtained. The above results are shown in Table 1. In addition, as a result of analyzing the composition of the sputtering target, it was confirmed that there was almost no change from the ratio when the raw materials were added.

Figure pat00001
Figure pat00001

(실시예 2 내지 5)(Examples 2 to 5)

CuO분과 WO3분을 준비하고, 이들의 분말을 표 1에 기재하는 몰비가 되도록 칭량하였다. 이어서, 3.0mm의 지르코니아 비즈를 사용하여 24시간 습식 볼 밀 혼합 분쇄를 실시하고, 메디안 직경 0.8㎛ 이하의 혼합 분말을 얻었다. 이어서, 이 혼합 분말을 면압 400kgf/㎠의 조건에서 가압한 후에, 압력 1800kgf/㎠의 조건에서 CIP를 행하고, 성형체를 제작하였다.CuO powder and 3 WO powder were prepared, and their powders were weighed so that the molar ratio shown in Table 1 was obtained. Next, wet ball mill mixing and grinding was performed for 24 hours using 3.0 mm zirconia beads, and mixed powder with a median diameter of 0.8 μm or less was obtained. Next, this mixed powder was pressed under the conditions of a surface pressure of 400 kgf/cm2, and then CIP was performed under the conditions of a pressure of 1800 kgf/cm2 to produce a molded body.

이어서, 산소 플로 중, 소결 온도 940℃에서, 10시간, 상압 소결하여 소결체를 제작하였다. 그 후, 각각의 소결체를 기계 가공하여 스퍼터링 타깃 형상으로 마무리하였다.Next, a sintered body was produced by sintering at normal pressure in an oxygen flow at a sintering temperature of 940°C for 10 hours. Afterwards, each sintered body was machined and finished into a sputtering target shape.

실시예 2 내지 5의 스퍼터링 타깃은, 모두 상대 밀도가 99% 이상이고, 체적 저항률은 1.0×103Ω·cm 이하였다. 또한, 스퍼터링 타깃에 대하여 일함수를 측정한 결과, 모두 4.5eV로 고일함수였다. 또한, 스퍼터링 타깃에 대하여 성분 분석한 결과, 모두 원료의 투입 시의 비율과 거의 변화가 없는 것을 확인하였다.The sputtering targets of Examples 2 to 5 all had a relative density of 99% or more and a volume resistivity of 1.0×10 3 Ω·cm or less. In addition, as a result of measuring the work functions of the sputtering targets, all of them had a high work function of 4.5 eV. In addition, as a result of analyzing the composition of the sputtering target, it was confirmed that there was almost no change from the ratio when the raw materials were added.

(비교예 1)(Comparative Example 1)

비교예 1에서는, CuO분만으로 하고, WO3분은 사용하지 않았다. Cu분을 3.0mm의 지르코니아 비즈를 사용하여 24시간 습식 볼 밀 혼합 분쇄를 실시하고, 메디안 직경 0.8㎛ 이하의 혼합분을 얻었다. 이어서, 이 혼합 분말을 면압 400kgf/㎠의 조건에서 가압한 후에, 압력 1800kgf/㎠의 조건에서 CIP를 행하고, 성형체를 제작하였다.In Comparative Example 1, only CuO powder was used and WO 3 powder was not used. The Cu powder was mixed and pulverized using a wet ball mill for 24 hours using 3.0 mm zirconia beads to obtain a mixed powder with a median diameter of 0.8 μm or less. Next, this mixed powder was pressed under the conditions of a surface pressure of 400 kgf/cm2, and then CIP was performed under the conditions of a pressure of 1800 kgf/cm2 to produce a molded body.

이어서, 산소 플로 중, 소결 온도 950℃에서, 10시간, 상압 소결하여 소결체를 제작하였다. 그 후, 이 소결체를 기계 가공하여 스퍼터링 타깃 형상으로 마무리하였다.Next, a sintered body was produced by sintering at normal pressure in an oxygen flow at a sintering temperature of 950°C for 10 hours. Afterwards, this sintered body was machined and finished into a sputtering target shape.

비교예 1에서 얻어진 스퍼터링 타깃에 대하여 평가한 결과, 상대 밀도는 98.3%이고, 체적 저항률은 3.3×105Ω·cm였다. 또한, 스퍼터링 타깃에 대하여 일함수를 측정한 결과, 4.2eV였다. 또한, 스퍼터링 타깃에 대하여 성분 분석한 결과, 모두 원료의 투입 시의 비율과 거의 변화가 없는 것을 확인하였다.As a result of evaluating the sputtering target obtained in Comparative Example 1, the relative density was 98.3% and the volume resistivity was 3.3×10 5 Ω·cm. Additionally, the work function of the sputtering target was measured and found to be 4.2 eV. In addition, as a result of analyzing the composition of the sputtering target, it was confirmed that there was almost no change from the ratio when the raw materials were added.

(비교예 2, 3)(Comparative Examples 2, 3)

비교예 2, 3에서는, WO3분만으로 하고, CuO분은 사용하지 않았다. WO3분을 3.0mm의 지르코니아 비즈를 사용하여 24시간 습식 볼 밀 혼합 분쇄를 실시하고, 메디안 직경 0.8㎛ 이하의 혼합 분말을 얻었다. 이어서, 이 혼합 분말을 면압 400kgf/㎠의 조건에서 가압한 후에, 압력 1800kgf/㎠의 조건에서 CIP를 행하고, 성형체를 제작하였다.In Comparative Examples 2 and 3, only WO 3 was used and CuO was not used. WO was subjected to wet ball mill mixing and grinding for 24 hours using 3.0 mm zirconia beads for 3 minutes to obtain mixed powder with a median diameter of 0.8 μm or less. Next, this mixed powder was pressed under the conditions of a surface pressure of 400 kgf/cm2, and then CIP was performed under the conditions of a pressure of 1800 kgf/cm2 to produce a molded body.

이어서, 산소 플로 중, 소결 온도를 1100℃(비교예 2), 940℃(비교예 3)로 하고, 10시간, 상압 소결하여 소결체를 제작하였다. 그 후, 이 소결체를 기계 가공하여 스퍼터링 타깃 형상으로 마무리하였다.Next, in an oxygen flow, the sintering temperature was set to 1100°C (Comparative Example 2) and 940°C (Comparative Example 3), and sintering was performed at normal pressure for 10 hours to produce a sintered body. Afterwards, this sintered body was machined and finished into a sputtering target shape.

비교예 2, 3에서 얻어진 스퍼터링 타깃에 대하여 평가한 결과, 모두 상대 밀도는 95% 미만이고, 체적 저항률은 1.0×103Ω·cm 초였다. 또한, 스퍼터링 타깃에 대하여 일함수를 측정한 결과, 4.4eV였다. 또한, 스퍼터링 타깃에 대하여 성분 분석한 결과, 모두 원료의 투입 시의 비율과 거의 변화가 없는 것을 확인하였다.As a result of evaluating the sputtering targets obtained in Comparative Examples 2 and 3, the relative density was less than 95% and the volume resistivity was 1.0 × 10 3 Ω·cm sec. Additionally, the work function of the sputtering target was measured and found to be 4.4 eV. In addition, as a result of analyzing the composition of the sputtering target, it was confirmed that there was almost no change from the ratio when the raw materials were added.

(비교예 4)(Comparative Example 4)

CuO분과 WO3분을 준비하고, 이들의 분말을 CuO:WO3=30:70(mol%)로 칭량하였다. 이어서, 3.0mm의 지르코니아 비즈를 사용하여 24시간 습식 볼 밀 혼합 분쇄를 실시하고, 메디안 직경 0.8㎛ 이하의 혼합 분말을 얻었다. 이 혼합 분말을 면압 400kgf/㎠의 조건에서 가압한 후에, 압력 1800kgf/㎠의 조건에서 CIP를 행하고, 성형체를 제작하였다.CuO powder and WO 3 powder were prepared, and their powders were weighed as CuO:WO 3 =30:70 (mol%). Next, wet ball mill mixing and grinding was performed for 24 hours using 3.0 mm zirconia beads, and mixed powder with a median diameter of 0.8 μm or less was obtained. After pressurizing this mixed powder under the conditions of a surface pressure of 400 kgf/cm2, CIP was performed under the conditions of a pressure of 1800 kgf/cm2 to produce a molded body.

이어서, 산소 플로 중, 소결 온도 850℃에서, 10시간, 상압 소결하여 소결체를 제작하였다. 그 후, 이 소결체를 기계 가공하여 스퍼터링 타깃 형상으로 마무리하였다.Next, a sintered body was produced by sintering at normal pressure in an oxygen flow at a sintering temperature of 850°C for 10 hours. Afterwards, this sintered body was machined and finished into a sputtering target shape.

비교예 4에서 얻어진 스퍼터링 타깃에 대하여 평가한 결과, 체적 저항률은 3.1×104Ω·cm였다.As a result of evaluating the sputtering target obtained in Comparative Example 4, the volume resistivity was 3.1×10 4 Ω·cm.

이어서, 실시예 3의 스퍼터링 타깃을 사용하여 스퍼터 성막을 행하였다. 또한, 성막 조건은 이하대로 하였다. 얻어진 스퍼터막에 대해서, 일함수를 측정한 결과, Ar 가스 하에서는 4.6eV이고, Ar 가스+6% O2 하에서는 4.8eV로 원하는 높은 일함수가 얻어졌다. 또한, 스퍼터막에 대하여 성분 분석한 결과, 원료의 투입 시의 비율과 거의 변화가 없는 것을 확인하였다.Next, sputter film formation was performed using the sputtering target of Example 3. In addition, the film formation conditions were as follows. As a result of measuring the work function of the obtained sputter film, the desired high work function was obtained as 4.6 eV under Ar gas and 4.8 eV under Ar gas + 6% O 2 . In addition, as a result of analyzing the components of the sputtered film, it was confirmed that there was almost no change from the ratio when the raw materials were added.

(성막 조건)(Tabernacle conditions)

장치: 캐논 아네르바제 SPL-500 스퍼터 장치Device: Canon Anervaje SPL-500 sputter device

기판: 실리콘 기판Substrate: Silicone substrate

성막 파워 밀도: 1.0W/㎠Film formation power density: 1.0W/㎠

성막 분위기: Ar 또는 Ar+6% O2 Tabernacle atmosphere: Ar or Ar+6% O 2

가스압: 0.5PaGas pressure: 0.5Pa

막 두께: 50nmFilm thickness: 50nm

본 발명의 실시 형태에 관한 Cu-W-O 스퍼터링 타깃은, 체적 저항률이 낮고, DC 스퍼터링이 가능하고, 또한 상대 밀도가 높고, 성막 시에 타깃에 균열이나 크랙이 발생하는 일이 없고, 실용적, 상업적 레벨에서 사용할 수 있다. 본 발명은, 특히 유기 일렉트로 루미네센스 소자 등의 발광 소자에 있어서의 투명 전극을 형성하기 위하여 유용하다.The Cu-W-O sputtering target according to the embodiment of the present invention has a low volume resistivity, enables DC sputtering, has a high relative density, does not cause cracks or cracks in the target during film formation, and is at a practical and commercial level. It can be used in The present invention is particularly useful for forming transparent electrodes in light-emitting devices such as organic electroluminescence devices.

Claims (7)

텅스텐(W), 구리(Cu), 산소(O) 및 불가피적 불순물을 포함하는 스퍼터링 타깃이며, 체적 저항률이 1.0×103Ω·cm 이하인, Cu-W-O 스퍼터링 타깃.A Cu-WO sputtering target that contains tungsten (W), copper (Cu), oxygen (O) and inevitable impurities, and has a volume resistivity of 1.0×10 3 Ω·cm or less. 제1항에 있어서, 상대 밀도가 95% 이상인, Cu-W-O 스퍼터링 타깃.The Cu-W-O sputtering target according to claim 1, wherein the relative density is 95% or more. 제1항에 있어서, W와 Cu의 함유 비율이 원자비로 0.5≤W/(Cu+W)<1을 만족시키는, Cu-W-O 스퍼터링 타깃.The Cu-W-O sputtering target according to claim 1, wherein the content ratio of W and Cu satisfies 0.5≤W/(Cu+W)<1 in atomic ratio. 제2항에 있어서, W와 Cu의 함유 비율이 원자비로 0.5≤W/(Cu+W)<1을 만족시키는, Cu-W-O 스퍼터링 타깃.The Cu-W-O sputtering target according to claim 2, wherein the content ratio of W and Cu satisfies 0.5≤W/(Cu+W)<1 in atomic ratio. 제1항 내지 제4항 중 어느 한 항에 있어서, 일함수가 4.3eV 이상을 만족시키는, Cu-W-O 스퍼터링 타깃.The Cu-W-O sputtering target according to any one of claims 1 to 4, wherein the work function satisfies 4.3 eV or more. 텅스텐(W), 구리(Cu), 산소(O) 및 불가피적 불순물을 포함하는 박막이며, W와 Cu의 함유 비율이 원자비로 0.5≤W/(Cu+W)<1을 만족시키는, 산화물 박막.It is a thin film containing tungsten (W), copper (Cu), oxygen (O) and inevitable impurities, and the oxide content of W and Cu satisfies 0.5≤W/(Cu+W)<1 in atomic ratio. pellicle. 제6항에 있어서, 일함수가 4.5eV 이상을 만족시키는, 산화물 박막.The oxide thin film according to claim 6, wherein the work function satisfies 4.5 eV or more.
KR1020210120384A 2020-09-15 2021-09-09 Cu―W-O SPUTTERING TARGET AND OXIDE THIN FILM KR20220036347A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020154239A JP7162647B2 (en) 2020-09-15 2020-09-15 Cu-W-O sputtering target and oxide thin film
JPJP-P-2020-154239 2020-09-15

Publications (1)

Publication Number Publication Date
KR20220036347A true KR20220036347A (en) 2022-03-22

Family

ID=80601322

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210120384A KR20220036347A (en) 2020-09-15 2021-09-09 Cu―W-O SPUTTERING TARGET AND OXIDE THIN FILM

Country Status (3)

Country Link
JP (1) JP7162647B2 (en)
KR (1) KR20220036347A (en)
CN (1) CN114182216A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150357A (en) 1989-11-06 1991-06-26 Nippon Tungsten Co Ltd Target and production thereof
JP2013076163A (en) 2011-09-15 2013-04-25 Mitsubishi Materials Corp Sputtering target and method for manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107507895B (en) 2005-02-16 2020-12-01 麻省理工学院 Light emitting devices containing semiconductor nanocrystals
JP5169888B2 (en) 2009-02-04 2013-03-27 住友金属鉱山株式会社 Composite tungsten oxide target material and manufacturing method thereof
JP2011084804A (en) 2009-09-18 2011-04-28 Kobelco Kaken:Kk Metal oxide-metal composite sputtering target
US9202822B2 (en) 2010-12-17 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6125689B1 (en) * 2016-03-31 2017-05-10 Jx金属株式会社 Indium oxide-zinc oxide (IZO) sputtering target
KR102420787B1 (en) 2017-10-20 2022-07-13 엘지디스플레이 주식회사 Light emitting diode applying anisotropic nano rod and light emitting apparatus having thereof
JP6377230B1 (en) 2017-10-20 2018-08-22 デクセリアルズ株式会社 Mn-W-Cu-O-based sputtering target and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150357A (en) 1989-11-06 1991-06-26 Nippon Tungsten Co Ltd Target and production thereof
JP2013076163A (en) 2011-09-15 2013-04-25 Mitsubishi Materials Corp Sputtering target and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mark T Greiner and Zheng-Hong Lu, "Thin-Film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces", NPG Asia Materials(2013) 5, e55, 19 July 2013

Also Published As

Publication number Publication date
CN114182216A (en) 2022-03-15
JP2022048423A (en) 2022-03-28
TW202212595A (en) 2022-04-01
JP7162647B2 (en) 2022-10-28

Similar Documents

Publication Publication Date Title
KR102367663B1 (en) Oxide sputtering target, manufacturing method thereof, and oxide thin film formed using the sputtering target
JP4552950B2 (en) Oxide sintered body for target, manufacturing method thereof, manufacturing method of transparent conductive film using the same, and transparent conductive film obtained
US7674404B2 (en) Gallium oxide/zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
WO2007141994A1 (en) Oxide sinter, target, transparent conductive film obtained from the same, and transparent conductive base
WO2012017659A1 (en) Method for producing sputtering target, and sputtering target
KR20070088246A (en) Sintered body target for transparent conductive film fabrication, transparent conductive film fabricated by using the same, and transparent conductive base material comprising this conductive film formed thereon
JPWO2009078329A1 (en) Zinc oxide sintered body and manufacturing method thereof, sputtering target, electrode
TW201938823A (en) Oxide thin film, and oxide sintered body for sputtering target for producing oxide thin film
TW201413014A (en) Sputtering target for forming transparent oxide film and manufacturing method of the same
JP5334246B2 (en) Ion plating target for zinc oxide thin film production
JP5000230B2 (en) Lanthanum oxide containing oxide target
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
KR20220036347A (en) Cu―W-O SPUTTERING TARGET AND OXIDE THIN FILM
TWI837462B (en) Cu-W-O sputtering target and oxide film
JP7436409B2 (en) Oxide sputtering target, its manufacturing method, and oxide thin film
JP4960052B2 (en) Ytterbium oxide containing oxide target
JP5000231B2 (en) Gadolinium oxide-containing oxide target
CN111364011B (en) Sputtering target member, sputtering film, method for producing same, sputtering target, and film body
JP2019094550A (en) Izo target and method for producing the same
TW202314012A (en) Sputtering target and method for manufacturing same
JP4960053B2 (en) Oxide target containing dysprosium oxide
JP2013147710A (en) Transparent film and method for producing the same, and sputtering target for transparent film formation
WO2003008658A1 (en) Ito sintered body sputtering target for forming high-resistance film and its manufacturing method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal