JP2009038191A - Multilayer wiring board and its manufacturing method - Google Patents

Multilayer wiring board and its manufacturing method Download PDF

Info

Publication number
JP2009038191A
JP2009038191A JP2007200739A JP2007200739A JP2009038191A JP 2009038191 A JP2009038191 A JP 2009038191A JP 2007200739 A JP2007200739 A JP 2007200739A JP 2007200739 A JP2007200739 A JP 2007200739A JP 2009038191 A JP2009038191 A JP 2009038191A
Authority
JP
Japan
Prior art keywords
wiring board
double
layer
sided
multilayer wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007200739A
Other languages
Japanese (ja)
Inventor
Yasuki Takao
泰樹 高尾
Tomohito Kitada
智史 北田
Hiroki Maruo
弘樹 圓尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2007200739A priority Critical patent/JP2009038191A/en
Publication of JP2009038191A publication Critical patent/JP2009038191A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of manufacturing the multilayer wiring board of high quality by eliminating a liquid process after lamination and dissolving the problems on manufacture by plating and the thickness increase of a conductor circuit. <P>SOLUTION: In the manufacturing method of the multilayer wiring board, two double-sided wiring boards for which formation of the means of an inter-layer conducting structure and circuit formation for wiring are performed beforehand, an insulating layer composed of a resin for which a thermoplastic resin or a thermoplastic adhesive is formed on both surfaces and provided with through-holes perforated at appropriate parts, and copper balls are prepared. Then, copper balls are inserted to the through-holes of the insulating layer to attain an intermediate layer, the intermediate layer is clamped between the two double-sided wiring boards, they are pressurized, heated and laminated, and the two double-sided wiring boards are attached through the intermediate layer. Also, metal bonding is formed between the crushed copper balls inside the through-holes of the intermediate layer and a wiring pattern in contact with them to form inter-layer conduction, and the multilayer wiring board is manufactured without executing a process by a liquid line even after the final lamination. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、従来のビルドアップ法を用いたプリント配線基板の積層に関する問題を改善した多層配線基板とその製造方法に関するものである。   The present invention relates to a multilayer wiring board and a method for manufacturing the same, which have improved the problems related to the lamination of printed wiring boards using a conventional build-up method.

近年、電子技術の進歩に伴い、電子機器に関する高密度化及び高速化が進められ、その要求に応えるべく、多層プリント配線板が多く使用されている。
従来、この製造方法として、導体回路と有機絶縁体層とを交互に積層したビルドアップ法が多く用いられ、その導体回路同士はビアホールを形成して層間導通を行っている。また、ビルドアップ法による積層の場合、スルーホールに空隙が存在すると、積層工程で凹みが発生する原因となるため、特許文献1に開示されているように、積層後に、層間導通が必要となる部分の導体回路と絶縁層とに、その下の導体回路まで達する穴を開け、その穴にめっきを施すことによって埋め、ビアフィルめっきを形成する方法も提案されている。しかし、この方法を用いる場合、めっきによって空隙を埋めるため、めっき時間が長時間必要となり、さらに層間導通を形成する部分以外の導体回路にもめっきが施され、導体回路の厚さが増すという問題があり、サブトラクティブ法などによる微細回路の形成が難しくなる。また、ビルドアップ法では、めっきによって層間導通を形成した後に、回路形成を行う必要があり、これらを積層する層毎に行う必要がある。
In recent years, with the advancement of electronic technology, the density and speed of electronic devices have been increased, and multilayer printed wiring boards are often used to meet the demand.
Conventionally, as this manufacturing method, a build-up method in which conductor circuits and organic insulator layers are alternately stacked is often used, and the conductor circuits form via holes to perform interlayer conduction. In addition, in the case of stacking by the build-up method, if there is a void in the through hole, it causes a dent in the stacking process. Therefore, as disclosed in Patent Document 1, interlayer conduction is required after stacking. There has also been proposed a method of forming a via fill plating by forming a hole reaching a conductor circuit below the portion of the conductor circuit and the insulating layer and filling the hole by plating. However, when this method is used, the gap is filled by plating, so that a long plating time is required, and the conductor circuit other than the portion forming the interlayer conduction is also plated, and the thickness of the conductor circuit is increased. Therefore, it is difficult to form a fine circuit by a subtractive method or the like. Further, in the build-up method, it is necessary to perform circuit formation after forming interlayer conduction by plating, and it is necessary to perform these for each layer to be laminated.

この問題を解決するための方法として、特許文献2に開示されているように、銅ボールを用いた層間導通方法が提案されている。この方法は、絶縁層の層間導通を形成する部分にあらかじめ穴を形成しておき、そこに銅ボールを挿入した後、表面と裏面に銅箔を配置し、これらを加熱加圧することによって、銅ボールが変形し銅箔に押し付けられ、新生面が発生して金属結合が得られ、めっきを用いずに層間導通を形成することができる。この銅ボールによる層間導通の形成方法を以下、CBIC(Copper Ball Interconnection Co-laminated)と呼ぶ。   As a method for solving this problem, as disclosed in Patent Document 2, an interlayer conduction method using a copper ball has been proposed. In this method, a hole is formed in advance in a portion of the insulating layer where interlayer conduction is formed, a copper ball is inserted therein, a copper foil is disposed on the front surface and the back surface, and these are heated and pressed to obtain a copper. The ball is deformed and pressed against the copper foil, a new surface is generated, a metal bond is obtained, and interlayer conduction can be formed without using plating. Hereinafter, this method for forming interlayer conduction using copper balls is referred to as CBIC (Copper Ball Interconnection Co-laminated).

図1は、CBIC技術を用いたフィルドビアの両面基板の製造方法を工程順に示す断面図である。この方法では、まず、熱可塑性の樹脂又は、基材となる絶縁材料の両面に熱可塑性もしくは接着剤が塗布された絶縁層1を用意し、これにドリルやYAGレーザ、COレーザ等で銅ボール2を嵌め込むためのスルーホール5を形成する(図1(a)参照)。次に、該絶縁層1の片側面からエア吸引しつつ、その反対側面から該スルーホール5に銅ボール2を嵌め込む(図1(b)参照)。その後、該絶縁層1を2枚の銅箔3,4で挟み(図1(c)参照)、真空プレスにて加熱・加圧する。これにより該絶縁層の該スルーホール5内は該銅ボール2で埋め込まれ、該銅ボール2と該銅箔3,4は金属結合で接続されて、図1(d)に示す層間導通を有する両面基板が得られる。 FIG. 1 is a cross-sectional view showing a method of manufacturing a filled via double-sided substrate using CBIC technology in the order of steps. In this method, first, an insulating layer 1 in which a thermoplastic resin or an adhesive is applied on both sides of a thermoplastic resin or an insulating material serving as a base material is prepared, and this is coated with a drill, a YAG laser, a CO 2 laser, or the like. A through hole 5 for fitting the ball 2 is formed (see FIG. 1A). Next, air is sucked from one side of the insulating layer 1 and the copper ball 2 is fitted into the through hole 5 from the opposite side (see FIG. 1B). Thereafter, the insulating layer 1 is sandwiched between two copper foils 3 and 4 (see FIG. 1C), and heated and pressurized by a vacuum press. As a result, the through-hole 5 of the insulating layer is filled with the copper ball 2, and the copper ball 2 and the copper foils 3 and 4 are connected to each other by a metal bond to have the interlayer conduction shown in FIG. A double-sided substrate is obtained.

なお、特許文献2には、CBIC技術を応用して多層基板を実現する方法として、予め制作した一方の基板上の層間導通を得たい部分に絶縁体を開口し、銅ボールを配置し、回路形成したもう一方の基板を重ねて加圧加熱して積層する方法が開示されている。また、特許文献3には、CBIC技術を用いて制作した基板同士を、絶縁層を介して積層する方法が開示されている。
特開平5−343854号公報 特開2006−179833号公報 特開2006−294725号公報
In Patent Document 2, as a method for realizing a multilayer substrate by applying the CBIC technology, an insulator is opened in a portion where one wants to obtain interlayer conduction on one substrate produced in advance, a copper ball is disposed, and a circuit is provided. A method is disclosed in which the other substrate formed is stacked and heated under pressure. Patent Document 3 discloses a method of laminating substrates produced using the CBIC technology through an insulating layer.
JP-A-5-343854 JP 2006-179833 A JP 2006-294725 A

従来技術で述べた、多層プリント配線板の製造方法であるビルドアップ法を用いた方法では、前述したように、液ものラインを用いてめっきにて層間導体を形成した後に回路形成を行う必要がある。また、回路形成のためには、フォトレジストの現像、導体層のエッチング、フォトレジスト剥離などといった多くの液ものラインの工程を必要とし、これを1層積層する毎に行う必要がある。例えば、多層プリント配線板を形成するには、層数倍の工程に投入されていることになるので、液ものライン用いた工程を何度も通ることになり、不良が発生する可能性が高くなる。また何層か積層した後に不良が起こってしまったら、それまで積層したものは全て無駄になってしまう。このように、積層を行った後にめっき、回路形成のために、液ものラインの工程を通る製造方法は、液ものラインでの一回の不良が製品としての不良に大きく影響する。当然ながら、液もの工程の薬液の状態を一定の状態に保つには、常に監視し日常的に管理を行う必要があるため、部分的でも日常の監視を必要としない別工程に置き換えるべきである。   In the method using the build-up method, which is a method for manufacturing a multilayer printed wiring board described in the prior art, as described above, it is necessary to form a circuit after forming an interlayer conductor by plating using a liquid line. is there. In addition, in order to form a circuit, many liquid line processes such as development of a photoresist, etching of a conductor layer, and stripping of the photoresist are required, which must be performed every time one layer is laminated. For example, in order to form a multilayer printed wiring board, since it has been put into a process that is several times the number of layers, the process using the liquid line is passed many times, and there is a high possibility that defects will occur. Become. Also, if a defect occurs after stacking several layers, everything stacked up to that point is wasted. Thus, in the manufacturing method that passes through the liquid line process for plating and circuit formation after laminating, a single defect in the liquid line greatly affects the defect as a product. Of course, in order to keep the state of the chemicals in the liquid process constant, it is necessary to constantly monitor and manage daily, so it should be replaced with a separate process that does not require daily monitoring even partially. .

また、特許文献2に開示されているように、CBIC技術を応用することで予め作製した一方の基板上の層間導通を得たい部分のみ、絶縁層を開口し、銅ボールを配置して、回路形成を施したもう一方の基板を重ね、加圧加熱して積層することで多層基板を得る方法では、基板同士の機械的接合として、導体層同士の金属結合による接合強度は得られるが、銅ボールを配した基板の絶縁層と他方の基板との機械的接合強度を安定して得ることが困難である。何故なら、銅ボールを配置する側に基板には予め絶縁層を形成した後に、導通が必要な部分のみ開口して銅ボールを配置する必要があるが、絶縁層を形成するためには、銅ボールを配置する層の絶縁層は、接着性を有した熱可塑性樹脂であることが望ましい。しかし、先行技術文献2のような方法で熱可塑性樹脂を絶縁層に用いようとすると、予め作製した基板の上に絶縁層を形成する際、熱可塑性樹脂を基板に貼り合わせる際に加熱加圧を一度行うことになり、その後CBIC技術によって他方との基板と積層する際に再度加圧加熱することになるため、熱履歴を複数回掛けても絶縁層厚と接着強度を安定して実現可能な熱可塑性樹脂を選ばざるを得なくなる。もちろん、予め基板に絶縁層を形成する際に加圧加熱以外の方法で接合する方法も考えらるが、絶縁層に使用する材料としては、熱可塑による接着機能の他に別の接着機能を有する必要が生じる。   In addition, as disclosed in Patent Document 2, an insulating layer is opened and a copper ball is disposed only in a portion where interlayer conduction on one substrate prepared in advance by applying CBIC technology is desired, and a circuit is provided. In the method of obtaining a multilayer substrate by stacking the other substrate that has been formed and laminating under pressure and heating, the bonding strength due to the metal bond between the conductor layers can be obtained as a mechanical bond between the substrates, but copper It is difficult to stably obtain the mechanical bonding strength between the insulating layer of the substrate on which the ball is disposed and the other substrate. This is because, after forming an insulating layer on the substrate on the side where the copper ball is to be placed in advance, it is necessary to place the copper ball by opening only the portion where conduction is required. The insulating layer of the layer on which the ball is disposed is desirably a thermoplastic resin having adhesiveness. However, if the thermoplastic resin is used for the insulating layer by the method as in Prior Art Document 2, when the insulating layer is formed on the substrate prepared in advance, the pressure is applied when the thermoplastic resin is bonded to the substrate. Once it is done, it will be pressurized and heated again when it is stacked with the other substrate by CBIC technology, so the insulating layer thickness and adhesive strength can be realized stably even if the thermal history is applied multiple times. Must select a suitable thermoplastic resin. Of course, a method of joining by using a method other than pressure heating when forming an insulating layer on the substrate in advance is also conceivable, but as a material used for the insulating layer, in addition to the adhesive function by thermoplastic, another adhesive function can be used. Need to have.

なお、特許文献3にも、CBIC技術を用いて作製した基板を積層する技術が示されているが、積層を絶縁性の接着剤を用いて行うものであり、積層する基板間での層間導通手段は示されていない。   Patent Document 3 also discloses a technique for laminating a substrate manufactured using the CBIC technique, but the laminating is performed using an insulating adhesive, and interlayer conduction between the laminated substrates is performed. Means are not shown.

本発明は、前記事情に鑑みてなされ、積層後に液もの工程が不要となり、めっきによる製造上及び導体回路の厚み増加の問題を解消して高品質の多層配線基板を製造できる方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method capable of manufacturing a high-quality multilayer wiring board by eliminating the need for a liquid process after stacking and eliminating the problems of manufacturing by plating and the increase in the thickness of a conductor circuit. And

前記目的を達成するため、本発明は、予め層間導通構造の手段の形成と配線のための回路形成が行われた2枚の両面配線基板と、熱可塑性樹脂又は熱可塑性接着剤が両面に形成された樹脂からなり、適所にスルーホールが穿設された絶縁層と、銅ボールとを用意し、次いで、前記絶縁層のスルーホールに前記銅ボールを挿入して中間層とし、二枚の両面配線基板間にこの中間層を挟み、これらを加圧加熱して積層し、2枚の両面配線基板を中間層を介して接着すると共に、中間層のスルーホール内の潰れた銅ボールとそれに接する配線パターンとの間に金属結合を形成して層間導通を形成し、この最終積層後に液ものラインによる工程を行わずに多層配線基板を製造することを特徴とする多層配線基板の製造方法を提供する。   In order to achieve the above object, the present invention provides two double-sided wiring boards that have been previously formed with means for interlayer conduction structure and circuit formation for wiring, and a thermoplastic resin or a thermoplastic adhesive formed on both sides. An insulating layer having a through hole formed in a proper position and a copper ball, and then inserting the copper ball into the through hole of the insulating layer to form an intermediate layer. This intermediate layer is sandwiched between the wiring boards, these are heated and laminated, and the two double-sided wiring boards are bonded via the intermediate layer, and the crushed copper ball in the through hole of the intermediate layer is in contact with it. Provided is a method for manufacturing a multilayer wiring board, wherein a metal bond is formed between the wiring pattern and an interlayer continuity is formed, and a multilayer wiring board is manufactured without performing a liquid line process after the final lamination. To do.

本発明の多層配線基板の製造方法において、2枚の両面配線基板が、それぞれ表裏両面に配線パターンを有する両面配線基板であり、最終積層後に、層間導通された4層の配線パターンを有する多層配線基板を製造することが好ましい。   In the method for manufacturing a multilayer wiring board of the present invention, the two double-sided wiring boards are double-sided wiring boards each having a wiring pattern on both the front and back surfaces, and a multilayer wiring having a four-layer wiring pattern that is interlayer-conductive after final lamination It is preferable to manufacture a substrate.

本発明の多層配線基板の製造方法において、2枚の両面配線基板が、それぞれ4層の配線パターンを有する多層配線基板であり、最終積層後に、層間導通された8層の配線パターンを有する多層配線基板を製造することもできる。   In the method for manufacturing a multilayer wiring board according to the present invention, each of the two double-sided wiring boards is a multilayer wiring board having a four-layer wiring pattern, and the multilayer wiring having an eight-layer wiring pattern in which the layers are electrically connected after final lamination A substrate can also be manufactured.

本発明の多層配線基板の製造方法において、2枚の両面配線基板の一方が、3層以上の奇数層の配線パターンを有する多層配線基板であり、最終積層後に、層間導通された奇数層の配線パターンを有する多層配線基板を製造することもできる。   In the method for manufacturing a multilayer wiring board of the present invention, one of the two double-sided wiring boards is a multilayer wiring board having an odd-numbered wiring pattern of three or more layers, and the odd-numbered wiring that is interlayer-conductive after the final lamination A multilayer wiring board having a pattern can also be manufactured.

また本発明は、前述した本発明に係る多層配線基板の製造方法によって製造された多層配線基板を提供する。   Moreover, this invention provides the multilayer wiring board manufactured by the manufacturing method of the multilayer wiring board which concerns on this invention mentioned above.

本発明は、既に回路形成された配線基板を用いるので、積層後に液もの工程を通さず、さらに層間導通においてもめっきの必要がないので、長時間のめっき、導体回路の厚さが増すという問題が発生せず、サブトラクティブ法による微細回路の形成の障害にならず、また薬液の管理も不要になる。このように液体を使用する工程が少なく不良が発生する可能性を低くでき、製品の歩留まりを向上させることができる。
また、積層後に回路形成やめっきを行うビルドアップ法での多層配線基板では、積層後に不良が起きると、今まで積層した基板が全て無駄になってしまうが、本発明では両面配線基板を形成する際に不良が起こったとしても、両面配線基板を作り直せば2層のみの損失で済むことになるので、製造コストを低減することができる。
Since the present invention uses a wiring board on which a circuit has already been formed, there is no need to pass a liquid process after lamination, and there is no need for plating even in interlayer conduction. Does not occur, does not hinder the formation of a fine circuit by the subtractive method, and does not require management of chemicals. In this way, the number of steps using the liquid is small and the possibility of occurrence of defects can be reduced, and the yield of products can be improved.
In addition, in a multilayer wiring board based on a build-up method in which circuit formation or plating is performed after lamination, if a defect occurs after lamination, all the boards laminated so far are wasted. In the present invention, a double-sided wiring board is formed. Even if a failure occurs at this time, if the double-sided wiring board is recreated, only two layers of losses are required, so that the manufacturing cost can be reduced.

本発明は、以上のような問題点について、CBIC技術を用いることで一度の加圧加熱によって、積層する基板間の層間導通における金属結合と、銅箔と絶縁層の接着強度を安定して得られるよう、解決するものである。つまり、少なくとも有機樹脂を含む絶縁層と、絶縁層の内部、及び表面に形成された金属からなる複数層の導体回路と、複数層の導体回路を接続するためのビア導体部を伴う4層以上の多層配線基板を形成する方法として、本発明では、予め回路形成した基板を2枚以上用意し、それらを貼りあわせつつ層間導通を実現するための層として、所定の位置に穴が開けられた例えば熱可塑性の絶縁層を配置し、その穴に銅ボールが厚入されて仮装着された状態の中間層基板を準備しておき、この層の上下に用意しておいた両面基板を上下に配置した状態で位置あわせして加熱加圧し、4層以上の多層配線構造を形成することを特徴としている。   In the present invention, by using the CBIC technology, the metal bond in the interlayer conduction between the laminated substrates and the adhesive strength between the copper foil and the insulating layer can be stably obtained by using the CBIC technique. It will be solved. That is, at least four layers with an insulating layer containing at least an organic resin, a multi-layer conductor circuit made of metal formed on and inside the insulating layer, and a via conductor portion for connecting the multi-layer conductor circuit As a method of forming the multilayer wiring board, in the present invention, two or more substrates on which circuits are formed in advance are prepared, and holes are drilled at predetermined positions as layers for realizing interlayer conduction while bonding them together. For example, a thermoplastic insulating layer is arranged, and an intermediate layer substrate is prepared in which a copper ball is inserted into the hole and temporarily mounted, and the double-sided substrates prepared above and below this layer are placed up and down. It is characterized in that it is aligned and heated and pressed in the arranged state to form a multilayer wiring structure having four or more layers.

本発明の製造方法では、一度の加圧加熱により銅ボールが潰れることで新生面が露出し、銅ボールに向かい合った回路パターンの銅箔と金属結合することで、貼りあわせた基板同士の層間導通を実現しつつ、同時に銅ボールを配した絶縁層と上下の基板の接着を行うことが可能となる。従って、従来技術のように、一度一方の基板の表面に何らかの接着方法で絶縁層を形成した後、開口を行って銅ボールを配置してから他方の基板と接合する工法と異なり、一度の接合工程で済むため、銅ボールを配置する絶縁層としては、一度の加圧加熱で接合が可能なものを選定すれば良く、工法的にも簡素化が可能となる。   In the manufacturing method of the present invention, the copper ball is crushed by one pressurization and heating, and a new surface is exposed, and metal bonding is performed with the copper foil of the circuit pattern facing the copper ball, thereby providing interlayer conduction between the bonded substrates. At the same time, it is possible to bond the insulating layer provided with copper balls and the upper and lower substrates. Therefore, unlike the conventional technique, an insulating layer is formed once on the surface of one substrate by some bonding method, and then the opening is made and a copper ball is arranged and then bonded to the other substrate. Since the process is sufficient, the insulating layer on which the copper balls are arranged may be selected from those that can be joined by one pressurization and heating, and the construction method can be simplified.

図2は、本発明に係る多層配線基板の製造方法の一実施形態を工程順に示す断面図である。
本実施形態では、図2(a)に示すように、ポリイミドフィルムなどからなる絶縁層の両面に、銅などの導電体からなる回路パターンが形成された、2枚の両面配線基板6,7と、熱可塑性樹脂又は熱可塑性接着剤が両面に形成された樹脂からなり、適所にスルーホールが穿設された絶縁層と、銅ボール9a,9bとを用意する。
FIG. 2 is a cross-sectional view showing an embodiment of a method for manufacturing a multilayer wiring board according to the present invention in the order of steps.
In the present embodiment, as shown in FIG. 2 (a), two double-sided wiring boards 6, 7 in which circuit patterns made of a conductor such as copper are formed on both sides of an insulating layer made of polyimide film or the like. An insulating layer made of a resin in which a thermoplastic resin or a thermoplastic adhesive is formed on both surfaces and having through holes formed at appropriate positions, and copper balls 9a and 9b are prepared.

次いで、図2(b)に示すように、絶縁層のスルーホールに銅ボール9a,9bを挿入して中間層8とし、次いで、図2(c)に示すように、2枚の両面配線基板6,7間にこの中間層8を挟み、これらを加圧加熱して積層し、2枚の両面配線基板6,7を、中間層8を介して接着すると共に、中間層8のスルーホール内の潰れた銅ボールとそれに接する配線パターンとの間に金属結合を形成して層間導通を形成し、この最終積層後に液ものラインによる工程を行わず、図2(d)に示すように、4層の配線パターンを有する多層配線基板を製造する。   Next, as shown in FIG. 2 (b), copper balls 9a and 9b are inserted into the through holes of the insulating layer to form the intermediate layer 8, and then, as shown in FIG. 2 (c), two double-sided wiring boards The intermediate layer 8 is sandwiched between the layers 6 and 7 and laminated by pressurizing and heating, and the two double-sided wiring boards 6 and 7 are bonded together via the intermediate layer 8, and in the through hole of the intermediate layer 8. A metal bond is formed between the crushed copper ball and the wiring pattern in contact therewith to form interlayer conduction. After this final lamination, no liquid line process is performed, as shown in FIG. A multilayer wiring board having a wiring pattern of layers is manufactured.

本実施形態では、CBIC技術を用いて作製された2枚の両面配線基板6,7に回路形成を施した後、絶縁層の任意の位置に開けたスルーホールに銅ボール9a,9bを嵌め込んだ中間層8を挟み、真空プレスにより加熱・加圧することによって完成する。この工法では、すでに回路形成された両面配線基板6,7を用いるので、積層後に液体を用いる工程を通さず、さらに層間導通においてもめっきの必要がないので、不良が発生する可能性が少なく、両面配線基板6,7を形成する際に不良が起こったとしても、両面配線基板6,7を作り直せば、2層のみの損失で済むことになる。   In this embodiment, after forming a circuit on the two double-sided wiring boards 6 and 7 manufactured using the CBIC technique, the copper balls 9a and 9b are fitted into the through holes opened at arbitrary positions in the insulating layer. It is completed by sandwiching the intermediate layer 8 and heating and pressing with a vacuum press. In this construction method, since double-sided wiring boards 6 and 7 that have already been circuit-formed are used, a process using a liquid is not performed after lamination, and further, there is no need for plating even in interlayer conduction, so there is little possibility of occurrence of defects, Even if a defect occurs when the double-sided wiring boards 6 and 7 are formed, if the double-sided wiring boards 6 and 7 are remade, only two layers of losses are required.

本実施形態では、表裏に回路パターンが設けられた2枚の両面配線基板6,7を2枚用い、最終積層後、図2(d)に示すように4層の回路パターンを有する多層配線基板を作製する場合を例示しているが、本発明は本例示に限定されず、2枚の両面配線基板のそれぞれに形成する配線パターンの層数は、2層以上であればよく、図3に示すように、各々4層の回路パターンを有する両面配線基板10,10’を2枚用い、8層の配線パターンを有する多層配線基板を製造することもできるし、或いは、図4に示すように、2枚の両面配線基板13,14のうち、一方の両面配線基板14に、奇数層(図4では3層)の配線パターンを有する両面配線基板14を用い、奇数層の配線パターンを有する多層配線基板を製造することもできる。   In the present embodiment, two double-sided wiring boards 6 and 7 having circuit patterns provided on the front and back are used, and after final lamination, a multilayer wiring board having a four-layer circuit pattern as shown in FIG. However, the present invention is not limited to this example, and the number of wiring patterns formed on each of two double-sided wiring boards may be two or more. As shown, a multilayer wiring board having an eight-layer wiring pattern can be manufactured by using two double-sided wiring boards 10 and 10 'each having a four-layer circuit pattern, or as shown in FIG. Of the two double-sided wiring boards 13 and 14, a double-sided wiring board 14 having an odd-numbered wiring pattern (three layers in FIG. 4) is used as one double-sided wiring board 14, and a multilayer having an odd-numbered wiring pattern. A wiring board can also be manufactured.

また、本実施形態では、CBIC技術を用いて作製された2枚の両面配線基板6,7を用いた場合を例示しているが、本発明で用いる両面配線基板は、これに限定されるものではなく、めっき法を用いて回路パターンや層間導通を形成した両面配線基板を用いることもできる。
また、図2の工程(a)〜(d)は、1回のみならず、繰り返し行うことができることは言うまでもない。
以下、実施例により本発明を更に具体的に説明するが、以下の実施例は本発明の単なる例示であり、本発明はこれらの記載にのみ限定されるものではない。
In the present embodiment, the case where two double-sided wiring boards 6 and 7 manufactured using the CBIC technique are illustrated, but the double-sided wiring board used in the present invention is limited to this. Instead, it is also possible to use a double-sided wiring board in which a circuit pattern or interlayer conduction is formed using a plating method.
Further, it goes without saying that the steps (a) to (d) in FIG. 2 can be repeated not only once.
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the following examples are merely illustrative of the present invention, and the present invention is not limited only to these descriptions.

本実施例では、図2に示す工程(a)〜(d)に従って、4層の回路パターンを有する多層配線基板を作製した。
まず、張り合わされる上下の両面配線基板6,7を作製した。これらは、CBIC技術を用いて作製した。絶縁材料として、表裏両面に熱可塑性接着剤層が形成された厚さ50μmのポリイミドシートを用意し、層間導通が必要な箇所にレーザにて、例えば90μmのスルーホールを形成した。次に、そのスルーホールに直径100μmの銅ボールを配置し、圧入しておき、上下に厚さ例えば12.5μmの銅箔を配置した状態で、プレス器にて加圧状態で加熱し、絶縁材を介して2枚の銅箔を接着した。次いで、表裏の銅箔に、回路パターン形成用のレジストを形成し、サブトラクティブ法によって表裏面に回路パターンを形成し、図2(a)に示す2枚の両面配線基板6,7を制作した。
In this example, a multilayer wiring board having a four-layer circuit pattern was manufactured according to steps (a) to (d) shown in FIG.
First, the upper and lower double-sided wiring boards 6 and 7 to be bonded together were produced. These were made using CBIC technology. As an insulating material, a polyimide sheet having a thickness of 50 μm having a thermoplastic adhesive layer formed on both the front and back surfaces was prepared, and a through hole having a thickness of, for example, 90 μm was formed by a laser at a place where interlayer conduction was required. Next, a copper ball having a diameter of 100 μm is placed in the through hole, press-fitted, and a copper foil having a thickness of, for example, 12.5 μm is placed on the upper and lower sides, and heated in a pressurized state with a press to insulate Two copper foils were bonded through the material. Next, a resist for forming a circuit pattern was formed on the front and back copper foils, and a circuit pattern was formed on the front and back surfaces by a subtractive method to produce two double-sided wiring boards 6 and 7 shown in FIG. .

一方、これらとは別に、両面配線基板6,7を貼り合わせるための中間層8を用意した。中間層8の絶縁材料として、表裏両面に熱可塑性接着剤が形成された厚さ50μmのポリイミドシートを用いた。このシートに、層間導通が必要な箇所にレーザにて例えば90μmのスルーホールを形成した。次に、そのスルーホールに直径100μmの銅ボール9a,9bを配置し、圧入して、図2(b)に示す中間層8を作製した。   On the other hand, an intermediate layer 8 for bonding the double-sided wiring boards 6 and 7 was prepared separately from these. As an insulating material for the intermediate layer 8, a polyimide sheet having a thickness of 50 μm in which a thermoplastic adhesive was formed on both the front and back surfaces was used. For example, a 90 μm through hole was formed in this sheet by a laser at a location where interlayer conduction was required. Next, copper balls 9a and 9b having a diameter of 100 μm were placed in the through holes and press-fitted to produce the intermediate layer 8 shown in FIG.

前記2枚の両面配線基板6,7と前記中間層8とを用意した後、図2(c)に示すように、中間層8の上面に両面配線基板6を、下面に両面基板7をそれぞれ配置し、位置合わせを行った後、これらをプレス器にセットし、加圧状態で加熱して積層(最終積層)を行った。加熱加圧後、プレス機から完成品を取り出した。これにより、図2(d)に示すように、4層の配線パターンを有する多層配線基板を得た。   After the two double-sided wiring boards 6 and 7 and the intermediate layer 8 are prepared, as shown in FIG. 2 (c), the double-sided wiring board 6 is provided on the upper surface of the intermediate layer 8, and the double-sided board 7 is provided on the lower surface. After arranging and aligning, these were set in a press and heated in a pressurized state for lamination (final lamination). After heating and pressing, the finished product was taken out from the press. Thereby, as shown in FIG. 2D, a multilayer wiring board having a four-layer wiring pattern was obtained.

本実施例では、図2(a)〜(d)の各工程を経て多層配線基板を製造したことで、中間層8の銅ボール9a,9bが上側の両面配線基板6の下面の回路パターンと金属結合すると共に、下側の両面配線基板7の上面の回路パターンと金属結合を形成し、更に中間層8の熱可塑性接着剤と、両面配線基板6,7の層間導通を形成しない部分での層間接着を同時に実現することができ、予め正しく回路形成された基板にて4層積層基板を形成することができる。   In this embodiment, the multilayer wiring board is manufactured through the steps of FIGS. 2A to 2D, so that the copper balls 9a and 9b of the intermediate layer 8 are formed on the circuit pattern on the lower surface of the upper double-sided wiring board 6. In addition to metal bonding, a metal pattern is formed with the circuit pattern on the upper surface of the lower double-sided wiring board 7, and further, the thermoplastic adhesive of the intermediate layer 8 and the interlayer conduction between the double-sided wiring boards 6 and 7 are not formed. Interlayer adhesion can be realized at the same time, and a four-layer laminated substrate can be formed on a substrate on which a circuit has been correctly formed in advance.

(実施例1の他の例示:CBIC以外の層間導通方法による両面基板を用いた4層配線基板の製造例)
基板構成自体は図2と同様であるが、使用する両面配線基板6,7は、CBIC技術を用いたものではなくても良い。例えば、絶縁層厚25μm、銅箔層厚12.5μmの両面銅張り積層板を用いることもできる。その場合は、必要な箇所にレーザなどでスルーホールを形成し、ビアフィルめっきにて層間導通を形成し、両面配線基板を作製する。
(Another example of Example 1: Production example of a four-layer wiring board using a double-sided board by an interlayer conduction method other than CBIC)
Although the substrate configuration itself is the same as that in FIG. 2, the double-sided wiring boards 6 and 7 to be used may not be those using the CBIC technology. For example, a double-sided copper-clad laminate having an insulating layer thickness of 25 μm and a copper foil layer thickness of 12.5 μm can be used. In that case, a through-hole is formed with a laser etc. in a required location, interlayer conduction is formed by via fill plating, and a double-sided wiring board is manufactured.

一方、これとは別に、両面基板6,7を貼り合わせるための中間層8を用意する。中間層基板の絶縁材料も表裏両面に熱可塑性接着剤層が形成された厚さ50μmのポリイミドシートを用いる。このシートに、層間導通が必要な箇所にレーザにて、例えば90μmのスルーホールを形成する。次に、そのスルーホールに直径100μmの銅ボールを配置し、圧入して中間層8を作製する。   On the other hand, an intermediate layer 8 for bonding the double-sided substrates 6 and 7 is prepared separately. As an insulating material for the intermediate layer substrate, a polyimide sheet having a thickness of 50 μm in which a thermoplastic adhesive layer is formed on both front and back surfaces is used. A through hole of, for example, 90 μm is formed in this sheet with a laser at a location where interlayer conduction is required. Next, a copper ball having a diameter of 100 μm is placed in the through hole and press-fitted to produce the intermediate layer 8.

これらの基板を用意した後、中間層に対して上面に一方の両面基板6を、下面に他方の両面配線基板7を配置し、位置合わせを行った後に加圧加熱して、積層を行うことで、図2(d)に示すように、4層の配線パターンを有する多層配線基板が得られる。   After these substrates are prepared, one double-sided board 6 is arranged on the upper surface and the other double-sided wiring board 7 is arranged on the lower surface with respect to the intermediate layer. Thus, as shown in FIG. 2D, a multilayer wiring board having a four-layer wiring pattern is obtained.

このようにすることで、前述した実施例1と同じく、中間層8の銅ボール9a,9bが上側の両面配線基板6の下面の回路と金属結合すると共に、下側の両面基板7の上面の回路と金属結合を形成し、更に中間層8の熱可塑性接着剤と、両面配線基板6,7の層間導通を形成しない部分での層間接着を同時に実現することができる。   By doing so, the copper balls 9a and 9b of the intermediate layer 8 are metal-bonded to the circuit on the lower surface of the upper double-sided wiring board 6 and the upper surface of the lower double-sided board 7 is the same as in the first embodiment. It is possible to form a metal bond with the circuit, and further realize interlayer adhesion at the portion where the interlayer adhesive is not formed between the thermoplastic adhesive of the intermediate layer 8 and the double-sided wiring boards 6 and 7.

本実施例では、図3に示す工程(a)〜(b)に従って、8層の回路パターンを有する多層配線基板を作製した。
本実施例では、前述した実施例1において製造した4層の配線パターンを有する多層配線基板を、両面配線基板10,10’として2枚用い、これらを実施例1と同様にして、銅ボール12を嵌め込んだ中間層11を介して重ね合わせ(図3(a))、これらをプレス器にセットし、加圧状態で加熱して積層(最終積層)を行った。加熱加圧後、プレス機から完成品を取り出した。これにより、図3(b)に示すように、8層の配線パターンを有する多層配線基板を得た。
In this example, a multilayer wiring board having an eight-layer circuit pattern was produced according to the steps (a) to (b) shown in FIG.
In this embodiment, two multilayer wiring boards having the four-layer wiring pattern manufactured in the first embodiment described above are used as the double-sided wiring boards 10 and 10 ', and these are used in the same manner as in the first embodiment. Are stacked through the intermediate layer 11 fitted with (FIG. 3A), these are set in a press machine, and heated in a pressurized state for lamination (final lamination). After heating and pressing, the finished product was taken out from the press. As a result, as shown in FIG. 3B, a multilayer wiring board having an eight-layer wiring pattern was obtained.

本実施例では、図4に示す工程(a)〜(b)に従って、奇数層の回路パターンを有する多層配線基板を作製した。
本実施例では、2層の配線パターンを有する両面配線基板13と、3層の配線パターンを有する両面配線基板14と、実施例1及び2で用いたものと同様の中間層15とを用いた。2枚の両面配線基板13,14の間に中間層15を挟んで重ね合わせ(図4(a))、これらをプレス器にセットし、加圧状態で加熱して積層(最終積層)を行った。加熱加圧後、プレス機から完成品を取り出した。これにより、図4(b)に示すように、5層の配線パターンを有する多層配線基板を得た。
In this example, a multilayer wiring board having an odd-numbered circuit pattern was fabricated according to the steps (a) to (b) shown in FIG.
In this example, a double-sided wiring board 13 having a two-layer wiring pattern, a double-sided wiring board 14 having a three-layer wiring pattern, and an intermediate layer 15 similar to those used in Examples 1 and 2 were used. . The intermediate layer 15 is sandwiched between two double-sided wiring boards 13 and 14 (FIG. 4 (a)), and these are set in a press machine and heated in a pressurized state for lamination (final lamination). It was. After heating and pressing, the finished product was taken out from the press. As a result, as shown in FIG. 4B, a multilayer wiring board having a five-layer wiring pattern was obtained.

CBIC工法による両面基板の製造方法を工程順に例示する断面図である。It is sectional drawing which illustrates the manufacturing method of the double-sided board by a CBIC construction method in order of a process. 本発明に係る実施例1での多層配線基板の製造方法を工程順に示す断面図である。It is sectional drawing which shows the manufacturing method of the multilayer wiring board in Example 1 which concerns on this invention in process order. 本発明に係る実施例2での多層配線基板の製造方法を工程順に示す断面図である。It is sectional drawing which shows the manufacturing method of the multilayer wiring board in Example 2 which concerns on this invention in process order. 本発明に係る実施例3での多層配線基板の製造方法を工程順に示す断面図である。It is sectional drawing which shows the manufacturing method of the multilayer wiring board in Example 3 which concerns on this invention to process order.

符号の説明Explanation of symbols

1…絶縁層、2…銅ボール、3,4…銅箔、5…スルーホール、6,7,10,10’,13,14…両面配線基板、8,11,15…中間層、9a,9b,12,16…銅ボール。   DESCRIPTION OF SYMBOLS 1 ... Insulation layer, 2 ... Copper ball, 3, 4 ... Copper foil, 5 ... Through hole, 6, 7, 10, 10 ', 13, 14 ... Double-sided wiring board, 8, 11, 15 ... Intermediate layer, 9a, 9b, 12, 16 ... Copper balls.

Claims (5)

予め層間導通構造の手段の形成と配線のための回路形成が行われた2枚の両面配線基板と、熱可塑性樹脂又は熱可塑性接着剤が両面に形成された樹脂からなり、適所にスルーホールが穿設された絶縁層と、銅ボールとを用意し、次いで、前記絶縁層のスルーホールに前記銅ボールを挿入して中間層とし、二枚の両面配線基板間にこの中間層を挟み、これらを加圧加熱して積層し、2枚の両面配線基板を中間層を介して接着すると共に、中間層のスルーホール内の潰れた銅ボールとそれに接する配線パターンとの間に金属結合を形成して層間導通を形成し、この最終積層後に液ものラインによる工程を行わずに多層配線基板を製造することを特徴とする多層配線基板の製造方法。   It consists of two double-sided wiring boards that have been previously formed with interlayer conduction structure means and circuits for wiring, and a resin that is formed on both sides with a thermoplastic resin or thermoplastic adhesive. A perforated insulating layer and a copper ball are prepared. Then, the copper ball is inserted into a through hole of the insulating layer to form an intermediate layer, and the intermediate layer is sandwiched between two double-sided wiring boards. Are laminated by pressing and heating, and two double-sided wiring boards are bonded via an intermediate layer, and a metal bond is formed between the crushed copper ball in the through hole of the intermediate layer and the wiring pattern in contact therewith. A method of manufacturing a multilayer wiring board, comprising: forming interlayer conduction, and manufacturing the multilayer wiring board without performing a liquid line process after the final lamination. 2枚の両面配線基板が、それぞれ表裏両面に配線パターンを有する両面配線基板であり、最終積層後に、層間導通された4層の配線パターンを有する多層配線基板を製造することを特徴とする請求項1に記載の多層配線基板の製造方法。   The two double-sided wiring boards are each a double-sided wiring board having wiring patterns on both front and back surfaces, and a multi-layer wiring board having four-layer wiring patterns in which interlayer conduction is performed after final lamination is manufactured. 2. A method for producing a multilayer wiring board according to 1. 2枚の両面配線基板が、それぞれ4層の配線パターンを有する多層配線基板であり、最終積層後に、層間導通された8層の配線パターンを有する多層配線基板を製造することを特徴とする請求項1に記載の多層配線基板の製造方法。   The two double-sided wiring boards are multilayer wiring boards each having a four-layer wiring pattern, and a multi-layer wiring board having an eight-layer wiring pattern in which interlayer conduction is performed after final lamination is manufactured. 2. A method for producing a multilayer wiring board according to 1. 2枚の両面配線基板の一方が、3層以上の奇数層の配線パターンを有する多層配線基板であり、最終積層後に、層間導通された奇数層の配線パターンを有する多層配線基板を製造することを特徴とする請求項1に記載の多層配線基板の製造方法。   One of the two double-sided wiring boards is a multilayer wiring board having an odd-numbered wiring pattern of three or more layers, and after the final lamination, manufacturing a multilayer wiring board having an odd-numbered wiring pattern that is interlayer-connected. The method for producing a multilayer wiring board according to claim 1, wherein: 請求項1〜4のいずれかに記載の多層配線基板の製造方法によって製造された多層配線基板。   The multilayer wiring board manufactured by the manufacturing method of the multilayer wiring board in any one of Claims 1-4.
JP2007200739A 2007-08-01 2007-08-01 Multilayer wiring board and its manufacturing method Pending JP2009038191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007200739A JP2009038191A (en) 2007-08-01 2007-08-01 Multilayer wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007200739A JP2009038191A (en) 2007-08-01 2007-08-01 Multilayer wiring board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009038191A true JP2009038191A (en) 2009-02-19

Family

ID=40439835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007200739A Pending JP2009038191A (en) 2007-08-01 2007-08-01 Multilayer wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009038191A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114501855A (en) * 2021-12-08 2022-05-13 江苏普诺威电子股份有限公司 Manufacturing process of double-sided buried ultrathin circuit board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260012A (en) * 2004-03-12 2005-09-22 Sony Chem Corp Method for manufacturing double-sided wiring board and multilayer wiring board
JP2006294725A (en) * 2005-04-07 2006-10-26 Fujikura Ltd Wiring board, multilayered wiring board, and manufacturing method of these

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260012A (en) * 2004-03-12 2005-09-22 Sony Chem Corp Method for manufacturing double-sided wiring board and multilayer wiring board
JP2006294725A (en) * 2005-04-07 2006-10-26 Fujikura Ltd Wiring board, multilayered wiring board, and manufacturing method of these

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114501855A (en) * 2021-12-08 2022-05-13 江苏普诺威电子股份有限公司 Manufacturing process of double-sided buried ultrathin circuit board
CN114501855B (en) * 2021-12-08 2024-02-02 江苏普诺威电子股份有限公司 Manufacturing process of double-sided buried wire ultrathin circuit board

Similar Documents

Publication Publication Date Title
KR101116079B1 (en) Method for manufacturing multilayer printed circuit board and multilayer printed circuit board
WO1997048260A1 (en) One-sided circuit board for multi-layer printed wiring board, multi-layer printed wiring board, and method for its production
JP2006165496A (en) Parallel multi-layer printed board having inter-layer conductivity through via post
JP2008124398A (en) Semiconductor package and its manufacturing method
US8453322B2 (en) Manufacturing methods of multilayer printed circuit board having stacked via
JP4460013B2 (en) Wiring board manufacturing method
JP2008258357A (en) Rigid flexible board and manufacturing method thereof
JP4857433B2 (en) Metal laminate, metal laminate manufacturing method and printed circuit board manufacturing method
JPH1013028A (en) Single-sides circuit board for multilayered printed wiring board and multilayered printed wiring board and its manufacture
JP2006210766A (en) Multilayer printed-wiring board and manufacturing method thereof
JPH0936551A (en) Single-sided circuit board for multilayer printed wiring board use, multilayer printed wiring board and manufacture thereof
JP2006253328A (en) Manufacturing method of multilayer wiring board
TW201406223A (en) Multilayer printed circuit board and method for manufacturing same
JP2014068047A (en) Method for manufacturing multilayer printed wiring board
JP2007208229A (en) Manufacturing method of multilayer wiring board
JP2002198652A (en) Multilayer printed wiring board, method of manufacturing the same and single-sided circuit board therefor
JP2009038191A (en) Multilayer wiring board and its manufacturing method
JPH08288649A (en) Manufacture of multilayered printed wiring board
KR20120019144A (en) Method for manufacturing a printed circuit board
JP2008258358A (en) Rigid flexible board and manufacturing method thereof
JP2007335631A (en) Manufacturing method of laminated wiring board
JP4892924B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4824972B2 (en) Circuit wiring board and manufacturing method thereof
JP2004158671A (en) Multilayer board and its producing process
JP2010205809A (en) Multilayer printed wiring board and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100607

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A02 Decision of refusal

Effective date: 20120508

Free format text: JAPANESE INTERMEDIATE CODE: A02