JP2006210766A - Multilayer printed-wiring board and manufacturing method thereof - Google Patents

Multilayer printed-wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP2006210766A
JP2006210766A JP2005022857A JP2005022857A JP2006210766A JP 2006210766 A JP2006210766 A JP 2006210766A JP 2005022857 A JP2005022857 A JP 2005022857A JP 2005022857 A JP2005022857 A JP 2005022857A JP 2006210766 A JP2006210766 A JP 2006210766A
Authority
JP
Japan
Prior art keywords
wiring board
multilayer printed
layer
substrate
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005022857A
Other languages
Japanese (ja)
Inventor
Hitoshi Takii
斉 瀧井
Yoshio Oka
良雄 岡
Norikata Hayashi
憲器 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005022857A priority Critical patent/JP2006210766A/en
Publication of JP2006210766A publication Critical patent/JP2006210766A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a multilayer printed-wiring board, capable of obtaining high productivity when three or more layers of a wiring board, a copper foil or the like are to be laminated, that causes no problems, such as warpages when laminating, and obtaining large interlayer adhesion strength, and to provide the multilayer printed-wiring board manufactured by the method. <P>SOLUTION: The multilayer printed-wiring board employs a conductive base material (L), having a conductor bump formed, an insulation substrate having a circuit on its surface, a hole formed in the insulation substrate and filled with a conductive substance, a wiring board base material (M) having a conductor bump formed, as needed, and an adhesive sheet layer (O) having a through-hole with a diameter larger than that of the bump. The total number of the conductive base material (L) and the wiring board base material (M) is three or more. The adhesive sheet layer (O) is sandwiched between the conductive base material (L) and the wiring board base material (M). They are laminate-pressed together. Thus, the manufacturing method of the multilayer printed-wiring board is realized, and the multilayer printed-wiring board manufactured by the method is also disclosed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数のプリント配線板が積層された多層プリント配線板の製造方法、及びその方法により製造される多層プリント配線板に関する。   The present invention relates to a method for manufacturing a multilayer printed wiring board in which a plurality of printed wiring boards are laminated, and a multilayer printed wiring board manufactured by the method.

多層プリント配線板の製造方法としては、隣接する導体層(回路)間に開けた孔に導電性材料を充填して隣接層の回路間を接続(層間接続)するIVH(Interstitial Via Hole)が知られている。IVHにより、必要な部分のみに層間接続を形成することができるので、自由度の高い高密度配線が可能となる。   As a method for manufacturing a multilayer printed wiring board, IVH (Interstitial Via Hole) is known in which holes formed between adjacent conductor layers (circuits) are filled with a conductive material to connect the circuits of adjacent layers (interlayer connection). It has been. With IVH, an interlayer connection can be formed only in a necessary portion, so that a high-density wiring with a high degree of freedom is possible.

IVHにより製造される多層プリント配線板は、例えば、フジクラ技報第103号、49−51頁(2002年10月発表)に記載されている。この多層プリント配線板の製造においては、先ず、ポリイミドに代表される耐熱フィルムの片面に銅箔を貼り付けた片面銅貼り積層板(Cupper Crad Laminate:CCL)の銅箔をエッチングして回路を形成し、次に銅箔と反対の面に接着剤層を貼り合せた後穴あけ加工を行い、形成されたビアホール(有底穴)に導電ペーストを充填して配線板基材を得る。その後、この配線板基材と回路が形成された他の銅貼り積層板を重ねて、キュアプレスで加圧して層間接着がされる。   A multilayer printed wiring board manufactured by IVH is described in, for example, Fujikura Technical Report No. 103, pages 49-51 (announced in October 2002). In manufacturing this multilayer printed wiring board, first, a circuit is formed by etching a copper foil of a single-sided copper-clad laminate (CCL) in which a copper foil is attached to one side of a heat-resistant film represented by polyimide. Then, after bonding an adhesive layer on the surface opposite to the copper foil, drilling is performed, and the formed via hole (bottomed hole) is filled with a conductive paste to obtain a wiring board substrate. Thereafter, the wiring board substrate and another copper-clad laminated board on which a circuit is formed are stacked and pressed with a cure press to be bonded to each other.

この方法では、片面銅貼り積層板と接着剤層の貼り合せの段階及び層間接着の段階の2回、加熱が必要であり生産性が低い。又片面銅貼り積層板と接着剤層とでは、弾性率や熱膨張率が通常大きく異なるため、これらの貼り合せの際に反りや応力歪みが生じ、ビアホール形成段階等で位置ずれが生じやすく、不良率が高まる問題もある。又、銅貼り積層板を3層以上重ねた多層プリント配線板を製造する場合は、接着剤層の貼り合せ及び層間接着を、それぞれ複数回繰り返す必要があるので、さらに生産性が低くなる。   In this method, heating is required twice, that is, the stage of bonding the single-sided copper-clad laminate and the adhesive layer and the stage of interlayer adhesion, and productivity is low. In addition, the single-sided copper-clad laminate and the adhesive layer usually differ greatly in elastic modulus and coefficient of thermal expansion, so warping and stress distortion occur at the time of bonding, and misalignment is likely to occur at the via hole formation stage, etc. There is also a problem that the defect rate increases. Moreover, when producing a multilayer printed wiring board in which three or more copper-clad laminates are laminated, it is necessary to repeat the bonding of the adhesive layers and the interlayer adhesion a plurality of times, so that the productivity is further lowered.

特開平8−288649号公報には、配線板(片面銅貼り積層板)の層間接続箇所に、積層プレス時の加圧加熱で流動する導電性ペースト(のバンプ)を設け、この配線板、バンプに対応する位置に前記バンプよりも大きな貫通孔をあけた接着剤層(層間接着用絶縁性フィルム)、及び銅箔を重ね合わせ、加圧加熱して積層一体化(積層プレス)する工程を有する多層プリント配線板の製造方法が記載されている。この方法では、配線板(片面銅貼り積層板)と接着剤層の貼り合せ工程は不要であり、又貼り合せの際の反りの問題等を防ぐことができる。   In Japanese Patent Laid-Open No. 8-288649, a conductive paste (bump) that flows by pressurization and heating at the time of laminating press is provided at an interlayer connection portion of a wiring board (single-sided copper-clad laminated board). And a step of laminating and integrating the adhesive layer (interlayer adhesive insulating film) having a through-hole larger than the bump and the copper foil at a position corresponding to the above and pressurizing and heating (stacking press) A method for manufacturing a multilayer printed wiring board is described. In this method, the step of bonding the wiring board (single-sided copper-clad laminate) and the adhesive layer is not necessary, and problems such as warpage during bonding can be prevented.

しかしこの方法により、配線板や銅箔を3層以上重ね合わせ多層プリント配線板を製造する場合も、バンプの形成、接着剤層及び他の銅箔又は配線板との重ね合わせ、積層プレスの工程を繰り返す必要があり、満足できる生産性を得ることは困難であった。
特開平8−288649号公報 フジクラ技報第103号、49−51頁(2002年10月発表)
However, by this method, even when three or more layers of wiring boards and copper foils are laminated to produce a multilayer printed wiring board, bump formation, bonding with an adhesive layer and other copper foils or wiring boards, and laminating press steps It was difficult to obtain satisfactory productivity.
JP-A-8-288649 Fujikura Technical Review No. 103, pp. 49-51 (announced in October 2002)

本発明は、IVHによる多層プリント配線板の製造方法であって、配線板や銅箔等を3層以上積層する場合でも高い生産性が得られ、かつ貼り合せの際の反りの問題等を生ぜず、大きな層間接着強度も得ることができる多層プリント配線板の製造方法を提供することを課題とする。本発明は又、その製造方法により製造される多層プリント配線板を提供する。   The present invention is a method for producing a multilayer printed wiring board by IVH, and even when three or more layers of wiring boards, copper foils, etc. are laminated, high productivity is obtained, and the problem of warpage during bonding is caused. It is another object of the present invention to provide a method for producing a multilayer printed wiring board capable of obtaining a large interlayer adhesion strength. The present invention also provides a multilayer printed wiring board manufactured by the manufacturing method.

前記の課題は、
その主面の所定位置に導電物のバンプ、すなわち導体バンプが形成されてなる導電性基材(L)、
絶縁性基板、その1表面上に設けられた回路、及び、前記絶縁性基板内に前記回路に至り他表面で開口するように形成されたビアホールに導電物を充填し、かつ前記ビアホール上に導体バンプを形成して得られる片面配線板基材(M1)、及び
絶縁性基板及びその両表面上に回路を有し、前記絶縁性基板を貫通する孔内に充填された導電物により、両表面上の回路間が接続され、必要により前記回路上に導体バンプが形成されている両面配線板基材(M2)
からなる群より選ばれる配線板基材(M)、並びに
前記バンプに対応する位置に前記バンプの径より大きい径の貫通孔を有する接着剤シート層(O)を、
導電性基材(L)と配線板基材(M)の合計数を3以上とし、
導電性基材(L)を、一方又は両方の外側に配置し、かつ
接着剤シート層(O)を、導電性基材(L)と配線板基材(M)の間又は2以上の配線板基材(M)の間に、前記バンプが前記貫通孔に挿入されるように挟持して
重ね合わせ、これらを一括して積層プレスすることを特徴とする多層プリント配線板の製造方法(請求項1)により達成される。
The above issues are
Conductive base material (L) in which a bump of a conductive material, that is, a conductor bump is formed at a predetermined position on the main surface,
An insulating substrate, a circuit provided on one surface of the insulating substrate, and a via hole formed in the insulating substrate so as to reach the circuit and open on the other surface is filled with a conductive material, and a conductor is provided on the via hole. A single-sided wiring board substrate (M1) obtained by forming bumps, an insulating substrate, and a circuit on both surfaces of the insulating substrate, and a conductive material filled in holes penetrating the insulating substrate. Double-sided wiring board substrate (M2) in which the upper circuits are connected and, if necessary, conductor bumps are formed on the circuits
A wiring board substrate (M) selected from the group consisting of: an adhesive sheet layer (O) having a through-hole having a diameter larger than the diameter of the bump at a position corresponding to the bump;
The total number of the conductive substrate (L) and the wiring board substrate (M) is 3 or more,
The conductive base material (L) is arranged on one or both outsides, and the adhesive sheet layer (O) is placed between the conductive base material (L) and the wiring board base material (M) or two or more wirings. A method of manufacturing a multilayer printed wiring board, wherein the bumps are sandwiched and overlapped so as to be inserted into the through-holes between board bases (M), and these are collectively stacked and pressed (claim) Item 1) is achieved.

本発明者は、検討の結果、その主面の所定位置に導体バンプが形成されてなる導電性基材(L)と、絶縁性基板の1表面のみに回路を有し、かつこの回路と電気的に接続するバンプを他の表面に有する片面配線板基材(M1)、及び/又は、絶縁性基板の両表面上に回路を有し、両表面上の回路間が電気的に接続されている両面配線板基材(M2)を、計3層以上、各層間に、前記バンプに対応する位置に前記バンプの径より大きい径の貫通孔を有する接着剤シート層(O)を、前記バンプが前記貫通孔に挿入されるように挟持して重ね合わせ、これらを一括して積層プレスする方法により、3層以上の導電性基材や配線板基材が積層されてなる多層プリント配線板を、簡易な工程により高い生産性で製造することができ、かつ貼り合せの際の反りの問題等を生ぜず、大きな層間接着強度も得ることができることを見出し、前記請求項1の発明を完成した。   As a result of the study, the inventor has a conductive base material (L) in which a conductor bump is formed at a predetermined position on the main surface, and a circuit only on one surface of the insulating substrate. Circuit on both surfaces of the single-sided wiring board substrate (M1) and / or insulating substrate having bumps to be connected to each other, and the circuits on both surfaces are electrically connected Adhesive sheet layer (O) having a through-hole having a diameter larger than the diameter of the bump at a position corresponding to the bump between each of the three or more layers in total, with the double-sided wiring board substrate (M2) having the bump A multilayer printed wiring board in which three or more layers of conductive substrates and wiring board substrates are laminated by a method of sandwiching and stacking them so as to be inserted into the through holes, and laminating and pressing them together. Can be manufactured with high productivity by a simple process, and when bonding Not occur warpage problems such as also found that it is possible to obtain large interlayer adhesion strength, and have completed the invention of claim 1.

本発明は、さらに前記請求項1の発明の好ましい態様として、以下に記載の多層プリント配線板の製造方法を提供する。   The present invention further provides a method for producing a multilayer printed wiring board as described below, as a preferred embodiment of the invention of claim 1.

前記の多層プリント配線板の製造方法であって、さらに、接着剤シート層(O)の貫通孔の径が、対応する前記バンプの径の1.5〜5倍の大きさであることを特徴とする多層プリント配線板の製造方法(請求項2)。   In the method for producing a multilayer printed wiring board, the diameter of the through hole of the adhesive sheet layer (O) is 1.5 to 5 times the diameter of the corresponding bump. A method for producing a multilayer printed wiring board (claim 2).

接着剤シート層(O)の貫通孔の径の大きさは、対応する導体バンプの径の1.5〜5倍の大きさが好ましい。1.5倍未満であると、接着剤シート層(O)と、導電性基材(L)と配線板基材(M)を重ねる際の位置合わせが容易でなくなり、バンプが貫通孔に挿入しなくなる場合が生じやすい。一方5倍以上であると、積層プレス時に、接着剤シート層(O)とバンプが互いに接触するまで流動にくくなり、この両者間の隙間が解消しない可能性がある。より好ましくは3〜5倍である。   The diameter of the through hole of the adhesive sheet layer (O) is preferably 1.5 to 5 times the diameter of the corresponding conductor bump. If it is less than 1.5 times, it becomes difficult to align the adhesive sheet layer (O), the conductive base material (L) and the wiring board base material (M), and the bumps are inserted into the through holes. It is easy to happen. On the other hand, when it is 5 times or more, it becomes difficult to flow until the adhesive sheet layer (O) and the bump come into contact with each other at the time of the lamination press, and there is a possibility that the gap between the two is not eliminated. More preferably, it is 3 to 5 times.

前記の多層プリント配線板の製造方法であって、さらに、接着剤シート層(O)が、接着剤層/絶縁フィルム層/接着剤層の3層構造であることを特徴とする多層プリント配線板の製造方法(請求項3)。   The method for producing a multilayer printed wiring board, wherein the adhesive sheet layer (O) has a three-layer structure of an adhesive layer / insulating film layer / adhesive layer. (Claim 3).

接着剤シート層(O)は、導電性基材(L)と配線板基材(M)の間又は2以上の配線板基材(M)の間を接着する。それとともに、導電性基材(L)と配線板基材(M)の回路間を絶縁する役割も求められる。従って、優れた接着力とともに優れた絶縁性が求められる場合があるが、接着力と絶縁性をともに有する材料の選択は困難である。しかし、接着剤シート層(O)を、接着剤層/絶縁フィルム層/接着剤層の3層構造とし、接着剤層に接着力が優れた材料を、絶縁フィルム層に絶縁性が優れた材料を用いることにより、材料の選択が容易になり、優れた接着力とともに優れた絶縁性も達成でき好ましい。   The adhesive sheet layer (O) bonds between the conductive substrate (L) and the wiring board substrate (M) or between two or more wiring board substrates (M). At the same time, the role of insulating the circuit between the conductive substrate (L) and the wiring board substrate (M) is also required. Accordingly, there may be a case where excellent insulating properties as well as excellent adhesive strength are required, but it is difficult to select a material having both adhesive strength and insulating properties. However, the adhesive sheet layer (O) has a three-layer structure of adhesive layer / insulating film layer / adhesive layer, and the adhesive layer has a material with excellent adhesive strength and the insulating film layer has a superior insulating property. By using, it becomes easy to select a material, and it is possible to achieve excellent insulation as well as excellent adhesive strength.

又接着剤シート層(O)には、積層プレスの際に流動して、貫通孔と導体バンプ間の間隙を解消する機能も求められる。そこで、間隙を解消しやすくするため、塑性変形しやすい材質から形成されるものが好ましく用いられる。   The adhesive sheet layer (O) is also required to have a function of flowing during the laminating press to eliminate the gap between the through hole and the conductor bump. Therefore, in order to easily eliminate the gap, a material formed from a material that easily undergoes plastic deformation is preferably used.

前記請求項3の多層プリント配線板の製造方法であって、さらに、接着剤シート層(O)を構成する絶縁フィルム層が、ポリイミドを主体とする樹脂フィルムであることを特徴とする多層プリント配線板の製造方法(請求項4)。   4. The method for producing a multilayer printed wiring board according to claim 3, wherein the insulating film layer constituting the adhesive sheet layer (O) is a resin film mainly composed of polyimide. A method for manufacturing a plate (Claim 4).

3層構造である接着剤シート層(O)を構成する絶縁フィルム層としては、絶縁性に優れ、機械的強度も優れるポリイミドを主体とする樹脂フィルムが好ましい。   As the insulating film layer constituting the adhesive sheet layer (O) having a three-layer structure, a resin film mainly composed of polyimide having excellent insulating properties and excellent mechanical strength is preferable.

前記の多層プリント配線板の製造方法であって、さらに、配線板基材(M)の、積層プレス後に導体バンプと接触せずかつ対向する回路を有する回路の表面上に、絶縁性樹脂層を設けたことを特徴とする多層プリント配線板の製造方法(請求項5)。   The method for producing a multilayer printed wiring board, further comprising: forming an insulating resin layer on the surface of the circuit board (M) having a circuit that does not come into contact with the conductor bumps and faces each other after the lamination press. A method for producing a multilayer printed wiring board, comprising: providing a multilayer printed wiring board.

対向する回路を有するとは、隣接する基材が、該回路を対向する位置に回路を有することを意味する。この回路間は積層プレス後もバンプにより接続されず、従って回路間の絶縁が求められる部分であるが、絶縁性樹脂層を設けることにより、絶縁性を向上させることができる。   Having an opposing circuit means that an adjacent substrate has a circuit at a position facing the circuit. The circuits are not connected by bumps even after the lamination press, and therefore insulation between the circuits is required. However, by providing an insulating resin layer, the insulation can be improved.

前記請求項5の多層プリント配線板の製造方法であって、さらに、前記絶縁性樹脂層が、ポリイミドを主体とする樹脂からなることを特徴とする多層プリント配線板の製造方法(請求項6)。   6. The method for producing a multilayer printed wiring board according to claim 5, wherein the insulating resin layer is made of a resin mainly composed of polyimide (Claim 6). .

絶縁性樹脂層としては、絶縁性に優れ、機械的強度も優れるポリイミドを主体とする樹脂フィルムが好ましい。   As the insulating resin layer, a resin film mainly composed of polyimide, which has excellent insulating properties and excellent mechanical strength, is preferable.

本発明はさらに、前記の多層プリント配線板の製造方法により製造されることを特徴とする多層プリント配線板を提供する(請求項7)。この多層プリント配線板は、大きな層間接着強度を有し、層間接続の信頼性も高い。又導体バンプが最外層の導電性基材(L)に直接接続しており、バンプ直上に導電性ランド形成が可能であるので、回路設計の自由度も向上し、多数の部品の高密度実装や、部品間の最短距離での接続が容易である。   The present invention further provides a multilayer printed wiring board manufactured by the above-described method for manufacturing a multilayer printed wiring board (Claim 7). This multilayer printed wiring board has a large interlayer adhesion strength and a high reliability of interlayer connection. Conductive bumps are directly connected to the outermost conductive substrate (L), and conductive lands can be formed directly above the bumps, improving circuit design flexibility and high-density mounting of many components. In addition, connection at the shortest distance between components is easy.

本発明の多層プリント配線板の製造方法によれば、配線板基材等を3層以上積層し、回路の層数が多い多層プリント配線板を製造する場合でも高い生産性が得られ、かつ貼り合せの際の反りの問題等を生ぜず、大きな層間接着強度も得ることができる。又、この製造方法により製造された本発明の多層プリント配線板は、大きな層間接着強度を有し、層間接続の信頼性も高く、多数の部品の高密度の実装が可能な配線板として、種々の電気製品の製造に好適に用いられる。   According to the method for producing a multilayer printed wiring board of the present invention, high productivity can be obtained even when a multilayer printed wiring board having a large number of circuit layers is produced by laminating three or more layers of a wiring board substrate and the like. A large interlayer adhesive strength can be obtained without causing a problem of warpage during the alignment. In addition, the multilayer printed wiring board of the present invention manufactured by this manufacturing method has various interlayer adhesive strengths, high interlayer connection reliability, and various wiring boards capable of high-density mounting of many parts. It is suitably used for the manufacture of electrical products.

次に本発明を実施するための最良の形態を説明する。なお、本発明はこの形態に限定されるものではなく、本発明の趣旨を損なわない限り、他の形態への変更も可能である。   Next, the best mode for carrying out the present invention will be described. In addition, this invention is not limited to this form, The change to another form is also possible unless the meaning of this invention is impaired.

導電性基材(L)は、導体層からなる基板の主面の所定位置に導体バンプを形設して得ることができる。主面とは、前記導体層からなる基板の一表面であって、導体バンプ、すなわち導電物の突起が形成される面を言う。導体バンプが形設される所定位置とは、隣接する回路間の接続を意図する位置である。   The conductive substrate (L) can be obtained by forming a conductor bump at a predetermined position on the main surface of the substrate made of a conductor layer. The main surface is one surface of the substrate made of the conductive layer, and refers to a surface on which conductive bumps, that is, protrusions of conductive materials are formed. The predetermined position where the conductor bump is formed is a position intended for connection between adjacent circuits.

導体バンプとしては、積層プレス時の加熱、加圧の条件で塑性変形するものが好ましい。積層プレス時に、導体バンプが塑性変形することにより、導体バンプと貫通孔間にある間隙を埋める作用をする。積層プレス時の加熱、加圧の条件で塑性変形する材質としては、銀ペーストや、銅フィラーやカーボン混合物のペーストなどの導電性ペースト、はんだクリーム、低融点金属等が挙げられ、これらからなる導体バンプが好ましく例示される。   The conductor bump is preferably one that undergoes plastic deformation under the conditions of heating and pressurization during the lamination press. During the laminating press, the conductor bumps are plastically deformed to fill the gaps between the conductor bumps and the through holes. Examples of the material that plastically deforms under the conditions of heating and pressurization during the lamination press include silver paste, conductive paste such as copper filler and carbon mixture paste, solder cream, low melting point metal, and the like. A bump is preferably exemplified.

導体バンプを形成する方法は特に限定されないが、例えば、導電性ペースト等をスクリーン印刷で導電性基板上に塗布して形成する方法、インクジェット方式で塗布して形成する方法等が挙げられる。   The method for forming the conductor bump is not particularly limited, and examples thereof include a method in which a conductive paste or the like is applied on a conductive substrate by screen printing, a method in which the conductive bump is applied by an inkjet method, and the like.

導体バンプの高さは、その材料として塑性変形するものを使用する場合は、接着剤シート層(O)の厚みより大きくすることが好ましい。高さを大きくすることにより、積層プレス時に導体バンプの先端が流動して拡がり、確実な電気的接続が達成され、又導体バンプと貫通孔間にある間隙を埋める作用を奏するので好ましい。導体バンプが、塑性変形しにくい場合は、導体バンプの高さは、積層プレス後の接着剤シート層(O)の厚みと略同じが好ましい。高さが、積層プレス後の接着剤シート層(O)の厚みより小さいと接続不良を生じやすくなり、一方大きいと、接着不十分な部分や、導電性基板の変形等を生じ、配線板の信頼性を低下させる場合がある。   The height of the conductor bump is preferably larger than the thickness of the adhesive sheet layer (O) when a plastically deformable material is used. Increasing the height is preferable because the tips of the conductor bumps flow and expand during the laminating press, so that reliable electrical connection is achieved and the gap between the conductor bumps and the through holes is filled. When the conductor bump is difficult to be plastically deformed, the height of the conductor bump is preferably substantially the same as the thickness of the adhesive sheet layer (O) after the lamination press. If the height is smaller than the thickness of the adhesive sheet layer (O) after the laminating press, connection failure is likely to occur. On the other hand, if the height is larger, insufficiently bonded parts, deformation of the conductive substrate, etc. Reliability may be reduced.

導体バンプの形状とは、円柱状、円錐状、円錐台状、半球状、円柱と円錐状や半球状の先端部を結合させたもの等が挙げられる。導体バンプの高さ(厚み)が、接着剤シート層(O)より厚く、積層プレス時にその先端部が変形する場合は、先端が円錐状、円錐台状、半球状の場合が変形しやすいので好ましい。   Examples of the shape of the conductor bump include a columnar shape, a conical shape, a truncated cone shape, a hemispherical shape, and a shape obtained by combining a cylindrical shape with a conical or hemispherical tip. If the height (thickness) of the conductor bump is thicker than the adhesive sheet layer (O) and its tip is deformed during laminating press, the tip is conical, frustoconical, or hemispherical, so it is easy to deform. preferable.

導電性基材(L)の導体層からなる基板を形成する材料としては、銅箔がその代表的なものとして例示される。導体層は、配線板基材(M)や接着剤シート層(O)と重ね合わされた後、通常は積層プレス後、エッチング加工等が施され回路となる(パターンニング)。エッチング加工の方法としては、例えば、導電性基材(L)上に、レジスト層の回路パターンを形成した後、導電性基材(L)を腐食するエッチャントに浸漬して、回路パターン以外の部分を取り除き、その後レジスト層を除去する化学エッチング(湿式エッチング)が挙げられる。この場合のエッチャントとしては、塩化第二鉄が主成分である塩化第二鉄系エッチャントや、塩化第二銅系エッチャント、アルカリエッチャント等が挙げられる。   A typical example of the material for forming the substrate made of the conductive layer of the conductive base material (L) is copper foil. The conductor layer is superposed on the wiring board substrate (M) and the adhesive sheet layer (O), and is usually subjected to a laminating press followed by etching or the like to form a circuit (patterning). As an etching method, for example, a circuit pattern of a resist layer is formed on a conductive substrate (L), and then immersed in an etchant that corrodes the conductive substrate (L), so that portions other than the circuit pattern are formed. And chemical etching (wet etching) for removing the resist layer. Examples of the etchant in this case include a ferric chloride-based etchant mainly composed of ferric chloride, a cupric chloride-based etchant, and an alkali etchant.

片面配線板基材(M1)は、導体層が一表面に貼り付けられた絶縁性基板に、ビアホール、導体バンプ、及び回路を形成して製造することができる。ここで、導体層が一表面に貼り付けられた絶縁性基板としては、銅箔が片面に貼付けられた銅箔付きポリイミド樹脂基材(CCL)が例示される。   The single-sided wiring board substrate (M1) can be manufactured by forming via holes, conductor bumps, and circuits on an insulating substrate having a conductor layer attached to one surface. Here, as an insulating board | substrate with which the conductor layer was affixed on the one surface, the polyimide resin base material (CCL) with a copper foil in which copper foil was affixed on the single side | surface is illustrated.

ビアホールは、この絶縁性基板の層間接続が所望される位置に、レーザ等を用いて穴あけ加工を行うことにより形成することができる。ビアホールは絶縁性基板を貫通するものであり、一端は導体層が貼り付けられている表面とは反対の表面に開口し、他端は導体層に達している。   The via hole can be formed by drilling using a laser or the like at a position where interlayer connection of the insulating substrate is desired. The via hole penetrates the insulating substrate, one end opens on the surface opposite to the surface on which the conductor layer is attached, and the other end reaches the conductor layer.

ビアホールの形成後、このビアホール内に導電物が充填され、導体バンプが形成される。導電物の充填方法は特に限定されないが、例えば、スクリーン印刷により、導電物を充填する方法が挙げられる。又導電物としては、銀ペーストや、銅フィラーやカーボン混合物のペースト、はんだクリーム、低融点金属等が挙げられる。   After the via hole is formed, the via hole is filled with a conductive material, and a conductor bump is formed. The method for filling the conductive material is not particularly limited, and examples thereof include a method for filling the conductive material by screen printing. Examples of the conductive material include silver paste, copper filler and carbon mixture paste, solder cream, and low melting point metal.

片面配線板基材(M1)の導体バンプを形成する方法は特に限定されないが、例えば、絶縁性基板上に離型層を形成して、この絶縁性基板及び離型層を貫通するビアホールを形成し、このビアホールに導電物を充填した後、離型層を剥がして、突出部を形成する方法が例示される。離型層としては、ポリエチレンテレフタレート(PET)のマスキングフィルム等が挙げられ、これらを絶縁性基板上に貼付けて離型層を形成する。導体バンプを形成する他の方法として、ビアホールに導電物を充填した後、さらにその上に導電性ペースト等をスクリーン印刷で塗布する方法も挙げられる。   The method for forming the conductor bumps on the single-sided wiring board substrate (M1) is not particularly limited. For example, a release layer is formed on an insulating substrate, and a via hole penetrating the insulating substrate and the release layer is formed. Then, after filling the via hole with a conductive material, the release layer is peeled off to form the protrusion. Examples of the release layer include a polyethylene terephthalate (PET) masking film, and these are pasted on an insulating substrate to form a release layer. As another method for forming the conductor bumps, there is a method in which after a via hole is filled with a conductive material, a conductive paste or the like is further applied thereon by screen printing.

回路は、例えば、前記導体層にエッチング加工を施すことにより形成することができる(パターンニング)。エッチング加工は、前記導電性基材(L)の場合と同様な方法により行うことができる。通常、回路の形成は、ビアホール形成前に行われるが、ビアホール形成後やバンプ形成後に行ってもよい。   The circuit can be formed by, for example, etching the conductor layer (patterning). The etching process can be performed by the same method as that for the conductive base material (L). Normally, the circuit is formed before the via hole is formed, but may be formed after the via hole is formed or after the bump is formed.

両面配線板基材(M2)は、例えば、両表面に銅箔が貼り付けられたポリイミドフィルムの銅箔に、エッチング等を施して回路を形成する工程、及び、両表面の銅箔(導体層)及びポリイミドフィルム(絶縁性基板)を貫通する孔を形成し、この孔に導電物を充填して、両表面の銅箔間を接続する工程を有する方法により製造することができる。回路を形成する工程と銅箔間の接続の工程は、いずれが先であってもよい。又、回路の形成や孔への導電物の充填は、片面配線板基材(M1)の場合と同様にして行うことができるし、孔の壁面へめっきを施すことにより、両面の接続を行うこともできる。   The double-sided wiring board substrate (M2) includes, for example, a process of forming a circuit by performing etching or the like on a copper foil of a polyimide film having a copper foil attached to both surfaces, and a copper foil (conductor layer) on both surfaces ) And a polyimide film (insulating substrate) are formed, and the hole is filled with a conductive material, and the method includes a step of connecting the copper foils on both surfaces. Either the step of forming the circuit and the step of connecting the copper foil may be performed first. The formation of the circuit and the filling of the conductive material into the hole can be performed in the same manner as in the case of the single-sided wiring board substrate (M1), and the both surfaces are connected by plating the wall surface of the hole. You can also.

両表面の導体層及び絶縁性基板を貫通する孔の形成は、NCドリル、レーザ等により行うことができる。   Formation of the holes penetrating the conductor layers on both surfaces and the insulating substrate can be performed by an NC drill, a laser, or the like.

両面配線板基材(M2)には、必要により、回路上に導体バンプが形成されていてもよい。このバンプにより、導電性基材(L)、片面配線板基材(M1)又は他の両面配線板基材(M2)の回路と電気的に接続することができる。   Conductive bumps may be formed on the circuit in the double-sided wiring board substrate (M2) as necessary. By this bump, it is possible to electrically connect to the circuit of the conductive substrate (L), the single-sided wiring board base (M1), or another double-sided wiring board base (M2).

前記のように配線板基材(M)の導体層、すなわちパターニング後に回路となる導体層としては銅箔が例示される。   As described above, copper foil is exemplified as the conductor layer of the wiring board substrate (M), that is, the conductor layer that becomes a circuit after patterning.

導電性基材(L)と配線板基材(M)の数は合計3以上である。本発明の製造方法によれば、このような多数の基材を積層して多層プリント配線板を製造する場合でも、一括して積層プレスされるので、高い生産性が得られる。   The total number of conductive base materials (L) and wiring board base materials (M) is 3 or more. According to the production method of the present invention, even when a multilayer printed wiring board is produced by laminating such a large number of base materials, a high productivity can be obtained because they are laminated and pressed together.

導電性基材(L)は、重ね合わされ一括して積層プレスされる積層体の一方又は両方の外側に配置される。導電性基材(L)の導体層に、積層プレス後、エッチング等による回路形成を施す必要があるので、導電性基材(L)は2枚の配線板基材(M)間には配置されない。   An electroconductive base material (L) is arrange | positioned on the outer side of one or both of the laminated body which is piled up and laminated | stacked and pressed collectively. Since it is necessary to perform circuit formation by etching after laminating press on the conductive layer of the conductive base material (L), the conductive base material (L) is placed between the two wiring board base materials (M). Not.

配線板基材(M)としては、片面配線板基材(M1)のみからなる場合、両面配線板基材(M2)のみからなる場合、片面配線板基材(M1)及び両面配線板基材(M2)からなる場合が挙げられる。両面配線板基材(M2)がバンプを有しない場合は、その両側の基材は、導電性基材(L)又はバンプを有する配線板基材(M)でなければならず、又バンプの向きもその両側で逆になる。   As a wiring board base material (M), when it consists only of a single-sided wiring board base material (M1), when it consists only of a double-sided wiring board base material (M2), a single-sided wiring board base material (M1) and a double-sided wiring board base material The case consisting of (M2) is mentioned. When the double-sided wiring board substrate (M2) does not have bumps, the substrate on both sides must be a conductive substrate (L) or a wiring board substrate (M) having bumps. The direction is reversed on both sides.

本発明の多層プリント配線板の製造方法では、前記の導電性基材(L)及び、片面配線板基材(M1)及び両面配線板基材(M2)からなる群より選ばれる配線板基材(M)を、導電性基材(L)と配線板基材(M)の間又は2以上の配線板基材(M)の間に、接着剤シート層(O)を挟持しながら重ね合わせ、これらを一括して積層プレスして多層プリント配線板を製造する。   In the manufacturing method of the multilayer printed wiring board of this invention, the wiring board base material chosen from the group which consists of said electroconductive base material (L), single-sided wiring board base material (M1), and double-sided wiring board base material (M2). (M) is overlapped while sandwiching the adhesive sheet layer (O) between the conductive substrate (L) and the wiring board substrate (M) or between two or more wiring board substrates (M). These are collectively laminated and pressed to produce a multilayer printed wiring board.

接着剤シート層(O)は、バンプに対応する位置に前記バンプの径より大きい径の貫通孔を有する。貫通孔をバンプに対応する位置に有するとは、導電性基板と接着剤シート層(O)を重ねたときに、バンプが貫通孔内に挿入されるように貫通孔が形成されていることを意味する。   The adhesive sheet layer (O) has a through-hole having a diameter larger than the diameter of the bump at a position corresponding to the bump. Having a through hole at a position corresponding to a bump means that the through hole is formed so that the bump is inserted into the through hole when the conductive substrate and the adhesive sheet layer (O) are stacked. means.

この貫通孔を形成する方法は特に限定されず、レーザによる穴あけ加工(厚み100μm未満の場合)や、ドリル等を用いて機械的に穴あけを行う方法等を採用することができる。前記のように、接着剤シート層(O)の貫通孔の径は、対応するバンプ(すなわち貫通孔に挿入される)の径の1.5〜5倍の大きさが好ましく、より好ましくは3〜5倍である。なお、バンプが先端側と底面側とで太さが異なる場合は、基準となるバンプの径とは、径の平均である。例えば、バンプ形状が円錐台なら、先端径と底面径を足して2で割った径が基準となる。   The method of forming this through-hole is not particularly limited, and a laser drilling process (when the thickness is less than 100 μm), a mechanical drilling method using a drill, or the like can be employed. As described above, the diameter of the through hole of the adhesive sheet layer (O) is preferably 1.5 to 5 times the diameter of the corresponding bump (that is, inserted into the through hole), more preferably 3 ~ 5 times. When the thickness of the bump is different between the tip side and the bottom surface side, the reference bump diameter is an average of the diameters. For example, if the bump shape is a truncated cone, the diameter obtained by adding the tip diameter and the bottom diameter and dividing by 2 is the reference.

接着剤シート層(O)の挟持は、その片面に、導電性基材(L)又は配線板基材(M)のバンプを有する面を対接させ、他方の面に他の配線板基材(M)の回路を有する面を対接させ、接着剤シート層(O)の貫通孔に、バンプが挿入されるように行われる。バンプは、この他の配線板基材(M)の回路に対応する位置に設けられており、積層プレス後には、この回路と接続する。   The adhesive sheet layer (O) is sandwiched by bringing the surface having the bumps of the conductive base material (L) or the wiring board base material (M) on one side and the other side on the other side. The surface having the circuit of (M) is brought into contact with each other, and the bump is inserted into the through hole of the adhesive sheet layer (O). The bump is provided at a position corresponding to the circuit of the other wiring board substrate (M), and is connected to this circuit after the lamination press.

接着剤シート層(O)は、積層プレスの際に流動する。すなわち、積層の加熱、加圧条件により塑性変形をするものである。この性質により、積層プレスの際に、バンプと貫通孔の間の間隙が解消される。   The adhesive sheet layer (O) flows during the laminating press. That is, plastic deformation is performed under the heating and pressurizing conditions of the laminate. This property eliminates the gap between the bump and the through hole during the lamination press.

接着剤シート層(O)としては、厚みは10μm〜100μm程度のものが通常用いられ、好ましくは15μm〜70μmである。厚みが10μm未満では、積層プレスの際に層が充分拡がらず、バンプと貫通孔の間の間隙が解消しにくくなる。一方、100μmを越えると、この厚みに対応する突起の長さを有するバンプの形成が困難になる。   As the adhesive sheet layer (O), those having a thickness of about 10 μm to 100 μm are usually used, preferably 15 μm to 70 μm. When the thickness is less than 10 μm, the layer is not sufficiently expanded during the lamination press, and the gap between the bump and the through hole is difficult to be eliminated. On the other hand, if it exceeds 100 μm, it becomes difficult to form a bump having a projection length corresponding to this thickness.

本発明は、積層プレスを、必要な導電性基材(L)、接着剤シート層(O)及び配線板基材(M)を全て重ね合わせた後、一括して行うことを特徴とする。積層プレスは、バンプを貫通孔に確実に挿入させるために、又パターニング後に回路となる部分の所定の位置にバンプを確実に接触させるために、位置決めピン等を用いて位置合わせをしながら行うことが好ましい。   The present invention is characterized in that the laminating press is performed in a lump after superposing all necessary conductive base materials (L), adhesive sheet layers (O) and wiring board base materials (M). Lamination press should be performed while positioning using positioning pins, etc., in order to ensure that the bumps are inserted into the through-holes, and to ensure that the bumps are in contact with a predetermined position of the circuit portion after patterning. Is preferred.

積層プレスは、真空プレス、キュアプレス等により、加熱、加圧することにより行われる。接着剤シート層(O)の貫通孔とバンプとの間にある隙間は、積層プレスにより接着剤シート層(O)がバンプの導電物に接触するまで拡がり、解消する。バンプの材質に流動性があるものを用いた場合は、バンプも流動することがある。又、導体層が積層前にパターンニングされていて段差が生じている場合は、積層プレスの際、接着剤シート層(O)等の流動により、この段差も解消する。   Lamination press is performed by heating and pressurizing with a vacuum press, a cure press, or the like. The gap between the through-hole of the adhesive sheet layer (O) and the bumps is expanded by the laminating press until the adhesive sheet layer (O) comes into contact with the conductive material of the bumps and is eliminated. When the material of the bump is fluid, the bump may also flow. Further, when the conductor layer is patterned before lamination and a step is generated, the step is also eliminated by the flow of the adhesive sheet layer (O) or the like during the lamination press.

接着剤シート層(O)が、接着剤層/絶縁フィルム層/接着剤層の3層構造である場合、接着剤層の材質としては、積層後に、絶縁層及び導電性基板との接着力が高く、かつ積層プレス時の加熱、加圧条件で充分な流動性を有するものが好ましく用いられる。ただし、絶縁フィルム層は絶縁層を有するので、接着剤層には高い絶縁性は必ずしも求められない。   When the adhesive sheet layer (O) has a three-layer structure of adhesive layer / insulating film layer / adhesive layer, the material of the adhesive layer is an adhesive force between the insulating layer and the conductive substrate after lamination. Those which are high and have sufficient fluidity under the heating and pressurizing conditions during the lamination press are preferably used. However, since the insulating film layer has an insulating layer, high adhesiveness is not necessarily required for the adhesive layer.

従って、材料の選択が容易となり、かつ接着剤シート層(O)全体としてより優れた接着性及び絶縁性が達成され、さらに流動性も向上される。具体的には、この接着剤層の材質としては、熱可塑性ポリイミド樹脂、熱硬化性エポキシ樹脂又は熱硬化性イミド系樹脂を主体とする樹脂が例示される。接着剤層の厚みは、充分な接着力が得られ、かつ導体バンプと貫通孔間の間隙を解消するために必要な厚みが求められ、通常5から40μmの範囲から選択されるが、貫通孔と導体バンプの径の比等によりその好ましい範囲は変動する。   Therefore, the selection of the material is facilitated, and more excellent adhesiveness and insulation properties are achieved as a whole of the adhesive sheet layer (O), and the fluidity is also improved. Specifically, examples of the material of the adhesive layer include a resin mainly composed of a thermoplastic polyimide resin, a thermosetting epoxy resin, or a thermosetting imide resin. The thickness of the adhesive layer is selected from the range of 5 to 40 μm, which is required in order to obtain a sufficient adhesive force and a thickness necessary for eliminating the gap between the conductor bump and the through hole. The preferred range varies depending on the ratio of the diameter of the conductor bumps.

接着剤シート層(O)の絶縁フィルム層としては、優れた絶縁性を有する材質が使用され、前記のようにポリイミドを主体とする樹脂フィルム(ポリイミドフィルム)が好ましく用いられる。ポリイミドフィルムの厚みは、通常12〜50μmの範囲が好ましい。   As the insulating film layer of the adhesive sheet layer (O), a material having excellent insulating properties is used, and the resin film (polyimide film) mainly composed of polyimide as described above is preferably used. The thickness of the polyimide film is usually preferably in the range of 12 to 50 μm.

接着剤層/絶縁フィルム層/接着剤層の3層構造は、例えば、絶縁フィルム層の両面に、接着剤層を構成する材質(接着剤)を、コーティング装置、ロールコーターや、その他の塗工機を用いて塗布して形成することができる。又、シート状に形成した接着剤と絶縁フィルムを貼り合わせることによっても形成することができる。   The three-layer structure of adhesive layer / insulating film layer / adhesive layer is, for example, a coating device, a roll coater, and other coatings on the both sides of the insulating film layer. It can be formed by coating using a machine. Moreover, it can form also by bonding together the adhesive agent formed in the sheet form, and the insulating film.

配線板基材(M)の、積層プレス後に導体バンプと接触しない回路の表面上に、絶縁性樹脂層を設ける場合、すなわち請求項5の態様の場合において、絶縁性樹脂層は、優れた絶縁性を有する材質から形成され、前記のように、ポリイミドを主体とする樹脂からなるもの(ポリイミドフィルム)が好ましく例示される。   When the insulating resin layer is provided on the surface of the circuit board (M) that is not in contact with the conductor bump after the lamination press, that is, in the case of the aspect of claim 5, the insulating resin layer has excellent insulation. Preferred examples include those made of a material having a property and made of a resin mainly composed of polyimide as described above (polyimide film).

この絶縁性樹脂層は、隣接する基材間の絶縁が求められる部分、すなわち基材の回路であって、隣接する基材の回路と対向し、かつこの隣接する基材の回路と電気的に接続されていない回路(バンプと接触しない回路)の表面に形成される。なお、バンプと接触する回路、すなわち隣接する基材の回路と電気的に接続されている回路については、絶縁が求められないので、絶縁性樹脂層を設ける必要はない。   The insulating resin layer is a portion where insulation between adjacent base materials is required, that is, a circuit of the base material, and is opposed to the circuit of the adjacent base material and electrically connected to the circuit of the adjacent base material. It is formed on the surface of a circuit that is not connected (a circuit that does not contact the bump). Insulation is not required for a circuit that comes into contact with the bump, that is, a circuit that is electrically connected to a circuit of an adjacent base material, and thus it is not necessary to provide an insulating resin layer.

ただし、絶縁性樹脂層の製造上の都合等の理由により絶縁性樹脂層を設けても良いが、積層プレス後導体バンプと接触する位置に絶縁性樹脂層が形設されると、導体バンプとの電気的接続が妨げられるので、この位置には形設されないし、積層プレス時の位置合わせのずれを考慮して、前記導体バンプに対応する位置の周囲にも形設されない。前記の電気的接続を確実に行うために、絶縁塗布物層が形設されない周囲の径は、導体バンプの先端径の1.5倍以上が好ましい。   However, an insulating resin layer may be provided for reasons of manufacturing the insulating resin layer, etc., but if the insulating resin layer is formed at a position in contact with the conductive bump after lamination pressing, the conductive bump and Therefore, it is not formed at this position, nor is it formed around the position corresponding to the conductor bump in consideration of misalignment during the laminating press. In order to ensure the electrical connection, the diameter of the periphery where the insulating coating layer is not formed is preferably 1.5 times or more the tip diameter of the conductor bump.

絶縁性樹脂層の形設により、積層プレス後のこの部分の接着剤シート層(O)が薄くなっても充分な絶縁性を確保することができ、多層プリント配線板の信頼性が向上する。その結果、接着剤シート層(O)を薄くすることも可能となり、配線板の柔軟性の向上にも有効である。   By forming the insulating resin layer, sufficient insulation can be secured even if the adhesive sheet layer (O) in this portion after the lamination press becomes thin, and the reliability of the multilayer printed wiring board is improved. As a result, the adhesive sheet layer (O) can be made thin, which is effective for improving the flexibility of the wiring board.

このような絶縁塗布物層は、液状絶縁樹脂をスクリーン印刷、もしくは予め孔をくり抜いた絶縁フィルムを貼り合わせるにより形設される。   Such an insulating coating layer is formed by screen-printing a liquid insulating resin or pasting an insulating film in which holes have been cut out in advance.

次に、本発明の多層プリント配線板の製造方法の例を、図を用いてより具体的に説明する。   Next, the example of the manufacturing method of the multilayer printed wiring board of this invention is demonstrated more concretely using figures.

(1)導電性基材(L)の作製
導電性基材(L)の導体層としては、厚み5〜30μmの銅箔を使用する。図1aは、この銅箔の断面図である。この銅箔の所定の位置に、位置決めマーク及び位置決め用の穴(位置決めピン挿入用の穴)を開ける加工を施し、スクリーン印刷により銅ペーストを塗布し、所定の高さ50〜100μm、バンプ径100μm(バンプ底面径150〜200μm、バンプ先端径30〜70μm)を有する導体バンプを形設する。1回のスクリーン印刷では高さが不十分な場合は、スクリーン印刷を2回以上行う。図1bは、導体バンプが形設された銅箔、すなわち導電性基材(L)の断面図である。なお、この例で用いた銅ペーストの代りに、銀ペーストやカーボン混合物のペースト等の他の導電性ペースト、はんだクリーム、低融点金属等を用いることもできる。
(1) Production of conductive substrate (L) As a conductor layer of the conductive substrate (L), a copper foil having a thickness of 5 to 30 μm is used. FIG. 1a is a cross-sectional view of this copper foil. The copper foil is processed to form positioning marks and positioning holes (positioning pin insertion holes) at predetermined positions on the copper foil, and a copper paste is applied by screen printing. The predetermined height is 50 to 100 μm and the bump diameter is 100 μm. A conductor bump having a bump bottom diameter of 150 to 200 μm and a bump tip diameter of 30 to 70 μm is formed. If the height of one screen printing is insufficient, screen printing is performed twice or more. FIG. 1b is a cross-sectional view of a copper foil, ie, a conductive substrate (L), with conductor bumps formed thereon. Instead of the copper paste used in this example, other conductive paste such as silver paste or carbon mixture paste, solder cream, low melting point metal or the like can be used.

(2)接着剤シート層(O)の作製
図2は、接着剤シート層(O)の製造工程を示す。この例の接着剤シート層(O)は、接着剤層/絶縁フィルム層/接着剤層の3層構造を有する。図2aは、その断面図であり、両接着剤層は、熱硬化性エポキシ樹脂からなり、その厚みはそれぞれ10〜25μmである。絶縁フィルム層は、ポリイミドフィルム層であって、その厚みは12〜25μmである。この3層構造の積層体の所定の位置(バンプに対応する位置)に、径300μm(バンプ径の3倍)の貫通孔をドリルで開ける。又、位置決めマーク及び位置決め用の穴を開ける。ドリルの代りにレーザを用いて開けることも可能である。図2bは、貫通孔が形成された後の積層体(接着剤シート層(O))の断面図である。このようにして作製された接着剤シート層(O)を、接着剤シート層O1とする。
(2) Production of Adhesive Sheet Layer (O) FIG. 2 shows a production process of the adhesive sheet layer (O). The adhesive sheet layer (O) of this example has a three-layer structure of adhesive layer / insulating film layer / adhesive layer. FIG. 2 a is a cross-sectional view thereof, and both adhesive layers are made of a thermosetting epoxy resin, and the thicknesses thereof are 10 to 25 μm, respectively. An insulating film layer is a polyimide film layer, Comprising: The thickness is 12-25 micrometers. A through-hole having a diameter of 300 μm (three times the bump diameter) is drilled at a predetermined position (position corresponding to the bump) of the laminate having the three-layer structure. Also, positioning marks and positioning holes are made. It is also possible to open using a laser instead of a drill. FIG. 2 b is a cross-sectional view of the laminate (adhesive sheet layer (O)) after the through holes are formed. The adhesive sheet layer (O) thus produced is referred to as an adhesive sheet layer O1.

又、接着剤からなり厚み50μmのシートの所定の位置(バンプに対応する位置)に、径300μm(バンプ径の3倍)の貫通孔をドリルで開けて接着剤シート層(O)(図示していない。)を得た。このようにして作製された接着剤シート層(O)を、接着剤シート層O2とする。   In addition, a through-hole having a diameter of 300 μm (three times the bump diameter) is drilled at a predetermined position (position corresponding to the bump) of the sheet made of adhesive and having a thickness of 50 μm, and the adhesive sheet layer (O) (shown) Not obtained.) The adhesive sheet layer (O) thus produced is referred to as an adhesive sheet layer O2.

(3)片面配線板基材(M1)の作製
図3は、多層プリント配線板の形成に用いられる片面配線板基材の一例の製造工程を示す工程図である。厚み25μmのポリイミドフィルム1の片面に、厚み12.5μmの銅箔を貼った片面銅貼り積層体(CCL、図3a)を使用し、銅箔2をマスキングして湿式エッチングをし、銅箔2に回路パターンを形成する(図3b)。
(3) Production of single-sided wiring board substrate (M1) FIG. 3 is a process diagram showing a production process of an example of a single-sided wiring board substrate used for forming a multilayer printed wiring board. A single-sided copper-clad laminate (CCL, FIG. 3a) in which a 12.5 μm-thick copper foil is pasted on one side of a polyimide film 1 having a thickness of 25 μm is used, and the copper foil 2 is masked and wet-etched. A circuit pattern is formed on the substrate (FIG. 3b).

次に、ポリイミドフィルム1の、銅箔2が設けられている面とは反対の面に、PETからなる厚み50μmの離型層4を貼付け(図3c)、その後、レーザ加工により、径100μmのビアホール5(有底穴、ブラインドビア)を形成する(図3d)。この例のレーザ加工には、UV−YAGレーザを用いたが、これに限定されるものではなく、他のレーザを用いることもできるし、又レーザ加工以外の方法によりビアホールを形成することも可能である。   Next, a release layer 4 made of PET having a thickness of 50 μm is pasted on the surface of the polyimide film 1 opposite to the surface on which the copper foil 2 is provided (FIG. 3 c). A via hole 5 (bottomed hole, blind via) is formed (FIG. 3d). Although UV-YAG laser was used for laser processing in this example, it is not limited to this, and other lasers can be used, and via holes can be formed by methods other than laser processing. It is.

次に、ビアホール5内に残存している穿孔による樹脂や銅箔の酸化物等のスミアを除去するデスミア処理を施してビアホール5内を清掃後、銀ペーストからなる導電物を、スクリーン印刷で使用するスクイジプレートを使用し、離型層4の面側からスクイジングによりビアホール5内に穴埋め充填し、導電物充填部6を形成する(図3e)。その後、離型層4を除去することにより、高さ40μmの突起部を有する導体バンプ7を形成し(図3f)、片面配線板基材M1を得る。なお、前記のような離型層4の貼り付けを行わなくても、ビアホール5内に穴埋め充填した後、乾燥、バンプ印刷、乾燥を行うことにより、バンプ7を形成することもできる。   Next, after conducting desmearing treatment to remove smears such as resin or copper foil oxide remaining due to drilling remaining in the via hole 5, the via hole 5 is cleaned, and a conductive material made of silver paste is used for screen printing. Using the squeegee plate, the via hole 5 is filled and filled from the surface side of the release layer 4 by squeezing to form the conductive material filling portion 6 (FIG. 3e). Thereafter, the release layer 4 is removed to form a conductor bump 7 having a protrusion with a height of 40 μm (FIG. 3 f), thereby obtaining a single-sided wiring board substrate M <b> 1. Even if the release layer 4 is not attached as described above, the bumps 7 can be formed by filling the via holes 5 with filling, drying, bump printing, and drying.

(4)両面配線板基材(M2)の作製
図4aは、ポリイミドフィルム11の両面に銅箔12を貼った両面銅貼り積層体(CCL、新日鐵化学製エスパネックスSB18−25−18)の断面図である。この両面銅貼り積層体の両面にある銅箔12をマスキングして湿式エッチングをし、銅箔12に回路パターンを形成する。その後、この両面銅貼り積層体に貫通孔13を形成する(図4b)。貫通孔13の形成は、NCドリル、又はレーザにより行われる。貫通孔13の形成後、銀ペーストからなる導電物を、スクリーン印刷で使用するスクイジプレートを使用し、スクイジングにより貫通孔13内に穴埋め充填して導電物充填部14を形成し、両面の銅箔12(回路)間を接続する(図4c)。このようにして作製された両面配線板基材(M2)を、両面配線板基材M2Aとする。
(4) Preparation of double-sided wiring board substrate (M2) FIG. 4a is a double-sided copper-clad laminate in which copper foil 12 is pasted on both sides of polyimide film 11 (CCL, Espanex SB18-25-18 manufactured by Nippon Steel Chemical Co., Ltd.). FIG. The copper foil 12 on both sides of this double-sided copper-clad laminate is masked and wet etched to form a circuit pattern on the copper foil 12. Then, the through-hole 13 is formed in this double-sided copper-clad laminate (FIG. 4b). The through hole 13 is formed by an NC drill or a laser. After the through hole 13 is formed, a conductive material made of silver paste is filled in the through hole 13 by squeezing using a squeegee plate used for screen printing, and a conductive material filling portion 14 is formed. The foils 12 (circuits) are connected (FIG. 4c). The double-sided wiring board substrate (M2) thus produced is referred to as a double-sided wiring board substrate M2A.

バンプが形成された両面配線板基材(M2)は、導電物が充填された貫通孔13の一方側に、さらに、銀ペーストからなる導電物をバンプ印刷し、乾燥を行ってバンプ15を形成することにより得られる(図4d)。このようにして作製されたバンプを有する両面配線板基材(M2)を、両面配線板基材M2Bとする。バンプの形成は、バンプ印刷、乾燥による代りに、片面配線板基材(M1)の場合と同様に、離型層を用いて行うこともできる。   The double-sided wiring board substrate (M2) on which the bumps are formed is formed by bump-printing a conductive material made of silver paste on one side of the through-hole 13 filled with the conductive material, and drying to form the bump 15 (Fig. 4d). The double-sided wiring board substrate (M2) having the bumps thus produced is referred to as a double-sided wiring board substrate M2B. Bump formation can also be performed using a release layer, as in the case of the single-sided wiring board substrate (M1), instead of bump printing and drying.

(5)配線板基材M3の作製
図5aは、ポリイミドフィルムの片面に銅箔を貼った片面銅貼り積層体(CCL、新日鐵化学製エスパネックスSC18−25−00)の断面図である。この片面銅貼り積層体の片両面にある銅箔を、エッチング加工によりパターニングして回路を形成し、配線板基材M3を得た(図5b)。この配線板基材M3にも位置決めマーク及び位置決め用の穴を開ける。
(5) Production of Wiring Board Base Material M3 FIG. 5a is a cross-sectional view of a single-sided copper-clad laminate (CCL, Espanex SC18-25-00 manufactured by Nippon Steel Chemical Co., Ltd.) in which a copper foil is pasted on one side of a polyimide film. . The copper foil on one side of this single-sided copper-clad laminate was patterned by etching to form a circuit, and a wiring board substrate M3 was obtained (FIG. 5b). A positioning mark and a positioning hole are also formed in the wiring board substrate M3.

次に、以上のようにして得られた、導電性基材(L)、片面配線板基材(M1)、両面配線板基材M2A、両面配線板基材M2B、接着剤シート層O1、接着剤シート層O2、配線板基材M3等を用いて重ね合わせ、積層プレスして、本発明の多層プリント配線板を製造する工程を、図を用いて説明する。   Next, the conductive base material (L), single-sided wiring board base material (M1), double-sided wiring board base material M2A, double-sided wiring board base material M2B, adhesive sheet layer O1, and adhesive obtained as described above. The process of manufacturing the multilayer printed wiring board of the present invention by superposing and laminating using the agent sheet layer O2, the wiring board substrate M3, etc. will be described with reference to the drawings.

図6は、導電性基材(L)、片面配線板基材(M1)及び両面配線板基材M2Aを、接着剤シート層O1を挟持しながら積層プレスして、多層プリント配線板を製造する工程を示す工程図である。   FIG. 6 shows a multilayer printed wiring board produced by laminating and pressing a conductive substrate (L), a single-sided wiring board base (M1), and a double-sided wiring board base M2A while sandwiching the adhesive sheet layer O1. It is process drawing which shows a process.

(1)重ね合わせ
先ず、導電性基材(L)、接着剤シート層O1、片面配線板基材(M1)、接着剤シート層O2及び両面配線板基材M2Aの順で、位置決めピンを用い、バンプや貫通孔等が重なるように重ね合わせる。図6aは、この重ね合わせの状態を示す断面図である。
(1) Superposition First, positioning pins are used in the order of conductive base material (L), adhesive sheet layer O1, single-sided wiring board base material (M1), adhesive sheet layer O2, and double-sided wiring board base material M2A. Then, superimpose so that bumps and through holes overlap. FIG. 6 a is a cross-sectional view showing this overlapping state.

(2)プレス
その後、接着層が完全硬化しない温度範囲内で仮貼りを実施する。さらに、真空プレス機により、これらを一括してプレス(加圧)し、加熱する。図6bは積層プレス後の積層体の断面図である。導体バンプ及び接着層は積層プレス時に流動して、バンプと貫通孔間の間隙や、片面配線板基材(M1)や両面配線板基材M2A上に形成された回路の段差が埋められている。加熱終了後は冷却しながら加圧は継続するため、反り等はほとんど生じない。
(2) Pressing Thereafter, temporary bonding is performed within a temperature range where the adhesive layer is not completely cured. Furthermore, these are pressed (pressurized) and heated together by a vacuum press. FIG. 6 b is a cross-sectional view of the laminate after the lamination press. The conductor bumps and the adhesive layer flow during the laminating press to fill the gaps between the bumps and the through holes and the steps of the circuits formed on the single-sided wiring board substrate (M1) and the double-sided wiring board substrate M2A. . Since the pressurization is continued while cooling after completion of heating, almost no warping or the like occurs.

(3)パターニング
前記積層プレス終了後、導電性基材(L)の銅箔をマスキングしかつ適宜湿式エッチングしてパターニングを行うことにより、本発明の多層プリント配線板が得られる。図6cは、このようにして得られた多層プリント配線板の断面図である。
(3) Patterning After the lamination press is completed, the multilayer printed wiring board of the present invention is obtained by masking the copper foil of the conductive base material (L) and performing appropriate wet etching to perform patterning. FIG. 6 c is a cross-sectional view of the multilayer printed wiring board thus obtained.

図7は、図6の例の多層プリント配線板にさらに片面配線板基材(M1)が積層された多層プリント配線板を製造する工程を示す工程図である。   FIG. 7 is a process diagram showing a process of manufacturing a multilayer printed wiring board in which a single-sided wiring board substrate (M1) is further laminated on the multilayer printed wiring board in the example of FIG.

(1)絶縁性樹脂層の形設
片面配線板基材(M1)の、回路の一部の表面上に、絶縁性液状ポリイミドをスクリーン印刷、又は予め孔をくり抜いた絶縁ポリイミドフィルムを貼り合わせる方法により絶縁性樹脂層を形成する。図7aは、この絶縁性樹脂層が形成された片面配線板基材(M1)を表わす。これを片面配線板基材M1Aとする。ここで、絶縁性樹脂層が形設される回路の一部とは、積層プレス後に、導体バンプと接触しない部分であり、かつ対向する回路を有する部分である。
(1) Forming an insulating resin layer A method of pasting an insulating liquid polyimide on a surface of a part of a circuit of a single-sided wiring board substrate (M1) or bonding an insulating polyimide film in which holes have been cut out in advance. An insulating resin layer is formed by the above. FIG. 7a shows a single-sided wiring board substrate (M1) on which this insulating resin layer is formed. This is designated as a single-sided wiring board substrate M1A. Here, a part of the circuit in which the insulating resin layer is formed is a part that does not come into contact with the conductor bump after the lamination press and has a circuit that faces the circuit.

(2)重ね合わせ
先ず、導電性基材(L)、接着剤シート層O2、片面配線板基材M1A、接着剤シート層O2、両面配線板基材M2A及び他の片面配線板基材(M1)の順で、位置決めピンを用い、バンプや貫通孔等が重なるように重ね合わせる。図7bは、この重ね合わせの状態を示す断面図である。図7bより明らかなように、片面配線板基材M1Aと他の片面配線板基材(M1)とではバンプの向きが逆になっている。なお、他の片面配線板基材(M1)の代りに導電性基材(L)を用いることもできる。この場合、導電性基材(L)が両方の外側に配置された多層プリント配線板が得られる。
(2) Superposition First, conductive base material (L), adhesive sheet layer O2, single-sided wiring board base material M1A, adhesive sheet layer O2, double-sided wiring board base material M2A, and other single-sided wiring board base materials (M1) ) In this order, the positioning pins are used so that the bumps and the through holes overlap. FIG. 7b is a cross-sectional view showing this superposed state. As is clear from FIG. 7b, the direction of the bumps is reversed between the single-sided wiring board substrate M1A and the other single-sided wiring board substrate (M1). In addition, an electroconductive base material (L) can also be used instead of another single-sided wiring board base material (M1). In this case, a multilayer printed wiring board in which the conductive substrate (L) is disposed on both outer sides is obtained.

(3)プレス
その後、接着層が完全硬化しない温度範囲内で仮貼りを実施する。さらに、真空プレス機により、これらを一括してプレス(加圧)し、加熱する。図7cは積層プレス後の積層体の断面図である。導体バンプ及び接着層は積層プレス時に流動して、バンプと貫通孔間の間隙や、片面配線板基材(M1)や両面配線板基材M2A等の上に形成された回路の段差が埋められている。加熱終了後は冷却しながら加圧は継続するため、反り等はほとんど生じない。
(3) Pressing Thereafter, temporary bonding is performed within a temperature range in which the adhesive layer is not completely cured. Furthermore, these are pressed (pressurized) and heated together by a vacuum press. FIG. 7c is a cross-sectional view of the laminate after the lamination press. The conductor bumps and the adhesive layer flow during the laminating press to fill the gaps between the bumps and the through-holes and the steps of the circuit formed on the single-sided wiring board substrate (M1) or the double-sided wiring board substrate M2A. ing. Since the pressurization is continued while cooling after completion of heating, almost no warping or the like occurs.

(4)パターニング
前記積層プレス終了後、導電性基材(L)の銅箔をマスキングしかつ適宜湿式エッチングしてパターニングを行うことにより、本発明の多層プリント配線板が得られる。図7dは、このようにして得られた多層プリント配線板の断面図である。
(4) Patterning After completion of the lamination press, the multilayer printed wiring board of the present invention is obtained by masking the copper foil of the conductive base material (L) and performing patterning by appropriate wet etching. FIG. 7d is a cross-sectional view of the multilayer printed wiring board thus obtained.

図8は、図7の例の多層プリント配線板における両面配線板基材M2Aの代りにバンプを有する両面配線板基材M2Bを用い、外側の片面配線板基材(M1)の代りに配線板基材M3を用いた例である。すなわち、導電性基材(L)、接着剤シート層O2、片面配線板基材(M1)、接着剤シート層O2、両面配線板基材M2B、接着剤シート層O2及び配線板基材M3の順で重ね合わせ積層プレスして、多層プリント配線板を製造する工程を示す工程図である。   8 uses a double-sided wiring board substrate M2B having bumps instead of the double-sided wiring board substrate M2A in the multilayer printed wiring board of the example of FIG. 7, and the wiring board instead of the outer single-sided wiring board substrate (M1). This is an example using the base material M3. That is, the conductive substrate (L), the adhesive sheet layer O2, the single-sided wiring board substrate (M1), the adhesive sheet layer O2, the double-sided wiring board base material M2B, the adhesive sheet layer O2, and the wiring board base material M3. It is process drawing which shows the process of carrying out the lamination | stacking lamination press in order, and manufacturing a multilayer printed wiring board.

図8の例においても、重ね合わせ、プレス、パターニングは、図6、図7の例の場合と同様に行われる。図8aは、重ね合わせた状態を示す断面図である。図8bは、積層プレス、パターニング後の多層プリント配線板の断面図である。なお、配線板基材M3の代りに、片面配線板基材(M1)や両面配線板基材(M2)を用い、さらに他の片面配線板基材(M1)等を重ね合わせ、より多層のプリント配線板を、一括した積層プレスにより、高い生産性で製造することも可能である。   Also in the example of FIG. 8, superposition, pressing, and patterning are performed in the same manner as in the examples of FIGS. FIG. 8a is a cross-sectional view showing the superimposed state. FIG. 8b is a cross-sectional view of the multilayer printed wiring board after lamination pressing and patterning. In place of the wiring board substrate M3, a single-sided wiring board substrate (M1) or a double-sided wiring board substrate (M2) is used, and another single-sided wiring board substrate (M1) or the like is overlapped to obtain a multilayer. It is also possible to manufacture a printed wiring board with high productivity by a batch laminating press.

本発明に使用される導電性基材(L)の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of the electroconductive base material (L) used for this invention. 本発明に使用される接着剤シート層(O)の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of the adhesive sheet layer (O) used for this invention. 本発明に使用される片面配線板基材(M1)の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of the single-sided wiring board base material (M1) used for this invention. 本発明に使用される両面配線板基材(M2)の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of the double-sided wiring board base material (M2) used for this invention. 本発明に使用される配線板基材の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of the wiring board base material used for this invention. 本発明の一例の積層プレス工程を示す工程図である。It is process drawing which shows the lamination press process of an example of this invention. 本発明の他の一例の積層プレス工程を示す工程図である。It is process drawing which shows the lamination press process of the other example of this invention. 本発明の他の一例の積層プレス工程を示す工程図である。It is process drawing which shows the lamination press process of the other example of this invention.

Claims (7)

その主面の所定位置に導体バンプが形成されてなる導電性基材(L)、
絶縁性基板、その1表面上に設けられた回路、及び、前記絶縁性基板内に前記回路に至り他表面で開口するように形成されたビアホールに導電物を充填し、かつ前記ビアホール上に導体バンプを形成して得られる片面配線板基材(M1)、及び
絶縁性基板及びその両表面上に回路を有し、前記絶縁性基板を貫通する孔内に充填された導電物により、両表面上の回路間が接続され、必要により前記回路上に導体バンプが形成されている両面配線板基材(M2)
からなる群より選ばれる配線板基材(M)、並びに
前記バンプに対応する位置に前記バンプの径より大きい径の貫通孔を有する接着剤シート層(O)を、
導電性基材(L)と配線板基材(M)の合計数を3以上とし、
導電性基材(L)を、一方又は両方の外側に配置し、かつ
接着剤シート層(O)を、導電性基材(L)と配線板基材(M)の間又は2以上の配線板基材(M)の間に、前記バンプが前記貫通孔に挿入されるように挟持して
重ね合わせ、これらを一括して積層プレスすることを特徴とする多層プリント配線板の製造方法。
A conductive base material (L) in which conductor bumps are formed at predetermined positions on the main surface;
An insulating substrate, a circuit provided on one surface of the insulating substrate, and a via hole formed in the insulating substrate so as to reach the circuit and open on the other surface is filled with a conductive material, and a conductor is provided on the via hole. A single-sided wiring board substrate (M1) obtained by forming bumps, an insulating substrate, and a circuit on both surfaces of the insulating substrate, and a conductive material filled in holes penetrating the insulating substrate. Double-sided wiring board substrate (M2) in which the upper circuits are connected and, if necessary, conductor bumps are formed on the circuits
A wiring board substrate (M) selected from the group consisting of: an adhesive sheet layer (O) having a through-hole having a diameter larger than the diameter of the bump at a position corresponding to the bump;
The total number of the conductive substrate (L) and the wiring board substrate (M) is 3 or more,
The conductive base material (L) is arranged on one or both outsides, and the adhesive sheet layer (O) is placed between the conductive base material (L) and the wiring board base material (M) or two or more wirings. A method for producing a multilayer printed wiring board, wherein the bumps are sandwiched and overlapped so as to be inserted into the through-holes between the board substrates (M), and these are collectively laminated and pressed.
接着剤シート層(O)の貫通孔の径が、対応する前記バンプの径の1.5〜5倍の大きさであることを特徴とする請求項1に記載の多層プリント配線板の製造方法。   The method for producing a multilayer printed wiring board according to claim 1, wherein the diameter of the through hole of the adhesive sheet layer (O) is 1.5 to 5 times the diameter of the corresponding bump. . 接着剤シート層(O)が、接着剤層/絶縁フィルム層/接着剤層の3層構造であることを特徴とする請求項1又は請求項2に記載の多層プリント配線板の製造方法。   The method for producing a multilayer printed wiring board according to claim 1 or 2, wherein the adhesive sheet layer (O) has a three-layer structure of adhesive layer / insulating film layer / adhesive layer. 接着剤シート層(O)を構成する絶縁フィルム層が、ポリイミドを主体とする樹脂フィルムであることを特徴とする請求項3に記載の多層プリント配線板の製造方法。   The method for producing a multilayer printed wiring board according to claim 3, wherein the insulating film layer constituting the adhesive sheet layer (O) is a resin film mainly composed of polyimide. 配線板基材(M)の、積層プレス後に導体バンプと接触せずかつ対向する回路を有する回路の表面上に、絶縁性樹脂層を設けたことを特徴とする請求項1ないし請求項4のいずれかに記載の多層プリント配線板の製造方法。   The insulating resin layer is provided on the surface of the circuit board (M) having a circuit that does not come into contact with the conductor bump after lamination pressing and has an opposing circuit. The manufacturing method of the multilayer printed wiring board in any one. 前記絶縁性樹脂層が、ポリイミドを主体とする樹脂からなることを特徴とする請求項5に記載の多層プリント配線板の製造方法。   The method for producing a multilayer printed wiring board according to claim 5, wherein the insulating resin layer is made of a resin mainly composed of polyimide. 請求項1ないし請求項6のいずれかに記載の多層プリント配線板の製造方法により製造されることを特徴とする多層プリント配線板。
A multilayer printed wiring board manufactured by the method for manufacturing a multilayer printed wiring board according to any one of claims 1 to 6.
JP2005022857A 2005-01-31 2005-01-31 Multilayer printed-wiring board and manufacturing method thereof Pending JP2006210766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022857A JP2006210766A (en) 2005-01-31 2005-01-31 Multilayer printed-wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022857A JP2006210766A (en) 2005-01-31 2005-01-31 Multilayer printed-wiring board and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006210766A true JP2006210766A (en) 2006-08-10

Family

ID=36967232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022857A Pending JP2006210766A (en) 2005-01-31 2005-01-31 Multilayer printed-wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006210766A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043438A1 (en) * 2005-10-11 2007-04-19 Sumitomo Electric Industries, Ltd. Multilayer printed wiring board and method for producing same
KR100816434B1 (en) * 2007-03-02 2008-03-25 (주)글로벌써키트 Method of manufacturing multi-layer printed circuit board
JP2008192999A (en) * 2007-02-07 2008-08-21 Shinko Electric Ind Co Ltd Method for manufacturing multilayered wiring substrate
JP2010232585A (en) * 2009-03-30 2010-10-14 Toppan Printing Co Ltd Multilayer wiring board and method of manufacturing the same
JP2014033011A (en) * 2012-08-01 2014-02-20 Fujikura Ltd Multilayer printed wiring board and method for manufacturing the same
US8669481B2 (en) 2010-06-09 2014-03-11 Fujitsu Limited Laminated circuit board and board producing method
CN114698234A (en) * 2022-03-30 2022-07-01 深圳市信维通信股份有限公司 Method for combining multi-layer LCP material substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001251053A (en) * 2000-03-06 2001-09-14 Sony Corp Printed wiring board and method for manufacturing printed wiring board
JP2002124764A (en) * 2000-10-18 2002-04-26 Nippon Auto Giken Kogyo:Kk Manufacturing method for printed wiring board
JP2002307608A (en) * 2001-04-10 2002-10-23 Kanegafuchi Chem Ind Co Ltd Laminate manufacturing method and multilayered printed wiring board
JP2004363325A (en) * 2003-06-04 2004-12-24 Fujikura Ltd Multilayer wiring board and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001251053A (en) * 2000-03-06 2001-09-14 Sony Corp Printed wiring board and method for manufacturing printed wiring board
JP2002124764A (en) * 2000-10-18 2002-04-26 Nippon Auto Giken Kogyo:Kk Manufacturing method for printed wiring board
JP2002307608A (en) * 2001-04-10 2002-10-23 Kanegafuchi Chem Ind Co Ltd Laminate manufacturing method and multilayered printed wiring board
JP2004363325A (en) * 2003-06-04 2004-12-24 Fujikura Ltd Multilayer wiring board and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043438A1 (en) * 2005-10-11 2007-04-19 Sumitomo Electric Industries, Ltd. Multilayer printed wiring board and method for producing same
JP2008192999A (en) * 2007-02-07 2008-08-21 Shinko Electric Ind Co Ltd Method for manufacturing multilayered wiring substrate
KR100816434B1 (en) * 2007-03-02 2008-03-25 (주)글로벌써키트 Method of manufacturing multi-layer printed circuit board
JP2010232585A (en) * 2009-03-30 2010-10-14 Toppan Printing Co Ltd Multilayer wiring board and method of manufacturing the same
US8669481B2 (en) 2010-06-09 2014-03-11 Fujitsu Limited Laminated circuit board and board producing method
JP2014033011A (en) * 2012-08-01 2014-02-20 Fujikura Ltd Multilayer printed wiring board and method for manufacturing the same
CN114698234A (en) * 2022-03-30 2022-07-01 深圳市信维通信股份有限公司 Method for combining multi-layer LCP material substrate
CN114698234B (en) * 2022-03-30 2024-05-31 深圳市信维通信股份有限公司 Method for combining multilayer LCP (liquid crystal display) material substrates

Similar Documents

Publication Publication Date Title
JP4305399B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
JP5012514B2 (en) Multilayer wiring board manufacturing method
JP3906225B2 (en) Circuit board, multilayer wiring board, method for manufacturing circuit board, and method for manufacturing multilayer wiring board
WO1998056220A1 (en) Single-sided circuit board and method for manufacturing the same
WO1997048260A1 (en) One-sided circuit board for multi-layer printed wiring board, multi-layer printed wiring board, and method for its production
JP2008124398A (en) Semiconductor package and its manufacturing method
JP2006210766A (en) Multilayer printed-wiring board and manufacturing method thereof
JPH1154934A (en) Multilayered printed wiring board and its manufacture
JP2000101248A (en) Multiple multilayer printed wiring board
JP3207663B2 (en) Printed wiring board and method of manufacturing the same
JPH1013028A (en) Single-sides circuit board for multilayered printed wiring board and multilayered printed wiring board and its manufacture
JP6240007B2 (en) Method for manufacturing flexible printed circuit board and intermediate product used for manufacturing flexible printed circuit board
JPH0936551A (en) Single-sided circuit board for multilayer printed wiring board use, multilayer printed wiring board and manufacture thereof
JP5077800B2 (en) Manufacturing method of multilayer printed wiring board
JP2006313932A (en) Multilayer circuit board and manufacturing method therefor
JP2002319750A (en) Printed-wiring board, semiconductor device, and their manufacturing methods
JPH1154926A (en) One-sided circuit board and its manufacture
TWI412313B (en) Multilayer printing wire board and method for producting the same
JP2006253328A (en) Manufacturing method of multilayer wiring board
JP3705370B2 (en) Manufacturing method of multilayer printed wiring board
JP2002198652A (en) Multilayer printed wiring board, method of manufacturing the same and single-sided circuit board therefor
JP2004281668A (en) Multilayer wiring board and its manufacturing method
JP2009043833A (en) Manufacturing method of wiring board with hollow hinge
JP2002344141A (en) Multilayer circuit board and manufacturing method thereof
JP3492667B2 (en) Single-sided circuit board for multilayer printed wiring board, multilayer printed wiring board and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207