JP2010232585A - Multilayer wiring board and method of manufacturing the same - Google Patents

Multilayer wiring board and method of manufacturing the same Download PDF

Info

Publication number
JP2010232585A
JP2010232585A JP2009080987A JP2009080987A JP2010232585A JP 2010232585 A JP2010232585 A JP 2010232585A JP 2009080987 A JP2009080987 A JP 2009080987A JP 2009080987 A JP2009080987 A JP 2009080987A JP 2010232585 A JP2010232585 A JP 2010232585A
Authority
JP
Japan
Prior art keywords
insulating layer
layer
base material
substrate
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009080987A
Other languages
Japanese (ja)
Inventor
Haruki Okuda
晴紀 奥田
Takayuki Kobayashi
隆之 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2009080987A priority Critical patent/JP2010232585A/en
Publication of JP2010232585A publication Critical patent/JP2010232585A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer wiring board which is advantageous in laminating and forming an odd number of conductive layers by a method with high productivity while preventing curving, and to provide a method of manufacturing the same. <P>SOLUTION: A first base material is prepared which has a first insulating layer 101a and a first conductor layer 100a formed on one surface in a thickness direction of the first insulating layer 101a. A second base material is prepared which has a second insulating layer 101b and a second conductor layer 100b formed on one surface in a thickness-direction of the first insulating layer 101b. A third base material is prepared which has a third insulating layer 101c and a third conductor layer 100c formed on one surface in a thickness direction of the third insulating layer 101c. The second base material is laminated by bonding the second insulating layer 101b on the top of the first conductor layer 100a of the first base material with a thin-film adhesion layer 103 interposed. The third base material is laminated by bonding the third insulating layer 101c under the first conductor layer 100a of the first base material with a thin-film adhesion layer 103 interposed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ポリイミド等の樹脂からなる絶縁層と導体配線層が交互に積層してなる多層構造を有する薄型多層配線基板およびその製造方法に関し、特に片面金属箔付き絶縁樹脂フィルムを用いた奇数の導体層を有する多配線基板の製造に好適なものである。   The present invention relates to a thin multilayer wiring board having a multilayer structure in which insulating layers made of resin such as polyimide and conductor wiring layers are alternately laminated, and a method for manufacturing the same, and in particular, an odd number using an insulating resin film with a single-sided metal foil This is suitable for manufacturing a multi-wiring board having a conductor layer.

近年、電子技術の進歩により、携帯電話や情報通信端末を始めとする電子情報機器の高機能化、小型化、高速化が著しく進行している。
これに伴い、プリント配線板や半導体パッケージ等の回路基板も配線パターンの高密度化、薄型化が求められ配線基板は多層化の傾向にある。
In recent years, due to advancement of electronic technology, electronic information devices such as mobile phones and information communication terminals have been remarkably advanced in function, size and speed.
Along with this, circuit boards such as printed wiring boards and semiconductor packages are also required to have higher density and thinner wiring patterns, and wiring boards tend to be multilayered.

このような多層配線基板は銅貼基板やセラミック基板上に絶縁樹脂層と導体配線層を交互に積み上げて形成される(例えば特許文献1参照)。
この工法にて作製された多層配線基板の絶縁層は、ポリイミド等の樹脂を塗布することにより形成し、薄膜化することができる。また、導体配線層はめっきで形成でき、微細配線が可能となる。
一方、上下の導体配線層を接続するビアホールはレーザ加工等にて孔を形成し、内部をめっきで埋めることにより形成できる。
このため、従来の銅貼り基板を一括積層する多層プリント配線基板、あるいは、グリーンシートを積層して一括焼成するセラミック多層配線基板に比べ、高配線密度化、薄膜化、小型化を図ることができる。
Such a multilayer wiring board is formed by alternately stacking insulating resin layers and conductor wiring layers on a copper-clad substrate or a ceramic substrate (see, for example, Patent Document 1).
The insulating layer of the multilayer wiring board manufactured by this method can be formed and thinned by applying a resin such as polyimide. Further, the conductor wiring layer can be formed by plating, and fine wiring is possible.
On the other hand, the via hole connecting the upper and lower conductor wiring layers can be formed by forming a hole by laser processing or the like and filling the inside with plating.
For this reason, it is possible to achieve a higher wiring density, a thinner film, and a smaller size compared to a conventional multilayer printed wiring board in which copper-clad substrates are laminated at once or a ceramic multilayer wiring board in which green sheets are laminated and fired at once. .

また、これとは別に、従来の多層プリント配線基板に銅箔付ポリイミドフィルムを接着剤で貼り合わせた構成のものもあり、この構成においても、銅箔の薄さから微細配線を形成することが可能となり、同様に、高配線密度化、薄膜化、小型化を図ることができる(例えば特許文献2参照)。
さらにテープ状のフィルムのためリールトゥリールでの処理が可能となり従来の枚葉処理とは異なり生産効率の向上も可能となる。
In addition, there is a configuration in which a polyimide film with copper foil is bonded to a conventional multilayer printed wiring board with an adhesive, and even in this configuration, fine wiring can be formed from the thinness of the copper foil. Similarly, high wiring density, thin film, and miniaturization can be achieved (see, for example, Patent Document 2).
Furthermore, since it is a tape-like film, reel-to-reel processing is possible and, unlike conventional single wafer processing, production efficiency can be improved.

ここで、従来のプリント配線板の製造方法は、偶数の導電層を効率良く積層することはできるが、奇数の導電層を積層するには不向きである。
これは多層基板製造では出発基材として、絶縁層の両側に導体層を有する両面二層基材を用い、この上下の導体層に基材を積層するビルドアップ法が広く支持されているためである。
このような製造手法が用いられるのは、上下の導体層の片側のみに基材を積層すると、基板全体の反りが無視できなくなるほど大きくなる傾向にあるからである。
多層基板において、反りは限りなく最小限に留める方が好ましく、基板の反りが大きいと、基板とチップの実装ができなくなることや、信頼性の面においてもクラックの発生等大きな問題が生じる可能性が高まる。
Here, the conventional printed wiring board manufacturing method can efficiently stack even-numbered conductive layers, but is not suitable for stacking odd-numbered conductive layers.
This is because in multilayer board manufacturing, a double-sided two-layer base material having conductor layers on both sides of an insulating layer is used as a starting base material, and the build-up method of laminating the base material on the upper and lower conductor layers is widely supported. is there.
The reason why such a manufacturing method is used is that when the base material is laminated only on one side of the upper and lower conductor layers, the warpage of the entire substrate tends to become so large that it cannot be ignored.
In multilayer boards, it is preferable to keep the warpage to a minimum, and if the warpage of the board is large, it may become impossible to mount the board and the chip, and there may be serious problems such as the occurrence of cracks in terms of reliability. Will increase.

反りの発生を防止して奇数の導電層を積層、形成する手法として、特許文献3が挙げられるが、前記特許文献にある多層化はガラスクロス入りプリプレグを加熱圧着することで行っている。
この手法ではガラスクロスがコア層となるため、基板の薄化が困難であり、電送ロスの影響も考えられる。また、基板が硬いため、リールトゥリールによる大量生産が困難であることから、生産効率が芳しくないという問題が存在する。
Patent Document 3 can be cited as a method for laminating and forming an odd number of conductive layers while preventing warpage. Multi-layering in the above-mentioned patent document is performed by thermocompression bonding of a prepreg containing glass cloth.
In this method, since the glass cloth becomes the core layer, it is difficult to reduce the thickness of the substrate, and the influence of power transmission loss can be considered. Further, since the substrate is hard, mass production by reel-to-reel is difficult, and there is a problem that production efficiency is not good.

特開平4−148590号公報Japanese Patent Laid-Open No. 4-148590 特開2001−53115号公報JP 2001-53115 A 特開2006−237637号公報Japanese Patent Laid-Open No. 2006-237637

本発明はかかる従来の問題点に鑑み、コア層の薄い多層配線基板及びその製造方法を提供することを目的とし、特に反りの発生を防止して、奇数の導電層を生産性の高い手法で積層、形成することを目的とする。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a multilayer wiring board having a thin core layer and a method for manufacturing the same. It is intended to be laminated and formed.

前記課題を解決するために、請求項1の発明は、第一の絶縁層と、前記第一の絶縁層の厚さ方向の一方の面に形成された第一の導体層とを有する第一の基材と、第二の絶縁層と、前記第二の絶縁層の厚さ方向の一方の面に形成された第二の導体層とを有する第二の基材と、第三の絶縁層と、前記第三の絶縁層の厚さ方向の一方の面に形成された第三の導体層とを有する第三の基材とを備え、前記第一の基材の前記第一の導体層の上に接着剤を介して前記第二の絶縁層を接着して前記第二の基材を積層し、前記第一の基材の前記第一の絶縁層の下に接着剤を介して前記第三の絶縁層を接着して前記第三の基材を積層し、このように絶縁層と導体層とを有する基材を前記第一の基材の上下に積層し前記導体層の数を奇数としたことを特徴とする多層配線基板である。
すなわち、絶縁層の片側のみに導体層を有する片面金属箔付き絶縁樹脂基材を出発材料とし、この上下に基材を積層していくことで、従来の絶縁層の上下に導体層を有する両面二層基材の片側のみに基材を積層する手法により作成した基板よりも、低反り性を有し、且つ導体層数が奇数である多層配線基板である。
In order to solve the above-mentioned problem, the invention of claim 1 is a first comprising: a first insulating layer; and a first conductor layer formed on one surface of the first insulating layer in the thickness direction. A second insulating layer, a second insulating layer, and a second insulating layer formed on one surface in the thickness direction of the second insulating layer, and a third insulating layer And a third substrate having a third conductor layer formed on one surface in the thickness direction of the third insulating layer, and the first conductor layer of the first substrate. The second insulating layer is bonded onto the first base material by laminating the second base material, and the first base material under the first insulating layer is adhesively bonded to the second base material. The third insulating layer is adhered and the third base material is laminated, and thus the base material having the insulating layer and the conductor layer is laminated on the upper and lower sides of the first base material, and the number of the conductor layers is determined. Many characterized by odd numbers Is a wiring board.
That is, by using an insulating resin base material with a single-sided metal foil having a conductor layer only on one side of the insulating layer as a starting material, and laminating the base material on the upper and lower sides, both sides having a conductor layer on the upper and lower sides of the conventional insulating layer It is a multilayer wiring board having a low warpage and an odd number of conductor layers, compared to a board prepared by laminating a base material only on one side of a two-layer base material.

請求項2の発明は、前記第一の絶縁層の厚さと第三の絶縁層の厚さとの和と、前記第二の絶縁層の厚さとの差が3μm以内であることを特徴とする請求項1記載の多層配線基板である。
すなわち、第一の絶縁層と第三の絶縁層の厚さの和と第二の絶縁層の厚さがほぼ等しいため、基板全体の構造の対称性が高く,第一から第三の絶縁層厚が全て等しい構造である場合よりも、反りが小さい多層配線基板である。
The invention of claim 2 is characterized in that a difference between the sum of the thickness of the first insulating layer and the thickness of the third insulating layer and the thickness of the second insulating layer is within 3 μm. The multilayer wiring board according to Item 1.
That is, since the sum of the thicknesses of the first insulating layer and the third insulating layer is substantially equal to the thickness of the second insulating layer, the structure of the entire substrate is highly symmetrical, and the first to third insulating layers This is a multilayer wiring board with less warping than when the thicknesses are all equal.

請求項3の発明は、第一の絶縁層と、前記第一の絶縁層の厚さ方向の一方の面に形成された第一の導体層とを有する第一の基材と、第二の絶縁層と、前記第二の絶縁層の厚さ方向の一方の面に形成された第二の導体層とを有する第二の基材と、第三の絶縁層と、前記第三の絶縁層の厚さ方向の一方の面に形成された第三の導体層とを有する第三の基材とを用意し、前記第一の基材の前記第一の導体層の上に接着剤を介して前記第二の絶縁層を接着して前記第二の基材を積層し、前記第一の基材の前記第一の絶縁層の下に接着剤を介して前記第三の絶縁層を接着して前記第三の基材を積層し、このように絶縁層と導体層とを有する基材を前記第一の基材の上下に積層し前記導体層の数を奇数としたことを特徴とする多層配線基板の製造方法である。
すなわち、絶縁層の片側のみに導体層を有する片面金属箔付き絶縁樹脂基材を出発材料とし、この上下に基材を積層していくことで、従来の絶縁層の上下に導体層を有する両面二層基材の片側のみに基材を積層する手法により作成した基板よりも、低反り性を有し、且つ導体層数が奇数である多層配線基板の製造方法である。
The invention of claim 3 includes a first base material having a first insulating layer and a first conductor layer formed on one surface in the thickness direction of the first insulating layer; A second substrate having an insulating layer and a second conductor layer formed on one surface in the thickness direction of the second insulating layer; a third insulating layer; and the third insulating layer. A third substrate having a third conductor layer formed on one surface in the thickness direction of the first substrate, and an adhesive agent on the first conductor layer of the first substrate. The second insulating layer is bonded to the second base material, and the third insulating layer is bonded to the first base material under the first insulating layer via an adhesive. The third base material is laminated, and thus the base material having the insulating layer and the conductor layer is laminated on the upper and lower sides of the first base material so that the number of the conductor layers is an odd number. A method for manufacturing a multilayer wiring board .
That is, by using an insulating resin base material with a single-sided metal foil having a conductor layer only on one side of the insulating layer as a starting material, and laminating the base material on the upper and lower sides, both sides having a conductor layer on the upper and lower sides of the conventional insulating layer This is a method for producing a multilayer wiring board having a lower warpage and an odd number of conductor layers than a board prepared by laminating a base material only on one side of a two-layer base material.

請求項4の発明は、前記第一の絶縁層の厚さと第三の絶縁層の厚さとの和と、前記第二の絶縁層の厚さとの差が3μm以内であることを特徴とする請求項3記載の多層配線基板の製造方法である。
すなわち、第一の絶縁層と第三の絶縁層の厚さの和と第二の絶縁層の厚さがほぼ等しいため、基板全体の構造の対称性が高く,第一から第三の絶縁層厚が全て等しい構造である場合よりも,反りが小さい多層配線基板の製造方法である。
The invention according to claim 4 is characterized in that a difference between the sum of the thickness of the first insulating layer and the thickness of the third insulating layer and the thickness of the second insulating layer is within 3 μm. Item 4. A method for producing a multilayer wiring board according to Item 3.
That is, since the sum of the thicknesses of the first insulating layer and the third insulating layer is substantially equal to the thickness of the second insulating layer, the structure of the entire substrate is highly symmetrical, and the first to third insulating layers This is a method of manufacturing a multilayer wiring board with less warping than when the thicknesses are all equal.

請求項2、4の発明では、第一の絶縁層と第三の絶縁層の厚さの和と第二の絶縁層の厚さとの差を3μm以内としているが、これは限りなく小さい方が基板の対称性の観点から好ましく、3μmを超えると構造対称性が崩れ、反りの大きさが無視できなくなる結果となっている。   In the inventions of claims 2 and 4, the difference between the sum of the thicknesses of the first insulating layer and the third insulating layer and the thickness of the second insulating layer is set to 3 μm or less. It is preferable from the viewpoint of the symmetry of the substrate, and if it exceeds 3 μm, the structural symmetry is lost, and the magnitude of the warp cannot be ignored.

上記多層配線基板および製造方法は、生産性の高いリールトゥリールでの処理が可能である。さらに、接着剤およびポリイミド等の重合体がコア層がとなるため、コア層による電送ロスを最小限に留めることができ、基板の薄化も可能である。   The multilayer wiring board and the manufacturing method can be processed on a reel-to-reel with high productivity. Furthermore, since the core layer is formed of a polymer such as an adhesive and polyimide, the power transmission loss due to the core layer can be minimized, and the substrate can be thinned.

本発明の多層配線基板およびその製造方法によれば、絶縁層の片側のみに導体層を有する金属箔付き片面基材を出発材料とし、この両側に絶縁層厚を調整した基材を積層していくことで奇数の導電層を積層、形成でき、従来の製造方法よりも、より生産性が高く、低反り性を有し、コア層の薄い多層配線基板およびその製造方法を提供することができる。   According to the multilayer wiring board and the manufacturing method thereof of the present invention, a single-sided base material with a metal foil having a conductor layer only on one side of the insulating layer is used as a starting material, and a base material with an insulating layer thickness adjusted is laminated on both sides. As a result, an odd number of conductive layers can be stacked and formed, and a multi-layer wiring board having a higher productivity and lower warpage than the conventional manufacturing method and having a thin core layer and a manufacturing method thereof can be provided. .

(a)乃至(e)は本発明の多層配線基板の製造方法に係る一例を示す説明図である。(A) thru | or (e) is explanatory drawing which shows an example which concerns on the manufacturing method of the multilayer wiring board of this invention. (f)乃至(i)は図1に続く説明図である。(F) thru | or (i) are explanatory drawings following FIG. (j)乃至(m)は図2に続く説明図である。(J) thru | or (m) are explanatory drawings following FIG.

本発明に係る多層配線基板とその製造方法をより詳細に述べる。
図1(a)に示す有機絶縁材による第一の絶縁層101aと導体材料による第一の導体層100aを有する片面銅箔付きポリイミド1000を用意する。
すなわち、第一の絶縁層101aと、第一の絶縁層101aの厚さ方向の一方の面に形成された第一の導体層100aとを有する第一の基材を用意する。
次いで、図1(b)に示すように、片面銅箔付きポリイミド1000にフォトレジスト102をコートする。
なおプリント配線板に使用する基材の材料には各種使用できるが、生産工程では生産効率の向上の為にリールトゥリールによって処理することが好ましい。
その材料としては絶縁材料にポリイミド、導体材料に銅箔を使用した銅箔付きポリイミドフィルムがより好ましい。
ここで銅箔付きポリイミドフィルムを推奨する理由として、リールトゥリール処理ができる絶縁層には液晶ポリマー、ポリイミド樹脂、ポリオレフィン樹脂等が挙げられるが、耐熱性、可撓性、平滑性、低吸水率を満足するものとしてポリイミド樹脂を推奨する。
また導体層には金属から成り、導電性のよいものであれば構わないが、コストおよび導電性から一般的に銅が好ましく、電解銅箔、圧延銅箔等の平滑性の良い銅箔がより好ましい。
The multilayer wiring board and the manufacturing method thereof according to the present invention will be described in more detail.
A polyimide 1000 with a single-sided copper foil having a first insulating layer 101a made of an organic insulating material and a first conductive layer 100a made of a conductive material shown in FIG.
That is, a first base material having a first insulating layer 101a and a first conductor layer 100a formed on one surface in the thickness direction of the first insulating layer 101a is prepared.
Next, as shown in FIG. 1B, a photoresist 102 is coated on polyimide 1000 with a single-sided copper foil.
Various materials can be used for the base material used for the printed wiring board. However, in the production process, it is preferable to use a reel-to-reel for improving production efficiency.
As the material, polyimide film with copper foil using polyimide as insulating material and copper foil as conductor material is more preferable.
The reason why the polyimide film with copper foil is recommended here is that the insulating layer capable of reel-to-reel processing includes liquid crystal polymer, polyimide resin, polyolefin resin, etc., heat resistance, flexibility, smoothness, low water absorption Polyimide resin is recommended as satisfying
The conductor layer may be made of metal and has good conductivity. However, copper is generally preferable from the viewpoint of cost and conductivity, and copper foil having good smoothness such as electrolytic copper foil and rolled copper foil is more preferable. preferable.

次に、図1(c)に示すように、露光、現像を行う。
続いて、図1(d)示すようにエッチングを行い、図1(e)に示すようにレジスト剥離を行うといった公知のフォトリソグラフィー技術を使用して回路を形成する。
Next, as shown in FIG. 1C, exposure and development are performed.
Subsequently, etching is performed as shown in FIG. 1D, and a circuit is formed using a known photolithography technique in which resist is removed as shown in FIG.

このようにして形成した基板に対して、図2(f)に示すように第一の基材の導体層および絶縁層の両面に薄膜接着層103を介して片面銅箔つきポリイミド1000をロールラミネートすることにより積層する。
より詳細には、第二の絶縁層101bと、第二の絶縁層101bの厚さ方向の一方の面に形成された第二の導体層100bとを有する第二の基材を用意し、第三の絶縁層101cと、第三の絶縁層101cの厚さ方向の一方の面に形成された第三の導体層100cとを有する第三の基材とを用意する。
第一の基材の第一の導体層100aの上に接着剤(薄膜接着層103)を介して第二の絶縁層101bを接着して第二の基材を積層する。
また、第一の基材の第一の絶縁層101aの下に接着剤(薄膜接着層103)を介して第三の絶縁層101cを接着して第三の基材を積層する。
ここで用いる片面基材のポリイミドの厚さは、第一の絶縁層101aと第三の絶縁層101cの厚さの和が第三の絶縁層101bの厚さとほぼ等しくなるようにすることが望ましい。これにより基板全体の対称性が保たれるためである。
On the substrate thus formed, as shown in FIG. 2 (f), polyimide 1000 with a single-sided copper foil is roll-laminated on both sides of the conductor layer and the insulating layer of the first base material via the thin film adhesive layer 103. Is laminated.
More specifically, a second base material having a second insulating layer 101b and a second conductor layer 100b formed on one surface in the thickness direction of the second insulating layer 101b is prepared. A third base material having three insulating layers 101c and a third conductor layer 100c formed on one surface in the thickness direction of the third insulating layer 101c is prepared.
The second insulating layer 101b is bonded to the first conductor layer 100a of the first base material via an adhesive (thin film adhesive layer 103) to laminate the second base material.
Further, the third insulating layer 101c is adhered to the first insulating layer 101a of the first substrate via an adhesive (thin film adhesive layer 103), and the third substrate is laminated.
The thickness of the single-sided polyimide used here is desirably such that the sum of the thicknesses of the first insulating layer 101a and the third insulating layer 101c is substantially equal to the thickness of the third insulating layer 101b. . This is because the symmetry of the entire substrate is maintained.

積層した第一の基材、第二の基材、第三の基材に対し、図2(g)に示すように、導体配線層を接続するビアホール104を形成する。
より詳細には、第一、第二の導体層100a、100bを接続するビアホール104と、第一、第三の導体層100a、100cを接続するビアホール104とを形成する。
ビアホール104を形成する方法については、レーザ加工が好ましい。レーザについては炭酸ガスレーザ、YAGレーザ(基本波、第二高調波、第三高調波、又は第4高調波)、或いはエキシマーレーザ等があるが、導体層、絶縁層共に加工を行う為、両者を同時に加工することの出来る400nm以下の短波長レーザであるYAGレーザ(第三高調波、又は第4高調波)、或いは、エキシマーレーザがより好ましい。
次に、ビアホール下層に堆積した有機絶縁材料の残さを過マンガン酸カリウムと水酸化ナトリウムの混合液等の液中に基板を浸漬させ、デスミア処理を行う。
As shown in FIG. 2G, via holes 104 for connecting the conductor wiring layers are formed in the laminated first base material, second base material, and third base material.
More specifically, a via hole 104 that connects the first and second conductor layers 100a and 100b and a via hole 104 that connects the first and third conductor layers 100a and 100c are formed.
As a method for forming the via hole 104, laser processing is preferable. There are carbon dioxide laser, YAG laser (fundamental wave, second harmonic, third harmonic, or fourth harmonic), or excimer laser, etc., but both conductor layer and insulating layer are processed. A YAG laser (third harmonic or fourth harmonic), which is a short wavelength laser of 400 nm or less that can be processed simultaneously, or an excimer laser is more preferable.
Next, the residue of the organic insulating material deposited in the lower layer of the via hole is immersed in a liquid such as a mixed liquid of potassium permanganate and sodium hydroxide, and desmear treatment is performed.

次に図2(h)に示すように上下の配線層(第一、第二、第三の導体層100a、100b、100c)を接続する為のフィルドビア銅めっきを行い、ビアホール104をめっき銅で充填するフィルドビア105を形成する。
めっき工程は、樹脂面に電解めっきのシード層を形成する無電解銅めっきまたはダイレクトプレーティングを行う工程と、シード層を給電パターンとし、めっきを行う電解めっき工程とがある。
フィルドビア銅めっきを行うめっき浴については銅濃度が高く、硫酸濃度の低いいわゆる一般浴といわれる浴で行う。
なお、フィルドビアめっき後の断面は、図2(i)に示すように、第二、第三の基材の第二、第三絶縁層101b、101cの上の導体層100b、100c(銅箔)の上に電解めっきの銅106が析出している状態である。
Next, as shown in FIG. 2H, filled via copper plating for connecting the upper and lower wiring layers (first, second, and third conductor layers 100a, 100b, and 100c) is performed, and the via hole 104 is made of plated copper. Filled vias 105 to be filled are formed.
The plating process includes an electroless copper plating or direct plating process for forming an electroplating seed layer on the resin surface, and an electroplating process for plating using the seed layer as a power supply pattern.
The plating bath for performing filled via copper plating is a so-called general bath having a high copper concentration and a low sulfuric acid concentration.
As shown in FIG. 2 (i), the cross section after filled via plating is as follows. Conductor layers 100b and 100c (copper foil) on the second and third insulating layers 101b and 101c of the second and third substrates. In this state, electrolytic plating copper 106 is deposited.

フィルドビアめっき後は導体層表面にめっきが厚くつくために後のパターンめっきを行うためには図2(i)に示すように電解めっきの銅106の膜厚を減らす必要がある。
電解めっきの銅106の膜厚を減らすために行う研磨については物理研磨と化学研磨があるが、物理研磨を行うと、テープ状の基材の場合には基材の伸縮により、後の工程においてアライメント不良等の不具合を起こすため、化学研磨が好ましい。
化学研磨は公知のエッチング液を使用して行うことが出来る。
After the filled via plating, since the plating is thick on the surface of the conductor layer, in order to perform the subsequent pattern plating, it is necessary to reduce the film thickness of the electrolytically plated copper 106 as shown in FIG.
The polishing performed to reduce the film thickness of the electrolytically plated copper 106 includes physical polishing and chemical polishing. However, when physical polishing is performed, in the case of a tape-shaped substrate, the substrate is expanded and contracted. Chemical polishing is preferred because it causes problems such as poor alignment.
Chemical polishing can be performed using a known etching solution.

次いで、図3(j)に示すように、第二の導体層100bおよび第三の導体層100cに形成された銅106の表面にフォトレジスト102をコートする。
次いで、図3(k)に示すように、露光、現像、エッチング、剥離を行い、最外層の回路形成する。
さらに多層の基板を作製する場合は、積層前の基材と同様に、ビアホール用孔部レーザー加工、ビアホールフィルドビアめっき処理、銅箔化学研磨、レジストコート、露光、現像、エッチング、レジスト剥離の工程を繰り返し行うことにより、積層部の回路を形成する。
言い換えると、第二、第三の基材と同様に、絶縁層と導体層とを有する基材を第一の基材の上下に積層し導体層の数を奇数とする。
Next, as shown in FIG. 3J, a photoresist 102 is coated on the surface of the copper 106 formed on the second conductor layer 100b and the third conductor layer 100c.
Next, as shown in FIG. 3 (k), exposure, development, etching, and peeling are performed to form an outermost layer circuit.
Furthermore, when producing a multilayer substrate, as with the base material before lamination, via hole hole laser processing, via hole filled via plating treatment, copper foil chemical polishing, resist coating, exposure, development, etching, resist stripping process By repeating the above, a circuit of the laminated portion is formed.
In other words, similarly to the second and third substrates, a substrate having an insulating layer and a conductor layer is laminated on the top and bottom of the first substrate, and the number of conductor layers is an odd number.

回路形成が終了後、図3(l)に示すように第二、第三の基材に形成された回路にソルダーレジスト107を加工し、フィルドビア105にニッケル金めっき108等の表面処理を施す。これらについても、公知の方法を適宜採用して加工を行えばよい。   After the circuit formation is completed, as shown in FIG. 3L, the solder resist 107 is processed on the circuits formed on the second and third substrates, and the filled via 105 is subjected to a surface treatment such as nickel gold plating 108. These may be processed by appropriately adopting known methods.

その後、図3(m)に示すように、はんだ印刷をおこなうことにより、はんだバンプ109をフィルドビア105(ニッケル金めっき108)に印刷し、目的とする多層基板を得た。   Thereafter, as shown in FIG. 3 (m), by performing solder printing, the solder bumps 109 were printed on the filled vias 105 (nickel gold plating 108) to obtain a target multilayer substrate.

以下に、具体的な実施例により本発明を説明する。
基板には片面銅箔付ポリイミドテープ(Cu/PI=12μm/12.5μm)を使用した。
まず、片面の配線パターン形成するために、配線形成用のドライフィルムレジストをラミネーターにより加熱加圧し張り合わせレジスト層を形成した。
次いで、所定のパターンを形成したフォトマスクを用いて超高圧水銀ランプを光源とした平行光にて露光し、1%炭酸ナトリウム水溶液にて現像を行い、所望のレジスト形状を得た。
銅のエッチングは比重1.40の塩化第二鉄にてエッチングを行い形成した。その後、レジストを3%水酸化ナトリウム水溶液にて剥離を行い、回路パターンを得た。
Hereinafter, the present invention will be described by way of specific examples.
A polyimide tape with a single-sided copper foil (Cu / PI = 12 μm / 12.5 μm) was used for the substrate.
First, in order to form a wiring pattern on one side, a dry film resist for wiring formation was heated and pressed with a laminator to form a laminated resist layer.
Next, using a photomask having a predetermined pattern, exposure was performed with parallel light using an ultrahigh pressure mercury lamp as a light source, and development was performed with a 1% aqueous sodium carbonate solution to obtain a desired resist shape.
Copper was etched by ferric chloride having a specific gravity of 1.40. Thereafter, the resist was stripped with a 3% aqueous sodium hydroxide solution to obtain a circuit pattern.

次に、両面に接着剤を介して、片面銅箔付きポリイミドテープをロールラミネーターにて張り合わせた。
ここで、導体層側に積層した片面銅箔付きポリイミドテープはCu/PI=12μm/25μmであり、絶縁層側に積層したものはCu/PI=12μm/12.5μmである。
これは、絶縁層の厚さを調整することで、基板全体に構造の対照性を持たせるためである。
Next, a polyimide tape with a single-sided copper foil was attached to both sides with a roll laminator via an adhesive.
Here, the polyimide tape with single-sided copper foil laminated on the conductor layer side is Cu / PI = 12 μm / 25 μm, and the one laminated on the insulating layer side is Cu / PI = 12 μm / 12.5 μm.
This is for adjusting the thickness of the insulating layer so that the entire substrate has a structural contrast.

その後、ビアホール用孔部を加工する為に、波長355nmの紫外線レーザを使用し、ビアホール用孔部加工を行った。
加工したビアホール用孔部径は60μmであった。
さらに、ビアホール用孔部底部に堆積した樹脂残さを除去する為に、過マンガン酸カリウムと水酸化ナトリウムを3対2の割合でイオン交換水に溶解させ、約50℃に加熱した。
この混合液中に基板を浸漬させ、樹脂残渣を除去した。
After that, in order to process the hole for the via hole, an ultraviolet laser with a wavelength of 355 nm was used to process the hole for the via hole.
The processed hole diameter for via holes was 60 μm.
Further, in order to remove the resin residue deposited at the bottom of the via hole hole, potassium permanganate and sodium hydroxide were dissolved in ion exchange water at a ratio of 3 to 2, and heated to about 50 ° C.
The substrate was immersed in this mixed solution to remove the resin residue.

この後、電気めっきのシード層を形成する為に無電解銅めっき処理を行った。その後硫酸銅めっき液により電解めっき処理を行った。
次に銅厚を薄くする為に化学研磨を行った。化学研磨液は硫酸過水系の化学研磨液を使用して、めっき後の銅厚約20μmから約11μmまで導体層両面を研磨した。
Thereafter, an electroless copper plating process was performed in order to form an electroplating seed layer. Thereafter, an electrolytic plating treatment was performed with a copper sulfate plating solution.
Next, chemical polishing was performed to reduce the copper thickness. The chemical polishing liquid used was a sulfuric acid / hydrogen peroxide type chemical polishing liquid, and both surfaces of the conductor layer were polished from a plated copper thickness of about 20 μm to about 11 μm.

その後同様にレジストコート、露光、現像、エッチング、剥離を行い、最外層の回路形成はあらかじめ回路形成用のマスクにおいて半導体素子搭載部分のランドに対してのちのソルダーレジスト工程の開口部収縮に対応できるように補正を入れ大きく形成されるようにした。   Thereafter, resist coating, exposure, development, etching, and peeling are performed in the same manner, and circuit formation of the outermost layer can cope with shrinkage of the opening portion of the solder resist process later on the land of the semiconductor element mounting portion in advance in the circuit formation mask. As a result, correction was made to make it larger.

そして最外層部分にソルダーレジストによりパターンを形成し、ソルダーレジストの開口部にはんだ印刷法により、SnPb共晶はんだバンプを形成し、目的とする多層基板を得た。   Then, a pattern was formed on the outermost layer portion with a solder resist, and SnPb eutectic solder bumps were formed on the openings of the solder resist by a solder printing method to obtain a target multilayer substrate.

ここで得られた多層基板の反りを測定した。
測定方法としては、基板のBGA面側のソルダーレジスト塗布部の任意の25点の高さを測長し、その絶対値の最も大きい点と小さい点の差をとるものである。
結果として、本測定方法での本基板の反りは90μmとなり、これはプリント配線基盤および半導体チップ等への実際に対し十分耐えうるものであるため、高い信頼性を持つものであると考えられる。
The warpage of the multilayer substrate obtained here was measured.
As a measuring method, the height of any 25 points of the solder resist coating portion on the BGA surface side of the substrate is measured, and the difference between the largest and smallest absolute values is taken.
As a result, the warpage of the substrate in this measurement method is 90 μm, which can sufficiently withstand the actual printed wiring board and the semiconductor chip, and is considered to have high reliability.

(比較例)
比較例として、出発基材としてポリイミドの両側に銅箔の付いた両面二層基板から一般的な手法で三層基板を作製し、この基板の反りを上記と同様の手法で測定した。
(Comparative example)
As a comparative example, a three-layer substrate was prepared by a general method from a double-sided two-layer substrate having copper foil on both sides of polyimide as a starting substrate, and the warpage of this substrate was measured by the same method as described above.

両面二層基板から作製した三層基板の反りを測定したところ、150μmとなり、これはプリント配線基盤および半導体チップ等への実装には厳しいものであるという結果となった。   When the warpage of the three-layer substrate produced from the double-sided two-layer substrate was measured, it was found to be 150 μm, which was a severe result for mounting on a printed wiring board and a semiconductor chip.

100a……第一の導体層、100b……第二の導体層、100c……第三の導体層、101a……第一の絶縁層、101b……第二の絶縁層、101……第三の絶縁層、1000……第一の基材、102……感光性樹脂、103……積層接着層、104……ビアホール、105……電解めっき金属(フィルドビア)、106……電解めっき層、107……ソルダーレジスト、108……ニッケル金めっき層、109……はんだバンプ。 100a... First conductor layer, 100b... Second conductor layer, 100c... Third conductor layer, 101a... First insulation layer, 101b. Insulating layer, 1000 ... first substrate, 102 ... photosensitive resin, 103 ... laminated adhesive layer, 104 ... via hole, 105 ... electrolytic plating metal (filled via), 106 ... electrolytic plating layer, 107 ... Solder resist, 108 ... Nickel gold plating layer, 109 ... Solder bump.

Claims (4)

第一の絶縁層と、前記第一の絶縁層の厚さ方向の一方の面に形成された第一の導体層とを有する第一の基材と、
第二の絶縁層と、前記第二の絶縁層の厚さ方向の一方の面に形成された第二の導体層とを有する第二の基材と、
第三の絶縁層と、前記第三の絶縁層の厚さ方向の一方の面に形成された第三の導体層とを有する第三の基材とを備え、
前記第一の基材の前記第一の導体層の上に接着剤を介して前記第二の絶縁層を接着して前記第二の基材を積層し、
前記第一の基材の前記第一の絶縁層の下に接着剤を介して前記第三の絶縁層を接着して前記第三の基材を積層し、
このように絶縁層と導体層とを有する基材を前記第一の基材の上下に積層し前記導体層の数を奇数とした、
ことを特徴とする多層配線基板。
A first substrate having a first insulating layer and a first conductor layer formed on one surface in the thickness direction of the first insulating layer;
A second substrate having a second insulating layer and a second conductor layer formed on one surface in the thickness direction of the second insulating layer;
A third substrate having a third insulating layer and a third conductor layer formed on one surface in the thickness direction of the third insulating layer;
Adhering the second insulating layer via an adhesive on the first conductor layer of the first substrate to laminate the second substrate,
Adhering the third insulating layer via an adhesive under the first insulating layer of the first substrate to laminate the third substrate,
Thus, the base material which has an insulating layer and a conductor layer is laminated on the upper and lower sides of the first base material, and the number of the conductor layers is an odd number.
A multilayer wiring board characterized by that.
前記第一の絶縁層の厚さと第三の絶縁層の厚さとの和と、前記第二の絶縁層の厚さとの差が3μm以内である、
ことを特徴とする請求項1記載の多層配線基板。
The difference between the sum of the thickness of the first insulating layer and the thickness of the third insulating layer and the thickness of the second insulating layer is within 3 μm.
The multilayer wiring board according to claim 1, wherein:
第一の絶縁層と、前記第一の絶縁層の厚さ方向の一方の面に形成された第一の導体層とを有する第一の基材と、
第二の絶縁層と、前記第二の絶縁層の厚さ方向の一方の面に形成された第二の導体層とを有する第二の基材と、
第三の絶縁層と、前記第三の絶縁層の厚さ方向の一方の面に形成された第三の導体層とを有する第三の基材とを用意し、
前記第一の基材の前記第一の導体層の上に接着剤を介して前記第二の絶縁層を接着して前記第二の基材を積層し、
前記第一の基材の前記第一の絶縁層の下に接着剤を介して前記第三の絶縁層を接着して前記第三の基材を積層し、
このように絶縁層と導体層とを有する基材を前記第一の基材の上下に積層し前記導体層の数を奇数とした、
ことを特徴とする多層配線基板の製造方法。
A first substrate having a first insulating layer and a first conductor layer formed on one surface in the thickness direction of the first insulating layer;
A second substrate having a second insulating layer and a second conductor layer formed on one surface in the thickness direction of the second insulating layer;
Preparing a third base material having a third insulating layer and a third conductor layer formed on one surface in the thickness direction of the third insulating layer;
Adhering the second insulating layer via an adhesive on the first conductor layer of the first substrate to laminate the second substrate,
Adhering the third insulating layer via an adhesive under the first insulating layer of the first substrate to laminate the third substrate,
Thus, the base material which has an insulating layer and a conductor layer is laminated on the upper and lower sides of the first base material, and the number of the conductor layers is an odd number.
A method for manufacturing a multilayer wiring board.
前記第一の絶縁層の厚さと第三の絶縁層の厚さとの和と、前記第二の絶縁層の厚さとの差が3μm以内である、
ことを特徴とする請求項3記載の多層配線基板の製造方法。
The difference between the sum of the thickness of the first insulating layer and the thickness of the third insulating layer and the thickness of the second insulating layer is within 3 μm.
The method for producing a multilayer wiring board according to claim 3.
JP2009080987A 2009-03-30 2009-03-30 Multilayer wiring board and method of manufacturing the same Pending JP2010232585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080987A JP2010232585A (en) 2009-03-30 2009-03-30 Multilayer wiring board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080987A JP2010232585A (en) 2009-03-30 2009-03-30 Multilayer wiring board and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010232585A true JP2010232585A (en) 2010-10-14

Family

ID=43048096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080987A Pending JP2010232585A (en) 2009-03-30 2009-03-30 Multilayer wiring board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010232585A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017410A (en) * 2012-07-10 2014-01-30 Hitachi Chemical Co Ltd Multilayer wiring board and manufacturing method of the same
JP2014067975A (en) * 2012-09-27 2014-04-17 Hitachi Chemical Co Ltd Method for manufacturing multilayer wiring board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123797A (en) * 1982-01-18 1983-07-23 富士通株式会社 Multilayer printed circuit board
JP2005101269A (en) * 2003-09-25 2005-04-14 Toyobo Co Ltd Multilayer printed wiring board
JP2006128360A (en) * 2004-10-28 2006-05-18 Fujikura Ltd Printed wiring board and its manufacturing method
JP2006210766A (en) * 2005-01-31 2006-08-10 Sumitomo Electric Ind Ltd Multilayer printed-wiring board and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123797A (en) * 1982-01-18 1983-07-23 富士通株式会社 Multilayer printed circuit board
JP2005101269A (en) * 2003-09-25 2005-04-14 Toyobo Co Ltd Multilayer printed wiring board
JP2006128360A (en) * 2004-10-28 2006-05-18 Fujikura Ltd Printed wiring board and its manufacturing method
JP2006210766A (en) * 2005-01-31 2006-08-10 Sumitomo Electric Ind Ltd Multilayer printed-wiring board and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017410A (en) * 2012-07-10 2014-01-30 Hitachi Chemical Co Ltd Multilayer wiring board and manufacturing method of the same
JP2014067975A (en) * 2012-09-27 2014-04-17 Hitachi Chemical Co Ltd Method for manufacturing multilayer wiring board

Similar Documents

Publication Publication Date Title
US7802361B2 (en) Method for manufacturing the BGA package board
JP4501427B2 (en) Manufacturing method of multilayer circuit wiring board
JP4913053B2 (en) Multilayer printed wiring board
JP2007142403A (en) Printed board and manufacturing method of same
JPWO2007007857A1 (en) Multilayer printed wiring board
JP2003209366A (en) Flexible multilayer wiring board and manufacturing method therefor
JP2011119501A (en) Method of manufacturing multilayer substrate
JP2006165496A (en) Parallel multi-layer printed board having inter-layer conductivity through via post
JP4802338B2 (en) Multilayer substrate manufacturing method and multilayer substrate
KR20140057861A (en) Method of manufacturing printed circuit board
JP4952044B2 (en) Multilayer wiring board manufacturing method, semiconductor package, and long wiring board
TWI459879B (en) Method for manufacturing multilayer flexible printed wiring board
JP2010016335A (en) Metal laminate plate and manufacturing method thereof
WO2004064150A1 (en) Method for manufacturing electronic component mount board and electronic mount board manufactured by this method
KR101039774B1 (en) Method of fabricating a metal bump for printed circuit board
JP5176643B2 (en) Multilayer circuit board manufacturing method
JP2003124637A (en) Multilayer wiring board
JP2010232585A (en) Multilayer wiring board and method of manufacturing the same
KR101167422B1 (en) Carrier member and method of manufacturing PCB using the same
KR101044117B1 (en) Method of Fabricating Printed Circuit Board
JP2004071749A (en) Method of manufacturing multilayer circuit wiring board
KR20120026368A (en) Printed circuit board and method of manufacturing the same
TWI635790B (en) Manufacturing method of wiring substrate
JP5223568B2 (en) Manufacturing method of multilayer wiring board
KR20140039921A (en) Method of manufacturing printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120220

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

A131 Notification of reasons for refusal

Effective date: 20131015

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603