JP2009037745A - Organic el panel - Google Patents

Organic el panel Download PDF

Info

Publication number
JP2009037745A
JP2009037745A JP2007198527A JP2007198527A JP2009037745A JP 2009037745 A JP2009037745 A JP 2009037745A JP 2007198527 A JP2007198527 A JP 2007198527A JP 2007198527 A JP2007198527 A JP 2007198527A JP 2009037745 A JP2009037745 A JP 2009037745A
Authority
JP
Japan
Prior art keywords
organic
panel
sealing glass
electrode
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007198527A
Other languages
Japanese (ja)
Other versions
JP2009037745A5 (en
Inventor
Ichiro Kataoka
一郎 片岡
Kimiko Naito
喜美子 内藤
Atsushi Koike
淳 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007198527A priority Critical patent/JP2009037745A/en
Publication of JP2009037745A publication Critical patent/JP2009037745A/en
Publication of JP2009037745A5 publication Critical patent/JP2009037745A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a top emission-type organic EL panel with high reliability which forms no non-light emitting area even if its surface is pushed. <P>SOLUTION: The top emission-type organic EL panel includes: a driving circuit and a pixel which are formed on at least a substrate; an organic EL element composed by stacking a first electrode, an organic EL layer and a second electrode in this order on the pixel portion; and sealing glass placed for protecting the organic EL element with a space wherein irregularities are formed on the whole surface of the sealing glass facing at least the pixel. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は有機エレクトロルミネッセンス素子(有機EL素子)を有する有機ELパネルに関するものであり、特に、保護カバーとして封止ガラスを用いたトップエミッション型の有機ELパネルに係わるものである。   The present invention relates to an organic EL panel having an organic electroluminescence element (organic EL element), and particularly relates to a top emission type organic EL panel using a sealing glass as a protective cover.

有機EL素子及びそれを有する有機ELパネルの開発が盛んである。   An organic EL element and an organic EL panel having the organic EL element are actively developed.

有機EL素子は少なくとも一対の電極とその間に配置される有機EL層とから構成された素子である。   An organic EL element is an element composed of at least a pair of electrodes and an organic EL layer disposed therebetween.

有機EL層は1層からなっている場合もあるし、またその機能が分離され、多層構成になっている場合もある。その有機EL層が、あるいはその少なくとも一層が発光する。   The organic EL layer may be composed of a single layer, or the function may be separated to have a multilayer structure. The organic EL layer or at least one of the layers emits light.

具体的には、ガラス基板上に有機発光層が二つの電極の間に挟まれており、前記有機発光層の光を外に取り出せるようにするために、電極の片方は透明のものが使われている。一般的にはITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)などの透明電極が使われている。更に前記有機発光層は封止部材によりカバーされ、外部駆動回路により電圧を印加することにより発光する。   Specifically, an organic light emitting layer is sandwiched between two electrodes on a glass substrate, and one of the electrodes is transparent so that light from the organic light emitting layer can be extracted outside. ing. Generally, transparent electrodes such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide) are used. Further, the organic light emitting layer is covered with a sealing member, and emits light when a voltage is applied by an external drive circuit.

以上の原理により発光する有機ELパネルは、視認性に優れ且つ発色性が多様であることから、車載用コンポや携帯電話等のディスプレイや表示素子に利用されている。   Organic EL panels that emit light based on the above principle are excellent in visibility and have various color development properties, and are therefore used in displays and display elements such as in-vehicle components and mobile phones.

ところで、有機発光層の光をガラス基板側とは逆方向に取り出す、いわゆるトップエミッション方式の有機ELパネルは、ガラス基板側に光を取り出すボトムエミッション方式に比べ、光取り出し効率が高く、低消費電力で高輝度の発光が得られる。そのため、今後有望な形態である。   By the way, the so-called top emission type organic EL panel that extracts the light from the organic light emitting layer in the opposite direction to the glass substrate side has higher light extraction efficiency and lower power consumption than the bottom emission method that extracts light to the glass substrate side. High luminance emission can be obtained. Therefore, it is a promising form in the future.

トップエミッション方式の有機EL素子を封止部材でカバーする場合は光取り出し側に封止部材が配される。そのため、封止部材は光の取り出しを妨げないようにするために透明である必要があり、一般的にはガラスが用いられる。   When the top emission type organic EL element is covered with a sealing member, the sealing member is disposed on the light extraction side. Therefore, the sealing member needs to be transparent in order not to prevent light extraction, and glass is generally used.

これらの特性を有する有機ELパネルではあるが、有機EL素子は一般に水分に対して極めて弱いという問題がよく知られている。一例としては、有機発光層を形成するガラス基板に封止部材を接着する際の環境雰囲気中に含まれる水分や、封止部材を接着する接着剤の欠陥部を透過してくる水分が有機EL素子中に浸入する。それにより、ダークスポットと称する非発光領域が発生し、発光が維持できなくなるといった課題がある。   Although it is an organic EL panel having these characteristics, the problem that organic EL elements are generally very weak against moisture is well known. As an example, the moisture contained in the environmental atmosphere when the sealing member is bonded to the glass substrate on which the organic light emitting layer is formed, or the moisture transmitted through the defective portion of the adhesive that bonds the sealing member is organic EL. It penetrates into the element. As a result, a non-light emitting region called a dark spot is generated, and there is a problem that light emission cannot be maintained.

この水分の影響による有機ELパネルの寿命低下に関する課題を解決するための方策として、ガラス基板と封止部材との間に吸湿剤を入れて封止する方法が知られている。図4は、このような有機ELパネルの代表的な模式的断面図である。この図に示すように有機ELパネルは、ガラス基板1、第一の電極2、有機EL層3、第二の電極4からなる有機EL素子を、吸湿剤7を設けた封止ガラス5と接着剤6とにより封止することで構成されている(特許文献1、2)。   As a measure for solving the problem relating to the lifetime reduction of the organic EL panel due to the influence of moisture, a method of sealing by putting a hygroscopic agent between a glass substrate and a sealing member is known. FIG. 4 is a typical schematic cross-sectional view of such an organic EL panel. As shown in this figure, the organic EL panel is bonded to an organic EL element comprising a glass substrate 1, a first electrode 2, an organic EL layer 3, and a second electrode 4 with a sealing glass 5 provided with a hygroscopic agent 7. It is comprised by sealing with the agent 6 (patent documents 1, 2).

特開2001−57291号公報JP 2001-57291 A 特開2004−6286号公報JP 2004-6286 A

しかしながら、前記のような構造を有する有機ELパネル表面の中心部付近を押圧すると封止ガラスが撓んで有機EL素子表面に接触し、その部分の素子が発光しなくなる場合があることが分かった。原因を解析した結果、封止ガラスと第二の電極とが密着した後、封止ガラスの撓みが元に戻る際に、第二の電極が有機EL層から剥がれることが原因であることが判明した。   However, it has been found that when the vicinity of the center of the surface of the organic EL panel having the structure as described above is pressed, the sealing glass bends and comes into contact with the surface of the organic EL element, and the element at that portion may not emit light. As a result of analyzing the cause, it was found that the second electrode peels off from the organic EL layer when the sealing glass returns to its original state after the sealing glass and the second electrode are brought into close contact with each other. did.

本発明は、以上のような事情に鑑み、表面を押圧しても非発光領域の生ずることのない信頼性の高いトップエミッション型の有機ELパネルを提供することを目的とする。   In view of the circumstances as described above, an object of the present invention is to provide a highly reliable top emission type organic EL panel in which a non-light emitting region does not occur even when the surface is pressed.

上記目的を達成すべく本発明者は鋭意研究開発を重ねた結果、次のような手段が最良であることを見出した。すなわち上記課題を解決するための請求項1に記載の有機ELパネルは、
少なくとも基板の上に形成された駆動回路及び画素部と、前記画素部において第一の電極、有機EL層、第二の電極をこの順に積層してなる有機EL素子と、前記有機EL素子を保護するために離間して設けられた封止ガラスとを有するトップエミッション型の有機ELパネルにおいて、
前記封止ガラスの少なくとも前記画素部に対向する面の全域に凹凸が形成されていることを特徴とする。
As a result of intensive research and development, the present inventor has found that the following means are the best. That is, the organic EL panel according to claim 1 for solving the above-described problem is
At least a driving circuit and a pixel portion formed on a substrate, an organic EL element in which a first electrode, an organic EL layer, and a second electrode are stacked in this order in the pixel portion, and the organic EL element is protected In a top emission type organic EL panel having a sealing glass provided to be spaced apart,
Irregularities are formed on the entire surface of the sealing glass facing at least the pixel portion.

本発明によれば、封止ガラスの表面が押圧されて、封止ガラスと第二の電極とが接触しても、相互の接触面積が少ないので、第二の電極が封止ガラスに密着して有機EL層から剥がれることがない。よって、非発光領域の生ずることのない信頼性の高いトップエミッション型の有機ELパネルを提供することが可能となる。   According to the present invention, even if the surface of the sealing glass is pressed and the sealing glass and the second electrode are in contact with each other, the second electrode is in close contact with the sealing glass because the mutual contact area is small. The organic EL layer is not peeled off. Therefore, it is possible to provide a highly reliable top emission type organic EL panel that does not generate a non-light emitting region.

本発明におけるトップエミッション型の有機ELパネルの模式的断面図を図1に示す。図1において、1はガラス基板、2は第一の電極、3は有機EL層、4は第二の電極、5は封止ガラス、6は接着剤、7は吸湿剤である。   FIG. 1 shows a schematic cross-sectional view of a top emission type organic EL panel in the present invention. In FIG. 1, 1 is a glass substrate, 2 is a first electrode, 3 is an organic EL layer, 4 is a second electrode, 5 is a sealing glass, 6 is an adhesive, and 7 is a hygroscopic agent.

まず、本発明における有機ELパネルを構成する各部材のうち、封止ガラス5について説明する。   First, the sealing glass 5 is demonstrated among each member which comprises the organic electroluminescent panel in this invention.

封止ガラス5は有機EL素子基板8に接着剤6によって接着され、有機EL素子が直接外の雰囲気に晒されない構造になっている。   The sealing glass 5 is adhered to the organic EL element substrate 8 with an adhesive 6 so that the organic EL element is not directly exposed to the outside atmosphere.

封止ガラス5の材料としては、例えば無アルカリガラス、ソーダライムガラス、ボロシリケートガラスなどを用いる。   As a material of the sealing glass 5, for example, alkali-free glass, soda lime glass, borosilicate glass, or the like is used.

封止ガラス5の少なくとも、有機EL素子基板8の画素部に対向する面の全域に凹凸が形成されている。そのため、封止ガラス5の表面が押圧されて、封止ガラス5と第二の電極4とが接触しても、相互の接触面積が少ないので、第二の電極4が封止ガラス5に密着して有機EL層3から剥がれることがない。よって、非発光領域の生ずることのない信頼性の高いトップエミッション型の有機ELパネルを提供することが可能となる。   Concavities and convexities are formed at least over the entire surface of the sealing glass 5 facing the pixel portion of the organic EL element substrate 8. Therefore, even if the surface of the sealing glass 5 is pressed and the sealing glass 5 and the second electrode 4 come into contact with each other, the second electrode 4 is in close contact with the sealing glass 5 because the mutual contact area is small. Thus, the organic EL layer 3 is not peeled off. Therefore, it is possible to provide a highly reliable top emission type organic EL panel that does not generate a non-light emitting region.

凹凸の形成方法としては、ケミカルエッチング法やサンドブラスト法などがあるが、透過率の低下を抑制できる微細な凹凸を形成するためには、ケミカルエッチング法が好適である。   As a method for forming the unevenness, there are a chemical etching method and a sand blasting method, but the chemical etching method is suitable for forming fine unevenness capable of suppressing a decrease in transmittance.

凹凸の最大高低差は100nm以上1000nm以下であることが望ましく、200nm以上600nm以下であることがより望ましい。凹凸が100nm未満であると、封止ガラス5の有機EL素子表面への密着を効果的に防ぐことができない。一方、1000nmを超えると透過光の散乱が大きくなり、封止ガラス5を通して発光を取り出すトップエミッション型の有機ELパネルでは十分な光取り出し効率を得られなくなる。   The maximum height difference of the unevenness is preferably 100 nm or more and 1000 nm or less, and more preferably 200 nm or more and 600 nm or less. When the unevenness is less than 100 nm, the adhesion of the sealing glass 5 to the surface of the organic EL element cannot be effectively prevented. On the other hand, when the thickness exceeds 1000 nm, scattering of transmitted light increases, and a top emission type organic EL panel that extracts light emission through the sealing glass 5 cannot obtain sufficient light extraction efficiency.

透過率として具体的には、凹凸が形成された面の空気をリファレンスとする平行光線透過率が、400nm以上800nm以下の全波長領域にわたって70%以上となるように凹凸を形成するのが望ましい。平行光線透過率が70%未満であると、光取り出し効率が低下するだけでなく、透過光の拡散によって発光画像のぼやけ・にじみが大きくなり、画質の低下が明らかとなる。   Specifically, it is desirable to form the unevenness so that the parallel light transmittance with reference to the air on the surface where the unevenness is formed becomes 70% or more over the entire wavelength region of 400 nm to 800 nm. When the parallel light transmittance is less than 70%, not only the light extraction efficiency is lowered, but also the diffusion and diffusion of the transmitted light increases blurring and blurring of the light emission image, and the deterioration of the image quality becomes clear.

図2のように掘り込み部を設けた封止ガラス5を用いることも無論可能である。その場合はケミカルエッチングによる掘り込み部の形成後、続けて凹凸形成のためのケミカルエッチングを行えば容易に掘り込み部に凹凸のある封止ガラスを作製することができる。   Of course, it is possible to use the sealing glass 5 provided with the digging portion as shown in FIG. In that case, after forming the digging portion by chemical etching, if the chemical etching for forming the concavo-convex is subsequently performed, a sealing glass having the digging portion can be easily produced.

次に、本発明の有機ELパネルの作製方法を図1を用いて説明する。   Next, a method for manufacturing the organic EL panel of the present invention will be described with reference to FIG.

ガラス基板1上に配線やパネル駆動用トランジスタなどの駆動回路を形成した後、蒸着装置やスピンコーターなどの成膜装置により、第一の電極2、有機EL層3、第二の電極4をこの順に積層してなる画素部を形成し、有機EL素子基板8を作製する。   After forming a driving circuit such as a wiring or a panel driving transistor on the glass substrate 1, the first electrode 2, the organic EL layer 3, and the second electrode 4 are formed by a film forming apparatus such as a vapor deposition apparatus or a spin coater. A pixel portion formed by laminating in order is formed, and the organic EL element substrate 8 is manufactured.

次いで、上述した方法で凹凸を形成した封止ガラス5上に吸湿剤7を配する。   Next, the hygroscopic agent 7 is disposed on the sealing glass 5 on which the unevenness is formed by the method described above.

その後、封止ガラス5又は有機EL素子基板8の少なくとも一方に接着剤6を供し、有機EL素子を保護するために離間して封止ガラス5を有機EL素子基板8の外周部に封着する。前記接着剤6としては、例えば、熱硬化性樹脂、紫外線硬化型樹脂、熱可塑性樹脂などが使用される。より具体的には、熱硬化性樹脂としては、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂を用いる。紫外線硬化型樹脂としては、アクリル樹脂、エポキシ樹脂を用いる。熱可塑性樹脂としては、ポリイソブチレン樹脂、イソブテン−イソプレン共重合体樹脂を用いるが、これらに限定されるものではない。   Then, the adhesive 6 is provided to at least one of the sealing glass 5 or the organic EL element substrate 8, and the sealing glass 5 is sealed to the outer peripheral portion of the organic EL element substrate 8 to be separated to protect the organic EL element. . As the adhesive 6, for example, a thermosetting resin, an ultraviolet curable resin, a thermoplastic resin, or the like is used. More specifically, an acrylic resin, an epoxy resin, or a polyester resin is used as the thermosetting resin. An acrylic resin or an epoxy resin is used as the ultraviolet curable resin. As the thermoplastic resin, a polyisobutylene resin or an isobutene-isoprene copolymer resin is used, but is not limited thereto.

封着は、水分・酸素を除去した窒素雰囲気中で行われ、必要に応じて封着部を加熱しながら行われる。接着剤6が熱硬化性樹脂や紫外線硬化型樹脂の場合は、この後、熱処理や紫外線照射が実施される。   Sealing is performed in a nitrogen atmosphere from which moisture and oxygen have been removed, and is performed while heating the sealing portion as necessary. When the adhesive 6 is a thermosetting resin or an ultraviolet curable resin, heat treatment or ultraviolet irradiation is performed thereafter.

以下、本発明の有機ELパネルを具体的実施例に基づき詳細に説明する。なお、本発明は以下の実施例に何ら限定されるものではなく、その要旨の範囲内で種々変更することができる。   Hereinafter, the organic EL panel of the present invention will be described in detail based on specific examples. In addition, this invention is not limited to a following example at all, and can be variously changed within the range of the summary.

(第一の実施例)
本発明の第一の実施例を図3を用いて説明する。図3において、9はTFT回路が形成されたガラス基板、10は陽極(第一の電極)、11は有機EL層、12は陰極(第二の電極)、13は封止ガラス、14は接着剤、15は吸湿剤、16は素子分離膜、17は平坦化膜である。以下に、有機ELパネルの詳細な作製方法について述べる。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIG. In FIG. 3, 9 is a glass substrate on which a TFT circuit is formed, 10 is an anode (first electrode), 11 is an organic EL layer, 12 is a cathode (second electrode), 13 is sealing glass, and 14 is bonded. Agent, 15 a hygroscopic agent, 16 an element isolation film, and 17 a planarization film. Hereinafter, a detailed manufacturing method of the organic EL panel will be described.

[平坦化膜]
TFT回路が形成されたガラス基板9上にアクリル樹脂よりなる平坦化膜17をフォトリソグラフィー法にて形成し、前記TFT回路による凹凸を平坦にした。
[Planarization film]
A planarizing film 17 made of an acrylic resin was formed on the glass substrate 9 on which the TFT circuit was formed by a photolithography method, and the unevenness due to the TFT circuit was flattened.

[Cr電極(画素電極)]
平坦化膜17が形成されたガラス基板9上にCrターゲットをDCスパッタし、陽極10として100nmの厚さにCr膜を成膜した。この際、成膜マスクを用いて、20μm×100μmの画素電極とした。スパッタはArガスを用いて、0.2Paの圧力、300Wの投入電力条件で行った。
[Cr electrode (pixel electrode)]
A Cr target was DC sputtered on the glass substrate 9 on which the planarizing film 17 was formed, and a Cr film having a thickness of 100 nm was formed as the anode 10. At this time, a pixel electrode of 20 μm × 100 μm was formed using a film formation mask. Sputtering was performed using Ar gas under a pressure of 0.2 Pa and an input power condition of 300 W.

[大気開放]
基板をスパッタ装置より取り出してアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。さらに、UV/オゾン洗浄した。
[Atmospheric release]
The substrate was taken out from the sputtering apparatus, ultrasonically washed with acetone and isopropyl alcohol (IPA) in sequence, then boiled and washed with IPA, and then dried. Further, UV / ozone cleaning was performed.

[素子分離膜]
各画素を分離するために、ポリイミド樹脂よりなる素子分離膜16をフォトリソグラフィー法にて形成した。
[Element isolation membrane]
In order to separate each pixel, an element isolation film 16 made of polyimide resin was formed by a photolithography method.

[前処理]
有機EL蒸着装置へ移し、真空排気し、前処理室で基板付近に設けたリング状電極に50WのRF電力を投入し酸素プラズマ洗浄処理を行った。酸素圧力は0.6Pa、処理時間は40秒であった。
[Preprocessing]
It moved to the organic electroluminescent vapor deposition apparatus, evacuated, and 50-W RF electric power was supplied to the ring-shaped electrode provided near the board | substrate in the pre-processing chamber, and the oxygen plasma cleaning process was performed. The oxygen pressure was 0.6 Pa and the treatment time was 40 seconds.

[正孔輸送層]
基板を前処理室より成膜室へ移動し、成膜室を、1×10E(−4)Paまで排気した後、正孔輸送性を有するαNPDを抵抗加熱蒸着法により成膜速度0.2〜0.3nm/secの条件で成膜し、膜厚35nmの正孔輸送層を形成した。なお、正孔輸送層、発光層、および電子注入層は、同一の蒸着マスクを用いることにより所定の部分に蒸着した。所定の部分とは基板上で、画素電極であるCrが露出している部分である。
[Hole transport layer]
The substrate is moved from the pretreatment chamber to the film formation chamber, and after the film formation chamber is evacuated to 1 × 10E (−4) Pa, αNPD having a hole transport property is formed by a resistance heating vapor deposition method at a film formation rate of 0.2. A film was formed under a condition of ˜0.3 nm / sec to form a 35 nm-thick hole transport layer. Note that the hole transport layer, the light emitting layer, and the electron injection layer were deposited on predetermined portions by using the same deposition mask. The predetermined portion is a portion where the pixel electrode Cr is exposed on the substrate.

[発光層]
正孔輸送層上にアルキレート錯体であるAlq3を抵抗加熱蒸着法により正孔輸送層と同様の成膜条件で成膜し、膜厚15nmの発光層を形成した。
[Light emitting layer]
On the hole transport layer, Alq3, which is an alkylate complex, was formed by resistance heating vapor deposition under the same film formation conditions as the hole transport layer, thereby forming a light emitting layer having a film thickness of 15 nm.

[電子注入層]
発光層上に抵抗加熱共蒸着法によりAlq3と炭酸セシウム(Cs2CO3)とを膜厚比9:1の割合で混合されるように、各々の蒸着速度を調整して成膜し、膜厚35nmの電子注入層を形成した。詳しくは、それぞれの蒸着ボートに入れた材料を抵抗加熱方式で蒸発させ、それぞれのボート電流値を調整することで、あわせて0.5nm/secの蒸着速度で膜形成を行った。
[Electron injection layer]
Films are formed on the light-emitting layer by adjusting the deposition rate so that Alq3 and cesium carbonate (Cs 2 CO 3 ) are mixed at a ratio of 9: 1 by resistance heating co-evaporation. An electron injection layer having a thickness of 35 nm was formed. In detail, the material put into each vapor deposition boat was evaporated by the resistance heating method, and each boat current value was adjusted, and the film formation was performed at a vapor deposition rate of 0.5 nm / sec.

こうして、正孔輸送層、発光層、電子注入層よりなる有機EL層11を形成した。   Thus, an organic EL layer 11 composed of a hole transport layer, a light emitting layer, and an electron injection layer was formed.

[陰極(透明導電膜)]
別の成膜室に基板を移し、電子注入層及び素子分離膜の上にITOターゲットを用いてDCマグネトロンスパッタリング法により、膜厚が130nmになるように成膜し、ITOよりなる陰極12を形成した。
[Cathode (transparent conductive film)]
The substrate is transferred to another film formation chamber, and a film is formed on the electron injection layer and the element isolation film so as to have a film thickness of 130 nm by DC magnetron sputtering using an ITO target, and the cathode 12 made of ITO is formed. did.

[封止ガラス]
厚さ0.7mmの無アルカリガラスをレジストによってマスクした後、フッ酸によるケミカルエッチングによって深さ0.3mmの掘り込み部を形成した。続けて溶液組成などの処理条件を変えて同様にフッ酸でケミカルエッチングすることにより、掘り込み部に凹凸を形成した封止ガラス13を作製した。この凹凸の最大高低差は約400nmであり、凹凸部の空気をリファレンスとする平行光線透過率は400nm以上800nm以下の全波長領域にわたって80%以上であった。
[Sealing glass]
After masking the alkali-free glass having a thickness of 0.7 mm with a resist, a digging portion having a depth of 0.3 mm was formed by chemical etching with hydrofluoric acid. Subsequently, the processing conditions such as the solution composition were changed, and chemical etching was similarly performed with hydrofluoric acid to produce a sealing glass 13 in which irregularities were formed in the dug portion. The maximum height difference of the unevenness was about 400 nm, and the parallel light transmittance with the air of the unevenness as a reference was 80% or more over the entire wavelength region of 400 nm to 800 nm.

また、溶液組成、処理時間などの条件を変えて凹凸の最大高低差が約100nm、約1000nmの封止ガラスも作製した。これら封止ガラスの凹凸部の空気をリファレンスとする平行光線透過率は400nm以上800nm以下の全波長領域にわたってそれぞれ86%以上、70%以上であった。   In addition, sealing glass having a maximum height difference of about 100 nm and about 1000 nm was also produced by changing conditions such as solution composition and processing time. The parallel light transmittance with reference to the air in the concavo-convex portion of the sealing glass was 86% or more and 70% or more, respectively, over the entire wavelength region of 400 nm to 800 nm.

[吸湿剤]
封止ガラス13の掘り込み部外周に酸化ストロンチウム粒子を分散させたシート状の吸湿剤15を粘着剤で貼り付けた。
[Hygroscopic agent]
A sheet-like hygroscopic agent 15 in which strontium oxide particles were dispersed was stuck to the outer periphery of the engraved portion of the sealing glass 13 with an adhesive.

[封止]
作製した有機EL素子基板と封止ガラスとを封着する封止工程に移る。
[Sealing]
It moves to the sealing process which seals the produced organic EL element substrate and sealing glass.

封止ガラス13の外周部の土手にディスペンサーにて紫外線硬化型エポキシ接着剤14を塗布し、封止ガラス13を有機EL素子基板に貼り付けた。次いで、紫外線を照射してエポキシ接着剤の一次硬化過程を実施し、さらに80℃で30分の加熱処理による二次硬化過程を実施して有機EL素子を封止ガラス13で封止した。   The ultraviolet curable epoxy adhesive 14 was applied to the bank of the outer periphery of the sealing glass 13 with a dispenser, and the sealing glass 13 was attached to the organic EL element substrate. Subsequently, the ultraviolet curing was performed to perform a primary curing process of the epoxy adhesive, and further, a secondary curing process by a heat treatment at 80 ° C. for 30 minutes was performed to seal the organic EL element with the sealing glass 13.

なお、上記吸湿剤形成工程、封止工程は、水分濃度、酸素濃度を共に1ppm以下に制御したグローブボックス内で行い、工程中の水分、酸素による有機ELパネルへの影響を最小限にするように配慮した。   The hygroscopic agent forming step and the sealing step are performed in a glove box in which both the moisture concentration and the oxygen concentration are controlled to 1 ppm or less so as to minimize the influence of moisture and oxygen on the organic EL panel during the process. Considered.

[実装工程]
最後に有機EL素子を駆動させるための駆動回路に電力を供給するフレキシブルプリント配線板(FPC)の実装を行った。すなわち、有機EL素子の電気信号入出力電極にFPCを異方性導電性フィルム(ACF)で熱圧着を行い、有機ELパネルを完成させた。
[Mounting process]
Finally, a flexible printed wiring board (FPC) that supplies power to a driving circuit for driving the organic EL element was mounted. That is, FPC was thermocompression bonded to the electric signal input / output electrodes of the organic EL element with an anisotropic conductive film (ACF) to complete an organic EL panel.

以上のような工程によって作製した有機ELパネルに対して面押強度試験を行った。すなわち、凹凸の最大高低差約100nm、約400nm、約1000nmの封止ガラスで封止したそれぞれのパネルを平らで硬い板の上に戴置し、Φ12.7mmの円柱の鉄棒を49Nの荷重でパネル表面の中央に押しつけた。試験後、外観を光学顕微鏡で観察した。その結果、いずれのパネルも変化は認められず、また、面押強度試験前後でパネルを発光させたところ、試験後も試験前同様に発光した。   A surface pressing strength test was performed on the organic EL panel manufactured by the above process. That is, each panel sealed with sealing glass having a maximum height difference of about 100 nm, about 400 nm, and about 1000 nm is placed on a flat and hard plate, and a cylindrical iron rod of Φ12.7 mm is loaded with a load of 49 N Pressed against the center of the panel surface. After the test, the appearance was observed with an optical microscope. As a result, no change was observed in any of the panels, and when the panel was made to emit light before and after the surface pressing strength test, light was emitted after the test as before the test.

(比較例)
封止ガラスの掘り込み部に凹凸を形成しないこと以外は全く同様にして有機ELパネルを作製した。
(Comparative example)
An organic EL panel was produced in exactly the same manner except that no irregularities were formed in the engraved portion of the sealing glass.

このパネルに対して実施例と同様に面押強度試験を行ったところ、試験後にパネルの押圧された部分の画素の一部で非点灯が発生した。試験後のパネルを光学顕微鏡で観察したところ、非点灯の画素において陰極の剥離が認められた。   When this panel was subjected to a surface pressing strength test in the same manner as in the example, non-lighting occurred in some of the pixels of the pressed portion of the panel after the test. When the panel after the test was observed with an optical microscope, peeling of the cathode was observed in the non-lighted pixels.

本発明における有機ELパネルの構造を表す模式的断面図である。It is typical sectional drawing showing the structure of the organic electroluminescent panel in this invention. 本発明における他の有機ELパネルの構造を表す模式的断面図である。It is typical sectional drawing showing the structure of the other organic EL panel in this invention. 実施例の有機ELパネルの構造を表す概略断面図である。It is a schematic sectional drawing showing the structure of the organic electroluminescent panel of an Example. 従来のトップエミッション方式の有機ELパネルの模式的断面図である。It is a typical sectional view of a conventional top emission type organic EL panel.

符号の説明Explanation of symbols

1 ガラス基板
2 第一の電極
3、11 有機EL層
4 第二の電極
5 、13 封止ガラス
6、14 接着剤
7、15 吸湿剤
8 有機EL素子基板
9 TFT回路を形成したガラス基板
10 陽極
12 陰極
16 素子分離膜
17 平坦化膜
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 1st electrode 3, 11 Organic EL layer 4 2nd electrode 5, 13 Sealing glass 6, 14 Adhesive 7, 15 Hygroscopic agent 8 Organic EL element substrate 9 Glass substrate 10 in which TFT circuit was formed Anode 12 Cathode 16 Element isolation film 17 Planarization film

Claims (2)

少なくとも基板の上に形成された駆動回路及び画素部と、前記画素部において第一の電極、有機EL層、第二の電極をこの順に積層してなる有機EL素子と、前記有機EL素子を保護するために離間して設けられた封止ガラスとを有するトップエミッション型の有機ELパネルにおいて、
前記封止ガラスの少なくとも前記画素部に対向する面の全域に凹凸が形成されていることを特徴とする有機ELパネル。
At least a driving circuit and a pixel portion formed on a substrate, an organic EL element in which a first electrode, an organic EL layer, and a second electrode are stacked in this order in the pixel portion, and the organic EL element is protected In a top emission type organic EL panel having a sealing glass provided to be spaced apart,
The organic EL panel is characterized in that irregularities are formed on the entire surface of the sealing glass facing at least the pixel portion.
前記凹凸はガラスのケミカルエッチング法によって形成されていることを特徴とする請求項1に記載の有機ELパネル。   The organic EL panel according to claim 1, wherein the unevenness is formed by a chemical etching method of glass.
JP2007198527A 2007-07-31 2007-07-31 Organic el panel Pending JP2009037745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007198527A JP2009037745A (en) 2007-07-31 2007-07-31 Organic el panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007198527A JP2009037745A (en) 2007-07-31 2007-07-31 Organic el panel

Publications (2)

Publication Number Publication Date
JP2009037745A true JP2009037745A (en) 2009-02-19
JP2009037745A5 JP2009037745A5 (en) 2010-08-19

Family

ID=40439492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007198527A Pending JP2009037745A (en) 2007-07-31 2007-07-31 Organic el panel

Country Status (1)

Country Link
JP (1) JP2009037745A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201023A (en) * 2012-03-24 2013-10-03 Toshiba Corp Organic electroluminescent element, luminaire, and method for manufacturing organic electroluminescent element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305076A (en) * 2001-02-01 2002-10-18 Semiconductor Energy Lab Co Ltd Display equipment and its manufacturing method
JP2004047309A (en) * 2002-07-12 2004-02-12 Nippon Sheet Glass Co Ltd Sealing plate for electroluminescence element, and mother glass substrate for multi-chamferming of the sealing plate
JP2004186100A (en) * 2002-12-06 2004-07-02 Sanyo Electric Co Ltd Electroluminescent display and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305076A (en) * 2001-02-01 2002-10-18 Semiconductor Energy Lab Co Ltd Display equipment and its manufacturing method
JP2004047309A (en) * 2002-07-12 2004-02-12 Nippon Sheet Glass Co Ltd Sealing plate for electroluminescence element, and mother glass substrate for multi-chamferming of the sealing plate
JP2004186100A (en) * 2002-12-06 2004-07-02 Sanyo Electric Co Ltd Electroluminescent display and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201023A (en) * 2012-03-24 2013-10-03 Toshiba Corp Organic electroluminescent element, luminaire, and method for manufacturing organic electroluminescent element
US9125279B2 (en) 2012-03-24 2015-09-01 Kabushiki Kaisha Toshiba Organic electroluminescent device, luminaire device, and method for manufacturing organic electroluminescent device

Similar Documents

Publication Publication Date Title
KR100638160B1 (en) Method for manufacturing electro-optic device, electro-optic device, and electronic apparatus
JP2006269108A (en) Organic light emitting display device, and restoration method of its defective pixel
US7872255B2 (en) Organic light-emitting device
JP2007066775A (en) Manufacturing method of organic el element and organic el element
JP2007242436A (en) Manufacturing method of organic electroluminescent device, and organic electroluminescent device
JP2009266922A (en) Organic light-emitting device
JP2010218940A (en) Organic light-emitting device and method for manufacturing the same
JP2006114506A (en) Laser thermal transfer device, manufacturing method for organic electroluminescent element, and organic electroluminescent element
JP2003332073A (en) Light emitting device and its manufacturing method
JP4512436B2 (en) Display device and manufacturing method thereof
JP2006253097A (en) Spontaneous light-emitting panel and its manufacturing method
JP2013131339A (en) Organic light emitting device and manufacturing method of the same
JP2011076759A (en) Manufacturing method of organic electroluminescent panel, and passivation layer film forming mask
JP6064351B2 (en) Organic EL device and manufacturing method thereof
JP2007265764A (en) Organic el element
JP2011204366A (en) Method for manufacturing organic electroluminescent panel and organic electroluminescent panel using the same
JP2013069615A (en) Organic el display and manufacturing method therefor
JP2009037745A (en) Organic el panel
JP2005243604A (en) Organic electroluminescence device and method for manufacturing same
JP2008108545A (en) Sealing substrate, its manufacturing method and manufacturing method for electroluminescent element panel
WO2010134237A1 (en) Organic el display device and method for manufacturing same
JP2007250251A (en) Optical device and manufacturing method of optical device
JP2004014287A (en) Ito film, its manufacturing method and organic el element
KR200257245Y1 (en) Organic Electroluminescence Display Device
JP5318182B2 (en) Manufacturing method of organic EL element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228