JP2009036597A - 光学特性測定装置、走査光学装置及び画像形成装置 - Google Patents

光学特性測定装置、走査光学装置及び画像形成装置 Download PDF

Info

Publication number
JP2009036597A
JP2009036597A JP2007200084A JP2007200084A JP2009036597A JP 2009036597 A JP2009036597 A JP 2009036597A JP 2007200084 A JP2007200084 A JP 2007200084A JP 2007200084 A JP2007200084 A JP 2007200084A JP 2009036597 A JP2009036597 A JP 2009036597A
Authority
JP
Japan
Prior art keywords
scanning direction
sub
moving
guide member
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007200084A
Other languages
English (en)
Inventor
Kenichi Shimizu
研一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007200084A priority Critical patent/JP2009036597A/ja
Publication of JP2009036597A publication Critical patent/JP2009036597A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】被走査面上を移動するビームスポットの主走査ラインの曲がりや副走査方向の変動を正確に測定することが可能な光学特性測定装置を提供する。
【解決手段】XステージXSTとしてリニアガイド方式のXステージを使用する。XステージXSTとしてリニアガイド方式のXステージを使用する場合には、従来のシャフトアンドスライドブッシュ方式のように、支持部材81の表面81bと移動台73の底面73aとの間に隙間Dが形成されないので、YステージYSTのモーメントMの発生が抑制され第1の移動台72上に受光装置71に撓みdの発生が抑制され、真の走査線曲がり特性を測定することが可能となる。
【選択図】図15

Description

本発明は、主走査方向及び副走査方向の被走査面を走査する走査光学装置から射出される光ビームを受光手段によって受光し、前記被走査面に照射された前記光ビームの主走査方向及び副走査方向のビームスポット位置を測定する前記走査光学装置の光学特性測定装置、これを使用して調整された走査光学装置及びこれを備えた画像形成装置に関する。
従来から、レーザプリンタやデジタル複写機といった各種の画像形成装置においては、例えば、感光体の被走査面上にレーザ光を集光させることにより形成された光スポットを、レーザ光を偏向させることにより主走査方向へ移動させて被走査面を走査する走査光学装置が広く用いられ、近年では、光源のマルチビーム化や走査線の高密度化にともない、被走査面上における走査精度の更なる向上が要求されている。
この種の走査光学装置においては、被走査面上における光スポットの移動軌跡(以下、主走査ラインという)は、正確な直線であることが理想的であるが、実際には種々の要因で直線とはならず、僅かな曲がりや傾きが生じてしまう。またレーザ光の偏向を、例えば複数の偏向反射面を有する回転多面鏡により行う場合には、各偏向反射面毎に偏向による主走査ラインが、いわゆる面倒れの影響で、被走査面上の主走査方向に直交する方向(以下、副走査方向という)に微小距離変動することが考えられる。このような主走査ラインの曲がりや傾き、及び副走査方向の微小距離変動は、所定の許容範囲内に収める必要があり、走査線を高密度化する場合や、マルチビームにより走査を行う場合には、その許容範囲はかなり狭くなる。そこで、走査光学系を実際に組み立てる際やその組み立て後には、上記主走査ラインの曲がりや副走査方向の変動の計測、及び調整等が行われている。
例えば、特許文献1に示されるように、所望の主走査方向の位置における副走査方向の走査位置を測定するための測定装置が提案されている。特許文献1に記載の測定装置は、1台のCCDカメラを移動ステージにより、所望の主走査方向の位置まで移動させて、その位置での副走査方向の走査位置を測定する光学特性測定装置である。
特開2000−39573公報
しかしながら、特許文献1記載の測定装置においては、走査光学装置の回転多面鏡の各偏光反射面毎に対する走査位置を定量的に測定することが可能であっても被走査面上を移動するビームスポットの主走査ラインの曲がりや副走査方向の変動を正確に測定することができないという問題がある。
本発明は係る事情の下になされたもので、その第1の目的は、被走査面上を移動するビームスポットの主走査ラインの曲がりや副走査方向の変動を正確に測定することが可能な光学特性測定装置を提供することにある。
また、本発明の第2の目的は、走査精度の向上を図ることが可能な走査光学装置を提供することにある。
また、本発明の第3の目的は、高品質な画像を形成することが可能な画像形成装置を提供することにある。
上記課題を解決するために、請求項1に記載の発明は、主走査方向及び副走査方向の被走査面を走査する走査光学装置から射出される光ビームを受光手段によって受光し、前記被走査面に照射された前記光ビームの主走査方向及び副走査方向のビームスポット位置を測定する前記走査光学装置の光学特性測定装置において、前記受光手段を、前記主走査方向に延在する第1のガイド部材上を前記主走査方向に摺動自在に設置された第1の移動台上に取り付け、当該第1の移動台と対向する前記第1のガイド部材の底部の中間位置に、前記副走査方向に延在する第2のガイド部材上を前記副走査方向に摺動自在に設置された第2の移動台を取り付け、前記第1の移動台は、前記第1のガイド部材に取り付けられた前記主走査方向に移動させる第1の移動手段に連結され、前記第2の移動台は、前記第2のガイド部材に取り付けられた前記副走査方向に移動させる第2の移動手段に連結され、前記第1の移動手段及び第2の移動手段の駆動によって、前記受光手段が同一平面内で、副走査方向及び主走査方向に移動自在に取り付けられており、前記第2のガイド部材は、基台上に取り付けられた副走査方向に平行に延びる少なくとも2本のガイドレールを有し、当該ガイドレールに沿って前記第2の移動台を摺動自在に案内することを特徴とする。
また、請求項2の発明は、請求項1記載の光学特性測定装置において、前記第2のガイド部材は、基台上に取り付けられた副走査方向に平行に延びる2本のガイドレールを有し、前記第2の移動手段は、前記第2のガイド部材の2本のガイドレールの間に前記副走査方向に前記ガイドレールと平行に延びる送りネジを有しており、当該送りネジの一端は、当該送りネジを回転駆動するモータと接続され、前記第2の移動台は、前記送りネジに螺合されて送りネジの回転によって、前記副走査方向に移動されることを特徴とする。
また、請求項3の発明は、請求項1又は2記載の光学特性測定装置において前記第1のガイド部材は、主走査方向に平行に延びる2本のガイドシャフトを有し、前記第1の移動手段は、前記第1のガイド部材の2本のガイドシャフトの間に前記主走査方向に前記ガイドシャフトと平行に延びる送りネジを有しており、当該送りネジの一端は、当該送りネジを回転駆動するモータと接続され、前記第1の移動台は、前記送りネジに螺合する螺合部と当該螺合部の両側に前記ガイドシャフトを挿通するスライドブッシュを備えており、前記送りネジの回転によって、前記主走査方向に移動されることを特徴とする。
また、請求項4の発明は、主走査方向及び副走査方向の被走査面を走査する走査光学装置から射出される光ビームを受光手段によって受光し、前記被走査面に照射された前記光ビームの主走査方向及び副走査方向のビームスポット位置を測定する前記走査光学装置の光学特性測定装置において、前記受光手段を、前記主走査方向に延在する第1のガイド部材上を前記主走査方向に摺動自在に設置された第1の移動台上に取り付け、当該第1の移動台と対向する前記第1のガイド部材の底部の中間位置に、前記副走査方向に延在する第2のガイド部材上を前記副走査方向に摺動自在に設置された第2の移動台を取り付け、前記第1の移動台は、前記第1のガイド部材に取り付けられた前記主走査方向に移動させる第1の移動手段に連結され、前記第2の移動台は、前記第2のガイド部材に取り付けられた前記副走査方向に移動させる第2の移動手段に連結され、前記第1の移動手段及び第2の移動手段の駆動によって、前記受光手段が同一平面内で、副走査方向及び主走査方向に移動自在に取り付けられており、前記第2のガイド部材は、両端部で基台に固定され、さらに、副走査方向に平行に延びる少なくとも2本のガイドシャフトを有し、前記第2の移動手段は、前記第2のガイド部材の前記2本のガイドシャフトと平行に延びる送りネジを有しており、当該送りネジの一端は、当該送りネジを回転駆動するモータと接続され、前記第2の移動台は、前記送りネジに螺合する螺合部と前記ガイドシャフトを挿通するスライドブッシュを備えており、前記送りネジの回転によって前記副走査方向に移動可能となるように、基台から所定間隔を有して離隔された状態で前記第2のガイド部材によって保持され、当該第2の移動台は、前記第1の移動台の摺動範囲と等しい幅の支持部を有し、少なくとも当該支持部の幅方向の両端部にスライドブッシュを備え、当該スライドブッシュ内に、前記第2のガイド部材のガイドシャフトがそれぞれ挿通されていることを特徴とする。
また、請求項5の発明は、請求項4記載の光学特性測定装置において前記第1のガイド部材は、主走査方向に平行に延びる2本のガイドシャフトを有し、前記第1の移動手段は、前記第1のガイド部材の2本のガイドシャフトの間に前記主走査方向に前記ガイドシャフトと平行に延びる送りネジを有しており、当該送りネジの一端は、当該送りネジを回転駆動するモータと接続され、前記第1の移動台は、前記送りネジに螺合する螺合部と当該螺合部の両側に前記ガイドシャフトを挿通するスライドブッシュを備えており、前記送りネジの回転によって、前記主走査方向に移動されることを特徴とする。
また、請求項6の発明は、主走査方向及び副走査方向の被走査面を走査する走査光学装置から射出される光ビームを受光手段によって受光し、前記被走査面に照射された前記光ビームの主走査方向及び副走査方向のビームスポット位置を測定する前記走査光学装置の光学特性測定装置において、前記走査光学装置から副走査方向に所定間隔で射出される複数の光ビームが前記主走査方向と副走査方向とによって形成される平面に対して垂直方向となるように、前記走査光学装置が取り付けられ、前記受光手段の受光面が前記平面と平行になるように第3の移動台に取り付けられ、当該第3の移動台は、第1の移動台上に取り付けられた第3のガイド部材に取り付けられ、当該第1の移動台は、前記主走査方向に延在する第1のガイド部材上を前記主走査方向に摺動自在に取り付けられており、当該第1の移動台と対向する前記第1のガイド部材の底部の中間位置に、前記副走査方向に延在する第2のガイド部材上を前記副走査方向に摺動自在に設置された第2の移動台を取り付け、前記第1の移動台は、前記第1のガイド部材に取り付けられた前記主走査方向に移動させる第1の移動手段に連結され、前記第2の移動台は、前記第2のガイド部材に取り付けられた前記副走査方向に移動させる第2の移動手段に連結され、前記第1の移動手段及び第2の移動手段の駆動によって、前記受光手段が同一平面内で、副走査方向及び主走査方向に移動自在に取り付けられており、前記第3のガイド部材は、前記第3の移動台を前記垂直方向に摺動自在に案内するガイド手段を有し、前記第3の移動台は、前記第3のガイド部材のガイド手段によって前記垂直方向に移動させる第3の移動手段に連結され、当該第3の移動手段の駆動によって前記垂直方向に移動にとりつけられており、前記受光手段が前記走査光学装置から射出される他の光ビームを受光するときに、当該他の光ビームの受光位置まで第2の移動台を移動させると共に、各光ビームの出射部から受光手段の受光面までの距離が等しくなるように、第3の移動台を前記垂直方向に前記第3の移動手段を制御する制御装置を備えたことを特徴とする。
また、請求項7の発明は、レーザ光源から出射されたレーザ光を偏光する回転多面鏡及び変更されたレーザ光を被走査部材上に結像する走査レンズを備えた走査光学装置において、前記走査レンズ中央部を変形させる加圧調製手段を備え、当該加圧調製手段が請求項1乃至6の何れか1項記載の光学特性測定装置を用いて被走査面に形成される走査線の曲がりが最小となるように調整されていることを特徴とする。
また、請求項8の発明は、請求項7記載の走査光学装置において、前記走査レンズは、傾き調整手段を備え、請求項1乃至6の何れか1項記載の光学特性測定装置を用いて被走査面に形成される走査線の曲がりが最小となるように前記加圧調整手段と共に当該傾き調整手段を調整して設定されていることを特徴とする。
また、請求項9の発明は、感光体表面に走査光学装置によって静電潜像を形成する画像形成装置において、前記走査光学装置は、請求項7又は8記載の走査光学装置であることを特徴とする。
本発明によれば、受光手段を、主走査方向に延在する第1のガイド部材上を前記主走査方向に摺動自在に設置された第1の移動台上に取り付け、当該第1の移動台と対向する前記第1のガイド部材の底部の中間位置に、副走査方向に延在する第2のガイド部材上を前記副走査方向に摺動自在に設置された第2の移動台を取り付け、前記第1の移動台は、前記第1のガイド部材に取り付けられた前記主走査方向に移動させる第1の移動手段に連結され、前記第2の移動台は、前記第2のガイド部材に取り付けられた前記副走査方向に移動させる第2の移動手段に連結され、前記第1の移動手段及び第2の移動手段の駆動によって、前記受光手段が同一平面内で、副走査方向及び主走査方向に移動自在に取り付けられており、前記第2のガイド部材は、基台上に取り付けられた副走査方向に平行に延びる少なくとも2本のガイドレールを有し、当該ガイドレールに沿って前記第2の移動台を摺動自在に案内することすることによって、被走査面上を移動するビームスポットの主走査ラインの曲がりや副走査方向の変動を正確に測定することが可能な光学特性測定装置を提供することができる。
また、走査レンズ中央部を変形させる加圧調製手段を備え、当該加圧調製手段が本発明による光学特性測定装置を用いて被走査面に形成される走査線の曲がりが最小となるように調整されている走査光学装置とすることによって、走査精度の向上を図ることが可能な走査光学装置及び高品質な画像を形成することが可能な画像形成装置を提供することが可能となる。
以下、本発明による実施形態を図面に基づいて説明する。
図1には、本発明による一実施形態に係る画像形成装置としてのプリンタ10の概略構成が示されている。プリンタ10は、カールソンプロセスを用いて、例えば、黒(B)、イエロー(Y)、マゼンタ(M)、シアン(C)のトナー像を普通紙(用紙)61等の記録媒体上に重ね合わせて転写することにより、多色画像を印刷するタンデム方式のカラープリンタである。このプリンタ10は、図1に示されるように、後述する光学特性測定装置により、例えば走査線の傾きや曲がり等の光学特性が測定された光走査装置100、4本の感光ドラム30B、30C、30M、30Y、転写ベルト40、位置ずれ検出装置45、給紙トレイ60、給紙コロ54、第1レジストローラ対56、第2レジストローラ対52、定着ローラ50、排紙ローラ58、及び上記構成部品を収容するほぼ直方体状のハウジング12などを備えている。
ハウジング12には、上面に印刷が終了した用紙が排出される排紙トレイ12aが形成され、その排紙トレイ12aの下方に光走査装置100が配置されている。光走査装置100は、感光ドラム30Bに対しては、上位装置(パソコン等)から供給された画像情報に基づいて変調された黒色画像成分の光ビームを走査し、感光ドラム30Cに対してはシアン画像成分の光ビームを走査し、感光ドラム30Mに対してはマゼンタ画像成分の光ビームを走査し、感光ドラム30Yに対してはイエロー画像成分の光ビームを走査する。なお、光走査装置100の構成については後述する。
4本の感光ドラム30B、30C、30M、30Yは、その表面に、光ビームが照射されると、その部分が導電性となる性質をもつ感光層が形成された円柱状の部材であり、光走査装置100の下方にX軸方向に沿って等間隔に配置されている。
感光ドラム30Bは、ハウジング12内部の−X側端部にY軸方向を長手方向として配置され、不図示の回転機構により図1における時計回り(図1の矢印に示される方向)に回転されるようになっている。そして、その周囲には、図1における12時(上側)の位置に帯電チャージャ32Bが配置され、2時の位置にトナーカートリッジ33Bが配置され、10時の位置にクリーニングケース31Bが配置されている。
感光ドラム30Cは、感光ドラム30Bの+X側に所定間隔隔てて配置され、不図示の回転機構により、図1における時計回り(矢印に示される方向)に回転されるようになっている。そして、その周囲には、前述の感光ドラム30Bと同様の位置関係で、帯電チャージャ32C、トナーカートリッジ33C及びクリーニングケース31Cがそれぞれ配置されている。
感光ドラム30Mは、感光ドラム30Cの+X側に所定間隔隔てて配置され、不図示の回転機構を介して、図1における時計回り(矢印に示される方向)に回転されるようになっている。そして、その周囲には、前述の感光ドラム30Bと同様の位置関係で、帯電チャージャ32M、トナーカートリッジ33M及びクリーニングケース31Mがそれぞれ配置されている。
感光ドラム30Yは、感光ドラム30Mの+X側に所定間隔隔てて配置され、不図示の回転機構により、図1における時計回り(矢印に示される方向)に回転されるようになっている。そして、その周囲には、前述の感光ドラム30Bと同様の位置関係で、帯電チャージャ32Y、トナーカートリッジ33Y及びクリーニングケース31Yがそれぞれ配置されている。
以下、感光ドラム30B、帯電チャージャ32B、トナーカートリッジ33B及びクリーニングケース31Bを合わせて第1ステーションと呼び、感光ドラム30C、帯電チャージャ32C、トナーカートリッジ33C及びクリーニングケース31Cを合わせて第2ステーションと呼び、感光ドラム30M、帯電チャージャ32M、トナーカートリッジ33M及びクリーニングケース31Mを合わせて第3ステーションと呼び、感光ドラム30Y、帯電チャージャ32Y、トナーカートリッジ33Y及びクリーニングケース31Yを合わせて第4ステーションと呼ぶものとする。
転写ベルト40は、無端環状の部材で、感光ドラム30Bの下方に配置された従動ローラ40aと、感光ドラム30Yの下方に配置された従動ローラ40cと、これらの従動ローラ40a、40cより少し低い位置に配置された駆動ローラ40bに、上端面が感光ドラム30B、30C、30M、30Yそれぞれの下端面に接するように張架されている。そして、転写ベルト40は、駆動ローラ40bが図1における反時計回りに回転することにより、反時計回り(図1の矢印に示される方向)に移送、回転される。また、転写ベルト40の+X側端部近傍には、上述した帯電チャージャ32B、32C、32M、32Yとは逆極性の電圧が印加された転写チャージャ48が配置されている。
給紙トレイ60は、転写ベルト40の下方に配置されている。この給紙トレイ60は略直方体状のトレイであり、内部に印刷対象としての複数枚の用紙61が積み重ねられて収納されている。そして、給紙トレイ60の上面の+X側端部近傍には矩形状の給紙口が形成されている。
給紙コロ54は、給紙トレイ60から用紙61を一枚ずつ取り出し、一対の回転ローラから構成される第1レジストローラ対56を介して、転写ベルト40と転写チャージャ41によって形成される隙間に導出する。
定着ローラ50は、一対の回転ローラから構成され、トナー画像が転写された用紙61を加熱するとともに加圧してトナー画像を用紙61上に定着し、第2レジストローラ対52を介して、排紙ローラ58へ導出する。排紙ローラ58は一対の回転ローラから構成され、導出された用紙61を排紙トレイ12aに順次スタックする。
次に、光走査装置100の構成について説明する。図2は、光走査装置100の光学レイアウト図である。図2に示されるように、光走査装置100は、光源130と、カップリングレンズ146、第1シリンダレンズ102、及び第2シリンダレンズ103を含む集光光学系と、例えば6つの偏向面を有するポリゴンミラー104、fθレンズ105、4つの反射ミラー106A、106B、106C、106D、4つのトロイダルレンズ107A、107B、107C、107D、及び3つの反射ミラー108A、108B、108Cを含む走査光学系とを備えている。
光源130は、複数の発光点を有する面発光型半導体レーザアレイである。各発光点は前述の第1〜第4ステーションに対応する4つの発光点G1〜G4に区分され、各発光点からは、ポリゴンミラー104に向かう光ビームが射出される。
カップリングレンズ146、第1シリンダレンズ102及び第2シリンダレンズ103は、光源130から射出される光ビームの経路上に、光源130に近い方から順に配置されている。前記カップリングレンズ146は、光ビーム143から射出された光ビームを、第1シリンダレンズ102の入射側で一旦集光するように整形する。第1シリンダレンズ102は、光源130から射出された光ビームを所定の形状に整形し、第2シリンダレンズ103は、第1シリンダレンズを通過した光ビームを、ポリゴンミラー104の偏向面へ集光する。
ポリゴンミラー104は、高さの低い正六角柱状部材からなり、側面には6面の偏向面が形成されている。そして、Z軸に平行な軸を中心に、不図示の回転機構により一定の角速度で回転されている。これにより、上述した光源130から射出し、第1シリンダレンズ102及び第2シリンダレンズ103を経由して、ポリゴンミラー104の偏向面に集光された光ビームは、ポリゴンミラー104の回転により、一定の角速度でY軸に沿って偏向される。
fθレンズ105は、光ビームの入射角に比例した像高をもち、ポリゴンミラー104により、一定の角速度で偏向される光ビームの像面をY軸に対して等速移動させる。反射ミラー106A、106B、106C、106Dは、長手方向をY軸方向とし、fθレンズ105を経由した光ビームを折り返し、トロイダルレンズ107A、107B、107C、107Dそれぞれに導光する。
トロイダルレンズ107Aは、長手方向をY軸方向とし両端がハウジング12に対し固定された支持板110Aに安定的に支持されている。そして、反射ミラー106Aにより折れ返された光ビームを、Y軸方向を長手方向とする反射ミラー108Aを介して、感光ドラム30Bの表面に結像する。
トロイダルレンズ107B、107C、107Dは、長手方向をY軸方向とし、一端(+Y側)がハウジング12に対し固定され、他端(−Y側)が、例えば回転モータと送りねじ機構を備える駆動機構112B、112C、112Dにより支持された支持板112B、112C、112Dに安定的に支持されている。そして、反射ミラー106B、106C、106Dによりそれぞれ折れ返された光ビームを、Y軸方向を長手方向とする反射ミラー108B、108Cを介して、感光ドラム30C、30M、30Yの表面にそれぞれ結像する。
上述のように構成された光走査装置100では、各発光点群G1、G2、G3、G4からの複数の光ビームは、カップリングレンズ146により一旦交差され、第1シリンダレンズ102により副走査方向の間隔が拡張されて第2のシリンダレンズ103に入射する。第2のシリンダレンズ103は、入射した発光点群G1、G2、G3、G4それぞれから射出される光ビームをポリゴンミラー104の偏向面の近傍に集光する。ポリゴンミラー104で偏向された光ビームは、光ビーム同士の間隔を広げつつ、fθレンズ105に入射する。
fθレンズ105に入射した発光点G1からの光ビームは、反射ミラー106Dで反射されトロイダルレンズ107Dへ入射する。そして、トロイダルレンズ107Dにより感光ドラム30Yの表面に集光される。同様に、fθレンズ105に入射した発光点G2、G3、G4からの光ビームは、反射ミラー106A、106B、106Cで反射されトロイダルレンズ107A、107B、107Cへ入射する。そして、トロイダルレンズ107A、107B、107Cにより、反射ミラー108A、108B、108Cを介して感光ドラム30B、30C、30Mの表面に集光される。
このようにして感光ドラム30B、30C、30M、30Y上にそれぞれ形成された発光点群G1、G2、G3、G4からの光ビームの集光点は、ポリゴンミラー104が回転することにより、Y軸方向に一括して移動(走査)される。一方、感光ドラム30B、30C、30M、30Yそれぞれの表面の感光層は、帯電チャージャ32B、32C、32M、32Yにより所定の電圧で帯電されることにより、電荷が一定の電荷密度で分布している。そして、上述したように、感光ドラム30B、30C、30M、30Yがそれぞれ走査されると、光ビームが集光したところの感光層が導電性を有するようになり、その部分では電荷移動がおこり電位が零となる。したがって、図1の矢印の方向にそれぞれ回転している感光ドラム30B、30C、30M、30Yに対し、画像情報に基づいて変調した光ビームを走査することにより、それぞれの感光ドラム30B、30C、30M、30Yの表面に、電荷の分布により規定される静電潜像を形成することができる。
感光ドラム30B、30C、30M、30Yそれぞれの表面に静電潜像が形成されると、図1に示されるトナーカートリッジ33B、33C、33M、33Yの現像ローラにより、感光ドラム30B、30C、30M、30Yのそれぞれの表面にトナーが供給される。このときトナーカートリッジ33B、33C、33M、33Yのそれぞれの現像ローラは、感光ドラム30B、30C、30M、30Yと逆極性の電圧により帯電しているため、現像ローラに付着したトナーは、感光ドラム30B、30C、30M、30Yと同極性に帯電されている。したがって、感光ドラム30B、30C、30M、30Yの表面のうち電荷が分布している部分にはトナーが付着せず、走査された部分にのみトナーが付着することにより、感光ドラム30B、30C、30M、30Yの表面に静電潜像が可視化されたトナー像が形成される。そして、これらのトナー像は転写ベルト40上に重ね合わせて転写され、図1に示されるように、給紙トレイ60から取り出された用紙61に、転写チャージャ48によって転写され、定着ローラ50により定着されることにより画像として形成される。
次に、光走査装置100から感光ドラム30B、30C、30M、30Yに射出される光ビームを受光して、光走査装置100の光学特性を測定する光学特性測定装置70について説明する。
図3は、走査光学装置の光学特性を測定する光学特性測定装置の概略構成を示す斜視図である。光学特性測定装置70は、長手方向をX軸方向(副走査方向)とする長方形板状の基台92と、後述する走査光学装置100から出射される黒(B)、シアン(C)、マゼンタ(M)、イエロー(Y)に対応する静電潜像を画像形成装置の感光体に形成する光ビームLB1、LB2、LB3、LB4を受光する受光装置71と、受光装置71をY軸方向(主走査方向)に駆動するYステージYST、受光装置71をYステージYSTとともにX軸方向へ駆動するXステージXST及び受光装置71、YステージYST、XステージXSTを統括的に制御する制御装置90等を備えている。
受光装置71は、立方体状のケーシングに収容されたエリアCCD(Charge Coupled Device Image Sensor)を含んで構成され、上方の面には、光ビームLB1、LB2、LB3、LB4が入射する矩形状の入射面71aが形成されている。受光装置71は、YステージYSTの移動台72(第1の移動台)に取り付けられており、移動台72のY方向への移動と共にY方向への移動が可能となっている。さらに、YステージYSTは、その底部の中間位置に取り付けられた移動台73(第2の移動台)が、XステージXST上に取り付けられ、移動台73のX方向への移動と共にYステージYST全体がX方向に移動可能となっている。従って、受光装置71は、移動台73の移動によって、同一平面上で、X方向にも移動可能となっており、移動台72および73を移動させる回転駆動モータ等の第1の駆動手段74及び第2の駆動手段75を制御することによって、受光装置71を所定のX位置とY位置に設定可能となっている。
XステージXSTは、後述するように、基台92にネジで取り付けられて固定されている。従って、受光装置71は、移動台73を移動させることによって、光ビームLB1、LB2、LB3、LB4のそれぞれを受光すると共に、移動台72を移動させることによって各光ビームLB1、LB2、LB3、LB4の1つのY方向への偏光光を受光可能となっている。そしてこの偏光ビームのビームスポット位置に関する情報を制御装置90へ出力し、制御装置90は、移動台72及び73をY方向及びX方向に移動させる第1の駆動手段74及び第2の駆動手段75による移動台72及び73のそれぞれの移動量、移動速度等を制御する。さらに、制御装置90は、偏光ビームのビームスポット位置を計測して表示装置91にその測定結果を表示する。
XステージXSTは、例えばガイド部材と送りネジ機構とステッピングモータ等の第2の駆動手段75により、移動台73のXステージ面を駆動するものである。また、YステージYSTは、XステージXSTのXステージ面上に、Xステージと直交するように固定され、例えばガイド部材と送りネジ機構とステッピングモータ等の第1の駆動手段74により、移動台72のYステージ面を駆動するものである。
次に、光学特性測定装置70による、上述した光走査装置100の光学特性の測定方法について説明する。前提として、光走査装置100は、一例として図4に示されるように、不図示の支持部材により光学特性測定装置70の上方に支持され、光走査装置100と受光装置71の入射面71aが移動する移動面との距離は、光走査装置100と第1〜第4ステーションにおける感光ドラム30A〜30Dの被走査面との距離と等しくなるように設定されているものとする。この距離を調整するために、Yステージのステージ面(第1の移動台72)上に、ZステージZSTを固定し、ZステージZSTのZステージ面(第3の移動台82)に受光装置71が取り付けられている。
また、光走査装置100から射出され第1ステーションに入射する光ビームをLB1、第2ステーションに入射する光ビームをLB2、第3ステーションに入射する光ビームをLB3、第4ステーションに入射する光ビームをLB4と定義する。これらの光ビームLB1、LB2、LB3、LB4について、XステージXSTのステージ面(第2の移動台73)をX方向(矢印A方向)に移動させ、各光ビームLB1、LB2、LB3、LB4上でYステージYSTの移動台72を移動させて各光ビームの主走査方向(Y方向)の光ビームの光学特性を測定する。
光学特性測定装置70の主制御装置90は、XステージXSTを駆動して、まず、図4に示されるように、受光装置71が光ビームLB1を検知できる位置に移動させる。この状態でYステージYSTを駆動し、予め設定された、測定ポイントとなる複数の像高位置に、受光装置71を移動する。受光装置71がラインCCDの場合には、連続発光された光ビームは、図5のように検知され、CCDの出力がピークを示す位置を重心位置とし、その重心位置を求めることで、副走査方向の光ビーム位置が明らかになる。また、受光装置71がエリアCCDを使用する場合には、各測定ポイントで、タイミングを合わせたパルス発光を行い、受光装置71で検知することにより、図6のような出力強度パターンが検知され、このパターンの中心位置を検出することでその重心位置を求めることが可能となり、主副両方向の光ビームの重心位置が明らかになる。
Yステージの測定ポイントである各像高と、光ビームの副走査位置の関係は、図7のように表わされ、直線とならず、中央部で最大となり、両端で減少する所謂、走査線曲りと呼ばれている現象が生じる。このような走査線曲がりは、光走査装置100の光学的特性によっても生じるが、本発明者は、光学特性測定装置によっても生じることを究明した。
従来、YステージYST及びXステージXSTは、図8に示すように、通常、安価でコンパクトであるために、所謂、シャフトアンドスライドブッシュ方式のX−Yステージが使用されている。即ち、支持部材80及び81によって支持されたY方向及びX方向にそれぞれ平行に延びる2本のガイドシャフト76a、76b(第1のガイド部材)及び78a、78b(第2のガイド部材)及びこれらの2本のガイドシャフト76a、76b及び78a、78bの中間位置に端部がそれぞれステップモータ等の回転駆動手段74、75に連結された送りネジ77、79が配設されている。そして、これらのガイドシャフト76a、76b及び78a、78bに摺動自在に挿通され、送りネジ77及び79と螺合する移動台72及び73がこれらのガイドシャフト部材76a、76b及び78a、78bに取り付けられている。移動台73は、YステージYSTの支持部材80の中間位置の底面に取り付けられて、送りネジ79の回転によって、X方向に移動可能となっており、移動台72は、送りネジ77の回転によってY方向に移動可能となると共に、送りネジ79の回転によって移動台73のX方向への移動と共にX方向に移動可能となっている。そのため、移動台72上に取り付けられる受光装置71は、YステージYST及びXステージXSTの移動によって、同一平面上の所望のX位置及びY位置に設定可能となっている。
XステージXSTは、図9に示すように、支持部材81に形成された取り付け孔81aに取り付けネジで基台92の所定位置に取り付けられている。ここで、YステージYSTの支持部材80の底面80aが取り付けられる移動台73は、移動台73が円滑に摺動できるように、図10に示すように、移動台73の底面73aと支持部材81の表面81bとの間には隙間Dが形成されている。従って、この隙間Dによって、図11に示すように、XステージXSTの移動台73上に取り付けられたYステージYSTの移動台72が左右端に移動した際に、矢印で示すモーメントMが発生して撓みが発生する。このような撓みの発生は、図12に示すように、移動台72上に取り付けられた受光装置71においてもその両端において撓みdを発生する。その結果、図13に示すように、光走査装置100から出射された光ビームLBが、図4で示すように、受光装置71の入射面71aに対して傾斜した状態で入射されるため、受光装置71の入射面71aが前記受光装置71の撓みdによって低下することによって、走査線の曲がりずれが発生正する。その結果、図14に示すように、真の走査線曲がりよりも大きな走査線曲がりが発生し、正確な走査線曲がりが測定されていないことを究明した。なお、図10の73bは、スライド78a及び78bと円滑摺動させるためのスライドブッシュである。
本発明においては、このような光学特性測定装置70において、走査線曲がり特性が精度良く測定されず、その結果、この光学特性装置70によって走査線曲がり特性を測定して調整された光走査装置100は、歪んだ状態で調整されることになり、色ずれ等の問題を招いていたことを究明し、真の走査線曲がり特性を測定可能な光学特性測定装置を提供しようとしたものである。以下、実施例に基づいて詳述する。
[実施例1]
図15は、本発明による一実施形態の光学特性測定装置70の概略構成を示す図で、XステージXSTとしてリニアガイド方式のXステージを使用したものである。即ち、リニアガイド方式のXステージXSTは、基台92上にX方向に平行して延びる2本ガイドレール83a及び83bを取り付け、これらのガイドレール83a及び83bにボールベアリング84a及び84bを介して摺動自在に取り付けられたスライダ85a及び85bを有している。これらのスライダ85a及び85bの上面には、第2の移動台73の底面が取り付けられ、移動台73がX方向に摺動自在に取り付けられている。移動台73の中央部には、駆動手段75によって回転される送りネジ79と螺合する螺合部を有しており、送りネジ79の回転によって移動台73がX方向に移動可能となっている。本実施例のように、XステージXSTとしてリニアガイド方式のXステージを使用する場合には、前述のシャフトアンドスライドブッシュ方式のように、支持部材81の表面81bと移動台73の底面73aとの間に隙間Dが形成されないので、YステージYSTのモーメントMの発生が抑制され第1の移動台72上に受光装置71に撓みdの発生が抑制され、真の走査線曲がり特性を測定することが可能となる。この場合、移動台72が取り付けられるYステージYSTは、従来のYステージYSTで使用されているシャフトアンドスライドブッシュ方式が使用されているが、これに限らず、リニアガイド方式であっても良い。
[実施例2]
図16は、本発明による他の実施形態の光学特性測定装置70の概略構成を示す図で、XステージXSTは、シャフトアンドスライドブッシュ方式を使用するものの第2の移動台73は、その上に取り付けられるYステージYSTの支持部材80のほぼ全長に亘ってその底面80aが移動台73の上面73cに当接して取り付けられている。このように、第2の移動台73は、その上に取り付けられるYステージYSTの支持部材80のほぼ全長に亘ってその底面80aが移動台73の上面73に当接して取り付けられている場合には、YステージYSTの捩れモーメントMの発生が抑制され、第1の移動台72上に取り付けられる受光装置71の撓みdの発生が抑制され、高精度で走査線曲がり特性を測定することが可能となる。
[実施例3]
図17は本発明による他の実施形態に係る光学特性測定装置70の概略構成を示す図で、本実施例における光学特性測定装置においては、光走査装置100の支持方法を変更し、さらに、ZステージZSTを利用したものである。前述の従来の光学特性測定装置においては、図13で示すように、光ビームLBが受光装置71の入射面71aに対して、傾斜した状態で入射されるため、YステージYSTが捩れモーメントMによって移動台72が下降するに伴い、入射面71aが下降して、走査線曲がりが変動することに対して、本実施例においては、図18で示すように、入射面71aに対して光ビームLBが入射面71aに対して垂直に入射するようにしている。このように、光ビームLBが入射面71aに対して垂直に入射するようにすれば、図18に示すようなYステージYSTが捩れモーメントMによって移動台72が下降するに伴い、点線で示すように、入射面71aが下降してもCCDで受光される重心位置は変動しないので、高精度で走査線曲がり特性を測定することができる。
このように、光ビームLBが入射面71aに対して垂直に入射するようにするには、図17に示すように、被測定物である光走査装置100を受光装置71の入射面71aに対して傾斜させて支持し、光ビームLB1、LB2、LB3及びLB4が入射面71aに対して垂直となるように支持すればよい。この場合、光走査装置100を傾斜して支持すると光ビームLB1、LB2、LB3及びLB4の入射面71aまでの距離が変化するので、光ビームLB1、LB2、LB3及びLB4の入射面71aまでの距離が一定となるように、ZステージZSTに取り付けられた第3の移動台82をガイドレール等の第3のガイド手段、図示しない送りネジ等の第3の移動手段及び第3の移動手段85をZ方向(光ビームLBが入射面71aに対して垂直に入射する方向)に駆動する第3の駆動手段を使用してZ方向に移動可能とし、受光装置71をX方向(矢印A方向)に移動させて光ビームLB1、LB2、LB3及びLB4を測定するに従い、矢印で示すように第3の移動台82が上昇して、光ビームLB1、LB2、LB3及びLB4の入射面71aまでの距離が一定となるように、制御装置90によって制御されている。
このように、本実施例においては、光ビームLBが入射面71aに対して垂直に入射するように、光走査装置100を取り付けて測定するので、YステージYSTが捩れモーメントMによって移動台72が下降するに伴い、入射面71aが下降しても下降による影響を除去した状態で測定可能となるので、高精度で走査線曲がり特性をそくていすることが可能となる。
なお、本発明による上記実施例においては、走査線曲がり特性について説明したが、副走査方向の測定においても有効に使用可能である。
[実施例4]
次に、上記実施例記載の光学特性測定装置70を使用して、光走査装置100の走査曲がり特性を矯正する方法について説明する。
図19は、本発明による一実施形態の光走査装置100で使用される走査レンズ(トロイダルレンズ107A、107B、107C、107D)の概略構成を示している。本実施例で使用される光走査装置においては、走査レンズ107の中央部に加圧手段を設け、この加圧手段によって矢印のように、レンズ107の上面107aから加圧して、中央部のレンズ厚みを調整可能としている。また、レンズ107の一端107bの位置を矢印の方向に変更する調整手段をも取り付けている。これらの調整手段を使用して、測定装置70で走査線曲がり特性を測定し、図20に示すように、走査線曲がり特性を(a)の状態から(b)の状態に補正して走査線曲がり特性を低減させた状態の光走査装置100を調整することが可能となる。このような走査線曲がり特性を改善した光走査装置を使用して、画像形成装置を作製したときには、色ずれの少ない画像形成装置を作製することが可能となる。
本発明による一実施形態の画像形成装置の概略構成を示す断面図である。 本発明による一実施形態の光走査装置の光学レイアウト図である。 本発明による一実施形態の光学特性測定装置の概略構成を示す斜視図である。 本発明による他の実施形態の光学特性測定装置のYステージを切り欠いた概略構成を示す側面図である。 本発明による一実施形態の光学特性測定装置の受光装置としてラインCCDを使用した場合のCCDアドレスとCCD出力強度との関係を示すグラフ図である。 本発明による一実施形態の光学特性測定装置の受光装置としてエリアCCDを使用した場合のCCDYアドレスとCCDXアドレスとの関係を示すグラフ図である。 本発明による一実施形態の光学特性測定装置による受光装置で検出されるCCDXアドレスとYステージ位置との関係を示す走査線曲がり特性を示すグラフ図である。 従来の光学特性測定装置で使用されるX−Yステージの斜視図である。 図8におけるX−YステージのXステージの斜視図である。 図9におけるA−A線上で切断した断面図である。 図8のB−B線上で切断した断面図である。 従来の光学特性測定装置における撓み状況を説明するための模式図である。 従来の光学特性測定装置における光ビームと受光装置の入射面との関係を説明するための模式図である。 従来の光学特性測定装置によって測定された走査線曲がり特性を示すグラフ図である。 本発明による実施例1に係る光学特性測定装置で使用されるX−YステージのXステージで切断した断面図である。 本発明による実施例2に係る光学特性測定装置で使用されるX−YステージのXステージで切断した断面図である。 本発明による実施例3に係る光学特性測定装置で使用されるX−YステージのYステージで切断した断面図である。 本発明による実施例3に係る光学特性測定装置で測定される光ビームと受光装置の入射面との関係を示す模式図である。 本発明による実施例4に係る光走査装置で使用される走査レンズの斜視図である。 本発明による実施例4に係る光走査装置について光学特性測定装置で測定された走査線曲がり特性を示すグラフ図で、(a)は補正前の走査線曲がり特性を示すグラフ図、(b)は補正後の走査線曲がり特性を示すグラフ図である。
符号の説明
30B、30C、30M、30Y 感光体ドラム、31B、31C、31M、31Y クリーニング装置、32B、32C、32M、32Y 帯電チャージャ、30B、30C、30M、30Y トナーカートリッジ、40 転写ベルト、50 定着ローラ、61 用紙、70 光学特性測定装置、71 受光装置、71a 入射面、72 第1の移動台、73 第2の移動台、74 第1の駆動手段、75 第2の駆動手段、76,76a、76b ガイドシャフト(第1のガイド手段)、77 送りネジ(第1の移動手段)、78、78a、78b ガイドシャフト(第2のガイド手段)、79 送りネジ(第2の移動手段、80,81 支持部材、82 第3の移動台、83a、83b ガイドレール、84a、84b スライダ、85 第3のガイド手段、90 制御装置、92 基台、100 光走査装置、102 第1シリンダレンズ、103 第2シリンダレンズ、104 ポリゴンミラー、105 fθレンズ、106A、106B、106C、106D 反射ミラー、107A、107B、107C、107D トロイダルレンズ、108A、108B、108C、108D 反射ミラー、110A、110B、110C、110D 支持板、112B、112C、112D 駆動部材、130 光源、146 カップリングレンズ

Claims (9)

  1. 主走査方向及び副走査方向の被走査面を走査する走査光学装置から射出される光ビームを受光手段によって受光し、前記被走査面に照射された前記光ビームの主走査方向及び副走査方向のビームスポット位置を測定する前記走査光学装置の光学特性測定装置において、
    前記受光手段を、前記主走査方向に延在する第1のガイド部材上を前記主走査方向に摺動自在に設置された第1の移動台上に取り付け、
    当該第1の移動台と対向する前記第1のガイド部材の底部の中間位置に、前記副走査方向に延在する第2のガイド部材上を前記副走査方向に摺動自在に設置された第2の移動台を取り付け、
    前記第1の移動台は、前記第1のガイド部材に取り付けられた前記主走査方向に移動させる第1の移動手段に連結され、
    前記第2の移動台は、前記第2のガイド部材に取り付けられた前記副走査方向に移動させる第2の移動手段に連結され、
    前記第1の移動手段及び第2の移動手段の駆動によって、前記受光手段が同一平面内で、副走査方向及び主走査方向に移動自在に取り付けられており、
    前記第2のガイド部材は、基台上に取り付けられた副走査方向に平行に延びる少なくとも2本のガイドレールを有し、当該ガイドレールに沿って前記第2の移動台を摺動自在に案内することを特徴とする光学特性測定装置。
  2. 請求項1記載の光学特性測定装置において、
    前記第2のガイド部材は、基台上に取り付けられた副走査方向に平行に延びる2本のガイドレールを有し、
    前記第2の移動手段は、前記第2のガイド部材の2本のガイドレールの間に前記副走査方向に前記ガイドレールと平行に延びる送りネジを有しており、当該送りネジの一端は、当該送りネジを回転駆動するモータと接続され、
    前記第2の移動台は、前記送りネジに螺合されて送りネジの回転によって、前記副走査方向に移動されることを特徴とする光学特性測定装置。
  3. 請求項1又は2記載の光学特性測定装置において
    前記第1のガイド部材は、主走査方向に平行に延びる2本のガイドシャフトを有し、
    前記第1の移動手段は、前記第1のガイド部材の2本のガイドシャフトの間に前記主走査方向に前記ガイドシャフトと平行に延びる送りネジを有しており、当該送りネジの一端は、当該送りネジを回転駆動するモータと接続され、
    前記第1の移動台は、前記送りネジに螺合する螺合部と当該螺合部の両側に前記ガイドシャフトを挿通するスライドブッシュを備えており、前記送りネジの回転によって、前記主走査方向に移動されることを特徴とする光学特性測定装置。
  4. 主走査方向及び副走査方向の被走査面を走査する走査光学装置から射出される光ビームを受光手段によって受光し、前記被走査面に照射された前記光ビームの主走査方向及び副走査方向のビームスポット位置を測定する前記走査光学装置の光学特性測定装置において、
    前記受光手段を、前記主走査方向に延在する第1のガイド部材上を前記主走査方向に摺動自在に設置された第1の移動台上に取り付け、
    当該第1の移動台と対向する前記第1のガイド部材の底部の中間位置に、前記副走査方向に延在する第2のガイド部材上を前記副走査方向に摺動自在に設置された第2の移動台を取り付け、
    前記第1の移動台は、前記第1のガイド部材に取り付けられた前記主走査方向に移動させる第1の移動手段に連結され、
    前記第2の移動台は、前記第2のガイド部材に取り付けられた前記副走査方向に移動させる第2の移動手段に連結され、
    前記第1の移動手段及び第2の移動手段の駆動によって、前記受光手段が同一平面内で、副走査方向及び主走査方向に移動自在に取り付けられており、
    前記第2のガイド部材は、両端部で基台に固定され、さらに、副走査方向に平行に延びる少なくとも2本のガイドシャフトを有し、
    前記第2の移動手段は、前記第2のガイド部材の前記2本のガイドシャフトと平行に延びる送りネジを有しており、当該送りネジの一端は、当該送りネジを回転駆動するモータと接続され、
    前記第2の移動台は、前記送りネジに螺合する螺合部と前記ガイドシャフトを挿通するスライドブッシュを備えており、前記送りネジの回転によって前記副走査方向に移動可能となるように、基台から所定間隔を有して離隔された状態で前記第2のガイド部材によって保持され、
    当該第2の移動台は、前記第1の移動台の摺動範囲と等しい幅の支持部を有し、少なくとも当該支持部の幅方向の両端部にスライドブッシュを備え、当該スライドブッシュ内に、前記第2のガイド部材のガイドシャフトがそれぞれ挿通されていることを特徴とする光学特性測定装置。
  5. 請求項4記載の光学特性測定装置において
    前記第1のガイド部材は、主走査方向に平行に延びる2本のガイドシャフトを有し、
    前記第1の移動手段は、前記第1のガイド部材の2本のガイドシャフトの間に前記主走査方向に前記ガイドシャフトと平行に延びる送りネジを有しており、当該送りネジの一端は、当該送りネジを回転駆動するモータと接続され、
    前記第1の移動台は、前記送りネジに螺合する螺合部と当該螺合部の両側に前記ガイドシャフトを挿通するスライドブッシュを備えており、前記送りネジの回転によって、前記主走査方向に移動されることを特徴とする光学特性測定装置。
  6. 主走査方向及び副走査方向の被走査面を走査する走査光学装置から射出される光ビームを受光手段によって受光し、前記被走査面に照射された前記光ビームの主走査方向及び副走査方向のビームスポット位置を測定する前記走査光学装置の光学特性測定装置において、
    前記走査光学装置から副走査方向に所定間隔で射出される複数の光ビームが前記主走査方向と副走査方向とによって形成される平面に対して垂直方向となるように、前記走査光学装置が取り付けられ、
    前記受光手段の受光面が前記平面と平行になるように第3の移動台に取り付けられ、
    当該第3の移動台は、第1の移動台上に取り付けられた第3のガイド部材に取り付けられ、
    当該第1の移動台は、前記主走査方向に延在する第1のガイド部材上を前記主走査方向に摺動自在に取り付けられており、
    当該第1の移動台と対向する前記第1のガイド部材の底部の中間位置に、前記副走査方向に延在する第2のガイド部材上を前記副走査方向に摺動自在に設置された第2の移動台を取り付け、
    前記第1の移動台は、前記第1のガイド部材に取り付けられた前記主走査方向に移動させる第1の移動手段に連結され、
    前記第2の移動台は、前記第2のガイド部材に取り付けられた前記副走査方向に移動させる第2の移動手段に連結され、
    前記第1の移動手段及び第2の移動手段の駆動によって、前記受光手段が同一平面内で、副走査方向及び主走査方向に移動自在に取り付けられており、
    前記第3のガイド部材は、前記第3の移動台を前記垂直方向に摺動自在に案内するガイド手段を有し、
    前記第3の移動台は、前記第3のガイド部材のガイド手段によって前記垂直方向に移動させる第3の移動手段に連結され、当該第3の移動手段の駆動によって前記垂直方向に移動にとりつけられており、
    前記受光手段が前記走査光学装置から射出される他の光ビームを受光するときに、当該他の光ビームの受光位置まで第2の移動台を移動させると共に、各光ビームの出射部から受光手段の受光面までの距離が等しくなるように、第3の移動台を前記垂直方向に前記第3の移動手段を制御する制御装置を備えたことを特徴とする光学特性測定装置。
  7. レーザ光源から出射されたレーザ光を偏光する回転多面鏡及び変更されたレーザ光を被走査部材上に結像する走査レンズを備えた走査光学装置において、
    前記走査レンズ中央部を変形させる加圧調製手段を備え、当該加圧調製手段が請求項1乃至6の何れか1項記載の光学特性測定装置を用いて被走査面に形成される走査線の曲がりが最小となるように調整されていることを特徴とする走査光学装置。
  8. 請求項7記載の走査光学装置において、
    前記走査レンズは、傾き調整手段を備え、請求項1乃至6の何れか1項記載の光学特性測定装置を用いて被走査面に形成される走査線の曲がりが最小となるように前記加圧調整手段と共に当該傾き調整手段を調整して設定されていることを特徴とする走査光学装置。
  9. 感光体表面に走査光学装置によって静電潜像を形成する画像形成装置において、
    前記走査光学装置は、請求項7又は8記載の走査光学装置であることを特徴とする画像形成装置。
JP2007200084A 2007-07-31 2007-07-31 光学特性測定装置、走査光学装置及び画像形成装置 Pending JP2009036597A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007200084A JP2009036597A (ja) 2007-07-31 2007-07-31 光学特性測定装置、走査光学装置及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007200084A JP2009036597A (ja) 2007-07-31 2007-07-31 光学特性測定装置、走査光学装置及び画像形成装置

Publications (1)

Publication Number Publication Date
JP2009036597A true JP2009036597A (ja) 2009-02-19

Family

ID=40438648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007200084A Pending JP2009036597A (ja) 2007-07-31 2007-07-31 光学特性測定装置、走査光学装置及び画像形成装置

Country Status (1)

Country Link
JP (1) JP2009036597A (ja)

Similar Documents

Publication Publication Date Title
US7589756B2 (en) Optical scanning device, image forming apparatus, optical scanning correcting method, and image forming method
JP4768348B2 (ja) 光走査装置及び画像形成装置
US7505187B2 (en) Optical scanning unit and image forming apparatus
US20090153933A1 (en) Optical scanning device and image forming apparatus
EP1724625B1 (en) Optical scanning unit and image forming apparatus
US7903134B2 (en) Laser scanning apparatus having a photodetector having first and second light receiving units
US7218337B2 (en) Optical scanner, optical-path adjustment method, and image forming apparatus
JP2004333994A (ja) 光走査装置および画像形成装置
JP4753291B2 (ja) 光走査装置及び画像形成装置
JP4915839B2 (ja) 光走査装置及び画像形成装置
JP2009047551A (ja) 光学特性測定装置・走査光学系ユニット・画像形成装置
JP2007114518A (ja) 光走査装置、画像形成装置及び副走査位置補正方法
JP2009036597A (ja) 光学特性測定装置、走査光学装置及び画像形成装置
JP2005091927A (ja) 光走査装置および画像形成装置
JP5879898B2 (ja) アクチュエータ、光走査装置及び画像形成装置
CN103837983A (zh) 光学扫描装置和图像形成装置
JP2008058492A (ja) 光学特性測定装置、走査光学系ユニット、及び画像形成装置
JP5326951B2 (ja) 光走査装置及び画像形成装置
JP4822542B2 (ja) 光走査装置及び画像形成装置
JP2009037030A (ja) 光走査装置及び画像形成装置
JP4895242B2 (ja) 光走査装置及び画像形成装置
JP5263684B2 (ja) 光走査装置及び画像形成装置
JP2008265127A (ja) 光走査装置及び画像形成装置
JP2010072186A (ja) 保持機構、光走査装置及び画像形成装置
JP2009217090A (ja) 光走査装置及び画像形成装置