JP2009029926A - Resin composition for sealing photo-semiconductor, and photo-semiconductor device - Google Patents

Resin composition for sealing photo-semiconductor, and photo-semiconductor device Download PDF

Info

Publication number
JP2009029926A
JP2009029926A JP2007195148A JP2007195148A JP2009029926A JP 2009029926 A JP2009029926 A JP 2009029926A JP 2007195148 A JP2007195148 A JP 2007195148A JP 2007195148 A JP2007195148 A JP 2007195148A JP 2009029926 A JP2009029926 A JP 2009029926A
Authority
JP
Japan
Prior art keywords
optical semiconductor
composition
range
metal hydroxide
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007195148A
Other languages
Japanese (ja)
Other versions
JP4936173B2 (en
Inventor
Ikuo Nakasuji
郁雄 中筋
Masafumi Nakamura
雅史 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007195148A priority Critical patent/JP4936173B2/en
Publication of JP2009029926A publication Critical patent/JP2009029926A/en
Application granted granted Critical
Publication of JP4936173B2 publication Critical patent/JP4936173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition for sealing a photo-semiconductor capable of ensuring high light-hiding property hardly receiving an influence of a disturbance light, not using an environmental pollutant such as a bromo compound and antimony trioxide, having higher flame-resistant property than conventional ones and ensuring high flame-resistant property even in a molded article of thin thickness. <P>SOLUTION: The resin composition for sealing the photo-semiconductor contains an epoxy resin, a curing agent, titania, a metal hydroxide, and the other inorganic filler other than titania and the metal hydroxide as indispensable components. The epoxy resin having a dicyclopentadiene skeleton is contained in a range of 20-40 wt.% relative to the whole amount of the epoxy resin. A content of titania is in a range of 18-20 wt.% relative to the whole amount of the composition. The metal hydroxide contains both of magnesium hydroxide and aluminum hydroxide, and the content of the metal hydroxide is in a range of 15-18 wt.% relative to the whole amount of the composition. The content of the other inorganic filler is in a range of 45-50 wt.% relative to the whole amount of the composition. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、LED、フォトアイソレータ、フォトトランジスター、フォトダイオード、CCD、CMOS、EPROM等の光半導体素子を封止するために用いられる光半導体封止用樹脂組成物及びこれを用いて製造される光半導体装置に関するものである。   The present invention relates to an optical semiconductor sealing resin composition used for sealing optical semiconductor elements such as LEDs, photoisolators, phototransistors, photodiodes, CCDs, CMOSs, EPROMs, and light produced using the same. The present invention relates to a semiconductor device.

従来、半導体の封止材料として、密着性、耐湿性、電気絶縁性、耐熱性等に優れる点から、エポキシ樹脂組成物による樹脂封止が行われている。そのなかでも、エポキシ樹脂組成物によるトランスファモールドでの樹脂封止は、作業性並びに量産性の面でも優れている。   Conventionally, resin sealing with an epoxy resin composition has been performed as a semiconductor sealing material from the viewpoint of excellent adhesion, moisture resistance, electrical insulation, heat resistance, and the like. Among them, the resin sealing by transfer molding with the epoxy resin composition is excellent in terms of workability and mass productivity.

また、成形方式としては、大型タブレットを使用し、1回の成形で多数の半導体装置をトランスファモールドするコンベンショナル方式や、樹脂の利用効率を追求することを目的としてミニタブレットを使用したマルチブランジャー方式や、粉状樹脂組成物を使用し、成形機内で予めスティック状に加圧成形した成形体を金型内に挿入し、トランスファモールドするタイプの生産性に優れた成形方式等が導入されている。   In addition, as a molding method, a conventional method using a large tablet and transfer molding of a large number of semiconductor devices in one molding, or a multi-blanger method using a mini tablet for the purpose of pursuing resin utilization efficiency. In addition, a molding method that uses a powdered resin composition and is molded in a stick shape in a molding machine in advance and inserted into a mold and is transfer molded has been introduced. .

一方、半導体回路基板には、フォトカプラー、フォトアイソレータ等の光半導体装置のように、電気的に絶縁を図った上で、光学的に接続を図る光半導体デバイスが搭載される。これにより、電気的なノイズの影響を受けず、光による応答接続化を図ることが可能となる。   On the other hand, on a semiconductor circuit board, an optical semiconductor device that is optically insulated and optically connected is mounted like an optical semiconductor device such as a photocoupler or a photoisolator. Thereby, it is possible to achieve response connection by light without being affected by electrical noise.

また、光半導体装置のコストダウンのために、従来の対向型と呼ばれるタイプ、すなわち、リードフレームを2枚対向させて貼り合わせると共に、光透過性の高い材料と光を遮断する材料をそれぞれ成形するタイプ(ダブルモールド)から、反射型と呼ばれるタイプ、すなわち、リードフレーム1枚で組み立てることが可能で、且つ、内部での光反射効率が高く、外部からの光(外乱光)の光遮蔽効果の高い光半導体封止用樹脂組成物を用い、1回成形することで組立可能なシングルモールドタイプが開発されている。   Also, in order to reduce the cost of the optical semiconductor device, a conventional type called a facing type, that is, two lead frames are faced to each other and bonded together, and a highly light transmissive material and a light blocking material are respectively molded. It can be assembled from a type (double mold) to a type called a reflection type, that is, it can be assembled with a single lead frame, has high internal light reflection efficiency, and has a light shielding effect of external light (disturbance light). A single mold type that can be assembled by molding once using a high resin composition for encapsulating an optical semiconductor has been developed.

通常、上記のような光遮蔽効果の高い光半導体封止用樹脂組成物には、外乱光の影響を受けず、且つ、内部の光半導体素子の光伝達効率を向上させるために、チタニア等の光隠蔽値からの高い白色顔料が添加されており、このようにして外乱光の遮蔽と内部での光反射率の両立かについて鋭意検討され、製品化されている。   In general, the resin composition for sealing an optical semiconductor having a high light shielding effect as described above is not affected by ambient light and improves the light transmission efficiency of the internal optical semiconductor element. A white pigment having a high light concealment value is added, and thus, it has been intensively studied and commercialized whether or not both disturbance light shielding and internal light reflectance are compatible.

また、光半導体封止用樹脂組成物には、封止材としての性能と環境性能との両立化についての問題もある。すなわち、半導体装置の基本性能として、耐炎性グレードがUL94−V0以上であることが要求され、そのため従来難燃剤としてブロム化合物や三酸化アンチモン等が使用されていたが(特許文献1参照)、近年高まってきた地球環境保護の観点から有害物質の使用削減のために、前記難燃剤に代替する新たな難燃剤の開発が推進され、有機・無機リン化合物、金属酸化物、金属水酸化物等が検討されている。しかし、これらの新たな難燃剤の使用は、従来の難燃剤(ブロム化合物や三酸化アンチモン等)を使用した樹脂組成物に比べ、耐炎効果が低いために、薄肉成形品での耐炎性確保が充分でなかったり、耐炎性を補う目的で添加量を増やすことによる耐湿信頼性や成形性、硬化物物性の低下を生じやすく、環境性能との両立化が非常に困難な状況となっている。
特開2005−23230号公報(特に表1及び表2)
In addition, the resin composition for encapsulating an optical semiconductor also has a problem regarding compatibility between performance as a sealing material and environmental performance. That is, as a basic performance of a semiconductor device, a flame resistance grade is required to be UL94-V0 or higher, and therefore bromine compounds and antimony trioxide have been conventionally used as flame retardants (see Patent Document 1). In order to reduce the use of harmful substances from the viewpoint of increasing global environmental protection, the development of new flame retardants to replace the above flame retardants has been promoted, and organic and inorganic phosphorus compounds, metal oxides, metal hydroxides, etc. It is being considered. However, the use of these new flame retardants has a low flame resistance effect compared to resin compositions using conventional flame retardants (such as bromine compounds and antimony trioxide), so it is possible to ensure flame resistance in thin-walled molded products. It is not sufficient, or moisture resistance reliability, moldability, and physical properties of cured products are likely to be lowered by increasing the amount added to supplement flame resistance, and it is very difficult to achieve compatibility with environmental performance.
Japanese Patent Laying-Open No. 2005-23230 (especially Tables 1 and 2)

本発明は上記の点に鑑みてなされたものであり、特にシングルモールドタイプのフォトカプラーにおいて、基本性能である外乱光の影響を受けにくい高い光隠蔽性を確保した上で、より環境性能の高い光半導体封止用樹脂組成物及びこれを用いて製造される光半導体装置を提供することを目的とするものであり、具体的には、ブロム化合物、三酸化アンチモン等の環境規制物質を使用せずに、従来以上に耐炎性が高く、薄い肉厚の成形品でも優れた耐炎性を確保することができるような光半導体封止用樹脂組成物、及びこの光半導体封止用樹脂組成物を用いて製造される光半導体装置を提供することを目的とするものである。   The present invention has been made in view of the above points, and in particular, in a single mold type photocoupler, while ensuring high light concealment that is not easily affected by ambient light, which is the basic performance, it has higher environmental performance. An object of the present invention is to provide a resin composition for encapsulating an optical semiconductor and an optical semiconductor device manufactured using the same, and specifically, use an environmentally regulated substance such as a bromine compound or antimony trioxide. In addition, a resin composition for encapsulating an optical semiconductor, which has higher flame resistance than before, and can ensure excellent flame resistance even in a thin molded product, and this resin composition for encapsulating an optical semiconductor, An object of the present invention is to provide an optical semiconductor device manufactured by using the optical semiconductor device.

請求項1に係る光半導体封止用樹脂組成物は、エポキシ樹脂、硬化剤、チタニア、金属水酸化物、並びに前記チタニア及び金属水酸化物以外の他の無機充填材を必須成分として含有し、
ジシクロペンタジエン骨格を有するエポキシ樹脂をエポキシ樹脂全量に対して20〜40重量%の範囲で含有し、
チタニアの含有量が組成物全量に対して18〜20重量%の範囲であり、
金属水酸化物が水酸化マグネシウムと水酸化アルミニウムの両方を含むと共にこの金属水酸化物の含有量が組成物全量に対して15〜18重量%の範囲であり、
他の無機充填材の含有量が組成物全量に対して45〜50重量%の範囲であることを特徴とする。
The resin composition for optical semiconductor encapsulation according to claim 1 contains an epoxy resin, a curing agent, titania, a metal hydroxide, and an inorganic filler other than the titania and the metal hydroxide as essential components,
Containing an epoxy resin having a dicyclopentadiene skeleton in a range of 20 to 40% by weight based on the total amount of the epoxy resin,
The titania content is in the range of 18 to 20% by weight based on the total amount of the composition,
The metal hydroxide contains both magnesium hydroxide and aluminum hydroxide, and the content of the metal hydroxide is in the range of 15 to 18% by weight based on the total amount of the composition;
The content of the other inorganic filler is in the range of 45 to 50% by weight based on the total amount of the composition.

請求項2に発明は、請求項1において、上記金属水酸化物における水酸化マグネシウムと水酸化アルミニウムの、前者対後者の含有重量比率が、3:7〜7:3の範囲であることを特徴とする。   The invention according to claim 2 is characterized in that, in claim 1, the weight ratio of the former and the latter of magnesium hydroxide and aluminum hydroxide in the metal hydroxide is in the range of 3: 7 to 7: 3. And

請求項3に係る発明は、請求項1又は2において、上記金属水酸化物が、シラン系化合物にて表面処理が施されているものであることを特徴とする。   The invention according to claim 3 is characterized in that, in claim 1 or 2, the metal hydroxide is surface-treated with a silane compound.

請求項4に係る光半導体装置は、請求項1乃至3のいずれか一項に記載の光半導体封止用樹脂組成物にて封止して成ることを特徴とする。   An optical semiconductor device according to a fourth aspect is characterized by being sealed with the resin composition for optical semiconductor sealing according to any one of the first to third aspects.

請求項1に係る発明によれば、光半導体の封止用途に使用することで、特にシングルモールドタイプのフォトカプラーにおいて、外乱光に影響を受けにくく、内部光半導体素子3間の光伝達効率を高めることができると共に、誤作動を防止することができ、また環境に悪影響を及ぼすブロム化合物、三酸化アンチモン等を使用することなく、更に難燃剤を多量に使用することによる耐湿信頼性や成形性、硬化物物性の低下を引き起こすことなく、より肉厚の薄い成形品での耐炎性を向上することができ、高い環境性能を発揮しつつ良好な耐炎性、耐湿信頼性、成形性、硬化物物性を発揮することができるものである。   According to the first aspect of the present invention, the optical transmission efficiency between the internal optical semiconductor elements 3 can be reduced by using the optical semiconductor for sealing, especially in a single mold type photocoupler, which is not easily affected by disturbance light. In addition to being able to prevent malfunction, it is possible to prevent malfunctions, and without using bromine compounds, antimony trioxide, etc. that adversely affect the environment. It can improve the flame resistance of molded products with thinner thickness without causing deterioration of the physical properties of the cured product, while exhibiting high environmental performance, good flame resistance, moisture resistance reliability, moldability, cured product It can exhibit physical properties.

請求項2に係る発明によれば、入手容易な水酸化マグネシウム、水酸化アルミニウムを使用することで上記効果を奏する光半導体封止用樹脂組成物を得ることができ、しかも、熱分解温度が異なる水酸化マグネシウムと水酸化アルミニウムとを併用することで、より高い耐炎効果を発揮することができ、これにより難燃剤の添加量を抑えた上で、より良好な環境性能を発揮すると共に高い耐湿信頼性、成形性、硬化物物性を発揮することができる。   According to the second aspect of the present invention, it is possible to obtain a resin composition for encapsulating an optical semiconductor that exhibits the above effects by using readily available magnesium hydroxide and aluminum hydroxide, and the thermal decomposition temperatures are different. By using magnesium hydroxide and aluminum hydroxide in combination, it is possible to achieve a higher flame resistance effect, thereby suppressing the amount of flame retardant added and providing better environmental performance and high moisture resistance reliability. Property, moldability, and cured product physical properties can be exhibited.

請求項3に係る発明によれば、表面処理が施された金属水酸化物によって成形時の流動性が向上し、成形性や硬化物の曲げ強度、耐湿信頼性、耐リフロー性等の特性を向上することができて、環境性能を発揮しつつ良好な耐炎性、耐湿信頼性、成形性、硬化物物性を発揮することができる。   According to the invention of claim 3, the fluidity at the time of molding is improved by the surface-treated metal hydroxide, and the properties such as moldability, bending strength of the cured product, moisture resistance reliability, and reflow resistance are improved. It is possible to improve and exhibit good flame resistance, moisture resistance reliability, moldability, and cured product properties while exhibiting environmental performance.

請求項4に係る発明によれば、特にシングルモールドタイプのフォトカプラーにおいて、外乱光に影響を受けにくく、内部光半導体素子3間の光伝達効率を高めることができると共に、誤作動を防止することができ、また環境に悪影響を及ぼすブロム化合物、三酸化アンチモン等を使用することなく、更に難燃剤を多量に使用することによる耐湿信頼性や成形性、硬化物物性の低下を引き起こすことなく、より肉厚の薄い成形品での耐炎性を向上することができ、高い環境性能を発揮しつつ良好な耐炎性、耐湿信頼性、成形性、硬化物物性を発揮することができるものである。   According to the invention of claim 4, particularly in a single mold type photocoupler, it is difficult to be influenced by disturbance light, can improve the light transmission efficiency between the internal optical semiconductor elements 3, and prevent malfunction. Without using bromine compounds, antimony trioxide, etc., which have an adverse effect on the environment, and by using a large amount of flame retardants, without causing deterioration of moisture resistance reliability, moldability, and physical properties of cured products. It is possible to improve the flame resistance of a molded product having a thin wall thickness, and to exhibit good flame resistance, moisture resistance reliability, moldability, and cured product properties while exhibiting high environmental performance.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明に係る光半導体封止用樹脂組成物は、エポキシ樹脂、硬化剤、チタニア、金属水酸化物、並びに前記チタニア及び金属水酸化物以外の他の無機充填材を必須成分として含有する。   The resin composition for encapsulating an optical semiconductor according to the present invention contains an epoxy resin, a curing agent, titania, a metal hydroxide, and an inorganic filler other than the titania and the metal hydroxide as essential components.

エポキシ樹脂としては、ジシクロペンタジエン骨格を有するエポキシ樹脂を、組成物中のエポキシ樹脂全量に対して20〜40重量%の範囲で含有するものを用いる。このため、リードフレームとの密着性を向上すると共に硬化物の吸湿率を低減することができ、耐リフロー性を向上することが可能となる。これに対して、前記含有量が20重量%に満たないと充分な耐リフロー性を得ることができなくなり、また40重量%を超えると成形時の熱時剛性が低下するため成形性が悪化してしまうという問題がある。   As an epoxy resin, what contains the epoxy resin which has a dicyclopentadiene frame | skeleton in the range of 20 to 40 weight% with respect to the epoxy resin whole quantity in a composition is used. For this reason, while improving adhesiveness with a lead frame, the moisture absorption rate of hardened | cured material can be reduced and it becomes possible to improve reflow resistance. On the other hand, if the content is less than 20% by weight, sufficient reflow resistance cannot be obtained, and if it exceeds 40% by weight, the hot rigidity at the time of molding deteriorates and the moldability deteriorates. There is a problem that it ends up.

他のエポキシ樹脂としては、一分子中に二個以上のエポキシ基を有するものであれば特に限定されないが、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、トリグリシジルイソシアヌレート、脂肪族系エポキシ樹脂等を用いることができる。また、前記のエポキシ樹脂の芳香環に水素が添加されたエポキシ樹脂等を用いることもできる。これらの他のエポキシ樹脂は一種単独で用い、或いは二種以上を併用することができる。   The other epoxy resin is not particularly limited as long as it has two or more epoxy groups in one molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, orthocresol novolak Type epoxy resin, alicyclic epoxy resin, triglycidyl isocyanurate, aliphatic epoxy resin and the like can be used. An epoxy resin in which hydrogen is added to the aromatic ring of the epoxy resin can also be used. These other epoxy resins can be used alone or in combination of two or more.

硬化剤としては、使用するエポキシ樹脂と反応するものであれば特に制限はないが、比較的着色の少ないものが好ましい。例えば無水ヘキサヒドロフタル酸、無水テトラヒドロフタル酸等の酸無水物、フェノール、クレゾール、キシレノール、レゾールシン等とホルムアルデヒドとを縮合反応して得られるノボラック型フェノール樹脂等が挙げられる。その他にアミン系硬化剤も挙げられるが、硬化時の変色が大きいため使用する際は添加量等に注意を要する。これらの硬化剤は一種単独で用い、或いは二種以上を併用することができる。エポキシ樹脂と硬化剤の化学量論上の当量比は、色目や硬化物物性の点から、エポキシ樹脂/硬化剤(当量比)=0.8〜2の範囲であることが好ましい。   The curing agent is not particularly limited as long as it reacts with the epoxy resin used, but a curing agent with relatively little color is preferable. Examples thereof include novolak type phenol resins obtained by condensation reaction of acid anhydrides such as hexahydrophthalic anhydride and tetrahydrophthalic anhydride, phenol, cresol, xylenol, resorcin and the like with formaldehyde. In addition, amine-based curing agents are also mentioned, but due to the large discoloration during curing, attention should be paid to the amount added when used. These curing agents can be used alone or in combination of two or more. The stoichiometric equivalent ratio between the epoxy resin and the curing agent is preferably in the range of epoxy resin / curing agent (equivalent ratio) = 0.8 to 2 from the viewpoint of color and properties of the cured product.

チタニア(二酸化チタン)は、組成物全量に対して18〜20重量%の範囲で含有される。このチタニアの含有量が18重量%未満であると、光隠蔽性と光反射特性を共に高く得ることができないおそれがあり、逆に、この含有量が20重量%を超えると、成形性や成形品の特性が低下するおそれがある。   Titania (titanium dioxide) is contained in the range of 18 to 20% by weight based on the total amount of the composition. If the titania content is less than 18% by weight, it may not be possible to obtain both high light concealment and light reflection characteristics. Conversely, if the content exceeds 20% by weight, moldability and moldability may be reduced. The characteristics of the product may be degraded.

このチタニアは特に制限されるものではないが、製法上、硫酸イオン、ナトリウムイオン等の不純イオンが含まれるため、イオン交換水で煮沸抽出した際に溶出するイオン中におけるカリウム、ナトリウム、硫酸イオン、塩素イオン等の少ないものを使用したり、表面コーティングされたものを使用することが、良好な耐湿信頼性を得る上で望ましい。   Although this titania is not particularly limited, since impure ions such as sulfate ions and sodium ions are included in the production method, potassium, sodium, sulfate ions in ions eluted when boiled and extracted with ion-exchanged water, In order to obtain good moisture resistance reliability, it is desirable to use a material having a small amount of chlorine ions or the like or a surface-coated material.

金属水酸化物としては、工業的に比較的安価で入手可能な水酸化マグネシウムと水酸化アルミニウムを用いる。これらは一種単独で用いるのではなく、熱分解温度が異なる両者を併用するものであり、このため、より高い耐炎性が得られる。   As the metal hydroxide, magnesium hydroxide and aluminum hydroxide which are commercially available at a relatively low price are used. These are not used alone, but are used in combination with both having different thermal decomposition temperatures. Therefore, higher flame resistance can be obtained.

この金属水酸化物における水酸化マグネシウムと水酸化アルミニウムの比率は適宜設定されるが、前者対後者の含有重量比率が、3:7〜7:3の範囲であることが好ましく、この範囲において耐炎性の著しい向上がみられる。   The ratio of magnesium hydroxide to aluminum hydroxide in this metal hydroxide is appropriately set, but the former to latter content weight ratio is preferably in the range of 3: 7 to 7: 3, and the flame resistance is within this range. There is a marked improvement in sex.

また、これらの金属水酸化物には、予め酸化ケイ素やγ−グリシドキシプロピルトリエトキシシラン等のシラン系化合物による表面処理を施しておくことが好ましい。この場合、組成物の流動性が向上することにより、成形性や、硬化物の曲げ強度、耐湿信頼性、耐リフロー性等の特性を向上することができ、ブロム化合物や三酸化アンチモン等の環境に悪影響を及ぼすおそれのある物質の使用しないことにより環境性能を発揮しつつ、良好な耐炎性、耐湿信頼性、成形性、硬化物物性を発揮することができる。この表面処理は、例えば所定量のシラン系化合物を水酸化マグネシウム及び水酸化アルミニウムからなる金属水酸化物粉末と共にボールミル等に投入し、均一混合することにより行うことができる。   These metal hydroxides are preferably pretreated with a silane compound such as silicon oxide or γ-glycidoxypropyltriethoxysilane. In this case, by improving the fluidity of the composition, it is possible to improve properties such as formability, bending strength of the cured product, moisture resistance reliability, and reflow resistance, and environment such as bromide compounds and antimony trioxide. By not using a substance that may adversely affect the environment, it is possible to exhibit good flame resistance, moisture resistance reliability, moldability, and cured product properties while exhibiting environmental performance. This surface treatment can be carried out, for example, by putting a predetermined amount of a silane compound into a ball mill or the like together with a metal hydroxide powder made of magnesium hydroxide and aluminum hydroxide and mixing them uniformly.

上記金属水酸化物の含有量は、組成物全量に対して15〜18重量%の範囲とする。この範囲において硬化物の耐炎性、成形性、曲げ強度を向上することができる。この含有量が前記範囲より少ないと充分な耐炎性を得ることができなくなるおそれがあり、前記範囲より多いと曲げ強度が低下するおそれがある。   Content of the said metal hydroxide shall be 15 to 18 weight% with respect to the composition whole quantity. Within this range, the flame resistance, formability and bending strength of the cured product can be improved. If this content is less than the above range, sufficient flame resistance may not be obtained, and if it is more than the above range, bending strength may be reduced.

また、金属水酸化物の平均粒径が0.1〜10μmの範囲が好ましい。平均粒径が前記範囲より小さいと比表面積の増大による樹脂組成物の溶融粘度上昇に起因する流動性の低下を生じさせるおそれがあり、前記範囲より大きいと樹脂組成物内への均一分散性の低下を生じ、充分な耐炎性が得られないおそれがある。   Moreover, the range whose average particle diameter of a metal hydroxide is 0.1-10 micrometers is preferable. If the average particle size is smaller than the above range, there is a risk of causing a decrease in fluidity due to an increase in the melt viscosity of the resin composition due to an increase in specific surface area. If the average particle size is larger than the above range, uniform dispersibility in the resin composition may be caused. There is a risk that it will be lowered and sufficient flame resistance may not be obtained.

また、金属水酸化物の最大粒径は100μm以下であることが好ましく、この最大粒径が100μmを超えるようになると成形時に成形品の未充填が生じやすくなったり、ワイヤー変形等が生じやすくなるおそれがある。   In addition, the maximum particle size of the metal hydroxide is preferably 100 μm or less, and when the maximum particle size exceeds 100 μm, unfilled molded products are likely to occur during molding, and wire deformation and the like are likely to occur. There is a fear.

また、他の無機充填材としては、シリカ粉末を挙げることができる。シリカ粉末としては溶融シリカ、結晶シリカ等が挙げられる。その形状は特に制限されず、例えば球状、破砕状等の適宜の形状のものを用いることができる。   Moreover, silica powder can be mentioned as another inorganic filler. Examples of the silica powder include fused silica and crystalline silica. The shape in particular is not restrict | limited, For example, the thing of appropriate shapes, such as spherical shape and crushed shape, can be used.

他の無機充填材の含有量は組成物全量に対して45〜50重量%の範囲とする。このため、硬化物の吸湿率を低減すると共に、この硬化物の強度を向上し、更に硬化物の熱膨張率を低減することができる。これに対して前記含有量が45重量%に満たないと硬化物の吸湿率を充分に低減することができず、また硬化物の強度が充分に得られなくなって、耐リフロー性が悪化してしまい、また50重量%を超える場合には流動性が低下すると共に、溶融粘度が上昇してしまい、硬化物にボイドが生じたりワイヤー変形等の不良が発生したりするという問題がある。   The content of other inorganic fillers is in the range of 45 to 50% by weight with respect to the total amount of the composition. For this reason, while reducing the moisture absorption rate of hardened | cured material, the intensity | strength of this hardened | cured material can be improved and also the thermal expansion coefficient of hardened | cured material can be reduced. On the other hand, if the content is less than 45% by weight, the moisture absorption rate of the cured product cannot be sufficiently reduced, and the strength of the cured product cannot be sufficiently obtained, and the reflow resistance is deteriorated. On the other hand, if it exceeds 50% by weight, the fluidity is lowered and the melt viscosity is increased, resulting in problems such as voids in the cured product and defects such as wire deformation.

また、この他の無機充填材の平均粒径は8〜15μmの範囲であることが好ましく、その最大粒径は150μm以下、特に100μm以下であることが好ましい。この平均粒径が8μm未満であると封止成形時に樹脂漏れや樹脂バリ等に起因する成形不具合を生じて生産性や歩留まりの低下を生じるおそれがあり、逆に平均粒径が15μmを超えるとパッケージの薄肉部への樹脂の充填性が悪化して未充填等の成形不具合の原因となるおそれがある。また、他の無機充填材の最大粒径が150μmを超えると樹脂封入時のゲート詰まり、未充填等の成形不具合に加え、薄肉部の光隠蔽性の低下を生じるおそれがある。   The average particle size of the other inorganic filler is preferably in the range of 8 to 15 μm, and the maximum particle size is preferably 150 μm or less, particularly preferably 100 μm or less. If this average particle size is less than 8 μm, molding defects due to resin leakage, resin burrs, etc. may occur at the time of sealing molding, and productivity and yield may be reduced. Conversely, if the average particle size exceeds 15 μm, There is a possibility that the filling property of the resin into the thin portion of the package is deteriorated and causes molding defects such as unfilling. Further, if the maximum particle size of other inorganic fillers exceeds 150 μm, there is a possibility that the light concealment of the thin-walled portion may be deteriorated in addition to molding defects such as gate clogging and unfilling at the time of resin encapsulation.

また、組成物中には必要に応じて硬化促進剤を含有させることもできる。硬化促進剤としては、エポキシ樹脂と硬化剤との反応を促進させる作用を有する適宜のものを用いることができ、特に限定されるものではないが、比較的着色の少ないものを用いることが好ましく、例えばトリフェニルホスフィンジフェニルホスフィン等の有機ホスフィン系硬化促進剤、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリエタノールアミン、ベンジルジメチルアミン等の3級アミン系硬化促進剤及びその有機塩類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・ブロマイド等の有機酸塩類、1−ベンジル−2−フェニルイミダゾール等のイミダゾール類等が挙げられる。これらの硬化促進剤は一種単独で用い、或いは二種以上を併用することができる。また、硬化促進剤の含有量は組成物全量に対して0.05〜5重量%の範囲であることが好ましい。硬化促進剤の含有量が0.05重量%未満であるとエポキシ樹脂と硬化剤の反応の充分な促進効果を得ることができず、成形サイクルが悪化するおそれがあり、逆に含有量が5重量%に満たないとゲル化時間が短くなりすぎるためボイドや未充填等の成形性の悪化が引き起こされるおそれがある。   Moreover, a hardening accelerator can also be contained in a composition as needed. As the curing accelerator, an appropriate one having an action of accelerating the reaction between the epoxy resin and the curing agent can be used, and is not particularly limited, but it is preferable to use a relatively less colored one, For example, organic phosphine curing accelerators such as triphenylphosphine diphenylphosphine, tertiary amine curing accelerators such as 1,8-diazabicyclo (5,4,0) undecene-7, triethanolamine, benzyldimethylamine and the like Examples thereof include salts, organic acid salts such as tetraphenylphosphonium / tetraphenylborate and tetraphenylphosphonium / bromide, and imidazoles such as 1-benzyl-2-phenylimidazole. These curing accelerators can be used alone or in combination of two or more. Moreover, it is preferable that content of a hardening accelerator is the range of 0.05-5 weight% with respect to the composition whole quantity. When the content of the curing accelerator is less than 0.05% by weight, a sufficient acceleration effect of the reaction between the epoxy resin and the curing agent cannot be obtained, and the molding cycle may be deteriorated. If it is less than% by weight, the gelation time becomes too short, and there is a possibility that deterioration of moldability such as voids and unfilling may be caused.

更に、光半導体封止用樹脂組成物中には、上記成分のほか、必要に応じて適宜の離型剤、変色防止剤、シランカップリング剤、変性剤、赤外線吸収剤、可塑剤、希釈剤等を含有させても良い。   Furthermore, in the resin composition for encapsulating an optical semiconductor, in addition to the above components, an appropriate mold release agent, anti-discoloring agent, silane coupling agent, modifier, infrared absorber, plasticizer, diluent as necessary. Etc. may be included.

光半導体封止用樹脂組成物を調製するにあたっては、上記のような各成分をミキサー、ブレンダー等で均一にドライブレンドした後、ニーダー等の連続混練機で溶融混練し、次にこの混練物を冷却・固化した後、この固化物を粉砕することによって、組成物を調製することができる。この組成物は必要に応じてタブレット状やスティック状に成形しても良い。   In preparing the resin composition for sealing an optical semiconductor, the above components are uniformly dry blended with a mixer, a blender, etc., and then melt-kneaded with a continuous kneader such as a kneader. After cooling and solidifying, the composition can be prepared by pulverizing the solidified product. This composition may be formed into tablets or sticks as necessary.

図1は光半導体装置1の一例を示すものであり、この光半導体装置1は上記のように調製した光半導体封止用樹脂組成物を用いて光半導体素子3を封止することによって製造することができる。   FIG. 1 shows an example of an optical semiconductor device 1, and this optical semiconductor device 1 is manufactured by sealing an optical semiconductor element 3 using the resin composition for optical semiconductor sealing prepared as described above. be able to.

具体的には、図1(a)に示す光半導体装置1は対向型フォトカプラーの一例であり、このフォトカプラーは次のようにして製造することができる。すなわち、光半導体素子3として、発光素子であるLED4と受光素子であるフォトダイオード5を、対向するリードフレーム6,6にそれぞれ実装する。このときLED4の周りは光を透過するシリコーン8等でキャスティング等により封止する。次にこのリードフレーム6,6をLED4とフォトダイオード5とが対向した状態で、このLED4及びフォトダイオード5ごと、光を透過する封止材9にて封止する。前記封止材9は、例えばエポキシ樹脂組成物等の適宜の透明な樹脂組成物を用い、トランスファ成形等により形成することができる。次に、前記封止材9の周囲を光半導体封止用樹脂組成物にてトランスファ成形等により封止することで、この光半導体封止用樹脂組成物の硬化物2にて全面を覆い、対向型フォトカプラーを得ることができる。   Specifically, the optical semiconductor device 1 shown in FIG. 1A is an example of a counter-type photocoupler, and this photocoupler can be manufactured as follows. That is, as the optical semiconductor element 3, an LED 4 that is a light emitting element and a photodiode 5 that is a light receiving element are mounted on opposing lead frames 6 and 6, respectively. At this time, the periphery of the LED 4 is sealed by casting or the like with light-transmitting silicone 8 or the like. Next, the lead frames 6 and 6 are sealed with a sealing material 9 that transmits light together with the LED 4 and the photodiode 5 in a state where the LED 4 and the photodiode 5 face each other. The sealing material 9 can be formed by transfer molding or the like using an appropriate transparent resin composition such as an epoxy resin composition. Next, by sealing the periphery of the sealing material 9 with a resin composition for sealing an optical semiconductor by transfer molding or the like, the entire surface is covered with a cured product 2 of the resin composition for optical semiconductor sealing, A counter-type photocoupler can be obtained.

また、図1(b)に示す光半導体装置1は単チャンネル型の反射型フォトカプラーであり、このフォトカプラーは次のようにして製造することができる。すなわち、光半導体素子3として発光素子であるLED4と受光素子であるフォトダイオード5を対向させてリードフレーム6に実装し、このLED4とフォトダイオード5をシリコーン8等で一体にドーム状にオーバーコートした後、これらを光半導体封止用樹脂組成物でトランスファー成形等して封止することによって、この光半導体封止用樹脂組成物の硬化物2にて全面を覆い、単チャンネル型の反射型フォトカプラーを製造することができる。   Also, the optical semiconductor device 1 shown in FIG. 1B is a single-channel reflection type photocoupler, and this photocoupler can be manufactured as follows. That is, LED 4 as a light emitting element and photodiode 5 as a light receiving element face each other as optical semiconductor element 3 and are mounted on lead frame 6, and this LED 4 and photodiode 5 are integrally overcoated in a dome shape with silicone 8 or the like. Thereafter, these are sealed by transfer molding or the like with a resin composition for encapsulating an optical semiconductor, thereby covering the entire surface with a cured product 2 of the resin composition for encapsulating an optical semiconductor, and a single-channel reflective photo Couplers can be manufactured.

なお、図1(b)では、LED4及びフォトダイオード5、シリコーン8等が示されているが、実際には、リードフレーム6から導出された入出力用のピン7以外は、光半導体封止用樹脂組成物の硬化物2で光半導体装置1の全体が被覆されているので、外部からLED4等を視認することはできない。   FIG. 1B shows the LED 4, the photodiode 5, the silicone 8, and the like. In practice, except for the input / output pin 7 led out from the lead frame 6, it is for optical semiconductor sealing. Since the entire optical semiconductor device 1 is covered with the cured product 2 of the resin composition, the LEDs 4 and the like cannot be visually recognized from the outside.

また、通常、フォトカプラーのLED4としては近赤外(900〜1000nm)の光を出すGaAs素子が使用されるが、これに限定されるものではなく、発光波長(色)の異なる化合物半導体からなる各種のLED4を用いても良い。LED4やフォトダイオード5等の光半導体素子3が応力に弱い場合には上記のように弾性率の低いシリコーン6でオーバーコートすると、光半導体素子3を保護することができる。また、光半導体装置1内に設けられるLED4とフォトダイオード5等からなる光半導体素子3の組み合わせを増加させることによって、2チャンネル以上の多チャンネル型の光半導体装置1を製造することもできる。   In general, a GaAs element that emits near-infrared (900 to 1000 nm) light is used as the LED 4 of the photocoupler. However, the present invention is not limited to this, and is made of compound semiconductors having different emission wavelengths (colors). Various LEDs 4 may be used. When the optical semiconductor element 3 such as the LED 4 or the photodiode 5 is weak against stress, the optical semiconductor element 3 can be protected by overcoating with the silicone 6 having a low elastic modulus as described above. Further, the multi-channel type optical semiconductor device 1 having two or more channels can be manufactured by increasing the combination of the optical semiconductor elements 3 including the LEDs 4 and the photodiodes 5 provided in the optical semiconductor device 1.

そして、図1に示す光半導体装置1においては、この光半導体装置1を封止する光半導体封止用樹脂組成物の硬化物2中にチタニアが含有されており、硬化物の光透過率を低く設定しているので、光半導体装置1の内部のフォトダイオード等の光半導体素子3に外乱光が悪影響を及ぼすことを防止することができる。また、光半導体装置1の内部において硬化物により光信号を確実に反射させて、内部の光半導体素子3間の光伝達効率を向上することができるものである。   And in the optical semiconductor device 1 shown in FIG. 1, titania is contained in the hardened | cured material 2 of the resin composition for optical semiconductor sealing which seals this optical semiconductor device 1, and the light transmittance of hardened | cured material is shown. Since it is set low, it is possible to prevent disturbance light from adversely affecting the optical semiconductor element 3 such as a photodiode inside the optical semiconductor device 1. In addition, the optical signal can be reliably reflected by the cured product inside the optical semiconductor device 1 to improve the light transmission efficiency between the internal optical semiconductor elements 3.

また、この光半導体封止用樹脂組成物の硬化物2は、金属水酸化物として熱分解温度が異なる水酸化アルミニウム(熱分解温度約200℃)と水酸化マグネシウム(熱分解温度約340℃)の両者を含有するため、環境に悪影響を及ぼすブロム化合物、三酸化アンチモン等を含まないだけでなく、耐炎性に優れた光半導体装置1を提供することが可能である。更に、これらの金属水酸化物を併用することにより、耐湿信頼性や成形性、硬化物物性の低下を引き起こす有機・無機リン化合物等を含有させることなく、耐炎性を大幅に向上することができるものであり、加えて前記金属水酸化物の表面をシラン系化合物で処理してコーティングすることによって、更に成形性や硬化物の曲げ強度、耐湿信頼性、耐リフロー性等の特性を向上することができ、環境性能を発揮しつつ、高い耐炎性、耐湿信頼性、成形性、硬化物物性を発揮することができるものである。   In addition, the cured product 2 of the resin composition for encapsulating an optical semiconductor is composed of aluminum hydroxide (thermal decomposition temperature: about 200 ° C.) and magnesium hydroxide (thermal decomposition temperature: about 340 ° C.) having different thermal decomposition temperatures as metal hydroxides. Therefore, it is possible to provide the optical semiconductor device 1 having not only a bromine compound, antimony trioxide and the like that adversely affect the environment, but also excellent flame resistance. Furthermore, by using these metal hydroxides in combination, flame resistance can be greatly improved without containing an organic / inorganic phosphorus compound or the like that causes a decrease in moisture resistance reliability, moldability, and cured material properties. In addition, the surface of the metal hydroxide is treated with a silane compound and coated to further improve properties such as moldability, bending strength of cured products, moisture resistance reliability, and reflow resistance. It is possible to exhibit high flame resistance, moisture resistance reliability, moldability, and cured product properties while exhibiting environmental performance.

以下、本発明を実施例によって具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

(原材料)
エポキシ樹脂として、オルソクレゾールノボラック型エポキシ樹脂(第日本インキ化学工業株式会社製「N655EXP−S」)、ジシクロペンタジエン型エポキシ樹脂(大日本インキ化学工業株式会社製「HP−7200L」)、及びブロム化エポキシ樹脂(住友化学株式会社製「ESB400T」)を用いた。
(raw materials)
As the epoxy resin, orthocresol novolak type epoxy resin (“N655EXP-S” manufactured by Dainippon Ink and Chemicals, Inc.), dicyclopentadiene type epoxy resin (“HP-7200L” manufactured by Dainippon Ink and Chemicals, Inc.), and bromine Epoxy resin (“ESB400T” manufactured by Sumitomo Chemical Co., Ltd.) was used.

硬化剤として、フェノールノボラック(明和化成株式会社製「DL−65」)を用いた。   Phenol novolak (“DL-65” manufactured by Meiwa Kasei Co., Ltd.) was used as the curing agent.

硬化促進剤として、トリフェニルフォスフィン(北興化学工業株式会社製「TPP」)を用いた。   Triphenylphosphine (“TPP” manufactured by Hokuko Chemical Co., Ltd.) was used as a curing accelerator.

無機充填材として、球状シリカ(平均粒径15μm、最大粒径100μm)及び破砕シリカ(平均粒径8μm、最大粒径100μm)を、前者対後者が2:8の重量比となるように混合したものを用いた。   As inorganic fillers, spherical silica (average particle size 15 μm, maximum particle size 100 μm) and crushed silica (average particle size 8 μm, maximum particle size 100 μm) were mixed so that the weight ratio of the former to the latter was 2: 8. A thing was used.

顔料として、チタニアを用いた。   Titania was used as a pigment.

金属水酸化物としては、表面処理を施していない水酸化アルミニウム(平均粒径1μm、最大粒径10μm)、エポキシシラン化合物による表面処理が施された水酸化アルミニウム、明和電工株式会社製「HP−360STE」)、表面処理を施していない水酸化マグネシウム(平均粒径1μm、最大粒径10μm)、及びシラン系化合物による表面処理が施された水酸化マグネシウム(協和化学工業株式会社製「キスマ−8SN」)を用いた。   Examples of the metal hydroxide include aluminum hydroxide that has not been surface-treated (average particle size 1 μm, maximum particle size 10 μm), aluminum hydroxide that has been surface-treated with an epoxysilane compound, “HP-” manufactured by Meiwa Electric Works, Ltd. 360STE)), magnesium hydroxide not subjected to surface treatment (average particle size 1 μm, maximum particle size 10 μm), and magnesium hydroxide subjected to surface treatment with a silane compound (“Kisuma-8SN” manufactured by Kyowa Chemical Industry Co., Ltd.) )).

無機難燃剤として三酸化アンチモン(株式会社鈴裕化学製「AT−3」)を用いた。   Antimony trioxide (“AT-3” manufactured by Suzuhiro Chemical Co., Ltd.) was used as an inorganic flame retardant.

シランカップリング剤として、信越化学工業株式会社製「KBM403」を用いた。   “KBM403” manufactured by Shin-Etsu Chemical Co., Ltd. was used as the silane coupling agent.

(光半導体封止用樹脂組成物の調製)
表1に示す各成分を配合し、これをミキサーで均一にドライブレンドした後、ニーダーで溶融混練し、次にこの混練物を冷却・固化した後、この固化物を粉砕することによって、光半導体封止用樹脂組成物を封止材料として調製した。
(Preparation of resin composition for optical semiconductor encapsulation)
Each component shown in Table 1 was blended, and this was uniformly dry blended with a mixer, then melted and kneaded with a kneader, then cooled and solidified, and then the solidified product was pulverized. A sealing resin composition was prepared as a sealing material.

(耐炎性の評価)
金型温度175℃、キュア時間120秒の成形条件で、光半導体封止用樹脂組成物を金型を用いてトランスファー成形した後、175℃で6時間ポストキュアすることによって、厚み1/16インチ(1.59mm)の試験片を作製した。この試験片に対して、UL94試験方法に従い、耐炎性を測定した。その結果を下記表1に示す。
(Evaluation of flame resistance)
The resin composition for optical semiconductor encapsulation was transfer molded using a mold under molding conditions of a mold temperature of 175 ° C. and a curing time of 120 seconds, and then post-cured at 175 ° C. for 6 hours to obtain a thickness of 1/16 inch. A test piece (1.59 mm) was produced. The flame resistance of the test piece was measured according to the UL94 test method. The results are shown in Table 1 below.

(光透過率の評価)
上記耐炎性の評価時と同一の成形条件により50mmφ×0.3mmtの寸法の円盤状のテストピースを作製した。
(Evaluation of light transmittance)
A disk-shaped test piece having a size of 50 mmφ × 0.3 mmt was produced under the same molding conditions as in the evaluation of the flame resistance.

このテストピースに対し、株式会社島津製作所製の積分球付き分光光度計を使用して、波長940nmの光透過率及び光反射率を測定した。   The test piece was measured for light transmittance and light reflectance at a wavelength of 940 nm using a spectrophotometer with an integrating sphere manufactured by Shimadzu Corporation.

光透過率については、0.01%未満であるものを[◎]とし、0.01〜0.3%であるものを[○]とし、0.3%を超えるものを[×]として評価した。その結果を下記表1に示す。   For light transmittance, a value of less than 0.01% is evaluated as [◎], a value of 0.01 to 0.3% is evaluated as [◯], and a value exceeding 0.3% is evaluated as [×]. did. The results are shown in Table 1 below.

また、光反射率については、65%未満であるものを[×]とし、65〜90%であるものを[○]とし、90%を超えるものを[◎]として評価した。その結果を下記表1に示す。   Further, the light reflectance was evaluated as [×] when it was less than 65%, [◯] when it was 65 to 90%, and [[] when it was over 90%. The results are shown in Table 1 below.

(外乱光遮蔽性の測定)
図1(b)に示すような単チャンネル型の反射型フォトカプラー(パッケージ形状:4ピンDIP)を次のようにしてそれぞれ50個製造した。すなわち、LED4(GaAs素子)とフォトダイオード5を対向させてリードフレーム6にそれぞれ実装し、LED4とフォトダイオード5をシリコーン8で一体にドーム状にオーバーコートした後、これを光半導体封止用樹脂組成物でトランスファー成形して封止することによって、単チャンネルの反射型フォトカプラーを製造した。このとき光半導体封止用樹脂組成物の硬化物2の最薄肉部の厚みが0.3mmとなるようにした。
(Measurement of disturbance light shielding properties)
50 single-channel reflection type photocouplers (package shape: 4-pin DIP) as shown in FIG. 1B were manufactured as follows. That is, the LED 4 (GaAs element) and the photodiode 5 are mounted on the lead frame 6 so as to face each other, and the LED 4 and the photodiode 5 are integrally coated with a silicone 8 in a dome shape, and then this is a resin for sealing an optical semiconductor A single-channel reflective photocoupler was produced by transfer molding with the composition and sealing. At this time, the thickness of the thinnest portion of the cured product 2 of the resin composition for sealing an optical semiconductor was set to 0.3 mm.

そして、この反射型フォトカプラーに外部から太陽光(自然光)を照射した場合の受光側の出力電流を測定した。受光側の出力電流が小さければ小さいほど、最薄肉部で光信号が阻止されていることとなり、外乱光の影響を受けずに反射型フォトカプラーが駆動することとなる。そして、受光側の出力電流が0.1μA未満であるものを[◎]とし、0.1μA〜0.1mAであるものを[○]とし、0.1mAを超えるものを[×]として、反射型フォトカプラーの外乱光遮蔽性の良否を判定した。尚、下記表1に示す結果は、50個の評価用の反射型フォトカプラーについての平均的な評価である。   Then, the output current on the light receiving side when sunlight (natural light) was irradiated from the outside to the reflection type photocoupler was measured. The smaller the output current on the light receiving side, the more light signals are blocked at the thinnest wall, and the reflective photocoupler is driven without being affected by ambient light. The light receiving side output current of less than 0.1 μA is indicated as [◎], the current from 0.1 μA to 0.1 mA is indicated as [○], and the current exceeding 0.1 mA is indicated as [×]. The disturbance light shielding property of the photocoupler was judged. The results shown in Table 1 below are average evaluations of 50 evaluation reflective photocouplers.

(流動性評価)
各実施例及び比較例につき、流動性評価用のパッケージ(18SOP)を、上記耐炎性の評価の場合と同一の条件で50個ずつ作製した。得られたパッケージにつき、超音波探査装置を用いて、封止樹脂内部に存在するボイドを測定し、封止樹脂に対するボイドの体積比率を導出した。そして、ボイドの体積比率が0.01%未満のものを[◎]、0.01%以上0.1%未満のものを[○]、0.1%以上のものを[×]と評価した。
(Liquidity assessment)
For each of the Examples and Comparative Examples, 50 fluidity evaluation packages (18SOP) were produced in the same conditions as in the case of the flame resistance evaluation. About the obtained package, the void which exists in sealing resin was measured using the ultrasonic survey apparatus, and the volume ratio of the void with respect to sealing resin was derived | led-out. The void volume ratio of less than 0.01% was evaluated as [[], the void ratio of 0.01% or more and less than 0.1% was evaluated as [◯], and the void ratio of 0.1% or more was evaluated as [×]. .

(曲げ強度の評価)
上記成形条件により4mm×10mm×80mmの寸法のテストピースを成形した。次に、島津製作所製のオートグラフを用い試験速度2mm/minにて破断強度を測定した。このとき試験条件は、支点間距離64mmとし、支持台2mmRを使用した。そして破断強度が120MPa以上170MPa未満のものを[○]、100MPa以上120MPa未満のものを[△]、100MPa未満のものを[×]と判定して評価した。
(Evaluation of bending strength)
A test piece having a size of 4 mm × 10 mm × 80 mm was molded under the above molding conditions. Next, the breaking strength was measured at a test speed of 2 mm / min using an autograph manufactured by Shimadzu Corporation. At this time, the test conditions were a fulcrum distance of 64 mm and a support base of 2 mmR. Then, evaluation was made by determining that the breaking strength was 120 MPa or more and less than 170 MPa as [O], 100 MPa or more and less than 120 MPa as [[Delta]], and less than 100 MPa as [x].

(耐リフロー性の評価)
上記成形条件により評価用パッケージとして18SOPを10個作製した。この評価用パッケージに125℃で16時間ベーク処理を施した後、85℃/85%RH/96hrの条件で吸湿前処理を施し、更にピーク温度260℃でのIRリフロー処理を三回施した。
(Evaluation of reflow resistance)
Ten 18SOPs were produced as evaluation packages under the above molding conditions. This evaluation package was baked at 125 ° C. for 16 hours, then pretreated for moisture absorption under the conditions of 85 ° C./85% RH / 96 hr, and further subjected to IR reflow treatment at a peak temperature of 260 ° C. three times.

リフロー処理後、超音波探査装置を用い、チップ表面の剥離発生の有無を各10個のパッケージについて行った。そして、チップ剥離の発生がないものを[○]、チップ剥離の発生があるものを[×]と判定して評価した。尚、下記表1に示す結果は、10個の評価用パッケージについての平均的な評価である。   After the reflow treatment, the presence or absence of peeling of the chip surface was determined for each of 10 packages using an ultrasonic probe. Then, evaluation was made by judging that no chip peeling occurred [[]], and one with chip peeling [x]. The results shown in Table 1 below are average evaluations for 10 evaluation packages.

(耐湿信頼性の評価)
上記成形条件により評価用パッケージとして回路幅3μmのアルミニウム配線を施したテスト用素子を実装した16DIPを各10個作製した。この評価用パッケージに、85℃/85%RH/25V/1000hrの条件で高温高湿バイアステストを実施し、電気的なオープン不良の発生がないものを[○]、オープン不良の発生があるものを[×]と判定して評価した。尚、下記表1に示す結果は、10個の評価用パッケージについての平均的な評価である。
(Evaluation of moisture resistance reliability)
Ten 16DIPs each mounted with a test element on which an aluminum wiring having a circuit width of 3 μm was mounted as an evaluation package under the above molding conditions were produced. This evaluation package was subjected to a high-temperature and high-humidity bias test under the conditions of 85 ° C./85% RH / 25V / 1000 hr. Was evaluated as [×]. The results shown in Table 1 below are average evaluations for 10 evaluation packages.

Figure 2009029926
Figure 2009029926

本発明に係る光半導体装置を示すものであり、(a)は対向型フォトカプラーの一例を示す概略断面図、(b)は反射型フォトカプラーの一例を示す概略平面図である。BRIEF DESCRIPTION OF THE DRAWINGS The optical semiconductor device which concerns on this invention is shown, (a) is a schematic sectional drawing which shows an example of a counter-type photocoupler, (b) is a schematic plan view which shows an example of a reflection type photocoupler.

符号の説明Explanation of symbols

1 光半導体装置   1 Optical semiconductor device

Claims (4)

エポキシ樹脂、硬化剤、チタニア、金属水酸化物、並びに前記チタニア及び金属水酸化物以外の他の無機充填材を必須成分として含有し、
ジシクロペンタジエン骨格を有するエポキシ樹脂をエポキシ樹脂全量に対して20〜40重量%の範囲で含有し、
チタニアの含有量が組成物全量に対して18〜20重量%の範囲であり、
金属水酸化物が水酸化マグネシウムと水酸化アルミニウムの両方を含むと共にこの金属水酸化物の含有量が組成物全量に対して15〜18重量%の範囲であり、
他の無機充填材の含有量が組成物全量に対して45〜50重量%の範囲であることを特徴とする光半導体封止用樹脂組成物。
Containing an epoxy resin, a curing agent, titania, a metal hydroxide, and other inorganic fillers other than the titania and the metal hydroxide as essential components,
Containing an epoxy resin having a dicyclopentadiene skeleton in a range of 20 to 40% by weight based on the total amount of the epoxy resin,
The titania content is in the range of 18 to 20% by weight based on the total amount of the composition,
The metal hydroxide contains both magnesium hydroxide and aluminum hydroxide, and the content of the metal hydroxide is in the range of 15 to 18% by weight based on the total amount of the composition;
Content of other inorganic filler is 45 to 50 weight% of range with respect to the composition whole quantity, The resin composition for optical semiconductor sealing characterized by the above-mentioned.
上記金属水酸化物における水酸化マグネシウムと水酸化アルミニウムの、前者対後者の含有重量比率が、3:7〜7:3の範囲であることを特徴とする請求項1に記載の光半導体封止用樹脂組成物。   2. The optical semiconductor encapsulation according to claim 1, wherein the weight ratio of the former to the latter of magnesium hydroxide and aluminum hydroxide in the metal hydroxide is in the range of 3: 7 to 7: 3. Resin composition. 上記金属水酸化物が、シラン系化合物にて表面処理が施されているものであることを特徴とする請求項1又は2に記載の光半導体封止用樹脂組成物。   The resin composition for optical semiconductor encapsulation according to claim 1 or 2, wherein the metal hydroxide is surface-treated with a silane compound. 請求項1乃至3のいずれか一項に記載の光半導体封止用樹脂組成物にて封止して成ることを特徴とする光半導体装置。   An optical semiconductor device, wherein the optical semiconductor device is sealed with the optical semiconductor sealing resin composition according to claim 1.
JP2007195148A 2007-07-26 2007-07-26 Resin composition for optical semiconductor encapsulation and optical semiconductor device Active JP4936173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007195148A JP4936173B2 (en) 2007-07-26 2007-07-26 Resin composition for optical semiconductor encapsulation and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195148A JP4936173B2 (en) 2007-07-26 2007-07-26 Resin composition for optical semiconductor encapsulation and optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2009029926A true JP2009029926A (en) 2009-02-12
JP4936173B2 JP4936173B2 (en) 2012-05-23

Family

ID=40400791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195148A Active JP4936173B2 (en) 2007-07-26 2007-07-26 Resin composition for optical semiconductor encapsulation and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP4936173B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108184A (en) * 2009-12-24 2011-06-29 汉高股份有限及两合公司 Epoxy resin composition and application thereof
JP2014033124A (en) * 2012-08-06 2014-02-20 Panasonic Corp Method of manufacturing photocoupler device
JP2016088995A (en) * 2014-10-31 2016-05-23 日立化成株式会社 Resin composition for encapsulating photosemiconductor and photosemiconductor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255852A (en) * 1996-03-22 1997-09-30 Matsushita Electric Works Ltd Epoxy resin composition for sealing material and semiconductor device using the same
JPH11236490A (en) * 1998-02-23 1999-08-31 Matsushita Electric Works Ltd Epoxy resin composition for sealing and semiconductor device
JP2002356539A (en) * 2001-05-30 2002-12-13 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003089745A (en) * 2001-09-18 2003-03-28 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2005023230A (en) * 2003-07-03 2005-01-27 Kyocera Chemical Corp Optical semiconductor sealing resin composition and optical semiconductor device
JP2007031514A (en) * 2005-07-25 2007-02-08 Kyocera Chemical Corp White epoxy resin composition and electronic part

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255852A (en) * 1996-03-22 1997-09-30 Matsushita Electric Works Ltd Epoxy resin composition for sealing material and semiconductor device using the same
JPH11236490A (en) * 1998-02-23 1999-08-31 Matsushita Electric Works Ltd Epoxy resin composition for sealing and semiconductor device
JP2002356539A (en) * 2001-05-30 2002-12-13 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003089745A (en) * 2001-09-18 2003-03-28 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2005023230A (en) * 2003-07-03 2005-01-27 Kyocera Chemical Corp Optical semiconductor sealing resin composition and optical semiconductor device
JP2007031514A (en) * 2005-07-25 2007-02-08 Kyocera Chemical Corp White epoxy resin composition and electronic part

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108184A (en) * 2009-12-24 2011-06-29 汉高股份有限及两合公司 Epoxy resin composition and application thereof
WO2011088950A1 (en) * 2009-12-24 2011-07-28 Henkel Ag & Co. Kgaa Epoxy resin composition and surface mounting device coated with said composition
CN102666639A (en) * 2009-12-24 2012-09-12 汉高股份有限及两合公司 Epoxy resin composition and surface mounting device coated with said composition
CN102108184B (en) * 2009-12-24 2015-04-22 汉高股份有限及两合公司 Epoxy resin composition and application thereof
JP2014033124A (en) * 2012-08-06 2014-02-20 Panasonic Corp Method of manufacturing photocoupler device
JP2016088995A (en) * 2014-10-31 2016-05-23 日立化成株式会社 Resin composition for encapsulating photosemiconductor and photosemiconductor

Also Published As

Publication number Publication date
JP4936173B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5545246B2 (en) Resin composition, reflector for light emitting semiconductor element, and light emitting semiconductor device
TWI553033B (en) Resin composition for optical semiconductor element housing package, and optical semiconductor light-emitting device obtained using the same
JP2006298973A (en) Resin composition for sealing optical semiconductor and optical semiconductor device
JP2013209479A (en) Optical semiconductor device
JP2008306151A (en) Epoxy resin composition for optical semiconductor, and substrate for loading optical semiconductor element using the same, and optical semiconductor device
JP5143964B1 (en) White curable composition for optical semiconductor device, and molded article for optical semiconductor device
JP2008106180A (en) Resin composition for encapsulating optical semiconductor and optical semiconductor device
JP5557770B2 (en) Thermosetting epoxy resin composition, reflecting member for optical semiconductor device, and optical semiconductor device
JP4936173B2 (en) Resin composition for optical semiconductor encapsulation and optical semiconductor device
JP4894554B2 (en) Resin composition for optical semiconductor encapsulation and optical semiconductor device
JP5242530B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device
JP2009246334A (en) Thermosetting resin composition for light reflection, substrate for loading photosemiconductor device and manufacturing method therefor, and photosemiconductor device
JP2003003043A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP2006206783A (en) Epoxy resin composition for optical semiconductor encapsulation and optical semiconductor device
JP4735477B2 (en) Resin composition for optical semiconductor encapsulation and optical semiconductor device
JP5825650B2 (en) Epoxy resin composition for optical semiconductor reflector, thermosetting resin composition for optical semiconductor device, lead frame for optical semiconductor device obtained by using the same, encapsulated optical semiconductor element, and optical semiconductor device
WO2013145607A1 (en) Resin composition for reflecting light, substrate for mounting optical semiconductor element, and optical semiconductor device
WO2013146404A1 (en) White curable composition for optical semiconductor device, molded article for optical semiconductor device and optical semiconductor device
JP5281040B2 (en) Thermosetting epoxy resin composition, pre-mold package, LED device and semiconductor device
JP6191705B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP2014237841A (en) White curable composition for optical semiconductor device, white tablet for optical semiconductor device, molding for optical semiconductor device, and optical semiconductor device
JP5167424B1 (en) White curable composition for optical semiconductor device and molded article for optical semiconductor device
JP2019156955A (en) High strength cured product of white thermosetting epoxy resin, reflector substrate for optical semiconductor element, methods for producing them, and method for increasing strength of cured product
JP6740997B2 (en) Substrate for mounting optical semiconductor element and optical semiconductor device
JP2002030133A (en) Epoxy resin composition for optical semiconductor and optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4936173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150