JP2009026442A - Cppセンサを有する磁気ヘッド - Google Patents

Cppセンサを有する磁気ヘッド Download PDF

Info

Publication number
JP2009026442A
JP2009026442A JP2008179975A JP2008179975A JP2009026442A JP 2009026442 A JP2009026442 A JP 2009026442A JP 2008179975 A JP2008179975 A JP 2008179975A JP 2008179975 A JP2008179975 A JP 2008179975A JP 2009026442 A JP2009026442 A JP 2009026442A
Authority
JP
Japan
Prior art keywords
layer
magnetic layer
magnetic head
sensor
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008179975A
Other languages
English (en)
Inventor
Mustafa Michael Pinarbasi
ムスタファ・マイケル・ピナルバシ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Publication of JP2009026442A publication Critical patent/JP2009026442A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3929Disposition of magnetic thin films not used for directly coupling magnetic flux from the track to the MR film or for shielding
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)

Abstract

【課題】CPP読取りセンサのサイズが低減されるにつれ、固定磁性層における磁化の安定化が犠牲になる。したがって、固定磁性層の磁化の安定化を向上させる必要がある。
【解決手段】センサ110の中央のセンサスタック130は、第1の磁気シールド層34の上に形成され、キャップ層62、自由磁性層54およびトンネル障壁層50の後壁66を有して形成される。それに加えて、固定磁性層124およびAFM層120の後壁132も形成される。センサ110の側壁70の間の距離がセンサの読取り幅Wを規定する。次に、絶縁層74が側壁70上に堆積される。その後、Co−Pt合金などの材料から成る磁気ハードバイアス素子76が、側壁70に近接した絶縁層74上またはその上方に形成される。続いて、第2の磁気シールド層86が、キャップ層62およびハードバイアス素子76の上またはそれらの上方に形成される。
【選択図】図6

Description

本発明は、全体として、ハードディスクドライブ用の磁気ヘッドの読取りヘッド部分に関し、より具体的には、磁気ヘッド用の面直電流型(CPP)読取りセンサの磁性層における磁化の安定化に関する。
コンピュータディスクドライブは、磁気読取り/書込みヘッドを回転している磁気データ記憶ディスクの上に位置付けることによって、データを格納し検索する。ヘッドは、ディスクの表面上に規定された同心のデータトラックからデータを読み取り、またはそこにデータを書き込む。ヘッドは、「スライダ」と呼ばれる構造の形で製作され、スライダは、空気の薄いクッション上にあるディスクの表面の上方を浮遊し、ディスクに面するスライダの表面は空気軸受面(ABS)と呼ばれる。
最近の読取りセンサ構造の中には、TMRまたはGMRセンサであり得る、回転している磁気データ記憶ディスクから磁界信号を読み取る面直電流型(CPP)センサを使用するものがある。TMRセンサは、標準的には、固定磁性層と自由磁性層の間に挟まれた、非磁性かつ電気絶縁性のトンネル障壁層を含む。言い換えると、固定層は、標準的には、固定層の磁化を空気軸受面(ABS)に対して90°の角度で固定する反強磁性(AFM)ピニング層上に製作される。自由層の磁化は、回転している磁気ディスクに書き込まれた磁気データビットからの磁界信号に応答して、静止バイアス点、すなわちゼロバイアス点の位置から自由に回転できる。ハードバイアス素子は、標準的には、自由磁性層のどちらかの側に配置されて、自由磁性層に必要な磁化バイアスをもたらす。センサ層は、標準的には、第1および第2の磁気シールド層の間に配置され、これら第1および第2のシールド層は、装置を介してセンサ電流を伝導するための第1および第2のリード線層としても働く。したがって、センサは、センサ電流がセンサの薄膜層の面内に(CIP)、または薄膜層に平行に向けられる、これまで開発されたセンサとは対照的に、センサの薄膜層の面に垂直に(CPP)センサ電流を伝導するように構成される。CPP−GMRセンサでは、当業者には既知のように、トンネル障壁層は導電材料層と置き換えられる。そのようなCPP構造は、明らかにCIP構造よりも感度を高く作ることができ、したがってデータ密度がより高いトラックおよびディスクにより有用であるため、近年さらに注目を集めている。
改善されたハードディスクドライブは、増加し続ける面データ記憶密度を伴って製造され、そのために、ハードディスク上のデータトラックをより狭くし、かつより密集させる必要がある。その結果、読取りセンサのサイズを低減させなければならず、センサのサイズが低減されるにしたがって、固定磁性層など、読取りセンサの磁性層における磁化の安定化が犠牲になる。したがって、固定磁性層の磁化の安定化を向上させ、それによって、より高密度のハードディスクドライブに利用されるより小型の読取りセンサにおける性能特性を改善する製作方法が必要とされている。
本発明は、TMRまたはGMRセンサを含んでもよい、CPP読取りヘッドを有する磁気ヘッドを含む。CPPセンサは、反強磁性(AFM)層、固定磁性層、トンネル障壁層(TMR)もしくは導電層(GMR)、自由磁性層、およびキャップ層を含む、層状のセンサスタックを含む。バイアス素子は、自由磁化層の両側に、またはセンサスタック内に配置されて、自由磁化層の磁化のバイアス方向を提供してもよい。本発明は、固定磁性層の磁化の安定性を共に向上させる3つの方法を組み合わせる。
固定磁性層の磁化の安定性を向上させる本発明の一実施形態の方法の1つは、固定磁性層の厚さtと高さHの比(t/H)が約1/10〜約1/500の範囲内であるように製作されるように、その高さ(H)を増加させるものである。従来技術に比べて固定磁性層の高さ(H)は増加する。固定磁性層の厚さに対してその高さHが増加することにより、固定磁性層の形状異方性が向上し、その結果、固定磁性層の磁化のスチフネスと安定性が向上する。
固定磁性層の磁化の安定性を向上させる本発明の一実施形態の追加の方法は、固定磁性層がその上に堆積される層の表面に対してかすめ角でイオンミリングを行うものである。この表面は、固定磁性層材料がその上に堆積される反強磁性層の上側表面か、または、固定磁性層の下層が利用されるセンサ設計の場合、そのような下層の表面であってもよい。この方法では、イオンビームは、標準的には空気軸受面に垂直である、固定磁性層の所望の磁化方向に向けられ、イオンビームが30eV〜200eVの、好ましくは100eV未満の比較的低いエネルギーを有する、表面に対する法線から約45°〜80°のかすめ角が有効である。
固定磁性層の磁化の安定化を向上させる本発明の一実施形態の追加の方法は、固定磁性層の磁歪を増加させるものである。これは、固定磁性層がその磁化の変化に抵抗するように、大きな正磁歪を有する材料から固定磁性層を製作することによって達成することができる。望ましい材料はCoFeであり、その際、Feは40原子%〜50原子%の範囲で存在する。
本発明の一実施形態の磁気ヘッドの1つの利点は、固定磁性層の磁化のピニングが改善されたCPP読取りセンサを含むことである。
本発明の一実施形態の磁気ヘッドの別の利点は、磁化の安定化が向上した固定磁性層を有するCPP読取りセンサを含むことである。
本発明の一実施形態の磁気ヘッドのさらなる利点は、形状異方性が固定磁性層の磁化の安定化を向上させるために利用される、固定磁性層を有するCPP読取りセンサを含むことである。
本発明の一実施形態の磁気ヘッドのさらに別の利点は、固定磁性層がその上に製作される表面のかすめ角でのイオンミリングを利用して、固定磁性層の磁化の安定化を向上させる、固定磁性層を有するCPP読取りセンサを含むことである。
本発明の一実施形態のハードディスクドライブの1つの利点は、磁化の安定化が向上した固定磁性層を有するCPP読取りセンサを有する、本発明の磁気ヘッドを含むことである。
本発明の一実施形態のハードディスクドライブの別の利点は、固定磁性層の磁化のピニングが改善されたCPP読取りセンサを有する、本発明の磁気ヘッドを含むことである。
本発明の一実施形態のハードディスクドライブのさらなる利点は、形状異方性が固定磁化層の磁化の安定化を向上させるために利用される、固定磁性層を有するCPP読取りセンサを含む、本発明の磁気ヘッドを含むことである。
本発明の一実施形態のハードディスクドライブのさらに別の利点は、固定磁性層がその上に製作される表面のかすめ角でのイオンミリングを利用して、固定磁性層の磁化の安定化を向上させる、固定磁性層を有するCPP読取りセンサを含む磁気ヘッドを含むことである。
本発明によれば、固定磁性層の磁化の安定化が向上されたCPP読取りセンサを含む磁気ヘッドを提供することができる。
本発明の実施形態の特徴および利点、さらに他の特徴および利点は、恐らくは、図面を参照する以下の詳細な説明を読むことで、当業者には明白になるであろう。図面は実際の装置の縮尺どおりに作成されたものではなく、本明細書に記載の発明を説明するために提供される。
図1は、本発明の磁気ヘッドを含む本発明のハードディスクドライブ10の重要な構成要素を示す上面図である。ハードディスクドライブ10は、電動スピンドル14上に回転可能に取り付けられた磁気ハードディスク12を含む。アクチュエータアーム16は、ハードディスクドライブ10内で旋回するように取り付けられ、本発明の一実施形態の磁気ヘッド100を有するスライダ装置20が、アクチュエータアーム16の遠位端22に配置される。標準的なハードディスクドライブ10は、スピンドル14上に回転可能に取り付けられた複数のディスク12と、複数のアクチュエータアーム16の遠位端22に取り付けられた複数のスライダ20を有する、複数のアクチュエータアーム16とを含んでもよい。当業者には周知のように、ハードディスクドライブが作動されると、ハードディスク12がスピンドル14上で回転し、スライダは、回転しているディスクの表面の上方を浮遊するように適合された空気軸受として作用する。スライダは、磁気ヘッド100を形成する様々な層および構造がその上に製作される基板ベースを含む。磁気ヘッドを備えたそのようなスライダは、ウェハ基板上に多数製作され、続いて切り分けられて個別の装置となる。
標準的な磁気ヘッドは、読取りヘッド部分および書込みヘッド部分の両方を含む。読取りヘッド部分はハードディスク12に書き込まれているデータを読み取るのに利用され、書込みヘッド部分はデータをディスク12に書き込むのに利用される。読取りヘッドセンサは、一般に、当業者には周知のように、面内電流型(CIP)と面直電流型(CPP)の二種類のものである。本発明は、磁気ヘッドの読取りヘッド部分を対象とし、特に、当該技術分野において既知であり、かつ図2、3、および4を用いて以下に記載するような、トンネル障壁層構造を有するTMRセンサおよび導電層構造を有するGMRセンサなど、CPPセンサを含むような読取りヘッドを対象とする。
図2は、図3および4の線2−2に沿った従来技術の磁気ヘッド32のTMRセンサ部分30の垂直断面図であり、図3は、図2の線3−3に沿った磁気ヘッド32の空気軸受面から取った、図2に示されるTMRセンサ30の垂直断面図であり、図4は、図3の線4−4に沿った従来技術の磁気ヘッド32のTMRセンサ部分30を示す上面図である。本明細書に示されるように、本発明の実施形態は、CPP−TMRセンサおよびCPP−GMRセンサと共に使用するのに適しているが、本明細書の記載は、理解を容易にするため、TMRセンサの実施形態に焦点を当てており、当業者であれば、以下の記載を読むことにより、それをGMRセンサに応用することを理解するであろう。図2および3に最も良く見られるように、TMRセンサ30は複数の薄膜層を含む。これらの層は、ウェハ基板38と、その上に堆積された電気絶縁層36と、その上に製作された第1の磁気シールド層34とを含む。多数の異なる層状センサ構造が従来技術において既知であるが、標準的なセンサ層構造は、第1の磁気シールド層34上またはその上方に製作される、Pt−MnまたはIr−Mnの合金から成ってもよい反強磁性層42を含む。固定磁性層46は、反強磁性層42上またはその上方に製作され、Co−Fe合金などの磁性材料から成ってもよい。固定磁性層の磁化方向(矢印48を参照)は、磁気ヘッドの空気軸受面(ABS)にほぼ垂直である。
その後、トンネル障壁層50が固定磁性層46上またはその上方に製作され、トンネル障壁層50は、MgO、TiO、およびAlO(下付添字xは酸化物が必ずしも化学量論的でなくてもよいことを示す)などの電気絶縁材料から成ってもよい。CPP−GMRセンサ構造では、層50は銅などの導電材料から成る。次に、自由磁性層54が層50上またはその上方に製作され、自由磁性層54は、Co−Fe合金またはNi−Fe合金などの磁性材料から成ってもよい。あるいは、当業者には既知のように、自由磁性層は、CoFe/Ru/CoFeなどの材料の反平行結合層構造から成ってもよい。自由磁性層の磁化方向(矢印56を参照)は、名目上、自由磁性層の面内にあるが、ディスク12の磁気データビットの磁界に応じて自由に回転できる。その後、キャップ層62が、標準的には、自由磁性層54上またはその上方に製作され、標準的なキャップ層は、ロジウム、ルテニウム、もしくはタンタル、またはそれらの組み合わせなどの材料から成ってもよい。図3および4を用いて最も良く理解できるように、次に、層42〜62は、複数の工程においてマスキングされ、イオンミリングを施されて、後壁66および側壁70を有する中央のセンサスタック64が作成される。次に、アルミナなどの充填材料68が堆積される。図4の上面図に見られるように、センサ30の側壁70の間の距離Wがセンサの読取り幅を規定する。
後壁66および側壁70を作成するイオンミリング工程に続いて、次に、原子層堆積法(ALD)などのプロセスを利用して、電気絶縁体の薄層74が装置上に、特に側壁70上に堆積される。その後、標準的にはCo−Pt合金などの材料から成る磁気ハードバイアス素子76が、側壁70に近接した絶縁層74上に製作される。ハードバイアス素子76の後縁80は、センサスタックの後壁66を大幅に超えて延びる。ハードバイアス素子の磁化方向(矢印82を参照)は、ハードバイアス素子の磁化が自由磁性層を安定させるという点で、自由磁性層の磁化56と同じ方向であることが望ましい。次に、第2の磁気シールド86が、キャップ層62およびハードバイアス素子76の上に製作される。ヘッド32を製作する際、読取りヘッド構造を製作した後、かつそれに続く書込みヘッド構造(図示なし)を作成する製作工程の後、空気軸受面(ABS)94が作成される。センサスタックのABS94と後壁66の間の距離は、センサのストライプ高さ(SH)と称される。
トンネル障壁センサ30を含む磁気ヘッドは、電流が層42〜62の面に垂直に(CPP)進むようにして、第1の磁気シールド34から、センサ層42〜62を通して、第2の磁気シールド86内へセンサ電流を流すことによって動作する。電気絶縁層74は、センサ層を通してセンサ電流を案内する働きをする。図2〜4に示されるようなトンネル障壁センサは、センサがデータビットの磁界に晒されたときのセンサ内における電気抵抗の変化を通して、ハードディスク12に書き込まれた磁気データビットを検出することによって動作する。具体的には、自由層の磁化方向56はデータビットの磁界によって変更され、固定磁性層の磁化方向48に対する自由層の磁化方向が変化することにより、センサの電気抵抗の変化が作り出される。次に、抵抗のこの変化はセンサを流れる電流に影響を及ぼし、センサ電流フローの変化が検出され、データ信号として解釈される。固定磁性層からの磁界48は、図2〜4に示されるその名目上の方向から変化する自由磁性層の方向56に対する定数として働くように、安定していなければならない。トンネル障壁センサの動作特性は当業者には周知であり、そのさらに詳細な説明は、本発明の特徴を十分に説明するためには不要である。
改善されたハードディスクドライブは、増加し続ける面データ記憶密度を伴って製造され、そのために、ハードディスク上のデータトラックをより狭くし、かつより密集させ、データトラックのインチ当たりビット数(BPI)をより多くする必要がある。その結果、読取りセンサのサイズを低減させなければならず、読取りセンサのサイズが低減されるにしたがって、AFM層による固定磁性層の安定化が問題になってくる。それに加えて、AFM層の磁化の安定化も、磁気ヘッドのサイズが低減された場合に問題になってくる。特に、図3に示されるように、固定磁性層46のサイズが低減された場合、磁化方向48は、外部磁界または磁気ヘッドが遭遇することがある他の事象に応じて回転する恐れがある。固定磁性層の磁化方向が変更されると、CPPセンサの性能は大幅に損なわれることがある。以下に示されるように、本発明は、固定磁性層46およびAFM層42の磁気特性の安定化を改善し、それによってセンサの安定化を改善する。
改善されたCPPセンサ110を含む、本発明の一実施形態の改善された磁気ヘッド100が、図5、6、および7に示される。図5は、磁気ヘッド100の空気軸受面から取った正面図であり、図6は、図5の線6−6に沿った断面図であり、図7は、図5の線7−7から取った平面図である。以下の記載を読んで理解されるように、本発明の磁気ヘッドの実施形態100と従来技術の磁気ヘッド32との間の顕著な差は、固定磁性層およびAFM層の形状である。したがって、本発明の一実施形態の磁気ヘッド100は、従来技術の磁気ヘッド32のものに実質的に類似している多数の特徴および構造を含み、理解を容易にするため、そのような類似の構造は同一の番号を付されている。
図5〜7に見られるように、CPPセンサ110は複数の薄膜層を含む。これらの層は、ウェハ基板38と、その上または上方に堆積された電気絶縁層36と、その上または上方に製作された第1の磁気シールド層34とを含む。Pt−MnまたはIr−Mnの合金から成ってもよい反強磁性層120は、第1の磁気シールド層34上またはその上方に製作される。固定磁性層124は、反強磁性層120上またはその上方に製作され、Co−Fe合金などの磁性材料から成ってもよい。代替実施形態では、当該技術分野において既知のように、固定磁性層124は、Co−Fe/Ru/Co−Feなどの多層構造(図示なし)から成ってもよい。固定磁性層の磁化方向(矢印128を参照)は、磁気ヘッドの空気軸受面(ABS)94にほぼ垂直である。その後、トンネル障壁層50が固定磁性層124上またはその上方に製作され、トンネル障壁層50は、MgO、TiO、およびAlO(下付添字xは酸化物が必ずしも化学量論的でなくてもよいことを示す)などの電気絶縁材料から成ってもよい。CPP−GMRセンサ構造では、層50は銅などの導電材料から成る。次に、自由磁性層54が層50上またはその上方に製作され、自由磁性層54は、Co−Fe合金またはNi−Fe合金などの磁性材料から成ってもよい。あるいは、当業者には既知のように、自由磁性層は、CoFe/Ru/CoFeなどの材料の反平行結合層構造から成ってもよい。自由磁性層の磁化方向(矢印56を参照)は、名目上、自由磁性層の面内にあるが、ディスク12の磁気データビットの磁界に応じて自由に回転できる。その後、キャップ層62が、標準的には、自由磁性層54上またはその上方に製作され、標準的なキャップ層は、ロジウム、ルテニウム、もしくはタンタル、またはそれらの組み合わせなどの材料から成ってもよい。
次に、層120、124、50、54、および62は、複数の工程においてマスキングされ、イオンミリングを施されて、後壁66および132ならびに側壁70を有する中央のセンサスタック130が作成されるが、本発明の一実施形態は、特に、以下に記載するようなイオンミリング工程を対象とする。特に、図6に見られるように、中央のセンサスタック130は、キャップ層62、自由磁性層54、およびトンネル障壁層50の後壁66を有して形成される。それに加えて、固定磁性層124およびAFM層120の後壁132も作成される。センサ110の側壁70の間の距離がセンサの読取り幅Wを規定する。AFM層120および固定磁性層124の製作は以下に詳細に記載する。
次に、原子層堆積法(ALD)などのプロセスを利用して、電気絶縁体の薄層74が装置上またはその上方に、特に側壁70上に堆積される。その後、標準的にはCo−Pt合金などの材料から成る磁気ハードバイアス素子76が、側壁70に近接した絶縁層74上またはその上方に製作される。続いて、第2の磁気シールド86が、キャップ層62およびハードバイアス素子76の上またはそれらの上方に製作される。読取りヘッド構造を製作した後、かつそれに続く書込みヘッド構造(図示なし)を作成する製作工程の後、空気軸受面(ABS)94が作成される。ABS94と後壁66の間の距離はセンサのストライプ高さ(SH)であり、ABS94と後壁132の間の距離は、固定磁性層124およびAFM層120の高さ(H)である。
本発明のこの実施形態の顕著な特徴は、図6における本発明の実施形態の描写を、図2に示される従来技術の磁気ヘッドの描写と比較することによって最も良く理解される。図6に見られるように、固定磁性層124およびAFM層120の高さHは、従来技術の磁気ヘッド30の固定磁性層46およびAFM層42の高さ(センサ32のストライプ高さSH)から大幅に増加されている。
当業者には理解されるように、改善されたCPPセンサ110の製作は、いくつかの異なるやり方で達成することができる。そのような1つの方法は、ウェハの表面全体に固定磁性層124が堆積される製作段階を経る、従来技術において既知のものと同一の製作工程を利用して、CPPセンサ110を製作するものである。その後、新たなプロセス工程では、固定磁性層ミリングマスク(図示なし)が製作されて、後壁132を作成するために固定磁性層124の所望の部分が覆われる。その後、イオンミリング工程では、後壁132が作成されるように、固定磁性層124およびAFM層120の望ましくない延長部分が除去される。その後、絶縁充填材料136が堆積され、固定磁性層ミリングマスクが除去される。次に、トンネル障壁層50、自由磁性層54、およびキャップ層62が堆積され、次に、従来技術において既知のような、かつ上述したようなストライプ高さミリングマスクが製作され、キャップ層、自由磁性層、およびトンネル障壁層のマスキングされていない部分を、固定磁性層124に至るまでミリングによって除去するのに使用される。次に、さらなる充填材料140が堆積され、ストライプ高さミリングマスクが除去される。その後、当該技術分野において既知のような読取り幅ミリングマスク(図示なし)が製作され、図5に示されるようなセンサ110の側壁70を作成するのに利用される。
あるいは、CPPセンサ層のすべて、すなわち、AFM層120、固定磁性層124、トンネル障壁層50、自由磁性層54、およびキャップ層62は、ウェハ表面上に最初に堆積させた全面的な薄膜であることができる。その後、固定磁性層ミリングマスク(図示なし)を製作し、次に、第1の磁気シールド34に至るまで層のすべてにイオンミリングを施すことができる。その際、後壁132、およびしたがってAFM層120および固定磁性層124の高さHが確立される。その後、充填材料136が堆積され、次に固定磁性層ミリングマスクが除去される。ストライプ高さミリングマスクをここで装置上に製作し、次に、キャップ層62、自由磁性層54、およびトンネル障壁層50にイオンミリングを施して、後壁66、およびしたがってセンサ110のストライプ高さSHを作成することができる。次に、充填材料140が適用され、次に、ストライプ高さミリングマスクが除去される。次に、読取り幅ミリングマスクを利用してセンサの側壁70が作成され、次に、上述したように、かつ当該技術分野において既知のように、絶縁層74、ハードバイアス素子76、および第2の磁気シールド86を作成する製作工程が行われる。
固定磁性層の磁化の安定化は、磁気ヘッドの性能を制御するのに重要である。本発明の磁気ヘッドのこの実施形態100は、固定磁性層124およびAFM層120の形状強調ピニングの異方性を利用して、固定磁性層の磁化の安定化を強化する。
固定磁性層の磁化を安定化する際、固定磁性層の磁界には減磁界が対向する。一例として、固定磁性層の高さHが、40nmなどの初期値から400nmなどのより大きな値に増加された場合、減磁界は、約650Oeなどの値から約6.5Oeなどのより低い値に低減される。減磁界のこの低減により、固定磁性層の磁界がさらに大幅に安定する。したがって、本発明のこの実施形態は、固定磁性層およびAFM層の形状異方性を変更することによって、固定磁性層の磁化の安定化に寄与し、あらゆる大きな妨害磁界に対して固定磁性層の磁化を安定させる。
本発明の一実施形態では、固定磁性層は約1nm〜約6nmの厚さtを有してもよく、固定磁性層の厚さ/高さの比(t/H)は、好ましくは約1/10〜約1/500の範囲内であり、好ましい範囲は約1/100〜約1/400である。高さHは、一般に、約30nm〜約3000nmの範囲内である。これらの範囲内で製作された固定磁性層は、一般に、固定磁性層磁化の安定化を向上させる形状異方性により、向上した磁気安定性を有する。面データ記憶密度が増加したハードディスクドライブに使用するため、磁気ヘッドのサイズが低減されると、固定磁性層の磁化の安定化が改善されることによって、本発明の磁気ヘッドの性能特性が改善される。
固定磁性層の磁化の安定化をさらに改善する方法は、固定磁性層がその上に堆積される表面にかすめ角でイオンミリングを施すことを伴う。具体的には、本発明の磁気ヘッド200は、図8、9、および10に示されるCPPセンサ210を含む。図8は、磁気ヘッド200の空気軸受面から取った正面図であり、図9は、図8の線9−9に沿った平面図であり、図10は、図8の線10−10に沿った垂直断面図である。磁気ヘッド200は、従来技術の磁気ヘッド32のものに実質的に類似している多数の特徴および構造を含み、理解を容易にするため、そのような類似の構造は同一の番号を付されている。これらの層は、ウェハ基板38と、その上または上方に堆積された電気絶縁層36と、その上または上方に製作された第1の磁気シールド層34とを含む。多数の異なる層状センサ構造が従来技術において既知であるが、標準的なセンサ層構造は、第1の磁気シールド層34上に製作される、Pt−MnまたはIr−Mnの合金から成ってもよい反強磁性(AFM)層220を含む。後述するように、AFM層の上面224はイオンミリングを施される。次に、固定磁性層240は、反強磁性層220のミリングを施された表面224上またはその上方に製作され、Co−Fe合金などの磁性材料から成ってもよい。代替実施形態では、当該技術分野において既知のように、固定磁性層240は、Co−Fe/Ru/Co−Feなどの多層構造(図示なし)から成ってもよい。固定磁性層の磁化方向(矢印242を参照)は、磁気ヘッドの空気軸受面(ABS)94にほぼ垂直である。
その後、トンネル障壁層50が固定磁性層240上またはその上方に製作され、トンネル障壁層50は、MgO、TiO、およびAlO(下付添字xは酸化物が必ずしも化学量論的でなくてもよいことを示す)などの電気絶縁材料から成ってもよい。CPP−GMRセンサ構造では、層50は銅などの導電材料から成る。次に、自由磁性層54が層50上またはその上方に製作され、自由磁性層54は、Co−Fe合金またはNi−Fe合金などの磁性材料から成ってもよい。あるいは、当業者には既知のように、自由磁性層は、CoFe/Ru/CoFeなどの材料の反平行結合層構造から成ってもよい。自由磁性層の磁化方向(矢印56を参照)は、名目上、自由磁性層の面内にあるが、ディスク12の磁気データビットの磁界に応じて自由に回転できる。その後、キャップ層62が、標準的には、自由磁性層54上またはその上方に製作され、標準的なキャップ層は、ロジウム、ルテニウム、もしくはタンタル、またはそれらの組み合わせなどの材料から成ってもよい。次に、層220、240、50、54、および62は、複数の工程においてマスキングされ、イオンミリングを施されて、後壁66および側壁70を有する中央のセンサスタック248が作成される。図8の正面図に見られるように、センサ210の側壁70の間の距離がセンサの読取り幅Wを規定する。
後壁66および側壁70を作成するイオンミリング工程に続いて、次に、原子層堆積法(ALD)などのプロセスを利用して、電気絶縁体の薄層74が装置上に、特に側壁70上に堆積される。その後、標準的にはCo−Pt合金などの材料から成る磁気ハードバイアス素子76が、側壁70に近接した絶縁層74上またはその上方に製作される。次に、第2の磁気シールド86が、キャップ層62およびハードバイアス素子76の上またはそれらの上方に製作される。ヘッド200を製作する際、読取りヘッド構造を製作した後、かつそれに続く書込みヘッド構造(図示なし)を作成する製作工程の後、空気軸受面(ABS)94が作成される。センサスタックのABS94と後壁66の間の距離は、センサのストライプ高さ(SH)である。
改善されたCPPセンサ210は、磁化の安定化が改善された固定磁性層240を有する。この改善された磁化の安定化は、イオンミリングを施された表面224上に固定磁性層240を製作することによってもたらされ、イオンミリング工程は、固定磁性層240をAFM層上に堆積させる前に、AFM層の表面に対して行われる。イオンミリングは、好ましくは、AFM層の表面224に対する法線から45°〜80°のかすめ角で行われ、図8および9に見られるように、イオンミリングによって調整済み表面224が得られる。イオンミリングは、固定磁性層240の磁化の所望の方向(矢印242を参照)と同じ方向、すなわち磁気ヘッド200のABS表面94に垂直な方向(矢印232を参照)で行われる。好ましい実施形態では、イオンミリング工程は、30eV〜200eV、好ましくは100eV未満のイオンエネルギーを有する、アルゴンなどのガスからのイオン種を利用し、イオンミリングは、固定磁性層の磁化の所望の方向においてかすめ角で行われる。約1.5nmの厚さを有する固定磁性層の場合、発明者らは、このイオンミリング工程によって200〜400Oeの磁化の向上が得られることを確認している。
固定磁性層の磁化の安定化を改善する上述の技術は、本発明の一実施形態において組み合わされて、図11の上面図および図11の線12−12に沿った図12の垂直断面図に示されるように、改善された磁気ヘッド300をもたらす。それらの図に示されるように、磁気ヘッド300のCPPセンサ310は、図5〜7に示される磁気ヘッドの実施形態100に関して詳細に上述したように、高さHを有する細長いAFM層320および固定磁性層324を有して形成される。固定磁性層324の磁化方向334はABS94に垂直である。それに加えて、AFM層320の表面328は、図8および9に示され、かつ上述したような磁気ヘッド200のCPPセンサ210にしたがって、AFM層の表面328に対する法線から45°〜80°のかすめ角で、固定磁性層324の磁化方向334と同じ方向338でイオンミリングを施されている。細長い固定磁性層324は、AFM層320のイオンミリングを施された調整済み表面328上に製作されている。本発明の一実施形態の改善されたCPPセンサ310は、CoFeなどの大きな正磁歪を有する材料から成る固定磁性層の第3の改善も含み、その際、40原子%〜50原子%の高いFe濃度が利用される。改善されたCPPセンサ310は、改善された形状異方性と、固定磁性層がその上に製作される表面を調整する指向性表面ミリングと、固定磁性層を含む大きな正磁歪を有する材料との組み合わされた効果の結果として、固定磁性層324の磁化の安定化が向上する。
本発明を、特定の好ましい実施形態に関連して示し記載してきたが、恐らくは、形態および詳細の変形が、本開示を検討することによって当業者には明白になるであろうことを理解すべきである。したがって、添付の特許請求の範囲は、本発明の発明の特徴の真の趣旨および範囲を含む限り、すべてのそのような変更および変形を包含するものである。
本発明の一実施形態の磁気ヘッドを有する本発明の一実施形態のハードディスクドライブを示す上面図である。 図3および4の線2−2に沿った従来技術の磁気ヘッド32のトンネル障壁センサ部分30の垂直断面図である。 図2の線3−3に沿った磁気ヘッド32の空気軸受面から取った、図2に示されるトンネル障壁センサ30の正面図である。 図3の線4−4に沿った従来技術の磁気ヘッド32のトンネル障壁センサ部分30を示す上面図である。 磁気ヘッドの空気軸受面から取った、本発明の一実施形態の磁気ヘッドのトンネル障壁センサの正面図である。 図5の線6−6に沿った図5のトンネル障壁センサの垂直断面図である。 図5の線7−7に沿った図5の磁気ヘッドのトンネル障壁センサ部分を示す上面図である。 磁気ヘッドの空気軸受面から取った、本発明の一実施形態の別の磁気ヘッドのトンネル障壁センサの正面図である。 図8の線9−9に沿った図8の磁気ヘッドのトンネル障壁センサ部分を示す上面図である。 図8の線10−10に沿った図8のトンネル障壁センサの垂直断面図である。 本発明のトンネル障壁センサ部分および別の磁気ヘッドの実施形態を示す上面図である。 図11の線12−12に沿った図11のトンネル障壁センサの垂直断面図である。
符号の説明
10…ハードディスクドライブ、12…磁気ハードディスク、14…電動スピンドル、16…アクチュエータアーム、20…スライダ、22…遠位端、34…第1の磁気シールド層、36…電気絶縁層、38…ウェハ基板、50…トンネル障壁層、54…自由磁性層、56…磁化方向、62…キャップ層、66…後壁、70…側壁、74…絶縁層、76…ハードバイアス素子、82…磁化方向、86…第2の磁気シールド層、94…空気軸受面、100,200,300…磁気ヘッド、110,210,310…CPPセンサ、120,220,320…反強磁性層、124,240,324…固定磁性層、128…磁化方向、130,248…センサスタック、132…後壁、136…充填材料、140…充填材料、224,328…調整済み表面。

Claims (28)

  1. 固定磁性層および自由磁性層を含む、空気軸受面(ABS)を備えて形成されたCPP読取りセンサを備え、
    前記自由磁性層の後壁が、前記自由磁性層の前記ABSと前記後壁の間のセンサストライプ高さSHを規定し、
    前記固定磁性層が、前記固定磁性層の前記ABSとの間の前記固定磁性層の高さHを規定する後壁を有し、前記Hが前記SHよりも大きく、前記固定磁性層が厚さtで形成され、t/Hの比が約1/10から約1/500であり、
    前記固定磁性層が、イオンミリングを施された調整済み表面上に配置された大きな正磁歪を有する材料から成る、磁気ヘッド。
  2. 前記t/Hの比が約1/100から約1/400の範囲内である、請求項1に記載の磁気ヘッド。
  3. 前記tが約1nmから約6nmの範囲内である、請求項1に記載の磁気ヘッド。
  4. 前記Hが約30nmから約3000nmの範囲内である、請求項1に記載の磁気ヘッド。
  5. 前記固定磁性層がCoFeの少なくとも一層から成り、Fe組成が40原子%から50原子%の範囲内である、請求項1に記載の磁気ヘッド。
  6. 前記CPP読取りセンサがGMRセンサである、請求項1に記載の磁気ヘッド。
  7. 前記CPP読取りセンサがTMRセンサである、請求項1に記載の磁気ヘッド。
  8. 前記CPP読取りセンサが高さHで形成された反強磁性層(AFM層)をさらに含む、請求項1に記載の磁気ヘッド。
  9. 前記表面が前記AFM層の上面である、請求項8に記載の磁気ヘッド。
  10. 回転可能なハードディスクと、
    前記ハードディスクからデータを読み取るために配置された磁気ヘッドとを備え、前記磁気ヘッドが、
    固定磁性層および自由磁性層を含み、空気軸受面(ABS)を備えて形成されたCPP読取りセンサを含み、
    前記自由磁性層の後壁が、前記自由磁性層の前記ABSと前記後壁の間のセンサストライプ高さSHを規定し、
    前記固定磁性層が、前記固定磁性層の前記ABSとの間の前記固定磁性層の高さHを規定する後壁を有し、前記Hが前記SHよりも大きく、前記固定磁性層が厚さtで形成され、t/Hの比が約1/10から約1/500であり、
    前記固定磁性層が、イオンミリングを施された調整済み表面上に配置された大きな正磁歪を有する材料から成る、ハードディスクドライブ。
  11. 前記t/Hの比が約1/100から約1/400の範囲内である、請求項10に記載のハードディスクドライブ。
  12. 前記tが約1nmから約6nmの範囲内である、請求項10に記載のハードディスクドライブ。
  13. 前記Hが約30nmから約3000nmの範囲内である、請求項10に記載のハードディスクドライブ。
  14. 前記固定磁性層がCoFeの少なくとも一層から成り、Fe組成が40原子%から50原子%の範囲内である、請求項10に記載のハードディスクドライブ。
  15. 前記CPP読取りセンサがGMRセンサである、請求項10に記載のハードディスクドライブ。
  16. 前記CPP読取りセンサがTMRセンサである、請求項10に記載のハードディスクドライブ。
  17. 前記CPP読取りセンサが高さHで形成された反強磁性層(AFM層)をさらに含む、請求項10に記載のハードディスクドライブ。
  18. 前記表面が前記AFM層の上面である、請求項17に記載のハードディスクドライブ。
  19. 基板上に上側表面を有する層を堆積させる工程と、
    前記上側表面にイオンミリングを施して調整済み表面を作成する工程と、
    前記上側表面上に直接固定磁性層を製作する工程とを含み、
    前記固定磁性層が、第1の方向である磁化方向で形成され、
    前記上側表面の前記イオンミリングが、前記第1の方向である方向で前記上側表面に対してかすめ角で行われ、
    前記固定磁性層が厚さtおよび高さHで形成され、t/Hの比が約1/10から約1/500であり、前記固定磁性層が大きな正磁歪を有する材料から成る、磁気ヘッドを製作する方法。
  20. 前記第1の方向が前記磁気ヘッドの空気軸受面に垂直である、請求項19に記載の磁気ヘッドを製作する方法。
  21. 前記t/Hの比が約1/100から約1/400の範囲内である、請求項19に記載の磁気ヘッドを製作する方法。
  22. 前記tが約1nmから約6nmの範囲内である、請求項19に記載の磁気ヘッドを製作する方法。
  23. 前記Hが約30nmから約3000nmの範囲内である、請求項19に記載の磁気ヘッドを製作する方法。
  24. 前記固定磁性層がCoFeの少なくとも一層から成り、Fe組成が40原子%から50原子%の範囲内である、請求項19に記載の磁気ヘッドを製作する方法。
  25. 前記磁気ヘッドがGMRセンサである、請求項19に記載の磁気ヘッドを製作する方法。
  26. 前記磁気ヘッドがTMRセンサである、請求項19に記載の磁気ヘッドを製作する方法。
  27. 前記磁気ヘッドが高さHで形成された反強磁性層(AFM層)をさらに含む、請求項19に記載の磁気ヘッドを製作する方法。
  28. 前記上側表面が前記AFM層の上面である、請求項27に記載の磁気ヘッドを製作する方法。
JP2008179975A 2007-07-17 2008-07-10 Cppセンサを有する磁気ヘッド Pending JP2009026442A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/879,667 US9007727B2 (en) 2007-07-17 2007-07-17 Magnetic head having CPP sensor with improved stabilization of the magnetization of the pinned magnetic layer

Publications (1)

Publication Number Publication Date
JP2009026442A true JP2009026442A (ja) 2009-02-05

Family

ID=40264665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179975A Pending JP2009026442A (ja) 2007-07-17 2008-07-10 Cppセンサを有する磁気ヘッド

Country Status (3)

Country Link
US (1) US9007727B2 (ja)
JP (1) JP2009026442A (ja)
CN (1) CN101350200B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023096A (ja) * 2009-07-13 2011-02-03 Seagate Technology Llc トンネル磁気抵抗再生素子
JP2011204344A (ja) * 2010-02-26 2011-10-13 Seagate Technology Llc 磁場検出装置およびその使用方法
JP2011216890A (ja) * 2010-04-01 2011-10-27 Seagate Technology Llc 装置、方法および磁気センサ
US20130163121A1 (en) * 2011-12-22 2013-06-27 Hitachi Global Storage Technologies Netherlands B.V. Magnetic sensor having hard bias structure for optimized hard bias field and hard bias coercivity
JP2014220031A (ja) * 2013-05-06 2014-11-20 シーゲイト テクノロジー エルエルシー バックエッジ表面を持つデータ読取機

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7580230B2 (en) * 2006-10-24 2009-08-25 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor having shape enhanced pinning, a flux guide structure and damage free virtual edges
US7869166B2 (en) * 2007-02-20 2011-01-11 Tdk Corporation Thin film magnetic head having a bias magnetic layer provided with antiferromagnetic layer and a pinned layer provided with hard magnetic layer
US8842395B2 (en) * 2012-12-19 2014-09-23 HGST Netherlands B.V. Magnetic sensor having an extended pinned layer and shape enhanced bias structure
US8836059B2 (en) 2012-12-21 2014-09-16 HGST Netherlands B.V. Shape enhanced pin read head magnetic transducer with stripe height defined first and method of making same
US8970991B2 (en) * 2013-03-12 2015-03-03 Seagate Technology Llc Coupling feature in a magnetoresistive trilayer lamination
US9042062B2 (en) 2013-08-27 2015-05-26 HGST Netherlands B.V. Magnetic sensor with recessed AFM shape enhanced pinning and soft magnetic bias
US9177588B2 (en) 2014-01-17 2015-11-03 HGST Netherlands B.V. Recessed IRMN reader process
US9349397B2 (en) 2014-03-26 2016-05-24 HGST Netherlands B.V. Higher stability read head utilizing a partial milling process
US9099120B1 (en) 2014-04-09 2015-08-04 HGST Netherlands, B.V. Interlayer coupling field control in tunneling magnetoresistive read heads

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291212A (ja) * 2000-04-07 2001-10-19 Toshiba Corp 垂直磁気記録ヘッド及び垂直磁気記録装置
JP2004118978A (ja) * 2002-09-27 2004-04-15 Tdk Corp 薄膜磁気ヘッド
JP2007142393A (ja) * 2005-11-17 2007-06-07 Hitachi Global Storage Technologies Netherlands Bv 磁気抵抗センサ、及びその改良された交換バイアス構造体用の斜角でエッチングされた下層

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100225179B1 (ko) * 1992-11-30 1999-10-15 니시무로 타이죠 박막 자기 헤드 및 자기 저항 효과형 헤드
US5729410A (en) * 1996-11-27 1998-03-17 International Business Machines Corporation Magnetic tunnel junction device with longitudinal biasing
JPH10335714A (ja) 1997-06-05 1998-12-18 Sanyo Electric Co Ltd 磁気抵抗効果素子
US6005753A (en) * 1998-05-29 1999-12-21 International Business Machines Corporation Magnetic tunnel junction magnetoresistive read head with longitudinal and transverse bias
US6185078B1 (en) * 1998-08-21 2001-02-06 International Business Machines Corporation Spin valve read head with antiferromagnetic oxide film as longitudinal bias layer and portion of first read gap
US6636395B1 (en) * 1999-06-03 2003-10-21 Tdk Corporation Magnetic transducer and thin film magnetic head using the same
JP3592140B2 (ja) * 1999-07-02 2004-11-24 Tdk株式会社 トンネル磁気抵抗効果型ヘッド
JP2001307307A (ja) * 2000-04-19 2001-11-02 Tdk Corp トンネル磁気抵抗効果素子、薄膜磁気ヘッド、磁気ヘッド装置及び磁気ディスク装置
US6563679B1 (en) * 2000-08-08 2003-05-13 Tdk Corporation Current perpendicular-to-the-plane magnetoresistance read heads with transverse magnetic bias
US6724582B2 (en) * 2001-01-19 2004-04-20 Kabushiki Kaisha Toshiba Current perpendicular to plane type magnetoresistive device, magnetic head, and magnetic recording/reproducing apparatus
US6762915B2 (en) * 2001-09-05 2004-07-13 Seagate Technology Llc Magnetoresistive sensor with oversized pinned layer
JP3815676B2 (ja) * 2002-10-02 2006-08-30 Tdk株式会社 磁気抵抗効果素子、薄膜磁気ヘッド、磁気ヘッド装置及び磁気記録再生装置
JP3974587B2 (ja) * 2003-04-18 2007-09-12 アルプス電気株式会社 Cpp型巨大磁気抵抗効果ヘッド
JP3961496B2 (ja) * 2003-04-18 2007-08-22 アルプス電気株式会社 Cpp型巨大磁気抵抗効果ヘッド
JP2005251254A (ja) * 2004-03-02 2005-09-15 Tdk Corp 薄膜磁気ヘッド、薄膜磁気ヘッドのウエハ、ヘッドジンバルアセンブリ、ハードディスク装置、および薄膜磁気ヘッドの製造方法
JP4002909B2 (ja) * 2004-06-04 2007-11-07 アルプス電気株式会社 Cpp型巨大磁気抵抗効果ヘッド
US7522391B2 (en) * 2005-12-14 2009-04-21 Hitachi Global Storage Technologies Netherlands B.V. Current perpendicular to plane magnetoresistive sensor having a shape enhanced pinned layer and an in stack bias structure
US7652856B2 (en) * 2005-12-27 2010-01-26 Hitachi Global Storage Technologies Netherlands B.V. Current perpendicular to plane (CPP) magnetoresistive sensor having strong pinning and small gap thickness
US7672089B2 (en) * 2006-12-15 2010-03-02 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-plane sensor with dual keeper layers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291212A (ja) * 2000-04-07 2001-10-19 Toshiba Corp 垂直磁気記録ヘッド及び垂直磁気記録装置
JP2004118978A (ja) * 2002-09-27 2004-04-15 Tdk Corp 薄膜磁気ヘッド
JP2007142393A (ja) * 2005-11-17 2007-06-07 Hitachi Global Storage Technologies Netherlands Bv 磁気抵抗センサ、及びその改良された交換バイアス構造体用の斜角でエッチングされた下層

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023096A (ja) * 2009-07-13 2011-02-03 Seagate Technology Llc トンネル磁気抵抗再生素子
US8482883B2 (en) 2009-07-13 2013-07-09 Seagate Technology Llc Magnetic sensor with perpendicular anisotrophy free layer and side shields
JP2011204344A (ja) * 2010-02-26 2011-10-13 Seagate Technology Llc 磁場検出装置およびその使用方法
US8705213B2 (en) 2010-02-26 2014-04-22 Seagate Technology Llc Magnetic field detecting device with shielding layer at least partially surrounding magnetoresistive stack
JP2011216890A (ja) * 2010-04-01 2011-10-27 Seagate Technology Llc 装置、方法および磁気センサ
CN102290092A (zh) * 2010-04-01 2011-12-21 希捷科技有限公司 具有提高了的面积分辨率的磁性元件
US8580580B2 (en) 2010-04-01 2013-11-12 Seagate Technology Llc Magnetic element with varying areal extents
US20130163121A1 (en) * 2011-12-22 2013-06-27 Hitachi Global Storage Technologies Netherlands B.V. Magnetic sensor having hard bias structure for optimized hard bias field and hard bias coercivity
US8797694B2 (en) * 2011-12-22 2014-08-05 HGST Netherlands B.V. Magnetic sensor having hard bias structure for optimized hard bias field and hard bias coercivity
JP2014220031A (ja) * 2013-05-06 2014-11-20 シーゲイト テクノロジー エルエルシー バックエッジ表面を持つデータ読取機

Also Published As

Publication number Publication date
US20090021870A1 (en) 2009-01-22
CN101350200B (zh) 2011-04-13
CN101350200A (zh) 2009-01-21
US9007727B2 (en) 2015-04-14

Similar Documents

Publication Publication Date Title
US9007727B2 (en) Magnetic head having CPP sensor with improved stabilization of the magnetization of the pinned magnetic layer
US8873204B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor structure with multiple stacked sensors and center shield with CoFeB insertion layer
JP5247002B2 (ja) 磁気抵抗効果型ヘッドの製造方法
JP4985006B2 (ja) 磁気抵抗効果素子、磁性積層構造体、及び磁性積層構造体の製造方法
US8094421B2 (en) Current-perpendicular-to-plane (CPP) read sensor with multiple reference layers
US8705212B2 (en) Magnetic element with enhanced coupling portion
JP2007142393A (ja) 磁気抵抗センサ、及びその改良された交換バイアス構造体用の斜角でエッチングされた下層
JP2012059345A (ja) 絶縁構造を改良した平面垂直通電型(cpp)磁気抵抗(mr)センサ
US20080062582A1 (en) Tunnel magnetoresistive element and manufacturing method thereof
US8031442B2 (en) Magnetic head having CPP sensor with improved biasing for free magnetic layer
JP2013004166A (ja) ハードバイアスのシード構造を有する磁気センサ
CN113889153B (zh) 具有后硬偏置且不具有afm层的磁读传感器和相关方法
US8164863B2 (en) Current-perpendicular-to-plane (CPP) read sensor with multiple ferromagnetic sense layers
JPWO2009096012A1 (ja) 磁気抵抗効果素子、磁気ヘッド、および、情報記憶装置
US7038890B2 (en) Current perpendicular to the planes (CPP) sensor with a highly conductive cap structure
US7436635B2 (en) Current perpendicular to plane (CPP) magnetoresistive sensor having a highly conductive lead structure
JP2014225318A (ja) 幅を低減した上部電極及び下部電極を有する平面垂直通電(cpp)磁気抵抗センサ並びにその製造方法
KR100770813B1 (ko) 자기 저항 헤드, 자기 기록 재생 장치 및 자기 저항 헤드 제조 방법
US8081402B2 (en) Magnetoresistive head having a current screen layer for confining current therein and method of manufacture thereof
US9236069B2 (en) Method for making a current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with reduced-width self-aligned top electrode
JP2006186345A (ja) 薄膜及び磁気抵抗デバイス用ナノ粒子生成方法
US7599153B2 (en) Method and apparatus providing a stabilized top shield in read head for magnetic recording
JP5980672B2 (ja) ハードバイアス磁界およびハードバイアスの保磁力の最適化に向けたハードバイアス構造を有する磁気センサ
US7277260B2 (en) Magnetic head spin valve structure with CoFeCu magnetic layer and ZnOx/TaOx cap layer
US7382587B2 (en) Magnetic head having self-pinned SV structures for CPP GMR applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806