JP2009017707A - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP2009017707A
JP2009017707A JP2007177670A JP2007177670A JP2009017707A JP 2009017707 A JP2009017707 A JP 2009017707A JP 2007177670 A JP2007177670 A JP 2007177670A JP 2007177670 A JP2007177670 A JP 2007177670A JP 2009017707 A JP2009017707 A JP 2009017707A
Authority
JP
Japan
Prior art keywords
temperature
phase
motor
inverter
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007177670A
Other languages
English (en)
Inventor
Shota Hirose
祥多 廣瀬
Hiroyuki Inagaki
浩之 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2007177670A priority Critical patent/JP2009017707A/ja
Publication of JP2009017707A publication Critical patent/JP2009017707A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】3相モータの駆動に利用されるインバータの発熱を抑制するモータ制御装置を提供する。
【解決手段】3相モータ7の駆動に利用されるインバータ6を構成する半導体パワースイッチ素子の温度に応じて、3相モータ7の駆動を制御してインバータ6の発熱を抑制するモータ制御装置100は、3相モータ7のロック時に3相モータ7が備える各相のコイルに流れるコイル電流に基づいて、各相の半導体パワースイッチ素子の温度推定値を演算する素子温度推定部10と、温度推定値の中から最高温度値を抽出する最高温度抽出部11と、を備える。
【選択図】図1

Description

本発明は、3相モータの駆動に利用されるインバータの発熱を抑制することが可能なモータ制御装置とそのようなモータ制御装置のためのプログラムに関する。
インバータは、直流を任意の周波数の交流に変換できることから、モータの回転速度を制御するための一般的なモータ駆動用制御装置として、広く利用されている。このインバータは、互いに対となる上下のスイッチング素子を一対または複数対備えるように構成されている。これらの上下対で構成されるスイッチング素子を例えばPWM(Pulse Width Modulation)制御によって、順次、動作状態を切り替えることにより直流を交流に変換することができる。所謂ハイサイドのスイッチング素子は電源ラインに接続され、ローサイドのスイッチング素子はグランドに接地されるので、制御端子(スイッチング素子がMOS−FET(Metal Oxide Semiconductor-Field Effect Transistor)である場合にはゲート端子であり、バイポーラトランジスタである場合にはベース端子)に入力信号(スイッチング素子がMOS−FETである場合には電源電圧であり、バイポーラトランジスタである場合には入力電流)を印加すればスイッチング素子を動作させることができる。
一対のスイッチング素子は、上記のように直列接続状態となるため、ハイサイドのスイッチング素子とローサイドのスイッチング素子とがPWM制御が行われることなく長時間同時にオン状態が続くと、電源とグランドとが短絡状態となってしまい、スイッチング素子に過電流が流れることとなる。したがって、当該過電流が流れたスイッチング素子は、例えば、MOS−FETであればオン抵抗と流れた電流値の2乗との積による電力損失、バイポーラトランジスタであればコレクタ−エミッタ間電圧と流れた電流との積による電力損失が発生し、発熱することとなる。
このようなインバータに生じる異常な発熱を抑制するための技術として、インバータに含まれる半導体パワースイッチ素子から離間して温度センサを設置し、その温度センサの検出値に従って熱保護制御を行うインバータ熱保護装置がある(例えば、特許文献1)。この特許文献1に係るインバータ熱保護装置は、温度センサにより半導体パワースイッチ素子の温度を間接的に検出し、検出誤差を補正するためにインバータの電流指令値に基づいてインバータに対する要求値に補正を加えて補正済み電流指令値を算出する。そして、この補正済み電流指令値をインバータの駆動回路に印加することによりインバータを熱保護している。
しかしながら、モータに外的負荷がかかっておりロータが回転できない状態等のモータロック状態においては、モータが回転していないため、任意の1相に電流が集中してしまう。このような状況を回避するためには、1相毎の半導体パワースイッチ素子の発熱を考慮する必要があることから、温度センサを各相毎に配設しなければならない。しかしながら、複数個の温度センサを配設すると、コストが高くなってしまう。また、低コスト化を図り、温度センサを1つとした場合には、各相毎に温度を検出することができないため、過保護、或いは保護不足の虞がある。更に、温度センサの応答性に比べ、モータが有するコイルに通電した際の半導体パワースイッチ素子の発熱速度が速いため、温度センサの出力値に基づいて、半導体パワースイッチ素子を過熱保護すると、温度センサの応答遅れに伴って過熱保護が遅れてしまい、半導体パワースイッチ素子が熱破壊を起こしてしまうといった問題があった。
特許第3430907号公報(段落番号0008〜0010等)
本発明の目的は、上記問題を鑑み、3相モータの駆動に利用されるインバータを構成する半導体パワースイッチ素子の温度に応じて、前記インバータの発熱を抑制することが可能なモータ制御装置を提供することにある。
上記目的を達成するための本発明に係るモータ制御装置の特徴は、3相モータの駆動に利用されるインバータを構成する半導体パワースイッチ素子の温度に応じて、前記3相モータの駆動を制御して前記インバータの発熱を抑制し、前記3相モータのロック時に前記3相モータが備える各相のコイルに流れるコイル電流に基づいて、各相の前記半導体パワースイッチ素子の温度推定値を演算する素子温度推定部と、前記温度推定値の中から最高温度値を抽出する最高温度抽出部と、を備える点にある。
このような構成とすれば、例えばモータロック時に、3相モータが備えるロータのコイルに流れるコイル電流から半導体パワースイッチ素子の発熱を瞬時に予測することが可能となる。したがって、半導体パワースイッチ素子が構成するインバータの発熱を抑制することができるため、熱破壊を未然に防止することが可能となる。
また、前記モータ制御装置は、前記最高温度値に対して、前記温度推定値と予め設定された温度閾値との差に応じて前記3相モータのトルク制限値を算出するトルク制限値算出部を備える構成とすると好適である。このような構成とすれば、半導体パワースイッチ素子の発熱量が多ければ、3相モータの駆動トルクを制限するため、モータが何らかの理由で回転していないにも拘らず、通電をし続けるといった制御を防止することができる。したがって、連続通電による発熱、更には発煙、発火等を未然に防止することが可能となる。
また、前記モータ制御装置は、前記温度推定値の演算が、前記インバータの温度を測定する温度センサから前記3相モータの回転前に出力されるセンサ信号を用いて行われると好適である。また、前記モータ制御装置は、前記温度推定値が、前記3相モータの回転前における前記インバータの温度と、前記コイル電流に基づいて算出された発熱量予測値とにより演算されると好適である。更に、前記モータ制御装置は、前記センサ信号が、前記温度推定値の演算に1回だけ用いられると好適である。
このような構成とすれば、3相モータの回転前における温度センサの出力を利用するため、都度、温度センサの出力をモニタする必要がなくなる。したがって、温度センサを制御する制御機能部の負担を低減させることが可能となる。また、回転前におけるインバータの温度と、インバータを回転した際におけるコイル電流に基づいて算出された発熱量予測値とに基づいて温度推定値の算出を行うため、都度、温度センサの出力をモニタする必要がなくなる。更に、温度センサが1つであっても3相分の半導体パワースイッチ素子の熱保護を行うことができるため、コストを抑えてモータ制御装置を構成することが可能となる。
〔本発明の第一実施形態〕
以下、本発明の実施例を図面に基づいて説明する。図1は、本発明のモータ制御装置100の構成を示す概略図である。本モータ制御装置100は、トルク制限値算出部1、トルク−電流変換部2、電流制御部3、逆座標変換部4、インバータ制御部5、インバータ6、3相モータ7、回転数演算部8、座標変換部9、素子温度推定部10、最高温度抽出部11を備えている(詳細は後述する)。
図2は、特に、インバータ制御部5とインバータ6と3相モータ7との構成を示した図である。3相モータ7は、図示はしないが、永久磁石を備えるロータと、当該ロータに回転力を与えるための磁界を発生させるステータとを備える。このステータは、U相、V相、W相の3相のステータコイル7u、7v、7wを備える。各ステータコイルの一端は、電気的に中性な中性点で共通に接続され、Y結線される。各ステータコイルの他端は、インバータ6に接続される。
インバータ6は、図2に示されるように、電源20の正電圧側に接続されたハイサイドのトランジスタQ1、Q3、Q5と、電源20の負電圧側に接続されたローサイドのトランジスタQ2、Q4、Q6と、の合計6つのトランジスタQ1〜Q6で構成される。例えば、トランジスタQ1及びトランジスタQ4のみを同時にオンさせると、電源20から第1電源ライン21、トランジスタQ1、ステータコイル7v、ステータコイル7w、トランジスタQ4を介して第2電源ライン22に電流が流れる。一方、トランジスタQ3及びトランジスタQ2のみを同時にオンさせると、電源20から第1電源ライン21、トランジスタQ3、ステータコイル7w、ステータコイル7v、トランジスタQ2を介して第2電源ライン22に電流が流れる。
このトランジスタQ1及びトランジスタQ4のみをオンさせた場合と、トランジスタQ3及びトランジスタQ2のみをオンさせた場合とでは、ステータコイル7v及びステータコイル7wに流れる電流の方向が異なる。そのため、各ステータコイルには電流の流れる方向に応じた電磁力が働き、当該電磁力とロータが備える永久磁石との間で引力及び斥力が発生することとなる。したがって、トランジスタQ1〜Q6の中から選択されたハイサイドのトランジスタとローサイドのトランジスタとで形成される上下対トランジスタを順次オンさせることにより、ロータが回転力を得ることができる。
尚、トランジスタQ1〜Q6には、コレクタ端子にカソード端子が、またエミッタ端子にアノード端子が接続されるように夫々ダイオードD1〜D6が配設されている。ここで、各ステータコイルには、通電中にエネルギーが蓄えられるが、これらのダイオードD1〜D6は各ステータコイルの通電を停止した際に該エネルギーに起因して発生する逆起電力によって周辺部品に悪影響を及ぼさないようにするために配設されるものである。
このようなトランジスタQ1〜Q6に対する一連の制御は、インバータ制御部5により行われる。インバータ制御部5は、ECU5aとドライバ5bとから構成される。ECU5aは、トランジスタQ1〜Q6をPWM制御により動作させる。3相モータ7には、ロータの回転角を検出する位置センサ7aが備えられている。位置センサ7aは、ロータの回転角を電気角θに変換し、電気角θに応じた信号を出力する。回転数演算部8は、この出力された信号に基づいて3相モータ7の回転数(角速度ω)を検出する。ECU5aには、回転数演算部8が算出した回転数と、インバータ6及び各ステータコイルの間の電流とをモニタしている。ここで、ECU5aの駆動方式によっては、電流をモニタするのではなく、電圧をモニタする構成であっても良い。尚、3相モータ制御装置100の全体構成から鑑みた場合には、上記モニタは、図1に示されるように各機能部を介して行われるが、閉ループであるためPWM制御に対して、何等問題が発生するものではない。
ECU5aは、例えば、2.5Vや3.3V等の低電圧で動作するマイクロコンピュータによって構成される。そのため、トランジスタQ1〜Q6に流れる電流やトランジスタQ1〜Q6の電気的特性によっては、トランジスタQ1〜Q6をオンさせるためのドライブ能力が不足する虞がある。したがって、ECU5aとインバータ6との間には、ECU5aのPWM信号のドライブ能力を上げるドライバ5bが配設されている。尚、ドライバ5bは、ドライバICで構成しても良いし、トランジスタで組まれたプッシュプル回路で構成しても良い。
図1に戻り、トルク制限値算出部1は、3相モータ7を回転するために必要な総トルクを算出し、目標トルクの出力を行う。この総トルクの算出は、回転数演算部8により算出された3相モータ7の回転数や最高温度抽出部11から出力される信号を帰還信号として用いて行われる。
ここで、本モータ制御装置100は、モータ電流iu、iv、iwを、3相モータ7のロータが有する永久磁石が発生する磁界の方向であるd軸及び当該d軸に直交するq軸のベクトル成分Id及びIqに座標変換を行って、3相モータ7の回転制御を行う。図3は、この座標変換の原理を示す図である。図3に示す3相モータでは、2極の永久磁石mを有するロータ7rを備え、ロータ7rの回転角と電気角θとが一致する。図3(a)は3相交流電流波形と電気角θとの関係を示した図であり、図3(b)は図3(a)の時刻t1におけるロータ7rとステータ7sとの位置関係及び座標変換前後の電流ベクトルを示す図である。尚、図3(b)においては、ステータ7sのU相の磁極位置を基準として、ロータ7rの磁極位置となる電気角θが示されている。
図3(b)に示されるように、永久磁石mが発生する磁界の方向をd軸とし、当該d軸に直交する方向をq軸とする。図3(a)に示すように、ロータ7rの磁極位置に応じて、ステータコイル7u、7v、7wに3相交流電流iu、iv、iwを流すことにより、トルクが発生する。図3(a)の時刻t1での電気角θにおける電機子電流の総和を示すベクトルia(Ia)は、図3(a)よりW相電流iwが零であるため、U相電流iuとV相電流ivとのベクトル和となる。この電気角θにおける電流ベクトルiaをd軸及びq軸に対して分解すると、d軸電流Idとq軸電流Iqとが得られる。このように、3相のモータ電流iu、iv、iwは、d軸電流Idとq軸電流Iqとに座標変換される。
ここで、特に永久磁石埋め込み型の同期モータでは、ステータコイル7u、7v、7wから見たインダクタンスが、ロータ7rとの関係、即ち磁極位置との関係で変化する。磁極の方向であるd軸方向では、永久磁石が持つ透磁率の大きさの逆数に比例した磁気抵抗を持つために磁路が妨げられてしまう。一方、q軸方向では、透磁率が大きいケイ素鋼などの磁性体を通るため、磁気抵抗の値は永久磁石に比べると著しく小さくなり、磁路が妨げられにくくなる。そのため、q軸インダクタンスLqは、d軸インダクタンスLdよりも大きい値となる。ステータコイル7u、7v、7wから見てd軸及びq軸は磁極位置との関係で変化するので、ステータコイル7u、7v、7wから見たインダクタンスが変化することになる。
したがって、永久磁石によるマグネットトルク(主トルク)に加えて、q軸インダクタンスLqとd軸インダクタンスLdとの差によるリラクタンストルクも発生する。表面磁石型の同期モータなど、リラクタンストルクを積極的に利用しない場合には、Id=0とする制御を行うと効率が良い。しかし、永久磁石埋め込み型の同期モータなどでリラクタンストルクも利用する場合には、Id≠0とする制御を行う方が効率が良くなる。永久磁石埋め込み型の同期モータでは、図4で示されるd軸電流Idとq軸電流Iqとの電流位相角βにより最高効率を出す動作点が変わる((1)式参照)。
Figure 2009017707
3相モータ7の総合トルクTは、Pn:極対数、ψa:電機子の鎖交磁束、ia:電機子電流、Ld:d軸インダクタンス、Lq:q軸インダクタンス、β:電流位相角とすると、(2)式に示すトルク方程式よって表される。
Figure 2009017707
(2)式において、中括弧内の第1項がマグネットトルクを示し、第2項がリラクタンストルクを示す。また、図4から、下記(3)〜(5)式であることが明らかであるから、(2)式のトルク方程式は、下記(6)式のように表すこともできる。
Figure 2009017707
Figure 2009017707
Figure 2009017707
Figure 2009017707
このように、電機子電流Iaはd軸電流Idとq軸電流Iqとを含んでいる。従って、(2)式及び(6)式に示すトルク方程式は、鎖交磁束と、d軸及びq軸のインダクタンスと、d軸及びq軸の電流とを用いて3相モータ7のトルクを表す式であるということができる。
トルク−電流変換部2は、トルク制限値算出部1により算出された目標トルクから、d軸電流指令値Idr、q軸電流指令値Iqrを演算する。例えば、上記(2)式に示すトルク方程式は、電機子電流Iaの式に変形できる。トルク−電流変換部2は、目標トルクや他のパラメータを代入して変形後のトルク方程式を解き、位相角βによってベクトル分解することによって電流指令値Idr、Iqrを算出することが可能である。又は、(6)式から電流指令値Idr、Iqrを算出することも当然に可能である。
電流制御部3は、トルク−電流変換部2により算出された電流指令値Idr、Iqrから、電圧方程式に基づいて、d軸の電圧指令値Vdr及びq軸の電圧指令値Vqrの算出を行う。d軸の電圧Vd及びq軸の電圧Vqを表す電圧方程式は、ψa:電機子の鎖交磁束、ω:角速度、Id:d軸電流、Iq:q軸電流、Ld:d軸インダクタンス、Lq:q軸インダクタンス、Ra:電機子抵抗、p:微分演算子として、以下の(7)式のように表される。
Figure 2009017707
(7)式は、鎖交磁束と、d軸及びq軸のインダクタンスを含む3相モータ7のステータコイルのインピーダンスと、d軸及びq軸の電流とを用いて3相モータ7を駆動する電圧を表す電圧方程式となっていることが明らかである。電流制御部3は、(7)式に示される電圧方程式に電流指令値Idr、Iqrや、他のパラメータを代入することによって、d軸電圧Vd、q軸電圧Vqを算出する。算出されたd軸電圧Vd及びq軸電圧Vqは、d軸電圧指令値Vdr及びq軸電圧指令値Vqrとして出力される。
逆座標変換部4は、電流制御部3によって算出されたd軸の電圧指令値Vdr及びq軸の電圧指令値Vqrを上述の座標変換とは逆の変換を行うことにより、3相電圧指令値vu、vv、vwに変換する。図3及び図4を用いて上述した座標変換の逆変換であるため、変換方法についての詳細な説明は省略する。
インバータ制御部5は、上述のように、PWM制御を行うが、このPWM制御は、逆変換部4により3相電圧指令vu、vv、vwに基づいて、インバータ6のトランジスタQ1〜Q6を駆動するための駆動信号を生成して制御する。
本モータ制御装置100は、インバータ6の温度に応じて、3相モータ7の駆動を制御してインバータ6の発熱を抑制する機能を備えている。素子温度推定部10は、インバータ6から得られる通電開始時の温度と3相モータ7の各相電流(3相交流電流iu、iv、iw)とにより、トランジスタの推定温度の算出を行う。例えば、U相における推定温度を算出する場合には、まず、(8)式により、U相発熱量予測値を算出する。
Figure 2009017707
ここで、Tsen:温度応答の時定数、n:サンプリング回数、Ksen:電流に対する温度特性係数、T0:通電開始時の温度センサ値である。そして、算出された予測値を用いて、(9)式によりU相の推定温度を算出する。
Figure 2009017707
V相及びW相もU相と同様に、(10)〜(13)式により算出可能である。
Figure 2009017707
Figure 2009017707
Figure 2009017707
Figure 2009017707
具体的に図5に示されるような3相交流電流のU相発熱量予測値を算出すると、Tsen=10、Ksen=1、T0=25℃とすると、n=1では、
Figure 2009017707
となるため、推定温度は45℃となる。
次に、n=2では、
Figure 2009017707
となるため、推定温度は58.3℃となる。
このような発熱量予測値と推定温度は、サンプリング毎に都度、算出される。ここでは理解を容易とするために、算出された各相の推定温度を図6に示し、サンプリング回数を増やして図示したものを図7に示す。このような算出結果は素子温度推定部10に順次、格納される。そして、最高温度抽出部11が、サンプリング毎に各サンプリングにおける最高温度値の抽出を行う。これを図示したものを、図8に示す。
この最高温度値は、サンプリング毎にトルク制限値算出部1に伝達される。上述の通り、トルク制限値算出部1では、3相モータ7を回転するために必要な総トルクの算出を行うが、最高温度値を加味して、補正トルク指示値の算出を行う。例えば、異常運転であると認識する温度閾値を100℃と設定した場合には、図8より最大推定温度は、どのサンプリング時点においても温度閾値以下であるため、トルクの補正は行わない。
一方、3相モータ7の始動時において、理由の如何を問わず、ロータが回転しない場合には、特定の相に過電流が流れることとなる(但し、iu+iv+iw=0)。例えば、U相に過電流が流れている場合には図9のような電流波形となる。(9)及び(10)式から算出された、この状態における推定温度を図10に示す。図10に示されるように、ステータが回転しない場合には、特定の相(例えば、U相)に過電流が流れることから、当該電流が流れるトランジスタが発熱し、熱破壊に至る虞がある。したがって、推定温度が温度閾値(例えば、100℃)を超えた場合には、トルク制限値算出部1がトルク指示値を絞ったり、更に発熱が高い場合には、トルク指示値を零として運転を中止したりするように制御する。
このように、ロータに流れるコイル電流iu、iv、iwと、3相モータ7の回転前におけるインバータ6の初期温度とから、トランジスタの発熱量を推定することにより、トルク指示値を補正することができる。したがって、3相モータ7に異常があった場合であっても、3相モータ7の駆動を制御してインバータの過熱を抑制することが可能となる。また、上記のように各相毎のトランジスタの発熱を瞬時に推定できるので、温度センサの応答遅れによって熱破壊に至ることがなくなる。
次に、本モータ制御装置100がインバータの過熱抑制にかかる制御に関して図11のフローチャートを使用して説明する。まず、3相モータ7の回転に先立ち、温度センサ(図示せず)が、インバータ6の温度の測定を行う(ステップ#01)。そして、トルク制限値算出部1に3相モータ7を動かすために必要な目標トルクが入力される(ステップ#02)。次に、インバータ6が備えるトランジスタQ1〜Q6の最大温度の推定を行うために、ロータに流れるコイル電流iu、iv、iwを測定する(ステップ#03)。
コイル電流iu、iv、iwの測定結果は、素子温度推定部10に入力され、U相、V相、W相毎に発熱量予測値の算出を行う(ステップ#04)。そして、当該発熱量予測値と、ステップ#01で測定された3相モータ7の回転前のインバータ6の温度測定結果とから、U相、V相、W相毎に推定温度の算出を行う(ステップ#05)。
算出された各相推定温度から、最高温度抽出部11が、最高温度の抽出を行う(ステップ#06)。この最高温度が予め設定されている温度閾値より小さい場合には(ステップ#07:Yes)、インバータ6に異常発熱が生じていないことから過電流が流れていないと考えられるため、ステップ#02で入力された目標トルクを絞ることなく、以下のモータ制御が行われる。
トルク−電流変換部2により、トルク−電流指示変換が行われ(ステップ#08)、電流制御部3により、電流制御の算出が行われる(ステップ#09)。そして、逆座標変換部4は、逆座標変換を行う(ステップ#10)。インバータ制御部5は、逆座標変換された信号に基づいてPWM制御によりインバータ6を介し、3相モータ7に印加される(ステップ#11)。
ステップ#07で、最高温度抽出部11が抽出した最高温度が、温度閾値よりも高ければ(ステップ#07:No)、インバータ6に異常発熱が生じて過電流が流れている可能性があると考えられる。したがって、トルク制限値算出部1は目標トルクを絞るようにトルク補正を行い(ステップ#12)、処理が継続される。この処理は、モータ制御装置100が制御を停止するまで継続して行われる(ステップ#13:No)。このように本モータ制御装置100の制御に因れば、何らかの理由により、3相モータ7が回転しないといった場合や、回転はするもののインバータ6が想定した以上に発熱をしている場合であっても、インバータ6の過熱を抑制することが可能となる。
〔その他の実施形態〕
上記実施形態において、インバータ制御部5はPWM制御によりインバータ6の制御を行うとして説明したが、これに限らない。例えば、PFM(Pulse Frequency Modulation)制御であっても可能であるし、その他の制御であっても当然に可能である。
上記実施形態において、インバータ6を構成する3相半導体パワースイッチ素子はトランジスタ(バイポーラトランジスタ)として説明したが、これに限らない。FET(Field effect transistor)やIGBT(Insulated Gate Bipolar Transistor)等のスイッチング素子であっても当然に可能である。
上記実施形態において、温度センサはインバータ6に1つだけ配設されるとして説明したが、これに限らない。相毎に1つずつ、配設されるように構成することも当然に可能である。このような場合には、各相の温度センサの出力を3相モータ7が回転する前の温度(初期温度)としても良いし、或いは複数個、配設された温度センサの出力のうち最も高い温度の値を初期温度とすることも、当然に可能である。或いは、複数個の温度センサの出力の平均値を初期温度とすることも当然に可能である。また、温度センサの配設場所は、インバータ6の中央に配設されていても良いし、何れかの相の近傍に配設されていても良い。
上記実施形態において、トルク制御値算出部1は、温度推定値と予め設定された温度閾値との差に応じて、目標トルクを絞って、補正トルクを算出するとして説明した。この手法の一例としては、予め所定の絞り度を決めておいて、温度推定値と温度閾値との差に比例した割合で3相モータ7のトルクを下げるように構成すると好適である。また、トルクを下げるだけでなく、3相モータ7の回転を停止するような制御を行うように構成することも当然に可能である。
モータ制御装置の構成を模式的に示す図 インバータ制御部とインバータと3相モータとの構成を示す図 座標変換の原理を示す図 電機子電流の位相角について説明するベクトル図 正常時の3相交流電流波形の一例を示す図 正常時の各相の温度推定の算出結果を示す図 正常時の温度推定結果をグラフ化した図 正常時の最大温度を抽出した結果をグラフ化した図 異常時の3相交流電流波形の一例を示す図 異常時の最大温度を抽出した結果をグラフ化した図 モータ制御装置が行うモータ制御に係るフローチャート
符号の説明
1:トルク制限値設定部
2:トルク−電流変換部
3:電流制御部
4:逆座標変換部
5:インバータ制御部
6:インバータ
7:3相モータ
8:回転数演算部
9:座標変換部
10:素子温度推定部
11:最高温度抽出部

Claims (5)

  1. 3相モータの駆動に利用されるインバータを構成する半導体パワースイッチ素子の温度に応じて、前記3相モータの駆動を制御して前記インバータの発熱を抑制するモータ制御装置において、
    前記3相モータのロック時に前記3相モータが備える各相のコイルに流れるコイル電流に基づいて、各相の前記半導体パワースイッチ素子の温度推定値を演算する素子温度推定部と、
    前記温度推定値の中から最高温度値を抽出する最高温度抽出部と、を備えるモータ制御装置。
  2. 前記最高温度値に対して、前記温度推定値と予め設定された温度閾値との差に応じて前記3相モータのトルク制限値を算出するトルク制限値算出部を備える請求項1に記載のモータ制御装置。
  3. 前記温度推定値の演算が、前記インバータの温度を測定する温度センサから前記3相モータの回転前に出力されるセンサ信号を用いて行われる請求項1又は2に記載のモータ制御装置。
  4. 前記温度推定値が、前記3相モータの回転前における前記インバータの温度と、前記コイル電流に基づいて算出された発熱量予測値とにより演算される請求項3に記載のモータ制御装置。
  5. 前記温度センサが、1つのみ配設されている請求項3又は4に記載のモータ制御装置。
JP2007177670A 2007-07-05 2007-07-05 モータ制御装置 Pending JP2009017707A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177670A JP2009017707A (ja) 2007-07-05 2007-07-05 モータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177670A JP2009017707A (ja) 2007-07-05 2007-07-05 モータ制御装置

Publications (1)

Publication Number Publication Date
JP2009017707A true JP2009017707A (ja) 2009-01-22

Family

ID=40357921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177670A Pending JP2009017707A (ja) 2007-07-05 2007-07-05 モータ制御装置

Country Status (1)

Country Link
JP (1) JP2009017707A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162732A (ja) * 2012-02-08 2013-08-19 Honda Motor Co Ltd 車両駆動用電動機の制御装置
WO2014141835A1 (ja) * 2013-03-15 2014-09-18 三菱電機株式会社 パワーモジュール
WO2014162755A1 (ja) 2013-04-01 2014-10-09 富士電機株式会社 電力変換装置
US9954470B2 (en) 2016-06-08 2018-04-24 Denso Corporation Apparatus for controlling rotating electric machine and electrically-powered steering apparatus using the same
US9985570B2 (en) 2014-11-04 2018-05-29 Denso Corporation Motor control apparatus
CN109923780A (zh) * 2016-11-01 2019-06-21 日产自动车株式会社 电机的控制方法以及电机的控制装置
US10532765B2 (en) 2016-02-17 2020-01-14 Denso Corporation Control apparatus for three-phase rotary machine, and electric power steering apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10337084A (ja) * 1997-05-30 1998-12-18 Aisin Seiki Co Ltd スイッチングモジュ−ルの過熱保護装置
JP2001069787A (ja) * 1999-08-30 2001-03-16 Aisin Seiki Co Ltd モ−タ駆動の制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10337084A (ja) * 1997-05-30 1998-12-18 Aisin Seiki Co Ltd スイッチングモジュ−ルの過熱保護装置
JP2001069787A (ja) * 1999-08-30 2001-03-16 Aisin Seiki Co Ltd モ−タ駆動の制御装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162732A (ja) * 2012-02-08 2013-08-19 Honda Motor Co Ltd 車両駆動用電動機の制御装置
US10379070B2 (en) 2013-03-15 2019-08-13 Mitsubishi Electric Corporation Power module
JP6012849B2 (ja) * 2013-03-15 2016-10-25 三菱電機株式会社 パワーモジュール
JPWO2014141835A1 (ja) * 2013-03-15 2017-02-16 三菱電機株式会社 パワーモジュール
WO2014141835A1 (ja) * 2013-03-15 2014-09-18 三菱電機株式会社 パワーモジュール
WO2014162755A1 (ja) 2013-04-01 2014-10-09 富士電機株式会社 電力変換装置
US9595908B2 (en) 2013-04-01 2017-03-14 Fuji Electric Co., Ltd. Power converter
US9985570B2 (en) 2014-11-04 2018-05-29 Denso Corporation Motor control apparatus
US10608576B2 (en) 2014-11-04 2020-03-31 Denso Corporation Motor control apparatus
US10532765B2 (en) 2016-02-17 2020-01-14 Denso Corporation Control apparatus for three-phase rotary machine, and electric power steering apparatus
US9954470B2 (en) 2016-06-08 2018-04-24 Denso Corporation Apparatus for controlling rotating electric machine and electrically-powered steering apparatus using the same
CN109923780A (zh) * 2016-11-01 2019-06-21 日产自动车株式会社 电机的控制方法以及电机的控制装置
CN109923780B (zh) * 2016-11-01 2021-07-27 日产自动车株式会社 电机的控制方法以及电机的控制装置

Similar Documents

Publication Publication Date Title
US9692342B2 (en) Brushless motor and motor control device
US7102314B2 (en) Brushless motor control apparatus having overheat protecting function
JP6107936B2 (ja) 電力変換装置
EP2192683B1 (en) Phase current estimation device of motor and magnetic pole position estimation device of motor
JP4764124B2 (ja) 永久磁石型同期モータの制御装置及びその方法
US7576511B2 (en) Motor control device and motor control method
JP5365837B2 (ja) モータ制御装置
JP2009017707A (ja) モータ制御装置
JP2009017706A (ja) モータ制御装置とモータ制御方法
JP5193012B2 (ja) 電動機の温度推定装置
JP2008206323A (ja) 電動機駆動装置
WO2017126639A1 (ja) 電流センサの異常検知装置
JP4577949B2 (ja) モータ制御装置
JP4804496B2 (ja) 電動機の駆動装置、空気調和機、洗濯機、洗濯乾燥機、冷蔵庫、換気扇、ヒートポンプ給湯器
JP4781933B2 (ja) 電動機の制御装置
JP2009189146A (ja) 電動モータの制御装置
JP4777051B2 (ja) 交流電動機の制御装置
JP2010148324A (ja) モータ制御装置
JP2013146155A (ja) 巻線温度推定装置及び巻線温度推定方法
JP2013123288A (ja) 電動機の制御装置
JP2010268599A (ja) 永久磁石モータの制御装置
JP5352124B2 (ja) 電動機駆動装置
JP4642606B2 (ja) ブラシレスdcモータの制御装置
JP5365838B2 (ja) モータ制御装置
JP2010028981A (ja) 同期モータの回転子位置推定方法および同期モータの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120802