JP2009014418A - 分光器 - Google Patents

分光器 Download PDF

Info

Publication number
JP2009014418A
JP2009014418A JP2007174681A JP2007174681A JP2009014418A JP 2009014418 A JP2009014418 A JP 2009014418A JP 2007174681 A JP2007174681 A JP 2007174681A JP 2007174681 A JP2007174681 A JP 2007174681A JP 2009014418 A JP2009014418 A JP 2009014418A
Authority
JP
Japan
Prior art keywords
light
liquid crystal
crystal element
polarizer
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007174681A
Other languages
English (en)
Inventor
Kiwa Sugiyama
喜和 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007174681A priority Critical patent/JP2009014418A/ja
Publication of JP2009014418A publication Critical patent/JP2009014418A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】 測定に際して構成要素を移動させることなく、簡素な構成にしたがって、測定対象物からの光の分光特性を測定することのできるフーリエ分光器。
【解決手段】 測定対象物から入射した光のうち、第1の直線偏光状態の光を射出する偏光子(1a)と、偏光子を経た第1の直線偏光状態の光に位相差を可変的に付与する可変位相部材(2)と、可変位相部材から入射した光のうち、第1の直線偏光状態の光の偏光方向と直交する方向に偏光方向を有する第2の直線偏光状態の光を射出する検光子(1a)と、検光子を経た第2の直線偏光状態の光を検出する光検出器(3)と、可変位相部材により付与される位相差と光検出器で検出される光強度とに基づいて、測定対象物からの光の分光特性を測定する測定部(4)とを備えている。
【選択図】 図1

Description

本発明は、分光器に関し、さらに詳細には測定対象物からの光の分光特性を測定するフーリエ分光器に関するものである。
従来、マイケルソン干渉計タイプのフーリエ分光器が知られている。この種のフーリエ分光器では、測定対象物(サンプル)からの光をビームスプリッターで2つの光に分離し、一方の光を固定鏡へ入射させ、他方の光を移動鏡へ入射させる。そして、固定鏡で反射された光と移動鏡で反射された光とをビームスプリッターで合成し、合成された光の強度を光検出器で測定する。
従来のマイケルソン干渉計タイプのフーリエ分光器では、移動鏡を移動させつつ光検出器で検出される光強度をモニターすることにより、光検出器で得られた干渉信号に基づいて測定対象物からの光の分光特性を測定する。すなわち、従来の技術では、分光特性の測定に際して、移動鏡を所定の姿勢で精度良く移動させる必要がある。また、光検出器で干渉信号を得るには、固定鏡で反射された光と移動鏡で反射された光とが検出面上で正確に重なる必要がある。移動鏡の移動に際してその姿勢が傾く(チルトする)と、移動鏡のチルトが光検出器での光の干渉に影響を及ぼし、ひいては測定精度が低下する。
本発明は、前述の課題に鑑みてなされたものであり、測定に際して構成要素を移動させることなく、簡素な構成にしたがって、測定対象物からの光の分光特性を測定することのできるフーリエ分光器を提供することを目的とする。
前記課題を解決するために、本発明では、測定対象物からの光の分光特性を測定する分光器において、
前記測定対象物から入射した光のうち、第1の直線偏光状態の光を射出する偏光子と、
前記偏光子を経た前記第1の直線偏光状態の光に位相差を可変的に付与する可変位相部材と、
前記可変位相部材から入射した光のうち、前記第1の直線偏光状態の光の偏光方向と直交する方向に偏光方向を有する第2の直線偏光状態の光を射出する検光子と、
前記検光子を経た前記第2の直線偏光状態の光を検出する光検出器と、
前記可変位相部材により付与される位相差と前記光検出器で検出される光強度とに基づいて、前記測定対象物からの光の分光特性を測定する測定部とを備えていることを特徴とする分光器を提供する。
本発明では、測定対象物からの入射光から偏光子を介して得られた第1の直線偏光状態の光に位相差を可変的に付与し、位相差が可変的に付与された光から検光子を介して得られた第2の直線偏光状態(第1の直線偏光状態と偏光方向が直交する直線偏光)の光を検出する。そして、付与される位相差と検出される光強度(光量)とに基づいて、測定対象物からの光の分光特性を測定する。こうして、本発明のフーリエ分光器では、測定に際して構成要素を移動させることなく、簡素な構成にしたがって、測定対象物からの光の分光特性を測定することができる。
本発明の実施形態を、添付図面に基づいて説明する。図1は、本発明の実施形態にかかるフーリエ分光器の構成を概略的に示す図である。図1を参照すると、本実施形態のフーリエ分光器は、測定対象物(不図示)からの光の入射順に、ビームスプリッター1と、反射型の液晶素子2と、光検出器(ディテクタ)3とを備えている。さらに、本実施形態のフーリエ分光器は、光検出器3の出力が接続された測定部4を備えている。
本実施形態のフーリエ分光器では、測定対象物である試料からの光(一般には無偏光状態の光)が、後述するように偏光子の機能および検光子の機能を果たす偏光ビームスプリッター1に入射する。偏光ビームスプリッター1に入射した光のうち、偏光分離膜1aを透過した光、すなわち図1の紙面に平行な方向に偏光方向を有するP偏光の光は、反射型の液晶素子2に入射する。
液晶素子2は、後述するように、測定部4が内蔵する制御系4aから印加される電圧の変化に応じて、入射した光に位相差を可変的に付与する。液晶素子2により位相変調されて楕円偏光に変化した光は、再び偏光ビームスプリッター1に入射する。偏光ビームスプリッター1に入射した楕円偏光の光のうち、偏光分離膜1aで反射された光、すなわち図1の紙面に垂直な方向に偏光方向を有するS偏光の光は、光検出器3に入射する。
光検出器3で検出される光強度(光量)に関する情報は、測定部4が内蔵する信号処理系4bに供給される。制御系4aの制御により液晶素子2に印加される電圧に関する情報、すなわち液晶素子2で付与される位相差に関する情報も、信号処理系4bに供給される。測定部4の信号処理系4bでは、光検出器3で検出される光強度と液晶素子2で付与される位相差とに基づいて、測定対象物からの光の分光特性を測定する。
本実施形態では、図2に示すように、偏光子として機能する偏光分離膜1aを透過した光の偏光方向F1と、検光子として機能する偏光分離膜1aで反射された光の偏光方向F2とが互いに直交するように設定されている。そして、液晶素子2は、その進相軸の方向F3および遅相軸の方向F4が、偏光分離膜1aを透過した光の偏光方向F1および偏光分離膜1aで反射された光の偏光方向F2と45度の角度をなすように配置されている。
以下、本実施形態のフーリエ分光器における分光特性の測定原理の理解を容易にするために、本実施形態の測定原理に先立って、従来のマイケルソン干渉計タイプのフーリエ分光器の測定原理について説明する。マイケルソン干渉計タイプのフーリエ分光器では、測定対象物からの光の分光特性をH(ν)(νは光の周波数)とし、固定鏡からの光と移動鏡からの光との光路長差をxとし、光速度をcとすると、光検出器で検出(観測)される周波数νの光の強度I(ν)は、次の式(1)で表される。
Figure 2009014418
光検出器に入射する光の全光量は強度I(ν)をνで積分したものになるので、全光量I(x)は次の式(2)で表される。
Figure 2009014418
こうして、全光量I(x)にcos(2πν'x/c)を掛けてxで積分することにより、分光特性H(ν)を求めることができる。具体的には、移動鏡を移動させて光路長差xを変化させながらI(x)を測定し、測定したI(x)をxでフーリエ変換することにより分光特性が求められる。
これに対し、本実施形態のフーリエ分光器では、可変位相部材としての液晶素子2で付与される位相差をδとし、計算の簡単のために液晶素子2の進相軸の方向および遅相軸の方向をそれぞれx軸およびy軸に設定すると、液晶素子2の位相変調効果を表すジョーンズ行列Jは、次の式(3)で表される。
Figure 2009014418
偏光ビームスプリッター1を透過した光、すなわち偏光子として機能する偏光分離膜1aを透過した光の偏光状態を表すジョーンズベクトルJvaは、この透過光の偏光方向が液晶素子2の進相軸と45度の角度をなすので、次の式(4)で表される。
Figure 2009014418
同様に、偏光ビームスプリッター1の偏光分離膜1aで反射された光、すなわち検光子として機能する偏光分離膜1aで反射された光の偏光状態を表すジョーンズベクトルJvbは、次の式(5)で表される。
Figure 2009014418
従って、光検出器3に到達する光量Iは、次の式(6)で表される。
Figure 2009014418
次に、位相差δについて説明する。液晶素子2の光学軸は電圧が印加される前の初期状態において液晶層に対して直交する方向に向いており、電界が掛かると光学軸が傾く。このとき、液晶素子2への入射光は、液晶素子2の光学軸に対して角度を持って斜め入射するので、常光線成分と異常光線成分とに分離される。結果として、液晶素子2を経た光は、常光線成分と異常光線成分とで異なった位相差を持つ。この位相差δは、光の波長をλとし、液晶層の厚さをdとし、常光線と異常光線との屈折率差をΔnとすると、次の式(7)で表される。
Figure 2009014418
液晶素子2が反射型であるため、式(7)の右辺において液晶層の厚さdに係数2を掛けている。このように、本実施形態では、液晶素子2に電界を掛けることにより、すなわち液晶素子2に電圧を印加することにより、液晶素子2の光学軸の向きが変わり、常光線と異常光線との屈折率差Δnが変化し、ひいては液晶素子2の内部を通過する光に付与される位相差δが変化する。
次に、位相差δを表す式(7)を、光量Iを表す式(6)に代入すると、光検出器3が受光する波長λの光の強度I(λ)は、次の式(8)で表される。ただし、式(8)において、t=2・Δn・dで表されるtは、液晶素子2に印加される電圧に依存するパラメータである。
Figure 2009014418
式(8)を参照すると、cosの中の位相(t/λ)が1/λに比例することが分かる。厳密には、Δnは波長分散を持っておりλの関数である。しかしながら、式(8)において、Δnの分散の影響は1/λの影響に比して十分に小さいものと考えられる。そこで、簡単のために、Δnの波長分散が無視できるものとして説明を続ける。式(8)を参照すると、光検出器3に入射する波長分布g(λ)を持つ光の全光量I(t)は、次の式(9)で表される。
Figure 2009014418
ここで、ν=1/λの関係を式(9)に代入すると、全光量I(t)は次の式(10)で表される。
Figure 2009014418
式(10)から分かるように、全光量I(t)は、g(λ)/ν2のフーリエ変換になっている。したがって、パラメータtを変えて全光量I(t)のデータをモニターし、この全光量I(t)を逆フーリエ変換することにより、g(λ)/ν2を求めることができ、最終的に測定対象物からの光の分光特性である波長分布g(λ)を得ることができる。ここで、パラメータtを変えることは、液晶素子2に印加する電圧を、ひいては液晶素子2により付与される位相差δを変えることに他ならない。
また、パラメータtを変えて得られる全光量I(t)のデータは、液晶素子2により付与される位相差δを変えて光検出器3で検出される光強度(光量)に関する情報に他ならない。こうして、本実施形態のフーリエ分光器では、可変位相部材としての液晶素子2により付与される位相差δと、光検出器3で検出される光強度とに基づいて、測定に際して分光器の構成要素を移動させることなく、簡素な構成にしたがって、測定対象物からの光の分光特性を測定することができる。
上述の説明ではΔnの波長分散が無視できるものとして議論を進めたが、以下、Δnの分散を次の式(11)で表現することができる場合について検討する。なお、式(11)において、ε(ν)はΔnの分散を表すために導入されたνの関数であり、Δn0はνに関しては定数である。
Figure 2009014418
上述の説明ではパラメータt(t=2・Δn・d)を用いているが、このパラメータtの式に式(11)を代入して、次の式(12)で表される新たなパラメータt’を定義する。
Figure 2009014418
こうして、式(11)に示す関係を考慮し、式(9)からの計算により、全光量I(t0)は、次の式(13)で表される。
Figure 2009014418
次に、式(14)に示すフーリエ積分を行うと、式(15)が得られる。次いで、式(15)についてt0の積分を実行すると、式(16)が得られる。
Figure 2009014418
さらに、μ=ε(ν)・νとして置換積分すると、式(17)に示す関係より、式(16)は次の式(18)に示すように変形される。
Figure 2009014418
そこで、式(19)に示すようにG(μ)を定義すると、式(18)をμで積分して得たものと、式(14)の代わりに式(20)を計算してiを掛けて引いたものに、さらにν=0のときに測定対象物からの光の波長分布g(λ)が0になることを考慮すると、G(μ)を得る。そして、このG(μ)から、測定対象物からの光の分光特性であるg(λ)を得ることができる。
Figure 2009014418
なお、上述の実施形態では、可変位相部材として反射型の液晶素子2を用いるとともに、偏光子と検光子とが偏光ビームスプリッター1の偏光分離膜1aとして一体的に形成されている。しかしながら、これに限定されることなく、例えば図3の変形例に示すように、可変位相部材として透過型の液晶素子12を用い、偏光子11および検光子13を透過型の液晶素子12を挟んで前後にそれぞれ配置する構成も可能である。
この場合、偏光子11および検光子13は、偏光子11を介した光の偏光方向F1と検光子13を介した光の偏光方向F2とが互いに直交するように配置される。そして、液晶素子2は、その進相軸の方向F3および遅相軸の方向F4が、偏光子11を介した光の偏光方向F1および検光子13を介した光の偏光方向F2と45度の角度をなすように配置される。
また、上述の実施形態および変形例では、可変位相部材として、反射型または透過型の液晶素子2,12を用いている。しかしながら、液晶素子に限定されることなく、一般に偏光子を経た直線偏光状態の光に位相差を可変的に付与することのできる他の光学素子を可変位相部材として用いることもできる。
なお、フーリエ分光器の場合、マイケルソン干渉計の光路長差の大きさが波長分解能を決める。光路長差をパラメータとしてフーリエ変換することにより波長分布を求めるため、光路長差が小さいと、フーリエ変換の際に窓関数がかかることになり、波長分解能が低下する。本実施形態では、液晶層を厚くすることにより、常光線と異常光線との位相差(光路長差)を大きくすることは可能である。ただし、本実施形態で付与可能な位相差には限界があり、分解能の観点からは、通常のマイケルソン干渉計を用いるフーリエ分光器の方が優れていると言える。しかしながら、本実施形態のフーリエ分光器では機械的な可動部がなく、従来技術にはない特徴を持っており、また、小型化の可能性もある。そのため、本実施形態のフーリエ分光器は、特に簡易的な分光器に向いている。
本発明の実施形態にかかるフーリエ分光器の構成を概略的に示す図である。 偏光子として機能する偏光分離膜を透過した光の偏光方向と、検光子として機能する偏光分離膜で反射された光の偏光方向と、液晶素子の進相軸の方向と、液晶素子の遅相軸の方向との角度関係を示す図である。 本実施形態の変形例にかかるフーリエ分光器の構成を概略的に示す図である。
符号の説明
1 偏光ビームスプリッター
1a 偏光分離膜
2 反射型の液晶素子
3 光検出器
4 測定部
4a 制御系
4b 信号処理系
11 偏光子
12 透過型の液晶素子
13 検光子

Claims (5)

  1. 測定対象物からの光の分光特性を測定する分光器において、
    前記測定対象物から入射した光のうち、第1の直線偏光状態の光を射出する偏光子と、
    前記偏光子を経た前記第1の直線偏光状態の光に位相差を可変的に付与する可変位相部材と、
    前記可変位相部材から入射した光のうち、前記第1の直線偏光状態の光の偏光方向と直交する方向に偏光方向を有する第2の直線偏光状態の光を射出する検光子と、
    前記検光子を経た前記第2の直線偏光状態の光を検出する光検出器と、
    前記可変位相部材により付与される位相差と前記光検出器で検出される光強度とに基づいて、前記測定対象物からの光の分光特性を測定する測定部とを備えていることを特徴とする分光器。
  2. 前記可変位相部材は、反射型の液晶素子を有し、
    前記偏光子と前記検光子とは、偏光ビームスプリッターの偏光分離膜として一体的に形成されていることを特徴とする請求項1に記載の分光器。
  3. 前記可変位相部材は、透過型の液晶素子を有し、
    前記偏光子および前記検光子は、前記透過型の液晶素子を挟んで前後にそれぞれ配置されていることを特徴とする請求項1に記載の分光器。
  4. 前記液晶素子は、進相軸の方向および遅相軸の方向が、前記第1の直線偏光状態の光の偏光方向および前記第2の直線偏光状態の光の偏光方向と45度の角度をなすように配置されていることを特徴とする請求項2または3に記載の分光器。
  5. 前記測定部は、前記液晶素子に印加する電圧を制御する制御系と、前記液晶素子に印加される電圧と前記光検出器で検出される光の強度とに基づいて分光特性を求める信号処理系とを有することを特徴とする請求項2乃至4のいずれか1項に記載の分光器。
JP2007174681A 2007-07-03 2007-07-03 分光器 Pending JP2009014418A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007174681A JP2009014418A (ja) 2007-07-03 2007-07-03 分光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007174681A JP2009014418A (ja) 2007-07-03 2007-07-03 分光器

Publications (1)

Publication Number Publication Date
JP2009014418A true JP2009014418A (ja) 2009-01-22

Family

ID=40355516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174681A Pending JP2009014418A (ja) 2007-07-03 2007-07-03 分光器

Country Status (1)

Country Link
JP (1) JP2009014418A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277016A (ja) * 2009-06-01 2010-12-09 Ricoh Co Ltd 光学フィルタおよび画像撮影装置
JP2012093149A (ja) * 2010-10-26 2012-05-17 Nikon Corp 分光器
CN103776530A (zh) * 2012-10-28 2014-05-07 天津奇谱光电技术有限公司 一种使用可调谐法布里-珀罗滤波器的光谱分析设备
JP2019120680A (ja) * 2017-12-29 2019-07-22 パロ アルト リサーチ センター インコーポレイテッド 不均一なリターダンス間隔での経路遅延の液晶可変リターダを通じた測定

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277016A (ja) * 2009-06-01 2010-12-09 Ricoh Co Ltd 光学フィルタおよび画像撮影装置
JP2012093149A (ja) * 2010-10-26 2012-05-17 Nikon Corp 分光器
CN103776530A (zh) * 2012-10-28 2014-05-07 天津奇谱光电技术有限公司 一种使用可调谐法布里-珀罗滤波器的光谱分析设备
JP2019120680A (ja) * 2017-12-29 2019-07-22 パロ アルト リサーチ センター インコーポレイテッド 不均一なリターダンス間隔での経路遅延の液晶可変リターダを通じた測定
JP7289643B2 (ja) 2017-12-29 2023-06-12 パロ アルト リサーチ センター インコーポレイテッド 不均一なリターダンス間隔での経路遅延の液晶可変リターダを通じた測定

Similar Documents

Publication Publication Date Title
JP6893667B2 (ja) 一体型偏光干渉計及びそれを適用したスナップショット分光偏光計
US7889339B1 (en) Complementary waveplate rotating compensator ellipsometer
JP4728027B2 (ja) 光測定装置
JP3909363B2 (ja) 分光偏光計測方法
KR100742982B1 (ko) 초점 타원계측기
JPS6134442A (ja) 試料表面ないしは試料の表面膜層の物理的特性を検査するためのエリプソメトリ測定法とその装置
US11493433B2 (en) Normal incidence ellipsometer and method for measuring optical properties of sample by using same
JP2009014418A (ja) 分光器
TW200813411A (en) Combination ellipsometry and optical stress generation and detection
Negara et al. Simplified Stokes polarimeter based on division-of-amplitude
JP2017207447A5 (ja)
JP2008082811A (ja) 薄膜の光学特性測定方法および光学特性測定装置
JP2004226404A (ja) 光ファイバの残留応力測定装置
WO2017126215A1 (ja) 位相シフト量測定装置
JP3520379B2 (ja) 光学定数測定方法およびその装置
KR101936792B1 (ko) 간섭계와 타원계측기 기반의 박막 구조물 측정을 위한 광계측기
JP2010107758A (ja) 液晶セルのチルト角測定方法及び装置
JP4034184B2 (ja) 液晶セルのギャップ測定方法
JP5140789B2 (ja) 分光偏光計測装置
JP2006189411A (ja) 位相遅延の測定装置及び測定方法
JP2012093149A (ja) 分光器
KR100870132B1 (ko) 음향광학 변조 필터를 이용한 분광타원해석기 및 이를이용한 타원 해석방법
JP7284741B2 (ja) 干渉計及び光学機器
JP5482195B2 (ja) リタデーション測定装置
JP6169420B2 (ja) 光学干渉計