JP2009008282A - 熱交換システム - Google Patents

熱交換システム Download PDF

Info

Publication number
JP2009008282A
JP2009008282A JP2007167777A JP2007167777A JP2009008282A JP 2009008282 A JP2009008282 A JP 2009008282A JP 2007167777 A JP2007167777 A JP 2007167777A JP 2007167777 A JP2007167777 A JP 2007167777A JP 2009008282 A JP2009008282 A JP 2009008282A
Authority
JP
Japan
Prior art keywords
heat exchanger
cooling
exchange system
path
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007167777A
Other languages
English (en)
Other versions
JP5239225B2 (ja
Inventor
Jiyunichi Teraki
潤一 寺木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007167777A priority Critical patent/JP5239225B2/ja
Publication of JP2009008282A publication Critical patent/JP2009008282A/ja
Application granted granted Critical
Publication of JP5239225B2 publication Critical patent/JP5239225B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

【課題】 構造の簡素化による小型化および低コスト化を図りつつ、冷却部付近での結露の発生を有効に防止する。
【解決手段】 室外用熱交換器11と室内用熱交換器12と、第1の経路PT1上に設けられると共に冷媒を圧縮する圧縮機13と、第2の経路PT2上に設けられると共に弁開度が制御可能な電子膨張弁15と、第2の経路PT2上に設けられると共に冷却対象物30を冷却する冷却ジャケット25とを備える。電子膨張弁15は第1絞り部21aと第2絞り部21bとを備えた2段絞り構造とされている。第1絞り部21aと第2絞り部21b間の経路を通過する冷媒で冷却ジャケット25により冷却対象物30が冷却される。
【選択図】 図1

Description

本発明は、空調システムなどの熱交換システムに関するものである。
空調システムなどの熱交換システムにおいて、当該熱交換システムの冷媒流路を流れる冷媒を用いて、副次的な冷却対象物(例えば、当該熱交換システムにおけるインバータ)を冷却する技術が存在する。このようなインバータは、パワートランジスタやダイオードなどの発熱素子を備えており、インバータの冷却時において結露が生じた場合、パワートランジスタやダイオードの絶縁不良を招くおそれがある。
そのため、このような結露を防止して冷却するための熱交換システムとして、例えば、特許文献1に開示の熱交換システムが提案されている。この熱交換システムでは、凝縮器と蒸発器との間に2つの電子膨張弁が直列に設けられると共に、当該2つの電子膨張弁の間に冷却部が設けられている。電子膨張弁は可変絞りであるため、これら2つの電子膨張弁の弁開度を制御して調整することによって、冷却部の両端に生じる圧力差を比較的自由に調整すること可能である。そのため、2つの電子膨張弁の間に流れる冷媒の温度調節を良好に行うことができ、結露を生じずに副次的な冷却対象を冷却することができるものである。
特開平11−23081号公報
しかしながら、特許文献1に開示の熱交換システムによれば、2個の電子膨張弁を同時に制御する必要があり、制御構造の複雑化を招くと共に、電子膨張弁は高価であるため、コストアップを余儀なくされてしまうという問題がある。
そこで、本発明の解決しようとする課題は、構造の簡素化による小型化および低コスト化を図りつつ、冷却部付近での結露の発生を有効に防止することが可能な熱交換システムを提供することにある。
上記課題を解決すべく、請求項1の発明は、第1の熱交換器(11)と、第2の熱交換器(12)と、第1の熱交換器(11)と第2の熱交換器(12)とを結ぶ2つの経路のうち一方の経路である第1の経路(PT1)上に設けられると共に冷媒を圧縮する圧縮機(13)と、第1の熱交換器(11)と第2の熱交換器(12)とを結ぶ2つの経路のうち圧縮機(13)が配置された経路とは反対側の経路である第2の経路(PT2)上に設けられると共に弁開度が制御可能な電子膨張弁(15)と、第2の経路(PT2)上に設けられると共に冷却対象物(30)を冷却する冷却部(25)とを備えた熱交換システムにおいて、前記電子膨張弁(15)に第1絞り部(21a)と第2絞り部(21b)が備えられ、第1絞り部(21a)と第2絞り部(21b)間の経路に位置する前記冷媒で前記冷却部(25)が冷却されることを特徴とする。
請求項2の発明は、請求項1の発明に係る熱交換システムにおいて、前記冷却部(25)が、前記第1絞り部(21a)と前記第2絞り部(21b)間に位置する前記電子膨張弁(15)のハウジング(19)外面に取り付けられたことを特徴とする。
請求項3の発明は、請求項1または請求項2の発明に係る熱交換システムにおいて、前記第1絞り部(21a)と前記第2絞り部(21b)とのいずれか一方の弁開度が可変で、他方の弁開度は一定とされていることを特徴とする。
請求項4の発明は、請求項1ないし請求項3のいずれかの発明に係る熱交換システムにおいて、前記冷却部(25)付近で結露する可能性が所定レベル以上であると判定される際に、前記第1の熱交換器(11)および前記第2の熱交換器(12)の少なくとも一方のファンの回転速度を変更する制御手段(40)をさらに備えることを特徴とする。
請求項5の発明は、請求項4の発明に係る熱交換システムにおいて、前記第1の熱交換器(11)は、室外に配置される室外用熱交換器であり、前記第2の熱交換器(12)は、室内に配置される室内用熱交換器であり、前記制御手段(40)は、冷房運転中に前記冷却部(25)付近で結露する可能性が所定レベル以上であると判定される際に、前記第1の熱交換器(11)のファンの回転速度を低減させることを特徴とする。
請求項6の発明は、請求項4または請求項5の発明に係る熱交換システムにおいて、前記第1の熱交換器(11)は、室外に配置される室外用熱交換器であり、前記第2の熱交換器(12)は、室内に配置される室内用熱交換器であり、前記制御手段(40)は、冷房運転中に前記冷却部(25)付近で結露する可能性が所定レベル以上であると判定される際に、前記第2の熱交換器(12)のファンの回転速度を増大させることを特徴とする。
請求項7の発明は、請求項4ないし請求項6のいずれかの発明に係る熱交換システムにおいて、前記第1の熱交換器(11)は、室外に配置される室外用熱交換器であり、前記第2の熱交換器(12)は、室内に配置される室内用熱交換器であり、前記制御手段(40)は、暖房運転中に前記冷却部(25)付近で結露する可能性が所定レベル以上であると判定される際に、前記第1の熱交換器(11)のファンの回転速度を増大させることを特徴とする。
請求項8の発明は、請求項4ないし請求項7のいずれかの発明に係る熱交換システムにおいて、前記第1の熱交換器(11)は、室外に配置される室外用熱交換器であり、前記第2の熱交換器(12)は、室内に配置される室内用熱交換器であり、前記制御手段(40)は、暖房運転中に前記冷却部(25)付近で結露する可能性が所定レベル以上であると判定される際に、前記第2の熱交換器(12)のファンの回転速度を低減させることを特徴とする。
請求項1ないし請求項8に記載の発明によれば、構造の簡素化による小型化および低コスト化を図りつつ、冷却部付近での結露の発生を有効に防止することが可能である。
特に、請求項2に記載の発明によれば、より小型化が可能となる。
また、請求項3に記載の発明によれば、より構造の簡素化が図れて、より低コスト化が可能となる。
さらに、請求項5、請求項6に記載の発明によれば、特に冷房運転中における結露の発生をより確実に防止できる。
また、請求項7、請求項8に記載の発明によれば、特に暖房運転中における結露の発生をより確実に防止できる。
以下、本発明の第1の実施形態を図面に基づいて説明すると、図1は、熱交換システムの一例としての空調システム1を示している。
この空調システム1は、室外用熱交換器11、室内用熱交換器12、圧縮機13、切換弁14、電子膨張弁15を備えており、冷凍サイクルを形成する。また、この空調システム1は、室内を冷房する冷房運転と室内を暖房する暖房運転との両方が可能とされている。なお、図1では、冷房運転中における冷媒の流路および流れの向きが実線矢印で示されており、暖房運転中における冷媒の流路(一部)および流れの向きが点線矢印で示されている。他の実施形態の説明で用いられる図面についても同様である。
室外用熱交換器11は、室外に設けられる熱交換器である。室外用熱交換器11は、冷房運転中には凝縮器として機能し、暖房運転中には蒸発器として機能する。
室内用熱交換器12は、室内に設けられる熱交換器である。室内用熱交換器12は、冷房運転中には蒸発器として動作し、暖房運転中には凝縮器として機能する。
圧縮機13は、室外用熱交換器11と室内用熱交換器12との間に設けられて、冷媒を圧縮する。具体的には、圧縮機13は、室外用熱交換器11と室内用熱交換器12とを結ぶ2つの経路PT1,PT2のうち一方の経路PT1上に設けられる。
切換弁14は、経路PT1上に設けられ、圧縮機13の吐出側13aを室外用熱交換器11および室内用熱交換器12のいずれに接続するかを選択する。具体的には、冷房運転中には圧縮機13の吐出側13aが室外用熱交換器11に接続され、暖房運転中には圧縮機13の吐出側13aが室内用熱交換器12に接続される。これにより、冷房運転中と暖房運転中とで冷媒の流れの向きが切り換えられる。
電子膨張弁15は、室外用熱交換器11と室内用熱交換器12との間で、2つの経路PT1,PT2のうち圧縮機13が配置された経路PT1とは反対側の経路PT2上に設けられる。電子膨張弁15は、本システムにおける冷凍サイクルの膨張機構として機能する。
電子膨張弁15は、弁開度(換言すれば絞り量)の調整が可能な開閉式膨張弁である。即ち、電子膨張弁15は、電子的制御によって弁開度の調整が可能とされている。
本実施形態においては、電子膨張弁15は、コイル16に対する通電により正逆回転制御されるロータ17に装着されたニードル18を備えており、このニードル18は、太径部18aと細径部18bとを軸方向に有している。
また、ニードル18の周囲を囲繞して筒状のハウジング19が備えられており、ハウジング19内は、仕切壁19a,19bによりニードル18の軸方向に3室に区画されている。即ち、天井壁19cと第1の仕切壁19aとにより第1区画室20aが形成され、第1の仕切壁19aと第2の仕切壁19bとにより第2区画室20bが形成され、第2の仕切壁19bと底壁部19dとにより第3区画室20cが形成されている。
さらに、第1の仕切壁19aに形成されると共にニードル18の細径部18bが遊挿された弁孔と、ニードル18の太径部18aにおける細径部18b側端部に形成されたテーパ部とにより、第1絞り部21aが構成されている。また、ニードル18の細径部18bは、第2の仕切壁19bを略気密状に嵌通されており、細径部18bの先端部のテーパ部と、ハウジング19の底壁部19dに形成された弁孔とにより、第2絞り部21bが構成されている。そして、ニードル18の軸方向制御により、第1絞り部21aや第2絞り部21bの弁開度がそれぞれ調整可能とされ、ここに電子膨張弁15は2段絞り構造とされている。
そして、ハウジング19の第1区画室20aの一側に形成された第1流路22aに、室外用熱交換器11からの経路PT2が接続され、第3区画室20cにおける底壁部19dに形成された弁孔に連通する第2流路22bに、室内用熱交換器12からの経路PT2が接続されている。
また、この空調システム1は、副次的な冷却対象物を冷却する冷却ジャケット(冷却部)25を備えている。この冷却ジャケット25は、ハウジング19の第2区画室20bの一側に形成された第3流路22cと、第3区画室20cの一側に形成された第4流路22dとに接続されており、第1絞り部21aと第2絞り部21bとの間に位置されると共に冷凍サイクルにおける主経路(分岐経路ではない)である経路PT2上に設けられた構造とされている。副次的な冷却対象物30としては、例えば、室外に設けられたパワーモジュール(圧縮機13のモータを駆動するインバータ回路を含む)等を採用することができる。
さらに、空調システム1は、結露センサ(湿度センサ)35および制御部40をさらに備える。
結露センサ35は、冷却ジャケット25の表面に設置され、当該設置位置付近の相対湿度を検出する。ただし、これに限定されず、結露センサ35を冷却対象物30の表面等に設置してもよい(図1の破線参照)。
制御部40は、電子膨張弁15の弁開度、圧縮機13におけるモータの回転速度、室外用熱交換器11のファンの回転速度、および室内用熱交換器12のファンの回転速度等を変更することが可能である。
次に、この空調システム1において、まず冷房運転中の動作について説明する。
冷房運転中においては、冷媒が経路PT1を通って室内用熱交換器12から室外用熱交換器11へ向けて流れた後、今度は反対側の経路PT2を通って逆向き、即ち室外用熱交換器11から室内用熱交換器12へ向けて流れる。
具体的には、冷房運転中には、室内用熱交換器12は蒸発器として機能し、低温低圧の略液体状の冷媒が室内用熱交換器12で室内の熱を吸収して蒸発し、低温低圧のガスになる。低温低圧のガス状の冷媒は、圧縮機13で圧縮されて高温高圧のガスになり、経路PT1を通って室外用熱交換器11へ向けて流れる。その後、当該冷媒は、室外用熱交換器11で熱を室外に放出して凝縮され高温高圧の液体になり、経路PT2から電子膨張弁15の第1流路22aを通じて第1区画室20aに案内され、第1区画室20aに案内された冷媒は、第1絞り部21aで第1段階の膨張がなされる。この第1段階の膨張により、冷媒は温度と圧力が所定量降下される。
第1段階の膨張を終えた冷媒は、第2区画室20b、第3流路22cを通じて冷却ジャケット25に案内され、その後、第4流路22dから第3区画室20cに戻され、第2絞り部21bで第2段階の膨張がなされる。この第2段階の膨張により、冷媒はさらに温度と圧力が降下され、ここに低温低圧の若干ガスが混ざった略液体状となり、その後、第2流路22b、経路PT2を通じて室内用熱交換器12へと到達する。そして、以上のような動作が循環的に行われる。
ここにおいて、経路PT2上における冷媒は、電子膨張弁15における第1絞り部21aと第2絞り部21bにより2段階の膨張がなされる。具体的には、冷房運転中には室外用熱交換器11で凝縮された冷媒が第1絞り部21aで膨張して、冷却ジャケット25を通過した後に、さらに、第2絞り部21bでも膨張して室内用熱交換器12へと到達する。この際、第1絞り部21aから第2絞り部21bに至るまでの間を流れる冷媒によって冷却ジャケット25が冷却され、当該冷却ジャケット25に設けられた副次的な冷却対象物30が冷却される。
次に暖房運転中の動作について説明する。
暖房運転中においては、冷媒が経路PT1を通って室外用熱交換器11から室内用熱交換器12へ向けて流れた後、今度は反対側の経路PT2を通って逆向き、即ち、室内用熱交換器12から室外用熱交換器11へ向けて流れる。
具体的には、暖房運転中には、室外用熱交換器11が蒸発器として機能し、低温低圧の略液体状の冷媒が室外用熱交換器11で室外の熱を吸収して蒸発し、低温低圧のガスになる。低温低圧のガス状の冷媒は、圧縮機13で圧縮されて高温高圧のガスになり、経路PT1を通って室内用熱交換器12へ流れる。その後、当該冷媒は、室内用熱交換器12で熱を室内に放出して凝縮され高温高圧の液体になり、経路PT2から電子膨張弁15の第2流路22bから第2絞り部21bを通じて第3区画室20cに案内される。そして、高温高圧の冷媒は、第2絞り部21bで第1段階の膨張がなされ、この第1段階の膨張により、冷媒は温度と圧力が所定量降下される。
第1段階の膨張を終えた冷媒は、第3区画室20c、第4流路22dを通じて冷却ジャケット25に案内され、その後、第3流路22cから第2区画室20bに戻され、第1絞り部21aで第2段階の膨張がなされる。この第2段階の膨張により、冷媒はさらに温度と圧力が降下され、ここに低温低圧の若干ガスが混ざった略液体状となり、その後、第1区画室20a、第1流路22a、経路PT2を通じて室外用熱交換器11へと到達する。そして、以上のような動作が循環的に行われる。
ここにおいて、経路PT2上における冷媒は、電子膨張弁15における第2絞り部21bと第1絞り部21aにより2段階の膨張がなされる。具体的には、暖房運転中には室内用熱交換器12で凝縮された冷媒が第2絞り部21bで膨張して、冷却ジャケット25を通過した後に、さらに、第1絞り部21aでも膨張して室外用熱交換器11へと到達する。この際、第2絞り部21bから第1絞り部21aに至るまでの間を流れる冷媒によって冷却ジャケット25が冷却され、当該冷却ジャケット25に設けられた副次的な冷却対象物30が冷却される。
上記のような冷房運転中および暖房運転中のいずれの動作においても、冷媒は、経路PT2において電子膨張弁15を通過する際に2段階で膨張する。そして、冷媒の膨張に伴って、当該冷媒の圧力が低下すると共に当該冷媒の温度も低下する。
そのため、例えば冷房運転中に電子膨張弁15の第1絞り部21aから流出して電子膨張弁15の第2絞り部21bへ流入するまでの間の冷媒の圧力および温度T1は、第1絞り部21aへの流入前の高温高圧冷媒の圧力および温度と、第2絞り部21bからの流出後の低温低圧冷媒の圧力および温度との中間圧力および中間温度となる。この際、冷媒の挙動としては、第1絞り部21aと第2絞り部21bとの開度が同じであれば、冷媒が液体の場合は圧力降下が小さく、液体中に気泡が発生するにつれて、急激に圧力降下が増加していくという性質により、中間圧力は低圧側よりも高圧側に近い圧力となり、従ってその中間温度も低温側よりも高温側に近い温度となるため、当該冷媒の温度T1が露点以下にまで低下することを効果的に回避し、冷却ジャケット25付近での結露の発生を有効に防止することができる。
また、暖房運転中に電子膨張弁15の第2絞り部21bから流出して電子膨張弁15の第1絞り部21aへ流入するまでの間の冷媒の圧力および温度T2は、第2絞り部21bへの流入前の高温高圧冷媒の圧力および温度と、第1絞り部21aからの流出後の低温低圧冷媒の圧力および温度との中間圧力および中間温度となる。この際においても上記同様、冷媒の挙動としては、第1絞り部21aと第2絞り部21bとの開度が同じであれば、、冷媒が液体の場合は圧力降下が小さく、液体中に気泡が発生するにつれて、急激に圧力降下が増加していくという性質により、中間圧力は低圧側よりも高圧側に近い圧力となり、従ってその中間温度も低温側よりも高温側に近い温度となるため、当該冷媒の温度T2が露点以下にまで低下することを効果的に回避し、冷却ジャケット25付近での結露の発生を有効に防止することができる。
以上のように、冷房運転中および暖房運転中のいずれにおいても、電子膨張弁15における第1絞り部21aと第2絞り部21bとの両者間を流れる冷媒の温度T1,T2が高温高圧冷媒の温度と低温低圧冷媒の温度との中間温度であり、しかも、低温低圧冷媒の温度側よりも高温高圧冷媒の温度側により近い温度となるため、冷房運転中および暖房運転中のいずれにおいても、当該冷媒の温度T1,T2が露点以下にまで低下することを回避し、冷却ジャケット25付近での結露がより発生し難く、ここに、結露の発生をより有効に防止することができる。
また、電子膨張弁15は、弁開度が制御可能な可変絞り構造であるため、絞り部21a,21bの開度調整により、冷却ジャケット25における温度調整が容易に行え、冷却ジャケット25付近における結露をより確実に防止することが可能である。
より具体的には、空調システム1の制御部40において、結露センサ35によって計測された冷却ジャケット25付近の相対湿度に応じて、電子膨張弁15の弁開度を変更することができる。
例えば、冷房運転中において、結露センサ35によって計測された相対湿度が高くなるにつれて、電子膨張弁15の弁開度を大きくする(換言すれば電子膨張弁15における第1絞り部21aの流量を大きくする)ようにすればよい。これによれば、電子膨張弁15における第1絞り部21aでの減圧量と温度低下とを抑制することによって、上述の中間温度T1の低下を抑制して、結露の発生をより有効に防止することができる。
また、暖房運転中においても、結露センサ35によって計測された相対湿度が高くなるにつれて、電子膨張弁15の弁開度を大きくする(換言すれば電子膨張弁15における第2絞り部21bの流量を大きくする)ようにすればよい。これによれば、電子膨張弁15における第2絞り部21bでの減圧量および温度低下が抑制される。従って、上述の中間温度T2の低下を抑制して、結露の発生をより有効に防止することができる。
このように冷却ジャケット25が配置される外部環境に応じて、電子膨張弁15の弁開度を適宜調整制御することにより、効率よく、冷暖房機能が発揮できて、冷却ジャケット25付近における結露をより確実に防止することが可能となる。
また、この空調システム1においては、電子膨張弁15が第1絞り部21aと第2絞り部21bとの2段絞り構造を備えた構造としているため、従来のような2つの電子膨張弁の機能を単一の電子膨張弁15で発揮でき、構造の簡素化が図れて小型化が図れると共に低コスト化が図れる。さらに、電子膨張弁15の制御も単一でよく、制御システムが容易となり、この点からも低コスト化が図れる利点がある。
図2は、第2の実施形態を示しており、前記第1の実施形態と同様構成部分は同一符号を付し、その説明を省略する。
即ち、本実施形態においては、電子膨張弁15の構造が、第1の実施形態の電子膨張弁15におけるハウジング19の第2の仕切壁19b、第3流路22cおよび第4流路22dを無くした構造とされ、第1の仕切壁19aと底壁部19dとの間に、前記第2区画室20bと前記第3区画室20cとを合わせてなる合同区画室20dを形成した構造とされている。
そして、この合同区画室20dの側面に、冷却部としての冷却ジャケット25が取り付けられた構造とされている。その他の構造は第1の実施形態と同様とされている。
本実施形態は以上のように構成されており、第1の実施形態と同様、冷房運転中および暖房運転中のいずれにおいても、電子膨張弁15における第1絞り部21aと第2絞り部21bとの両者間を流れる冷媒により、冷却ジャケット25を冷却する方式である。従って、前記同様、冷却ジャケット25を冷却する冷媒の温度T1,T2が高温高圧冷媒の温度と低温低圧冷媒の温度との中間温度であり、しかも、低温低圧冷媒の温度側よりも高温高圧冷媒の温度側により近い温度となるため、冷房運転中および暖房運転中のいずれにおいても、当該冷媒の温度T1,T2が露点以下にまで低下することを回避し、冷却ジャケット25付近での結露がより発生し難く、前記同様、結露の発生をより有効に防止することができる。
そして、第1の実施形態と同様に運転制御することにより、第1の実施形態と同様に効果を奏する。
また、本実施形態においては、ハウジング19における合同区画室20dの側面に、冷却ジャケット25を直接的に取り付けて、冷却ジャケット25を冷却する方式であり、第1の実施形態のような冷却ジャケット25を冷却するための外部配管が不要となり、構造の簡素化が図れると共に、空調システム1全体としてのより小型化が図れる利点がある。
図3は、第3の実施形態を示しており、前記第1の実施形態と同様構成部分は同一符号を付し、その説明を省略する。
即ち、本実施形態においては、電子膨張弁15におけるニードル18の構造が、太径部18aのみからなる構造とされ、第1の仕切壁19aに形成された弁孔と、該弁孔に遊挿された太径部18aとの相互間に形成された隙間部によって、第1絞り部21aが構成されており、第1絞り部21aは弁開度が一定のいわゆる固定絞り構造とされている。これに対して、太径部18aの先端部のテーパ部と、ハウジング19の底壁部19dに形成された弁孔とにより、いわゆる可変絞り構造の第2絞り部21bが構成されている。そして、電子膨張弁15は、ニードル18の軸方向移動により、第2絞り部21bのみの弁開度が調整可能とされた、2段絞り構造とされている。その他の構造は第1の実施形態と同様とされている。
本実施形態は以上のように構成されており、第1の実施形態と同様にして冷媒が循環されることにより、冷房運転や暖房運転がなされる。この際、電子膨張弁15は一方の第1絞り部21aは固定絞り構造であるが、他方の第2絞り部21bは可変絞り構造であるため、第2絞り部21bの開度調整によって、冷却ジャケット25における温度調整が容易に行え、冷却ジャケット25付近における結露をより確実に防止することが可能である。
より具体的には、空調システム1の制御部40において、結露センサ35によって計測された冷却ジャケット25付近の相対湿度に応じて、電子膨張弁15の弁開度を変更することができる。
例えば、冷房運転中において、結露センサ35によって計測された相対湿度が高くなるにつれて、第2絞り部21bの弁開度を小さくする(換言すれば電子膨張弁15における流量を小さくする)ようにすればよい。これによれば、冷媒の流量が全体的に小さくなり、第1絞り部21aでの減圧量および温度低下が抑制される。従って、上述の中間温度T1の低下を抑制して、結露の発生を有効に防止することができる。
また、暖房運転中において、結露センサ35によって計測された相対湿度が高くなるにつれて、第2絞り部21bの弁開度を大きくする(換言すれば電子膨張弁15における第2絞り部21bの流量を大きくする)ようにすればよい。これによれば、電子膨張弁15における第2絞り部21bでの減圧量および温度低下が抑制される。従って、上述の中間温度T2の低下を抑制して、結露の発生をより有効に防止することができる。
このように冷却ジャケット25が配置される外部環境に応じて、電子膨張弁15における第2絞り部21bの弁開度を適宜調整制御することにより、効率よく、冷暖房機能が発揮できて、冷却ジャケット25付近における結露をより確実に防止することが可能となる。
従って、本実施形態においても、第1の実施形態と同様の効果を奏すると共に、特に、第1絞り部21aを固定絞り構造としたため、絞り部分の構造をより簡素化できて、より低コスト化を図れる利点がある。
図4は、第4の実施形態を示しており、前記第1の実施形態と同様構成部分は同一符号を付し、その説明を省略する。
即ち、本実施形態においては、電子膨張弁15におけるニードル18の構造が、太径部18aのみからなる構造とされ、太径部18aの先端部のテーパ部と、ハウジング19の第1の仕切壁19aに形成された弁孔とにより、いわゆる可変絞り構造の第1絞り部21aが構成されている。そして、第2の仕切壁19bをニードル18が嵌通せず、第2絞り部21bはハウジング19の底壁部19dに形成された弁孔による弁開度が一定のいわゆる固定絞り構造とされている。従って、電子膨張弁15は、ニードル18の軸方向移動により、第1絞り部21aのみの弁開度が調整可能とされた、2段絞り構造とされている。その他の構造は第1の実施形態と同様とされている。
本実施形態は以上のように構成されており、第1の実施形態と同様にして冷媒が循環されることにより、冷房運転や暖房運転がなされる。この際、電子膨張弁15は一方の第2絞り部21bは固定絞り構造であるが、他方の第1絞り部21aは可変絞り構造であるため、第1絞り部21aの開度調整によって、冷却ジャケット25における温度調整が容易に行え、冷却ジャケット25付近における結露をより確実に防止することが可能である。
より具体的には、空調システム1の制御部40において、結露センサ35によって計測された冷却ジャケット25付近の相対湿度に応じて、電子膨張弁15の弁開度を変更することができる。
例えば、冷房運転中において、結露センサ35によって計測された相対湿度が高くなるにつれて、第1絞り部21aの弁開度を大きくする(換言すれば電子膨張弁15における流量を大きくする)ようにすればよい。これによれば、第1絞り部21aでの減圧量および温度低下が抑制される。従って、上述の中間温度T1の低下を抑制して、結露の発生を有効に防止することができる。
また、暖房運転中において、結露センサ35によって計測された相対湿度が高くなるにつれて、第1絞り部21aの弁開度を小さくする(換言すれば電子膨張弁15における第2絞り部21bの流量を小さくする)ようにすればよい。これによれば、冷媒の流量が全体的に小さくなり、電子膨張弁15における第2絞り部21bでの減圧量および温度低下が抑制される。従って、上述の中間温度T2の低下を抑制して、結露の発生をより有効に防止することができる。
このように冷却ジャケット25が配置される外部環境に応じて、電子膨張弁15における第2絞り部21bの弁開度を適宜調整制御することにより、効率よく、冷暖房機能が発揮できて、冷却ジャケット25付近における結露をより確実に防止することが可能となる。
従って、本実施形態においても、第1の実施形態と同様の効果を奏すると共に、特に、第2絞り部21bを固定絞り構造としたため、絞り部分の構造をより簡素化できて、より低コスト化を図れる利点がある。
次に、前記第1の実施形態における変形例としての第5の実施形態について説明する。即ち、第5の実施形態における空調システム1は、第1の実施形態と同様に構成されている。
そしてこの第5の実施形態においては、室外用熱交換器11および室内用熱交換器12のファンの回転速度を適宜に変更することによって、より確実に結露の発生を防止する技術を例示する。
第5の実施形態における空調システム1の制御部40は、結露センサ35による計測結果に応じて、冷却ジャケット25付近で結露する可能性が所定レベル以上であるか否かを判定する。具体的には、結露センサ35によって計測された相対湿度が所定の閾値(例えば90%)より大きいという条件C1を満たすときに、結露の可能性が所定レベル以上であると判定すればよい。
そして、制御部40は、結露の可能性が所定レベル以上であると判定されると、冷却ジャケット25付近における冷媒の温度が上昇するように、室外用熱交換器11および室内用熱交換器12のファンの回転速度を変更する。
具体的には、運転状態(冷房運転中であるのか暖房運転中であるのか)に応じて次のような動作を行えばよい。
まず、冷房運転時の動作について説明する。
図5に示すように、冷房運転中に冷却ジャケット25付近で結露する可能性が所定レベル以上であると判定されるときには、室外用熱交換器11のファンの回転速度を低減させればよい。例えば、室外用熱交換器11のファンの回転速度V1を所定量ΔV低減させればよい(−ΔV)。これによれば、室外用熱交換器11における外部への熱放出の低減によって冷媒温度が比較的高くなるため、冷房運転中における冷却ジャケット25付近での結露の発生をより確実に防止することができる。
また、「室外用熱交換器11のファンの回転速度の低減」に代えて、室内用熱交換器12のファンの回転速度を増大させるようにしてもよい。例えば、冷房運転中に冷却ジャケット25付近で結露する可能性が所定レベル以上であると判定されるときには、室内用熱交換器12のファンの回転速度V2を所定量ΔV増大させる(+ΔV)ようにしてもよい。これによれば、室内用熱交換器12における室内からの吸熱量の増大によって冷媒温度が比較的高くなるため、冷房運転中における冷却ジャケット25付近での結露の発生をより確実に防止することができる。
あるいは、冷房運転中に冷却ジャケット25付近で結露する可能性が所定レベル以上であると判定されるときには、「室外用熱交換器11のファンの回転速度の低減」と「室内用熱交換器12のファンの回転速度の増大」との双方を行うようにしてもよい。
次に、暖房運転時の動作について説明する。
図6に示すように、暖房運転中に冷却ジャケット25付近で結露する可能性が所定レベル以上であると判定されるときには、室外用熱交換器11のファンの回転速度を増大させればよい。例えば、室外用熱交換器11のファンの回転速度V1を所定量ΔV増大させる(+ΔV)。これによれば、室外用熱交換器11における外部からの吸熱量の増大によって冷媒温度が比較的高くなるため、暖房運転中における冷却ジャケット25付近での結露の発生をより確実に防止することができる。
また、「室外用熱交換器11のファンの回転速度の増大」に代えて、室内用熱交換器12のファンの回転速度を低減させるようにしてもよい。例えば、暖房運転中に冷却ジャケット25付近で結露する可能性が所定レベル以上であると判定されるときには、室内用熱交換器12のファンの回転速度V2を所定量ΔV減少させる(−ΔV)ようにしてもよい。これによれば、室内用熱交換器12における室内への放熱量の減少によって冷媒温度が比較的高くなるため、暖房運転中における冷却ジャケット25付近での結露の発生をより確実に防止することができる。
あるいは、暖房運転中に冷却ジャケット25付近で結露する可能性が所定レベル以上であると判定されるときには、「室外用熱交換器11のファンの回転速度の増大」と「室内用熱交換器12のファンの回転速度の低減」との双方を行うようにしてもよい。
上記第5の実施形態では、第1の実施形態においてさらに室外用熱交換器11および室内用熱交換器12の少なくとも一方のファンの回転速度を変更する場合を例示したが、これに限定されない。例えば、第2ないし第4の実施形態において、第5の実施形態の思想を同様に適用するようにしてもよい。
また、上記第5の実施形態においては、冷却ジャケット25付近で結露する可能性が所定レベル以上であると判定されるときには、室外用熱交換器11および/または室内用熱交換器12のファンの回転速度を所定量ΔV変更する場合を例示したが、これに限定されない。例えば、結露の可能性を複数の段階に区分して評価し、各段階に応じて回転速度の変更量が異なるようにしてもよい。より詳細には、結露の可能性が高くなるにつれて、回転速度の変更量を大きくするようにしてもよい。これによれば、結露の発生をより確実に防止することができる。
また、上記第1の実施形態等においては、結露の可能性を考慮することなく、結露センサ35によって計測された相対湿度に応じて、電子膨張弁15の弁開度を変更する場合を例示したが、これに限定されない。例えば、結露の可能性が所定レベル以上であると判定されるときに、電子膨張弁15の弁開度を変更するようにしてもよい。
また、上記各実施形態においては、冷却ジャケット25付近に結露センサ35を配置して、結露の可能性が所定レベル以上であるか否かを判定する場合を例示しているが、これに限定されない。例えば、次のような態様を採用してもよい。
具体的には、室外気温センサと室外湿度センサとを室外用熱交換器11付近に設置し、当該室外気温センサによる測定温度と当該室外湿度センサによる測定湿度とに基づいて外気の露点温度を算出すると共に、冷却ジャケット25付近(例えば冷却対象物30の表面)に温度センサをさらに設置して冷却ジャケット25付近の温度を測定する。そして、冷却ジャケット25付近の測定温度が外気の露点温度よりも低いときに、結露の可能性が所定レベル以上であると判定するようにしてもよい。
なお、このような構成において、室外湿度センサを設けることなく、外気の相対湿度を所定値(例えば90%)として仮定し、外気湿度の当該仮定値と外気温度の測定値とを用いて露点温度を算出するようにしてもよい。
また、各実施形態において、空調システム1を例示しているが、空調システム1に限らず、その他の熱交換システムであってもよい。
本発明の第1の実施形態に係る空調システムを示す概念図である。 第2の実施形態に係る空調システムを示す概念図である。 第3の実施形態に係る空調システムを示す概念図である。 第4の実施形態に係る空調システムを示す概念図である。 冷房運転中におけるファン速度の変更の様子を示す図である。 暖房運転中におけるファン速度の変更の様子を示す図である。
符号の説明
1 空調システム
11 室外用熱交換器
12 室内用熱交換器
13 圧縮機
14 切換弁
15 電子膨張弁
19 ハウジング
21a 第1絞り部
21b 第2絞り部
25 冷却ジャケット
30 冷却対象物
40 制御部

Claims (8)

  1. 第1の熱交換器(11)と、第2の熱交換器(12)と、第1の熱交換器(11)と第2の熱交換器(12)とを結ぶ2つの経路のうち一方の経路である第1の経路(PT1)上に設けられると共に冷媒を圧縮する圧縮機(13)と、第1の熱交換器(11)と第2の熱交換器(12)とを結ぶ2つの経路のうち圧縮機(13)が配置された経路とは反対側の経路である第2の経路(PT2)上に設けられると共に弁開度が制御可能な電子膨張弁(15)と、第2の経路(PT2)上に設けられると共に冷却対象物(30)を冷却する冷却部(25)とを備えた熱交換システムにおいて、
    前記電子膨張弁(15)に第1絞り部(21a)と第2絞り部(21b)が備えられ、第1絞り部(21a)と第2絞り部(21b)間の経路に位置する前記冷媒で前記冷却部(25)が冷却されることを特徴とする熱交換システム。
  2. 請求項1に記載の熱交換システムにおいて、
    前記冷却部(25)が、前記第1絞り部(21a)と前記第2絞り部(21b)間に位置する前記電子膨張弁(15)のハウジング(19)外面に取り付けられたことを特徴とする熱交換システム。
  3. 請求項1または請求項2に記載の熱交換システムにおいて、
    前記第1絞り部(21a)と前記第2絞り部(21b)とのいずれか一方の弁開度が可変で、他方の弁開度は一定とされていることを特徴とする熱交換システム。
  4. 請求項1ないし請求項3のいずれかに記載の熱交換システムにおいて、
    前記冷却部(25)付近で結露する可能性が所定レベル以上であると判定される際に、前記第1の熱交換器(11)および前記第2の熱交換器(12)の少なくとも一方のファンの回転速度を変更する制御手段(40)をさらに備えることを特徴とする熱交換システム。
  5. 請求項4に記載の熱交換システムにおいて、
    前記第1の熱交換器(11)は、室外に配置される室外用熱交換器であり、
    前記第2の熱交換器(12)は、室内に配置される室内用熱交換器であり、
    前記制御手段(40)は、冷房運転中に前記冷却部(25)付近で結露する可能性が所定レベル以上であると判定される際に、前記第1の熱交換器(11)のファンの回転速度を低減させることを特徴とする熱交換システム。
  6. 請求項4または請求項5に記載の熱交換システムにおいて、
    前記第1の熱交換器(11)は、室外に配置される室外用熱交換器であり、
    前記第2の熱交換器(12)は、室内に配置される室内用熱交換器であり、
    前記制御手段(40)は、冷房運転中に前記冷却部(25)付近で結露する可能性が所定レベル以上であると判定される際に、前記第2の熱交換器(12)のファンの回転速度を増大させることを特徴とする熱交換システム。
  7. 請求項4ないし請求項6のいずれかに記載の熱交換システムにおいて、
    前記第1の熱交換器(11)は、室外に配置される室外用熱交換器であり、
    前記第2の熱交換器(12)は、室内に配置される室内用熱交換器であり、
    前記制御手段(40)は、暖房運転中に前記冷却部(25)付近で結露する可能性が所定レベル以上であると判定される際に、前記第1の熱交換器(11)のファンの回転速度を増大させることを特徴とする熱交換システム。
  8. 請求項4ないし請求項7のいずれかに記載の熱交換システムにおいて、
    前記第1の熱交換器(11)は、室外に配置される室外用熱交換器であり、
    前記第2の熱交換器(12)は、室内に配置される室内用熱交換器であり、
    前記制御手段(40)は、暖房運転中に前記冷却部(25)付近で結露する可能性が所定レベル以上であると判定される際に、前記第2の熱交換器(12)のファンの回転速度を低減させることを特徴とする熱交換システム。
JP2007167777A 2007-06-26 2007-06-26 熱交換システム Expired - Fee Related JP5239225B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167777A JP5239225B2 (ja) 2007-06-26 2007-06-26 熱交換システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167777A JP5239225B2 (ja) 2007-06-26 2007-06-26 熱交換システム

Publications (2)

Publication Number Publication Date
JP2009008282A true JP2009008282A (ja) 2009-01-15
JP5239225B2 JP5239225B2 (ja) 2013-07-17

Family

ID=40323533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167777A Expired - Fee Related JP5239225B2 (ja) 2007-06-26 2007-06-26 熱交換システム

Country Status (1)

Country Link
JP (1) JP5239225B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061099A (ja) * 2011-09-12 2013-04-04 Toyota Motor Corp 熱交換装置および熱交換装置の制御方法
CN105928147A (zh) * 2016-04-29 2016-09-07 广东美的制冷设备有限公司 冷暖型空调器及其控制方法
EP3064847A4 (en) * 2013-10-29 2017-07-26 Daikin Industries, Ltd. Air conditioning device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029560A (ja) * 1983-07-27 1985-02-14 株式会社東芝 ヒ−トポンプ式空気調和機
JPH06241620A (ja) * 1993-02-15 1994-09-02 Nippondenso Co Ltd 冷凍サイクルの制御弁
JPH07125530A (ja) * 1993-11-04 1995-05-16 Calsonic Corp 自動車用空気調和装置
JPH1123081A (ja) * 1997-07-01 1999-01-26 Denso Corp 発熱機器の冷却器を有する空調装置
JP2002349979A (ja) * 2001-05-31 2002-12-04 Hitachi Air Conditioning System Co Ltd 二酸化炭素ガス圧縮システム
JP2005147623A (ja) * 2003-11-19 2005-06-09 Mitsubishi Electric Corp 空気調和機及び空気調和機の運転方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029560A (ja) * 1983-07-27 1985-02-14 株式会社東芝 ヒ−トポンプ式空気調和機
JPH06241620A (ja) * 1993-02-15 1994-09-02 Nippondenso Co Ltd 冷凍サイクルの制御弁
JPH07125530A (ja) * 1993-11-04 1995-05-16 Calsonic Corp 自動車用空気調和装置
JPH1123081A (ja) * 1997-07-01 1999-01-26 Denso Corp 発熱機器の冷却器を有する空調装置
JP2002349979A (ja) * 2001-05-31 2002-12-04 Hitachi Air Conditioning System Co Ltd 二酸化炭素ガス圧縮システム
JP2005147623A (ja) * 2003-11-19 2005-06-09 Mitsubishi Electric Corp 空気調和機及び空気調和機の運転方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061099A (ja) * 2011-09-12 2013-04-04 Toyota Motor Corp 熱交換装置および熱交換装置の制御方法
CN103781644A (zh) * 2011-09-12 2014-05-07 丰田自动车株式会社 热交换装置和用于控制热交换装置的方法
EP3064847A4 (en) * 2013-10-29 2017-07-26 Daikin Industries, Ltd. Air conditioning device
CN105928147A (zh) * 2016-04-29 2016-09-07 广东美的制冷设备有限公司 冷暖型空调器及其控制方法
CN105928147B (zh) * 2016-04-29 2019-08-30 广东美的制冷设备有限公司 冷暖型空调器及其控制方法

Also Published As

Publication number Publication date
JP5239225B2 (ja) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5446064B2 (ja) 熱交換システム
US8522568B2 (en) Refrigeration system
JP5506620B2 (ja) 空調機の運転制御方法
JP6540904B2 (ja) 空気調和装置
WO2012077275A1 (ja) 空気調和装置
JP5514787B2 (ja) 環境試験装置
JP2012067985A (ja) 冷凍機、冷凍装置及び空気調和装置
JP5412161B2 (ja) 空気調和機
JP2009180406A (ja) 超臨界冷凍サイクル
JP5239225B2 (ja) 熱交換システム
JP2007271181A (ja) 空気調和機
JP6155824B2 (ja) 空気調和装置
JP2008082637A (ja) 超臨界冷凍サイクル
JP2008151394A (ja) 空気調和機
JP5404231B2 (ja) 空気調和装置
JP2008175430A (ja) 空気調和機
JP6047381B2 (ja) 空調機
JP2004226025A (ja) 空気調和機
JP4176677B2 (ja) 空気調和機
JP2006242443A (ja) 空気調和装置
WO2022059136A1 (ja) 冷凍サイクル装置
WO2023140249A1 (ja) 冷凍サイクル装置
WO2022085112A1 (ja) 冷熱源ユニットおよび冷凍サイクル装置
JP2011133132A (ja) 冷凍装置
JP4420393B2 (ja) 冷凍空調装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees