JP2009005157A - 音声信号補正装置 - Google Patents

音声信号補正装置 Download PDF

Info

Publication number
JP2009005157A
JP2009005157A JP2007165062A JP2007165062A JP2009005157A JP 2009005157 A JP2009005157 A JP 2009005157A JP 2007165062 A JP2007165062 A JP 2007165062A JP 2007165062 A JP2007165062 A JP 2007165062A JP 2009005157 A JP2009005157 A JP 2009005157A
Authority
JP
Japan
Prior art keywords
signal
wind noise
channel signal
microphones
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007165062A
Other languages
English (en)
Inventor
Masahiro Yoshida
昌弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007165062A priority Critical patent/JP2009005157A/ja
Publication of JP2009005157A publication Critical patent/JP2009005157A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Circuit For Audible Band Transducer (AREA)

Abstract

【課題】風雑音を低減する。
【解決手段】4つのマイクロホンを、左斜め前方、右斜め前方、左斜め後方及び左斜め後方に向けて配置し、風を受けにくいマイクロホンを常に存在させる。4つのLPFを用いて各チャンネル信号から風雑音を含む低周波帯域成分を抽出し、チャンネル間における低周波帯域成分の相関に基づいて風雑音の発生有無を検出する。風雑音が発生している場合は、最も出力信号レベルが低いLPFの出力信号を選択し、そのLPFの出力信号を用いて各チャンネル信号の低周波帯域成分を補正する。
【選択図】図5

Description

本発明は、入力された音声信号を補正する音声信号補正装置及び音声信号補正方法に関し、また、該音声信号補正装置を利用した録音装置及び撮像装置に関する。また本発明は、特に、風雑音を低減するための技術に関する。
マイクロホンを備えた録音装置において、マイクロホンに風が当たると音声信号に風雑音が混入する。この風雑音は、マイクロホンの振動板に風圧が加わることによって発生し、本来の音声信号にとっての雑音となるため除去されることが望ましい。
風雑音を低減するための方式が幾つか提案されている。例えば、或る方式では、ステレオ信号間の差信号における低周波成分のレベルに応じて、低音を除去するハイパスフィルタの特性を変更している(例えば、下記特許文献1参照)。また、風雑音の無相関性を利用した方式も提案されている(例えば、下記特許文献2参照)。何れもステレオ録音装置を想定した方式である。
特開平5−14989号公報 特開2001−186585号公報
上述の従来方式では、ステレオ受信信号を利用して風雑音の発生を検知し、発生時には風雑音を含む低周波成分をカットすることにより風雑音を低減していた。しかし、この方式では、この風雑音と同時に音声のピッチ信号などの必要な信号も低減されてしまうという問題があり、風雑音の低減技術として満足のいくものではない。
そこで本発明は、風雑音の良好なる低減に寄与する音声信号補正装置及び音声信号補正方法並びに録音装置及び撮像装置を提供することを目的とする。
上記目的を達成するために本発明に係る音声信号補正装置は、複数のマイクロホンの出力信号に基づく複数のチャンネル信号を受け、各チャンネル信号を補正する音声信号補正装置において、各チャンネル信号の、風雑音の帯域を含む所定帯域成分に基づいて、前記複数のチャンネル信号の中から1つのチャンネル信号を特定チャンネル信号として選択する選択手段と、前記特定チャンネル信号の前記所定帯域成分を用いて他のチャンネル信号の前記所定帯域成分を補正する補正手段と、を備えたことを特徴とする。
そして例えば、前記選択手段は、前記複数のチャンネル信号の内、前記風雑音の影響が最も少ないチャンネル信号を前記特定チャンネル信号として選択するとよい。
これにより、風雑音を良好に除去することが可能となる。また、補正によって低周波成分をカットするわけではないので、音声のピッチ信号などの必要な信号は残される。
具体的には例えば、当該音声信号補正装置は、各チャンネル信号の前記所定帯域成分を抽出して各チャンネル信号に対応する抽出信号を出力する抽出手段を更に備え、前記選択手段は、各抽出信号の内、最も信号レベルが小さい抽出信号に対応するチャンネル信号を前記特定チャンネル信号として選択する。
また例えば、当該音声信号補正装置は、各チャンネル信号の前記所定帯域成分の相関に基づいて、各チャンネル信号に対する前記風雑音の影響の有無を判定する判定手段を更に備え、前記判定手段の判定結果に応じて前記補正手段による補正の実行可否を切り替え制御する。
また例えば、各マイクロホンは、互いに異なる方向に向けられている。
また例えば、各マイクロホンは、音波又は風圧によって振動する振動体を有して、前記振動体の振動に応じた電気信号を出力し、前記複数のマイクロホンが設置された装置に対して風が作用したときに、各マイクロホンの振動体が互いに異なる風圧を受けるように、各マイクロホンは前記装置に配置されている。
また例えば、前記複数のマイクロホンの出力信号は時間軸上の信号であり、各チャンネル信号は、各マイクロホンの出力信号の信号形式を時間軸上から周波数軸上に変換することによって得られた周波数スペクトルである。
また例えば、前記複数のチャンネル信号を記録した記録媒体の記録信号を受け、前記記録信号に基づく各チャンネル信号を補正する。
また、本発明に係る録音装置は、上記の複数のマイクロホン及び音声信号補正装置を備えたことを特徴とする。
また、本発明に係る撮像装置は、上記の複数のマイクロホン及び音声信号補正装置と、撮像手段と、備えたことを特徴とする。
また、本発明に係る音声信号補正方法は、複数のマイクロホンの出力信号に基づく複数のチャンネル信号を補正する音声信号補正方法において、各チャンネル信号の、風雑音の帯域を含む所定帯域成分に基づいて、前記複数のチャンネル信号の中から1つのチャンネル信号を特定チャンネル信号として選択する選択ステップと、前記特定チャンネル信号の前記所定帯域成分を用いて他のチャンネル信号の前記所定帯域成分を補正する補正ステップと、を備えたことを特徴とする。
本発明によれば、風雑音の良好なる低減に寄与する音声信号補正装置及び音声信号補正方法並びに録音装置及び撮像装置を提供することが可能となる。
本発明の意義ないし効果は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下の実施の形態は、あくまでも本発明の一つの実施形態であって、本発明ないし各構成要件の用語の意義は、以下の実施の形態に記載されたものに制限されるものではない。
以下、本発明の実施の形態につき、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。後に第1〜第5実施例を説明するが、まず、各実施例に共通する事項又は各実施例にて参照される事項について説明する。
図1は、本発明の実施形態に係る撮像装置10の外観斜視図である。撮像装置10は、音声録音をも可能なデジタルビデオカメラである。撮像装置10の筐体の前方左側及び前方右側には、夫々、マイクロホン1L及び1Rが備え付けられている。更に、撮像装置10の筐体には、マイクロホン1SL及び1SRが備え付けられている。マイクロホン1SLは、マイクロホン1Lの後方側に配置され、マイクロホン1SRは、マイクロホン1Rの後方側に配置されている。このように、撮像装置10には、4チャンネル分のマイクロホンが設置されている。
以下、マイクロホン1L、1R、1SL及び1SRを、総称して「4つのマイクロホン」とも呼ぶ。
図2に、撮像装置10の電気的構成を表す概略ブロック図を示す。撮像装置10は、4つのマイクロホンの他、撮像部2、映像信号処理部3、音声信号処理部4及び記録媒体5を備える。図示を省略しているが、撮像装置10には、更に、シャッタボタン及び録画ボタンを含む操作部、表示ディスプレイ、スピーカ、CPU(Central Processing Unit)などが備えられている。
撮像部2は、光学系と、CCD(Charge Coupled Devices)又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの撮像素子とを含み、光学系を介して入射する光学像を電子信号に変換する。映像信号処理部3は、その電気信号に基づき、撮像部2の撮影画像を表す映像信号を生成する。音声信号処理部4は、4つのマイクロホンの各出力信号に対して必要な処理を施すことによって所望の特性を有する音声信号を生成する。撮像装置10に備えられた操作部(不図示)に対する操作に従って、上記映像信号及び音声信号は、メモリカードや光ディスクなどの記録媒体5に記録される。
撮像部2が撮影可能な被写体が存在する方向を前方と定義し(図1参照)、その逆の方向を後方と定義する。前方及び後方は、撮像部2の光軸と平行であるものとする。また、以下の説明において、右及び左とは、後方側から前方側を見たときの右及び左を意味するものとする。
マイクロホン1L、1R、1SL及び1SRは、夫々、指向性を有さない無指向性マイクロホン又は指向性を有する指向性マイクロホン(例えば、単一指向性マイクロホン)である。
図3に、1つのマイクロホン1の構造を示す。この構造は、マイクロホン1L、1R、1SL及び1SRの夫々における構造である。図3は、マイクロホン1の断面図を示している。マイクロホン1は、振動体としての振動板11を有している。振動板11は、音波による空気振動によって振動する。但し、振動板11は、音波だけでなく、振動板11に作用した風圧によっても振動する。故に、振動板11に音波と風圧が作用している時、振動板11は音波と風圧に応じて振動する。マイクロホン1は、この振動板11の振動を電気信号に変換して出力する。マイクロホン1の出力信号の内、風圧に由来する雑音(雑音成分)を風雑音という。上述の如く、本明細書において、風雑音とは音波として振動板11に到来する雑音ではない。
マイクロホン1の種類は任意である。例えば、ムービング・コイル型、リボン型又はコンデンサ型のマイクロホンを、マイクロホン1として採用することが可能であり、また、マイクロホン1は、カーボンマイクまたは圧電マイクであってもよい。
振動板11の周囲には、振動板11の支持等を目的とした部材が配置されており、この部材によって撮像装置10に作用した風圧の一部は遮られる。つまり、マイクロホン1に対して、振動板11の正面側から風圧が作用した場合、その風圧は振動板11に直接作用するが、振動板11の裏側から風圧が作用した場合、その風圧は振動板11に殆ど(或いは完全に)作用しない。
図4に、4つのマイクロホンの配置関係を示す。今、互いに直交するX軸及びY軸を座標軸とする二次元座標を想定する。この二次元座標は、撮像装置10を上方から見たときの平面座標に相当する。Y軸は、撮像部2の光軸と平行である。Y軸の正の方向は前方と合致し、Y軸の負の方向は後方と合致する。X軸の正の方向は右方向と合致し、Y軸の負の方向は左方向と合致する。この二次元座標の原点をOとする。図4には、4つのマイクロホンの該二次元座標上への投影図が重畳して示されている。今、簡単のため、X軸及びY軸に直交するZ軸方向の成分(即ち、高さ方向の成分)を無視して考える。
上記の二次元座標上において、右斜め前方に相当する第1象限内にマイクロホン1Rが配置され、左斜め前方に相当する第2象限内にマイクロホン1Lが配置され、左斜め後方に相当する第3象限内にマイクロホン1SLが配置され、右斜め後方に相当する第4象限内にマイクロホン1SRが配置される。上記の二次元座標上において、マイクロホン1Lの振動板の中心の座標を(xL,yL)、マイクロホン1Rの振動板の中心の座標を(xR,yR)、マイクロホン1SLの振動板の中心の座標を(xSL,ySL)、マイクロホン1SRの振動板の中心の座標を(xSR,ySR)とする。
4つのマイクロホンは互いに異なる方向に向けて配置されており、何れのマイクロホンも正面側が原点Oに対して外側を向けられている。これは、風の影響を受けにくいマイクロホンを常に存在させるためである。つまり、マイクロホン1Lの振動板の中心から見て原点O側をマイクロホン1Lの裏側とし、マイクロホン1Rの振動板の中心から見て原点O側をマイクロホン1Rの裏側とし、マイクロホン1SLの振動板の中心から見て原点O側をマイクロホン1SLの裏側とし、マイクロホン1SRの振動板の中心から見て原点O側をマイクロホン1SRの裏側とする。
このように各マイクロホンを配置することにより、例えば撮像装置10の右斜め前方から風が到来した場合、マイクロホン1Rの振動板は大きな風圧を受けてマイクロホン1Rの出力信号は風雑音を多く含むことになるが、マイクロホン1SLの振動板は殆ど風圧を受けなくなるためマイクロホン1SLの出力信号に含まれる風雑音は極めて軽微となる。尚、この場合、各マイクロホンの構造にも依存するが、マイクロホン1L及びマイクロホン1SRの振動板もある程度の風圧を受ける。何れにせよ、撮像装置10の右斜め前方から風が到来した場合は、4つのマイクロホンの内、マイクロホン1SLの出力信号に含まれる風雑音の量が最も少なくなる。そして、この場合、通常は、マイクロホン1Rの出力信号に含まれる風雑音の量が最も多くなり、マイクロホン1L又は1SRの出力信号に含まれる風雑音の量は、マイクロホン1Rのそれとマイクロホン1SLのそれの間となる。
理想的には例えば、マイクロホン1Lの振動板の中心とマイクロホン1SRの振動板の中心とを結ぶ直線が原点Oを通り且つその直線とX軸との成す角度が45度となるようにマイクロホン1Lとマイクロホン1SRを撮像装置10の筐体に配置し、更に、マイクロホン1Rの振動板の中心とマイクロホン1SLの振動板の中心とを結ぶ直線が原点Oを通り且つその直線とX軸との成す角度が45度となるようにマイクロホン1Rとマイクロホン1SLを撮像装置10の筐体に配置する。そして、理想的には例えば、xL=xSL、xR=xSR、yL=yR及びySL=ySRとし、且つ、原点Oから各マイクロホンの振動板の中心までの距離を全て同じとする。
上述の風雑音の周波数は、比較的低く、高くとも300Hz程度である。また、風雑音は、概ね100Hz程度で強度が最も強くなる。従って、音声信号処理部4では、300Hzを境界として取り扱い、300Hzより小さい周波数帯域を「低周波帯域」として且つ300Hz以上の周波数帯域を「高周波帯域」として取り扱う。低周波帯域は、風雑音の周波数帯域を含み、風雑音の影響を多く受ける。高周波帯域は、風雑音の周波数帯域を含まず、風雑音の影響を殆ど受けない。また、低周波帯域の周波数成分を「低周波帯域成分」と呼び、高周波帯域の周波数成分を「高周波帯域成分」と呼ぶことにする。
携帯型のデジタルビデオカメラなどでは筐体サイズの制約から複数のマイクロホンが近接して配置され、本実施形態の撮像装置10にも、このような制約が加わっている。従って、風雑音の発生する低周波帯域の信号は、何れのマイクロホンで検出した場合も、風雑音が発生していなければ殆ど同じとなる。このような特性に着目して、音声信号処理部4は、風雑音の影響の少ないマイクロホンを選択し、選択したマイクロホンの音声信号を用いて他のマイクロホンの音声信号を補正することにより風雑音の影響が低減された補正信号を生成する。
上述の撮像装置10を参照しつつ、以下に、詳細な実施例を説明する。
<<第1実施例>>
まず、第1実施例について説明する。第1実施例では、図2の音声信号処理部4として用いることができる音声信号処理部の構成及び動作について説明する。
図5を参照する。図5は、第1実施例に係る音声信号処理部の内部ブロック図である。図5の音声信号処理部は、A/D変換器21L、21R、21SL及び21SRと、HPF(ハイパスフィルタ)22L、22R、22SL及び22SRと、LPF(ローパスフィルタ)23L、23R、23SL及び23SRと、風雑音発生/レベル判定部24(以下、判定部24と略記する)と、出力切替部25と、加算処理部26と、後処理部27と、を備える。
図2のマイクロホン1L、1R、1SL及び1SRは、夫々、自身の振動板の振動に応じたアナログの電気信号を出力する。マイクロホン1L、1R、1SL及び1SRの出力信号は、夫々、図5のA/D変換器21L、21R、21SL及び21SRに与えられる。
A/D変換器21L、21R、21SL及び21SRは、夫々、マイクロホン1L、1R、1SL及び1SRの出力信号をデジタルの電気信号に変換するA/D変換を行う。今、A/D変換器21L、21R、21SL及び21SRにおけるA/D変換のサンプリング周波数は、48kHz(キロヘルツ)であるとする。また、A/D変換器21L、21R、21SL及び21SRから出力されるデジタルの電気信号(デジタル音声信号)を、以下、夫々、原信号L、原信号R、原信号SL及び原信号SRと呼ぶ。原信号L、原信号R、原信号SL及び原信号SRに対して、後に風雑音に関与する補正が施される。従って、原信号L、原信号R、原信号SL及び原信号SRは、夫々、マイクロホン1L、1R、1SL及び1SRに対応する補正前のチャンネル信号と呼べる。
原信号L、原信号R、原信号SL及び原信号SRは、夫々、HPF22L、22R、22SL及び22SRに入力される。HPF22L、22R、22SL及び22SRは、夫々、自身に対する入力信号の高周波帯域成分を通過させ且つ自身に対する入力信号の低周波帯域成分を除去するハイパスフィルタである。従って、HPF22L、22R、22SL及び22SRからは、夫々、低周波帯域成分が除去された原信号L、原信号R、原信号SL及び原信号SRが出力される。
原信号L、原信号R、原信号SL及び原信号SRは、夫々、LPF23L、23R、23SL及び23SRにも入力される。LPF23L、23R、23SL及び23SRは、夫々、自身に対する入力信号の低周波帯域成分を通過させ且つ自身に対する入力信号の高周波帯域成分を除去するローパスフィルタである。従って、LPF23L、23R、23SL及び23SRからは、夫々、高周波帯域成分が除去された原信号L、原信号R、原信号SL及び原信号SRが出力される。
尚、周波数成分に関する「除去」とは「完全な除去」を意味するものではなく、それは「減衰」と読み替えることができる。例えば、本明細書において、「高周波帯域成分を除去する」と「高周波帯域成分を減衰させる」は同義である。
或る時刻tにおけるHPF22L、22R、22SL及び22SRの出力信号の値を夫々HPF_OUT_Lt、HPF_OUT_Rt、HPF_OUT_SLt及びHPF_OUT_SRtにて表し、或る時刻tにおけるLPF23L、23R、23SL及び23SRの出力信号の値を夫々LPF_OUT_Lt、LPF_OUT_Rt、LPF_OUT_SLt及びLPF_OUT_SRtにて表す。或る信号の振幅は、その信号のレベル(強度)を表している。
各信号は、ゼロを基準として正又は負の値をとる。仮に、マイクロホン1Lの振動板が全く振動しない場合、マイクロホン1Lの出力信号のレベルはゼロとなり、原信号Lのレベル並びにHPF_OUT_Lt及びLPF_OUT_Ltもゼロとなる(但し、オフセットやノイズ成分を無視)。マイクロホン1Lの振動板が音波によって振動すると、原信号Lの値が振動して原信号Lのレベルがゼロよりも大きくなるとともに、該音波の周波数に応じてHPF_OUT_Lt及びLPF_OUT_Ltも振動してHPF22L及びLPF23Lの各出力信号のレベルもゼロよりも大きくなる。マイクロホン1Lの振動板が風圧のみによって振動した場合は、理想的には、原信号Lは300Hz以下の周波数成分のみを有することになり、LPF23Lの出力信号のレベルがゼロよりおおきくなる一方でHFF22Lの出力信号のレベルはゼロとなる。マイクロホン1L以外のマイクロホンに関しても同様である。
判定部24は、LPF23L、23R、23SL及び23SRの出力信号に基づいて風雑音の発生有無を判別する。この判別を行うために、具体的には、判定部24は、風雑音発生指標Wind1t、Wind2t及びWind3tを下記式(1a)、(1b)及び(1c)に従って算出する。Wind1t、Wind2t及びWind3tは、時刻tにおける3つの風雑音発生指標である。また、本実施例において、N=2048であるとする。尚、時刻(t−1)と時刻tとの間の期間長さは、48kHzの逆数である。
Figure 2009005157
風雑音発生指標Wind1tは、Nサンプル分の区間における、原信号Lの低周波帯域成分と原信号Rの低周波帯域成分との相関(類似性)を表しており、両者の相関が高ければ高いほど風雑音発生指標Wind1tは小さくなる。上述したように、風雑音の発生する低周波帯域の信号は、何れのマイクロホンで検出した場合も風雑音がなければ殆ど同一となるため、原信号L及びRに風雑音が含まれていなければWind1tはゼロ(或いは殆どゼロ)となる。Wind2t及びWind3tについても同様である。
一方において、上述の如く4つのマイクロホンを配置しているため、撮像装置10に対して或る方向から風が到来すれば、一部又は全部の風雑音発生指標は比較的大きな値をとる。例えばマイクロホン1Lの振動板に対して直接風圧が加わった場合、LPF_OUT_SRtのレベルが比較的低くなる一方でLPF_OUT_Ltのレベルが比較的大きくなるため、風雑音発生指標Wind3tが比較的大きくなる。故に、風雑音発生指標Wind1t〜Wind3tに基づいて風雑音の発生有無を判別可能である。
具体的には、判定部24は、風雑音発生指標Wind1t〜Wind3tの夫々と所定の風発生閾値(例えば、0.2)とを比較し、風雑音発生指標Wind1t〜Wind3tの内の少なくとも1つが風発生閾値以上である場合に風雑音が発生していると判断し、そうでない場合、風雑音は発生していないと判断する。
風雑音が発生していると判断した場合、判定部24は、更に、レベル判定処理によって風雑音の影響が最も少ないチャンネル信号を選択する。選択されたチャンネル信号を影響最小チャンネル信号と呼ぶ。実際には、4つのLPFの中から影響最小チャンネル信号に対応するLPFを択一的に選択する。具体的には、レベル判定処理では、下記式(2a)、(2b)、(2c)及び(2d)に従って、4つのレベル評価値Pow_Lt、Pow_Rt、Pow_SLt及びPow_SRtを算出する。Pow_Lt、Pow_Rt、Pow_SLt及びPow_SRtは、夫々、時刻tにおけるレベル評価値である。
Figure 2009005157
そして、判定部24は、4つのレベル評価値Pow_Lt、Pow_Rt、Pow_SLt及びPow_SRtの内、最小のレベル評価値に対応する原信号(補正前のチャンネル信号)を影響最小チャンネル信号として選択する。レベル評価値Pow_Ltは原信号L(マイクロホン1Lのチャンネル信号)に対応し、レベル評価値Pow_Rtは原信号Rに対応し、レベル評価値Pow_SLtは原信号SLに対応し、レベル評価値Pow_SRtは原信号SRに対応している。従って例えば、4つのレベル評価値Pow_Lt、Pow_Rt、Pow_SLt及びPow_SRtの内、レベル評価値Pow_Ltが最小である場合、判定部24は、原信号L(マイクロホン1Lのチャンネル信号)を影響最小チャンネル信号として選択する。
判定部24による風雑音の発生有無の判別は、例えばNサンプルごとに行われ、風雑音が発生している場合、影響最小チャンネル信号の切り替えはNサンプルごとに実行される(但し、切り替えが必要な場合)。式(2a)におけるPow_Lt-Nは、前回算出されたLPF23Lに対応するレベル評価値である(Pow_Rt-N、Pow_SLt-N及びPow_SRt-Nも同様)。また、αは、所定の係数であり(0≦α<1)、α=0とすることもできる。
出力切替部25は、各チャンネルに対応する加算器を備えた加算処理部26を用い、判定部24の判定結果に応じて各LPFの出力信号と各HPFの出力信号を合成することにより、補正信号L、補正信号R、補正信号SL及び補正信号SRを生成する。補正信号L、補正信号R、補正信号SL及び補正信号SRは、夫々、マイクロホン1L、1R、1SL及び1SRに対応する補正後のチャンネル信号である。時刻tにおける補正信号L、補正信号R、補正信号SL及び補正信号SRを、夫々、Lt、Rt、SLt及びSRtにて表す。
判定部24によって風雑音が発生していないと判断されている場合は、チャンネルごとにHPFとLPFの出力を単純に合成することによって各補正信号を生成する。即ち、風雑音が発生していないと判断されている場合は、下記式(3a)、(3b)、(3c)及び(3d)に従って各補正信号を生成する。この場合、各補正信号は各原信号と合致することになる。
Figure 2009005157
一方、判定部24によって風雑音が発生していると判断されている場合は、例えば、影響最小チャンネル信号に対応するLPFの出力信号と各HPFの出力信号とを合成することによって各補正信号を生成する。即ち、影響最小チャンネル信号の低周波帯域成分にて、他のチャンネル信号の低周波帯域成分を差し替える。例えば、風雑音が発生していると判断され且つ影響最小チャンネル信号が原信号SRであると判断されている場合は、下記式(4a)、(4b)、(4c)及び(4d)に従って各補正信号を生成する。
Figure 2009005157
尚、出力切替部25は、各A/D変換器から各HPFを介して加算処理部26に至る経路の信号遅延量と、各A/D変換器から各LPF及び出力切替部25を介して加算処理部26に至る経路の信号遅延量と、を一致させるための遅延調整も実施する。
出力切替部25及び加算処理部26によって生成された各補正信号(L、R、SL及びSR)は、後処理部27に与えられる。後処理部27は、与えられた各補正信号に対して所定の後処理を施してから各補正信号を図2の記録媒体5に保存する。例えば、各補正信号に対して所定の圧縮方式に従った音声圧縮処理を施し、圧縮後の各補正信号を記録媒体5に保存する。
上述の如く構成することにより、簡易な処理にて風雑音の影響を低減することが可能となる。この際、従来技術とは異なり、風雑音の影響の少ないマイクロホンの低周波帯域成分を選択的に使用するため、音声のピッチ信号などの必要な信号は保存される。このため、自然な低音再生を損なうことがない。
また、風圧の影響が異なるマイクロホン対の相関を検出し、これによって風雑音の発生有無を判別するため、風雑音の発生を精度良く検出することが可能である。また、上述の如く4つのマイクロホンを配置することにより、サラウンド感を高めつつ、一定方向からの風に対して風の影響を受けにくいマイクロホンを存在させる。これにより、聴覚上、風雑音を高精度に除去することが可能となる。
尚、従来のステレオ信号を利用した方式(特許文献1等の方式)では、偶発的に風雑音に高い相関が生じる場合があり、風雑音発生の見落としや低減処理レスポンスの遅れにつながることがあったが、本実施例の手法により確実な風雑音の発生検知が可能である。
また、上述の例では低周波帯域成分の差し替えによって低周波帯域成分の補正を行っているが、低周波帯域成分の差し替えによる急激な信号変化を抑制するため、風雑音の影響が最も少ないマイクロホンについての低周波帯域成分と各チャンネルの低周波帯域成分とを加重加算することによって、各補正信号の低周波帯域成分を算出するようにしてもよい。即ち例えば、風雑音が発生していると判断され且つ影響最小チャンネル信号が原信号SRであると判断されている場合は、下記式(5a)、(5b)、(5c)及び(5d)に従って各補正信号を生成するようにしてもよい。ここで、βは、風雑音発生指標Wind1t、Wind2t及びWind3tの最大値とする。この最大値は、風雑音の強度に応じた値を持つ。
Figure 2009005157
式(5a)等に従って各補正信号を生成すれば、急激な信号変化が抑制された滑らかな信号を生成することが可能である。また、各チャンネルの低周波原音が残って各チャンネル間の微妙な信号の相違が保存されるため、補正による臨場感低下が抑制される。
<<第2実施例>>
また、窓関数を利用することによって、低周波帯域成分の連続性を担保するようにしてもよい。これを第2実施例として説明する。第2実施例は、第1実施例の一部を変形した実施例であり、出力制御部25(及び加算処理部26)における動作が第1実施例と異なるだけで、他の点は第1実施例のそれと同様である。以下、第1実施例との相違点のみを説明する。
今、t=Nm/2+nとおく。Nは、第1実施例と同様、2048である。mは、0以上の整数値をとる。本実施例において、変数nは、0以上且つ1023以下の整数値をとり、0を基準としつつtが1だけ増加するに従って1だけ増加する。但し、変数nが1023となっている時にtが1だけ増加すると、変数nはゼロに戻されると共に変数mが1だけ増加する。
また、図6に示すような配列Nの窓関数を定義する。配列Nの窓関数は、窓関数WnとWN/2+nとに分割して考えることができる。窓関数Wnは、n=0の時にゼロとなり、nが0から1023(=N/2−1)に向かうにつれて徐々に増加する。窓関数WN/2+nは、n=0の時に最大となり、nが0から1023に向かうにつれて徐々に減少し、n=1023の時にゼロとなる。また、任意のnに対して、等式「Wn+WN/2+n=1」が成立する。
変形例2において、出力切替部25及び加算処理部26は、下記式(6a)、(6b)、(6c)及び(6d)に従って各補正信号を生成する。但し、式(6a)、(6b)、(6c)及び(6d)は、現時点での影響最小チャンネル信号が原信号SRであり且つ1024サンプル前の影響最小チャンネルが原信号Lであった場合における、各補正信号の算出式である。
Figure 2009005157
ここにおける「現時点」とはn=0且つm=moの時点を指すとともに、「1024サンプル前」とはn=0且つm=(mo−1)の時点を指すものとし、式(6a)、(6b)、(6c)及び(6d)は、n=0〜1023且つm=moの各時点に対して適用される(moは0以上の整数)。また、本実施例では、判定部24による風雑音の発生有無の判別は、例えばN/2サンプルごとに行われ、風雑音が発生している場合、影響最小チャンネル信号の切り替えはN/2サンプルごとに実施されるものとする。
尚、現時点での影響最小チャンネル信号及び1024サンプル前の影響最小チャンネル信号が原信号SR及びLでない場合、式(6a)等が変更されることは言うまでもない。例えば、現時点での影響最小チャンネル信号が原信号Rの場合、下記式(6a)、(6b)、(6c)及び(6d)の夫々における右辺第1項はWn・LPF_OUT_RNm/2+nに置き換えられ、1024サンプル前の影響最小チャンネル信号が原信号SLの場合、下記式(6a)、(6b)、(6c)及び(6d)の夫々における右辺第2項はWN/2+n・LPF_OUT_SLNm/2+nに置き換えられる。
上述のような窓関数を利用することによって、影響最小チャンネル信号が変化した際、過去の影響最小チャンネル信号の寄与度を徐々に減らしつつ最新の影響最小チャンネル信号の寄与度を徐々に増大させていく。これにより、急激な信号変化が抑制された滑らかな信号を生成することが可能である。
<<第3実施例>>
次に、本発明の第3実施例について説明する。第3実施例でも第1又は第2実施例と同様の原理に基づいて風雑音低減用の補正を実現する。但し、第3実施例では、音声符号化処理における中間生成データを利用して該補正を実現する。
図7を参照する。図7は、第3実施例に係る音声信号処理部の内部ブロック図である。図7の音声信号処理部は、図2の音声信号処理部4として利用される。図7の音声信号処理部は、A/D変換器21L、21R、21SL及び21SRと、音声符号化処理部100と、風雑音発生/レベル判定部61(以下、判定部61と略記する)と、を備える。
音声符号化処理部100は、時間軸上に並ぶ離散信号を周波数軸上に変換する時間周波数変換を用いて、音声信号の符号化処理を行う。具体的には、音声符号化処理部100は、符号51〜53にて参照される各部位を備え、時間周波数変換として修正離散コサイン変換(modified discrete cosine transform;MDCT)を用いる。また、音声符号化処理部100は、AAC(MPEG−AAC)に従う符号化処理を行う。
図7のA/D変換器21L、21R、21SL及び21SRは、図5のそれらと同じものである。A/D変換器21L、21R、21SL及び21SRから出力される原信号L、原信号R、原信号SL及び原信号SRは、時間軸上の離散信号(時間領域における離散信号)であり、それらは、順次、MDCT変換部51に入力される。
MDCT変換部51は、まず、各原信号を符号化の処理単位であるフレームに分割する。1つのフレームには、1つ以上のブロックが含まれるが、今、1つのフレームが1つのブロックから形成されるものとする。フレームの番号(即ち、ブロックの番号)をmで表し、各フレームを第mのフレームと表現する。mは、0以上の整数値をとる。図8に、各フレームの関係を示す。第0のフレーム、第1のフレーム、第2のフレーム、・・・、の順番で時間が進行する。各ブロックは、直前のブロックとの間でブロックの半分の長さの重複部分を有する。今の例の場合、1つのフレームが1つのブロックから形成されるため、各フレームも、直前のフレームとの間で1フレームの半分の長さの重複部分を有する。
1つのブロックの長さをNで表す。AACに従う符号化処理において、N=2048又はN=256となるが、説明の具体化のため、以下、N=2048であるものとする。そうすると、MDCT変換部51に与えられた第mのフレームにおける原信号L、原信号R、原信号SL及び原信号SRの信号値を、夫々、S_LNm/2+n、S_RNm/2+n、S_SLNm/2+n及びS_SRNm/2+nにて表すことができる。第2実施例とは異なるが、本実施例において、nは、0≦n≦(N−1)、を満たす各整数値をとる。尚、後述の式(7a)等にも現れる下付き文字「Nm/2+n」は、より明確に表記すると、「(Nm/2)+n」となる(第2実施例についても同様)。
MDCT変換部51は、各信号値S_LNm/2+n、S_RNm/2+n、S_SLNm/2+n及びS_SRNm/2+nに対して窓関数Wnを乗じることにより、下記式(7a)、(7b)、(7c)及び(7d)の如く、Z_LNm/2+n、Z_RNm/2+n、Z_SLNm/2+n及びZ_SRNm/2+nを算出する。尚、本実施例における窓関数Wnは、式(8)にて表される。
Figure 2009005157
Figure 2009005157
そして、MDCT変換部51は、窓関数Wnによる切り出しによって得られたZ_LNm/2+n、Z_RNm/2+n、Z_SLNm/2+n及びZ_SRNm/2+nに対して修正離散コサイン変換を行うことにより、原信号L、原信号R、原信号SL及び原信号SRの周波数スペクトルを表すMDCT係数X_Lm,k、X_Rm,k、X_SLm,k、X_SRm,kを算出する。MDCT係数X_Lm,k、X_Rm,k、X_SLm,k、X_SRm,kは、下記式(9a)、(9b)、(9c)及び(9d)に従って算出される。
Figure 2009005157
MDCT係数X_Lm,kは、原信号Lの、第mのフレームにおける周波数番号kの周波数成分の信号強度を表す。MDCT係数X_Rm,kは、原信号Rの、第mのフレームにおける周波数番号kの周波数成分の信号強度を表す。MDCT係数X_SLm,k及びX_SRm,kについても同様である。kは、0〜(N/2−1)の範囲内の整数値をとる。今の例の場合、N=2048であるため、kは0以上且つ1023以下の各整数値をとる。
今の例の場合、各A/D変換器(21L等)のサンプリング周波数は48kHzであり、これに対応して、離散信号S_LNm/2+n等のサンプリング周波数も48kHzとなっている。そして、N=2048であるから、MDCT変換部51にて得られる周波数スペクトルの周波数間隔、即ち、周波数番号(k−1)とkの間の周波数間隔は約23Hzである。従って、風雑音の周波数帯域の上限として考えた300Hzはk=13に対応する。故に、0≦k≦13の範囲内のMDCT係数から風雑音の発生有無を判別可能である。
MDCT変換部51によって得られた各MDCT係数は、判定部61に与えられる。風雑音の発生有無を300Hz以下の信号成分に基づいて行うべく、本実施例における判定部61は、風雑音発生指標Wind1m、Wind2m及びWind3mを下記式(10a)、(10b)及び(10c)に従って算出する。Wind1m、Wind2m及びWind3mは、第mのフレームにおける3つの風雑音発生指標である。
Figure 2009005157
風雑音発生指標Wind1mは、第mのフレームにおける、原信号Lの低周波帯域成分と原信号Rの低周波帯域成分との相関(類似性)を表しており、両者の相関が高ければ高いほど風雑音発生指標Wind1mは小さくなる。原信号L及びRに風雑音が含まれていなければWind1mはゼロ(或いは殆どゼロ)となる。Wind2m及びWind3mについても同様である。故に、第1実施例と同様、風雑音発生指標Wind1m〜Wind3mに基づいて風雑音の発生有無を検出可能である。
具体的には、判定部61は、風雑音発生指標Wind1m〜Wind3mの夫々と所定の風発生閾値(例えば、0.2)とを比較し、風雑音発生指標Wind1m〜Wind3mの内の少なくとも1つが風発生閾値以上である場合に風雑音が発生していると判断し、そうでない場合、風雑音は発生していないと判断する。
風雑音が発生していると判断した場合、判定部61は、レベル判定処理によって風雑音の影響が最も少ないチャンネル信号を選択する。選択されたチャンネル信号を影響最小チャンネル信号と呼ぶ。実際には、4チャンネル分のMDCT係数の中から影響最小チャンネル信号に対応するMDCT係数を択一的に選択する。具体的には、レベル判定処理では、下記式(11a)、(11b)、(11c)及び(11d)に従って、4つのレベル評価値Pow_Lm、Pow_Rm、Pow_SLm及びPow_SRmを算出する。Pow_Lm、Pow_Rm、Pow_SLm及びPow_SRmは、夫々、第mのフレームにおけるレベル評価値である。
Figure 2009005157
そして、判定部61は、4つのレベル評価値Pow_Lm、Pow_Rm、Pow_SLm及びPow_SRmの内、最小のレベル評価値に対応する原信号(補正前のチャンネル信号)を影響最小チャンネル信号として選択する。レベル評価値Pow_Lmは原信号L(マイクロホン1Lのチャンネル信号)に対応し、レベル評価値Pow_Rmは原信号1Rに対応し、レベル評価値Pow_SLmは原信号SLに対応し、レベル評価値Pow_SRmは原信号SRに対応している。従って例えば、4つのレベル評価値Pow_Lm、Pow_Rm、Pow_SLm及びPow_SRmの内、レベル評価値Pow_Lmが最小である場合、判定部61は、原信号L(マイクロホン1Lのチャンネル信号)を影響最小チャンネル信号として選択する。
判定部61による風雑音の発生有無の判別は、フレームごとに行われる(Wind1m等に基づく判断は、第mのフレームに対する判断である)。そして、風雑音が発生している場合、影響最小チャンネル信号の切り替えはフレームごとに実行される(但し、切り替えが必要な場合)。また、上記式(11a)等におけるαは、所定の係数である(0≦α<1)。典型的には例えば、α=0としておけばよい。
MDCT係数補正部52は、判定部61の判定結果に応じて、MDCT係数を補正し、補正後のMDCT係数を符号化後処理部53に送る。但し、補正が行われるのは、0≦k≦13を満たすMDCT係数のみであり、13<k≦1023を満たすMDCT係数(X_Lm,k、X_Rm,k、X_SLm,k及びX_SRm,k)は、何ら補正が施されることなく、そのまま符号化後処理部53に送られる。尚、判定部61によって風雑音が発生していないと判断されたフレームに関しては、0≦k≦1023の範囲内の全てのMDCT係数が、何ら補正が施されることなく、そのまま符号化後処理部53に送られる。
判定部61によって風雑音が発生していると判断されている場合は、例えば、影響最小チャンネル信号に対応するMDCT係数にて他のチャンネル信号のMDCT係数を差し替える補正を行う。即ち例えば、風雑音が発生していると判断され且つ影響最小チャンネル信号が原信号SRであると判断されている場合は、MDCT係数X_Lm,k、X_Rm,k及びX_SLm,kの夫々にMDCT係数X_SRm,kを代入し、この代入後の各MDCT係数を符号化後処理部53に送るようにする(この代入が行われるのは、0≦k≦13を満たすMDCT係数のみである)。
尚、第1実施例において式(5a)等を用いて説明したのと同様に、加重加算によってMDCT係数の補正を行うようにしてもよい。即ち例えば、風雑音が発生していると判断され且つ影響最小チャンネル信号が原信号SRであると判断されている場合は、下記式(12a)に示す如く、0≦k≦13の範囲内において式(12a)の右辺をMDCT係数X_Lm,kに代入する補正を行い、この補正後のMDCT係数X_Lm,kを符号化後処理部53に送るようにする。MDCT係数X_Rm,k、X_SLm,k及びX_SRm,kに対しても、下記式(12b)、(12c)及び(12d)に従った同様の処理が行えばよい。尚、βは、風雑音発生指標Wind1m、Wind2m及びWind3mの最大値とする。この最大値は、風雑音の強度に応じた値を持つ。
Figure 2009005157
符号化後処理部53に対して入力された各MDCT係数は、図7の音声信号処理部にて生成されるべき補正された各チャンネル信号を表している。但し、本実施例では、補正された各チャンネル信号が、周波数スペクトルという信号形式で表現されている。符号化後処理部53は、与えられた各周波数スペクトル(X_Lm,k、X_Rm,k、X_SLm,k及びX_SRm,k)を、AACの符号化方式に従って量子化することにより、符号化音声信号としてのビットストリームに変換する。この符号化音声信号(ビットストリーム)は、図2の記録媒体5に記録される。
上述の如く構成することにより、第1実施例と同様の効果が得られる。更に、低域のスペクトラムデータの置き換えによる不連続性は、音声符号化処理の過程において元々使用される窓関数によってスムージングされるため、滑らかな記録信号が得られる(これは、上記式(12a)等に従う加重加算を実施しなくても当てはまる)。
また、音声符号化処理における中間生成データを利用して補正処理を行うため、第1又は第2実施例では必要であったHPF及びLPFが不要となる。音声符号化処理部として撮像装置10にAACエンコーダが設けられることが多いが、このAACエンコーダの中間生成データを利用し、簡素な処理量にて補正処理を行うことが可能である。
図7の音声符号化処理部100に組み込むことが可能なAACエンコーダ110の内部ブロック図を、図9に示す。AACエンコーダ110内の各部位の動作は、AACの規格に従うものであるため説明を割愛する。AACエンコーダ110内に設けられたフィルタバンク111が、修正離散コサイン変換を行う部分であり、図7のMDCT変換部51の一部又は全部に相当することになる。
AACエンコーダ110を図7の音声符号化処理部100に組み込む場合、フィルタバンク111にて一旦算出された各MDCT係数をMDCT補正部52にて補正し、その補正後のMDCT係数を、フィルタバンク111の出力信号を必要とする部位(TNS(Temporal Noise Shaping)及びビットストリームマルチプレクサ)に供給するようにする。この補正を介してAACエンコーダ110から出力されるビットストリームが、図7の符号化後処理部53の出力信号に相当する。
<<第4実施例>>
上述の第1及び第2実施例では、各マイクロホンの出力信号に対してリアルタイムに風雑音低減用の補正処理を施し、該補正処理後の音声信号を図2の記録媒体5に保存するようにしているが、補正処理を実行するタイミングは任意である。例えば、補正前の各チャンネル信号(原信号L、R、SL及びSR)そのもの、或いは、それらに何らかの信号処理(圧縮処理等)を施した信号を、一旦、記録媒体5に生データとして記録しておく。そして、音声再生時などにおいて、その生データから補正前の各チャンネル信号(原信号L、R、SL及びSR)を再現し、その再現された信号に対して、第1又は第2実施例で述べた処理を施すことによって補正後の各チャンネル信号(補正信号L、R、SL及びSR)を生成するようにしてもよい。そして、音声再生時には、この補正後の各チャンネル信号を再生出力すれば良い。
同様のことが第3実施例に対しても当てはまる。第3実施例における補正処理を音声再生時等に行う場合は、以下のようにすればよい。まず、図7のMDCT変換部51から出力されるMDCT係数をそのままAACの符号化方式に従って量子化し、これによって得られた符号化音声信号を、図2の記録媒体5に生データとして記録しておく。音声再生時には、AACデコーダを用いて該生データからMDCT係数を生成する。ここで得られるMDCT係数は、図7のMDCT変換部51から出力されるそれと同じものである。故に、生データから得たMDCT係数に対して、図7のMDCT補正部52及び判定部61を用いた第3実施例と同様の補正処理を施す。この補正処理後のMDCT係数は、第3実施例において符号化後処理部53に与えられたものと同じMDCT係数となる。音声再生時には、この補正処理後のMDCT係数から風雑音の影響が抑制された音声信号を再生出力すればよい。
上述の説明から明らかなように、上記の生データから音声を再生する音声再生装置に図2の音声信号処理部4と同様の音声信号処理部を搭載することも可能であり、その場合も、音声信号処理部は有効に機能する。つまり、本発明は、音声再生装置にも適用可能である。集音時には生データを記録しておき、風雑音低減用の補正処理を音声再生装置側に担わせるようにしておけば、該補正処理の実施/不実施を再生時に自由に切り替えることも可能である。
また、音声信号処理部4が設けられる装置として図1の撮像装置10を例示したが、同様の音声信号処理部を、他の録音装置又は録音機能を備えた装置に設けることが可能である。他の録音装置又は録音機能を備えた装置には、例えば、ICレコーダ等の携帯型録音装置や、録音機能を備えた携帯電話機が含まれる。これらの装置には、図2に示される4つのマイクロホン、音声信号処理部4及び記録媒体5が設けられることになる。
<<第5実施例>>
4つのマイクロホンを用いて風雑音を低減する手法を説明したが、マイクロホンの個数は4以外であってもよい。即ち、撮像装置を例にとれば、撮像装置に備え付けられるマイクロホンの個数は、2又は3でもよいし、或いは、5以上であってもよい。マイクロホンの個数を4より多くする場合は、より高精度に風雑音を低減することができる。
図1の撮像装置10を参照しつつ、マイクロホンの個数を3つにする場合について説明する。この場合、例えば、図1におけるマイクロホン1SL及び1SRを1つに集約する。つまり、撮像装置10に、マイクロホン1L、1R、1SL及び1SRではなく、マイクロホン1L、1R及び1Sから成る3つのマイクロホンを設けるようにする。マイクロホン1Sは、マイクロホン1L及び1Rと同様のものであり、図3のマイクロホン1と同様の構造を有する。マイクロホン1Sは、図1の撮像装置10では備えられていたマイクロホン1SLと1SRの中間に配置される。
そして、マイクロホン1L、1R及び1Sを、図10に示すように配置すればよい。図10には、図4に示すそれと同じ二次元座標が示されている。そして、図10には、マイクロホン1L、1R及び1Sの該二次元座標上への投影図が重畳して示されている。該二次元座標上におけるマイクロホン1L及び1Rの配置位置は、図4を参照して上述したそれと同じである。マイクロホン1Sは、Y軸上にY軸の負の方向を向けて配置される。上記の二次元座標上において、マイクロホン1Lの振動板の中心の座標及びマイクロホン1Rの振動板の中心の座標は、上述の如く、夫々(xL,yL)及び(xR,yR)である。そして、マイクロホン1Sの振動板の中心の座標を(xS,yS)とする。
マイクロホン1L、1R及び1Sを互いに異なる方向に向けて配置し、何れのマイクロホンの正面側も原点Oに対して外側を向けるようにする。つまり、マイクロホン1Lの振動板の中心から見て原点O側をマイクロホン1Lの裏側とし、マイクロホン1Rの振動板の中心から見て原点O側をマイクロホン1Rの裏側とし、マイクロホン1Sの振動板の中心から見て原点O側をマイクロホン1Sの裏側とする。
理想的には例えば、マイクロホン1Lの振動板の中心と原点Oとを結ぶ直線とX軸との成す角度が45度となるようにマイクロホン1Lを撮像装置10の筐体に配置し、且つ、マイクロホン1Rの振動板の中心と原点Oとを結ぶ直線とX軸との成す角度が45度となるようにマイクロホン1Rを撮像装置10の筐体に配置し、且つ、マイクロホン1Sの振動板の中心がY軸上にのるようにマイクロホン1Sを撮像装置10の筐体に配置する。そして、理想的には例えば、yL=yR、xL=−xR、yS<0とし、且つ、原点Oから各マイクロホンの振動板の中心までの距離を全て同じとする。
このように各マイクロホンを配置して上述の各実施例と同様の信号処理を行えば、マイクロホンの個数を4つとする場合よりも風雑音低減効果が若干劣るものの、各実施例と同様の効果が得られる。勿論、マイクロホンの個数の変更に伴って音声信号処理部4における信号処理の具体的内容は適宜変更される。信号処理においては、上述の各実施例における原信号SL及びSRを、原信号Sに置き換えて考えれば良い。これに伴い、例えば、第1実施例における風雑音発生指標は2つとなり(マイクロホンの個数が4の場合は3つ)、第1実施例におけるレベル評価値は3つとなる(マイクロホンの個数が4の場合は4つ)。
仮に、マイクロホンの個数を2つにするならば、以下のようにすればよい。図1の撮像装置10を参照しつつ、マイクロホンの個数を2つにする場合について説明する。この場合、単純には例えば、図1の撮像装置10から、マイクロホン1SL及び1SRを削除すれば足る。勿論、マイクロホンの個数の変更に伴って音声信号処理部4における信号処理の具体的内容は適宜変更される。例えば、第1実施例における風雑音発生指標は1つとなり、第1実施例におけるレベル評価値は2つとなる。
マイクロホンの個数を2つにした場合、特定の方向から到来する風に対しては或る程度の風雑音低減効果が見込めるものの、それ以外の方向からの風に対しては、あまり風雑音低減効果を期待できない。従って、マイクロホンの個数は3以上とすることが望ましい。
<<変形等>>
上述した説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。上述の実施形態の変形例または注釈事項として、以下に、注釈1及び注釈2を記す。各注釈に記載した内容は、矛盾なき限り、任意に組み合わせることが可能である。
[注釈1]
図5又は図7に示される音声信号処理部は、ハードウェア、ソフトウェア、またはハードウェアとソフトウェアの組み合わせによって実現可能である。ソフトウェアを用いて音声信号処理部を構成する場合、ソフトウェアにて実現される部位についてのブロック図は、その部位の機能ブロック図を表すことになる。
また、図5又は図7の音声信号処理部にて実現される機能の全部または一部を、プログラムとして記述し、該プログラムをプログラム実行装置(例えばコンピュータ)上で実行することによって、その機能の全部または一部を実現するようにしてもよい。
[注釈2]
例えば、以下のように考えることができる。図5の音声信号処理部の一部又は全部は、音声信号補正装置として機能する。図5に関し、音声信号補正装置は、特に、各LPF(23L等)、判定部24、出力切替部25及び加算処理部26を含む。図5において、各LPF(23L等)は各原信号から低周波帯域成分を抽出する抽出手段として機能し、判定部24は、複数のチャンネル信号(原信号)の中から影響最小チャンネル信号を選択する選択手段として機能する。図5において、判定部24は風雑音の影響の有無を判定する判定手段としても機能し、出力切替部25及び加算処理部26が補正手段として機能する。
図7の音声信号処理部の一部又は全部は、音声信号補正装置として機能する。図7に関し、音声信号補正装置は、特に、MDCT変換部51、MDCT補正部52及び判定部61を含む。図7においては、例えば、MDCT変換部51と判定部61によって抽出手段が実現されると考えることができる。また図7において、判定部61は選択手段と判定手段の各機能を兼務し、MDCT補正部52が補正手段として機能する。
本発明の実施形態に係る撮像装置の外観斜視図である。 図1の撮像装置の電気的構成を表す概略ブロック図である。 本発明の実施形態に係るマイクロホンの構造を示す図である。 図1の撮像装置に設けられた4つのマイクロホンの配置関係を示す図である。 本発明の第1実施例に係る音声信号処理部の内部ブロック図である。 本発明の第2実施例に係る窓関数を示す図である。 本発明の第3実施例に係る音声信号処理部の内部ブロック図である。 本発明の第3実施例に係り、符号化の処理単位である各フレームの関係を示す図である。 図7の音声符号化処理部に組み込むことが可能なAACエンコーダの内部ブロック図である。 本発明の第5実施例に係り、図1の撮像装置に設けられるマイクロホンの個数を3とした場合における、各マイクロホンの配置関係を示す図である。
符号の説明
1L、1R、1SL、1SR マイクロホン
4 音声信号処理部
5 記録媒体
10 撮像装置

Claims (9)

  1. 複数のマイクロホンの出力信号に基づく複数のチャンネル信号を受け、各チャンネル信号を補正する音声信号補正装置において、
    各チャンネル信号の、風雑音の帯域を含む所定帯域成分に基づいて、前記複数のチャンネル信号の中から1つのチャンネル信号を特定チャンネル信号として選択する選択手段と、
    前記特定チャンネル信号の前記所定帯域成分を用いて他のチャンネル信号の前記所定帯域成分を補正する補正手段と、を備えた
    ことを特徴とする音声信号補正装置。
  2. 前記選択手段は、前記複数のチャンネル信号の内、前記風雑音の影響が最も少ないチャンネル信号を前記特定チャンネル信号として選択する
    ことを特徴とする請求項1に記載の音声信号補正装置。
  3. 各チャンネル信号の前記所定帯域成分を抽出して各チャンネル信号に対応する抽出信号を出力する抽出手段を更に備え、
    前記選択手段は、各抽出信号の内、最も信号レベルが小さい抽出信号に対応するチャンネル信号を前記特定チャンネル信号として選択する
    ことを特徴とする請求項1または請求項2に記載の音声信号補正装置。
  4. 各チャンネル信号の前記所定帯域成分の相関に基づいて、各チャンネル信号に対する前記風雑音の影響の有無を判定する判定手段を更に備え、
    前記判定手段の判定結果に応じて前記補正手段による補正の実行可否を切り替え制御する
    ことを特徴とする請求項1〜請求項3の何れかに記載の音声信号補正装置。
  5. 各マイクロホンは、互いに異なる方向に向けられている
    ことを特徴とする請求項1〜請求項4の何れかに記載の音声信号補正装置。
  6. 各マイクロホンは、音波又は風圧によって振動する振動体を有して、前記振動体の振動に応じた電気信号を出力し、
    前記複数のマイクロホンが設置された装置に対して風が作用したときに、各マイクロホンの振動体が互いに異なる風圧を受けるように、各マイクロホンは前記装置に配置されている
    ことを特徴とする請求項1〜請求項5の何れかに記載の音声信号補正装置。
  7. 請求項1〜請求項6の何れかに記載の複数のマイクロホン及び音声信号補正装置を備えた
    ことを特徴とする録音装置。
  8. 請求項1〜請求項6の何れかに記載の複数のマイクロホン及び音声信号補正装置と、
    撮像手段と、を備えた
    ことを特徴とする撮像装置。
  9. 複数のマイクロホンの出力信号に基づく複数のチャンネル信号を補正する音声信号補正方法において、
    各チャンネル信号の、風雑音の帯域を含む所定帯域成分に基づいて、前記複数のチャンネル信号の中から1つのチャンネル信号を特定チャンネル信号として選択する選択ステップと、
    前記特定チャンネル信号の前記所定帯域成分を用いて他のチャンネル信号の前記所定帯域成分を補正する補正ステップと、を備えた
    ことを特徴とする音声信号補正方法。
JP2007165062A 2007-06-22 2007-06-22 音声信号補正装置 Pending JP2009005157A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007165062A JP2009005157A (ja) 2007-06-22 2007-06-22 音声信号補正装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007165062A JP2009005157A (ja) 2007-06-22 2007-06-22 音声信号補正装置

Publications (1)

Publication Number Publication Date
JP2009005157A true JP2009005157A (ja) 2009-01-08

Family

ID=40321047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007165062A Pending JP2009005157A (ja) 2007-06-22 2007-06-22 音声信号補正装置

Country Status (1)

Country Link
JP (1) JP2009005157A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233200A (ja) * 2014-06-09 2015-12-24 ローム株式会社 オーディオ信号処理回路、それを用いた電子機器
CN106303837A (zh) * 2015-06-24 2017-01-04 联芯科技有限公司 双麦克风的风噪检测及抑制方法、系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390594A (ja) * 1989-08-31 1991-04-16 Suzuki Motor Corp シリンダブロックの製造方法
JPH05111020A (ja) * 1991-10-17 1993-04-30 Matsushita Electric Ind Co Ltd テレビ会議用画面切替制御装置
JP2004289762A (ja) * 2003-01-29 2004-10-14 Toshiba Corp 音声信号処理方法と装置及びプログラム
JP2007081560A (ja) * 2005-09-12 2007-03-29 Sony Corp 雑音低減装置及び雑音低減方法並びに雑音低減プログラムとその電子機器用収音装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390594A (ja) * 1989-08-31 1991-04-16 Suzuki Motor Corp シリンダブロックの製造方法
JPH05111020A (ja) * 1991-10-17 1993-04-30 Matsushita Electric Ind Co Ltd テレビ会議用画面切替制御装置
JP2004289762A (ja) * 2003-01-29 2004-10-14 Toshiba Corp 音声信号処理方法と装置及びプログラム
JP2007081560A (ja) * 2005-09-12 2007-03-29 Sony Corp 雑音低減装置及び雑音低減方法並びに雑音低減プログラムとその電子機器用収音装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233200A (ja) * 2014-06-09 2015-12-24 ローム株式会社 オーディオ信号処理回路、それを用いた電子機器
CN105323677A (zh) * 2014-06-09 2016-02-10 罗姆股份有限公司 音频信号处理电路、及使用其的电子设备
CN105323677B (zh) * 2014-06-09 2019-11-12 罗姆股份有限公司 音频信号处理电路、及使用其的电子设备
CN106303837A (zh) * 2015-06-24 2017-01-04 联芯科技有限公司 双麦克风的风噪检测及抑制方法、系统
CN106303837B (zh) * 2015-06-24 2019-10-18 联芯科技有限公司 双麦克风的风噪检测及抑制方法、系统

Similar Documents

Publication Publication Date Title
US8428275B2 (en) Wind noise reduction device
JP6703525B2 (ja) 音源を強調するための方法及び機器
JP5493611B2 (ja) 情報処理装置、情報処理方法およびプログラム
JP2008263498A (ja) 風雑音低減装置、音響信号録音装置及び撮像装置
TW202338788A (zh) 用於音場之高階保真立體音響表示的壓縮與解壓縮方法及裝置
US8280062B2 (en) Sound corrector, sound measurement device, sound reproducer, sound correction method, and sound measurement method
KR102191736B1 (ko) 인공신경망을 이용한 음성향상방법 및 장치
JP4901542B2 (ja) 音声信号生成装置及び方法
JP6637926B2 (ja) 音声処理装置及びその制御方法
JP2012015792A (ja) 音響補正装置、音響出力装置、及び音響補正方法
CN110890100B (zh) 语音增强、多媒体数据采集、播放方法、装置及监控系统
JP5349062B2 (ja) 音響処理装置及びそれを備えた電子機器並びに音響処理方法
JP5219499B2 (ja) 風雑音低減装置
KR101850693B1 (ko) 인-이어 마이크로폰을 갖는 이어셋의 대역폭 확장 장치 및 방법
JP2009005133A (ja) 風雑音低減装置、及び、この風雑音低減装置を備えた電子機器
JP2009005157A (ja) 音声信号補正装置
US8577051B2 (en) Sound signal compensation apparatus and method thereof
JP4952368B2 (ja) 収音装置
JP2006237816A (ja) 演算装置、収音装置、及び、信号処理プログラム
JP5063489B2 (ja) 判定装置及びそれを備えた電子機器並びに判定方法
WO2017171864A1 (en) Acoustic environment understanding in machine-human speech communication
US7907737B2 (en) Acoustic apparatus
JP2018207313A (ja) 音声処理装置及びその制御方法
JP2008022069A (ja) 音声収録装置および音声収録方法
JP2018207316A (ja) 音声処理装置及びその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

A977 Report on retrieval

Effective date: 20120209

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120619

Free format text: JAPANESE INTERMEDIATE CODE: A02