JP2009001613A - Sintered friction material - Google Patents

Sintered friction material Download PDF

Info

Publication number
JP2009001613A
JP2009001613A JP2007161444A JP2007161444A JP2009001613A JP 2009001613 A JP2009001613 A JP 2009001613A JP 2007161444 A JP2007161444 A JP 2007161444A JP 2007161444 A JP2007161444 A JP 2007161444A JP 2009001613 A JP2009001613 A JP 2009001613A
Authority
JP
Japan
Prior art keywords
vol
friction material
friction
sintered friction
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007161444A
Other languages
Japanese (ja)
Other versions
JP5405725B2 (en
Inventor
Noriyuki Arai
敬之 新井
Katsuo Arai
勝男 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP2007161444A priority Critical patent/JP5405725B2/en
Publication of JP2009001613A publication Critical patent/JP2009001613A/en
Application granted granted Critical
Publication of JP5405725B2 publication Critical patent/JP5405725B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered friction material favorable in aspects of environmental protection because of no designated chemical substance by the PRTR (Pollutant Release and Transfer Register) law contained at all and capable of avoiding production of friction of the same kind in a high-temperature region, preventing deterioration of friction coefficient, raising lubricity and preventing the occurrence of a large amount of sparks. <P>SOLUTION: The sintered friction material is prepared by regulating the total metal content of an iron-based component containing reduced iron or cast iron and a graphitization promoting element (aluminum, silicon or titanium) to 18-26 vol.% and the content of graphite having high lubricating effects to 45-65 vol.%. As a result, since the content of the metal causing friction of the same kind is smaller than that in the conventional metallic sintered friction material, the deterioration of the friction coefficient caused by the friction of the same kind can be prevented. The graphite is contained in a larger amount than that in the conventional metallic sintered friction material and the occurrence of the large amount of sparks can be prevented by raising the lubricating effects. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、自動車、二輪車、鉄道車両、産業機械等の制動装置に用いられるブレーキ用摩擦材としての焼結摩擦材に関する。   The present invention relates to a sintered friction material as a friction material for brakes used in braking devices for automobiles, motorcycles, railway vehicles, industrial machines and the like.

従来、ブレーキ用の焼結摩擦材としては、銅を主成分とし、錫や時により鉄、ニッケル、亜鉛、アンチモン、クロム、鉛等を添加した金属を基材とし、それにアルミナ、ムライト、ジルコニア等のセラミックス研削材や黒鉛、二硫化モリブデン等の潤滑材を添加した焼結摩擦材が用いられている。この種の焼結摩擦材は、レジン系摩擦材より重く、高価で、ブレーキノイズが発生し易い等の要改善点があるが、レジン系摩擦材に比較して摩擦材が高温になる制動条件下でもフェード現象(高温下で制動時の摩擦係数が大幅に低下する現象)を起こさず安定した性能が得られ、強度、耐摩耗性も優れているという長所があるため、過酷な制動条件下でも高い摩擦性能を要求されるブレーキにはこれまで多く採用されている。   Conventionally, as a sintered friction material for brakes, copper is the main component, and tin or sometimes a metal added with iron, nickel, zinc, antimony, chromium, lead, etc. is used as a base material, and alumina, mullite, zirconia, etc. Ceramic friction materials and sintered friction materials to which lubricants such as graphite and molybdenum disulfide are added are used. This kind of sintered friction material is heavier than resin-based friction material, is expensive, and has the points to be improved such as the possibility of generating brake noise. Even under low conditions, it does not cause fade phenomenon (a phenomenon in which the friction coefficient during braking is greatly reduced at high temperatures), provides stable performance, and has excellent strength and wear resistance. However, it has been widely used for brakes that require high friction performance.

高い摩擦係数を安定的に得ることを図ったブロンズ系の乾式焼結摩擦材料の一例が提案されている(特許文献1)。この乾式焼結摩擦材料は、重量比で銅60〜80%、錫3〜20%、アルミナ及び/又はシリカを3〜20%、黒鉛3〜10%、二硫化モリブデン1〜5%及びマンガン15%以下を含むものであり、マトリックス成分として構成されることにより、制動時摩擦係数を安定させ、相手板との間の発熱によって表面に硬質の酸化銅皮膜を形成して、水フェード現象及び熱フェード現象に対して抵抗性を有し、安定した摩擦面をうることを図っている。アルミナ、シリカは、高負荷、高温摩擦摺動に耐える目的で添加され、黒鉛、二硫化モリブデンは潤滑性向上も目的で添加され、マンガンは焼結中他金属の酸化皮膜を還元し、焼結性の向上目的で添加されている。   An example of a bronze-type dry sintered friction material that aims to stably obtain a high friction coefficient has been proposed (Patent Document 1). This dry-sintered friction material is 60-80% copper, 3-20% tin, 3-20% alumina and / or silica, 3-10% graphite, 1-5% molybdenum disulfide and 15 manganese. %, Which is composed as a matrix component, stabilizes the friction coefficient during braking, forms a hard copper oxide film on the surface by heat generation with the mating plate, water fading phenomenon and heat It has resistance to fading phenomenon and aims to obtain a stable friction surface. Alumina and silica are added for the purpose of withstanding high loads and high-temperature frictional sliding. Graphite and molybdenum disulfide are added for the purpose of improving lubricity. Manganese reduces and oxidizes oxide films of other metals during sintering. It is added for the purpose of improving the properties.

焼結摩擦材の別の例として、鉄系焼結体からなる有孔の本体部と、この本体部の孔内に固定された水溶液がアルカリ性を示すアルカリ性物質とを有する鉄系焼結摩擦材が提案されている(特許文献2)。摩擦材の骨格となる金属基材は、鉄を主成分とする材料であり、ステンレス、鋳鉄等の一般的な鉄系金属、これらの混合物、その他金属との混合物でとすることができる。潤滑材としては黒鉛、二硫化モリブデン等が例示されている。   As another example of the sintered friction material, an iron-based sintered friction material having a perforated main body portion made of an iron-based sintered body and an alkaline substance in which an aqueous solution fixed in the hole of the main body portion exhibits alkalinity. Has been proposed (Patent Document 2). The metal base material used as the skeleton of the friction material is a material mainly composed of iron, and can be a general iron-based metal such as stainless steel or cast iron, a mixture thereof, or a mixture with other metals. Examples of the lubricant include graphite and molybdenum disulfide.

焼結摩擦材の更に別の例として、銅又は銅合金をマトリックスとする焼結摩擦材であって、安定化ジルコニアを2〜20重量%含有するものが提案されている(特許文献3)。この焼結摩擦材によれば、銅系又は鉄系焼結摩擦材において、安定化ジルコニアを採用することで、広範な制動条件に対して適応性がよく、安定した摩擦係数が得られ、耐摩性、耐熱性がよく、相手材への攻撃性が少ない焼結摩擦材を得ることを図っている。   As another example of the sintered friction material, a sintered friction material containing copper or a copper alloy as a matrix and containing 2 to 20% by weight of stabilized zirconia has been proposed (Patent Document 3). According to this sintered friction material, by adopting stabilized zirconia in copper-based or iron-based sintered friction material, adaptability to a wide range of braking conditions is good, a stable friction coefficient is obtained, and wear resistance is improved. We aim to obtain a sintered friction material that is good in heat resistance and heat resistance, and has little attack on the mating material.

近年、環境保護の観点からPRTR法(特定化学物質の環境への排出量の把握及び管理の改善の促進に関する法律)が制定され、ブレーキ用摩擦材として使用する材料も環境保護を考慮して、同法で定められている指定化学物質を用いないことが要求されるようになってきた。ところが、これまで焼結摩擦材の原材料として用いられている上記の銅、錫、鉄、ニッケル、亜鉛、アンチモン、クロム、鉛等の金属材料とセラミックス、黒鉛のうちで、鉄、セラミックス、黒鉛以外の材料はPRTR法の指定化学物質に設定されており、今後はできるだけ使用しないことが望まれている。   In recent years, the PRTR Law (Act on the Promotion of Improvement of Management and Management of Specific Chemical Substances Emissions to the Environment) has been enacted from the viewpoint of environmental protection, and the materials used as friction materials for brakes are also considered environmental protection. There has been a demand for not using designated chemical substances stipulated by the law. However, among the above-mentioned metal materials such as copper, tin, iron, nickel, zinc, antimony, chromium, lead, etc., ceramics and graphite, which have been used as raw materials for sintered friction materials, other than iron, ceramics and graphite These materials are set as PRTR-designated chemical substances, and it is hoped that they will not be used as much as possible.

このような背景から、これまでもPRTR法の指定化学物質をできるだけ使用しない配合の焼結摩擦材の研究・開発が行われてきた。しかしながら、これまで主成分として使用してきた銅や錫を使用しない鉄系材料を主成分とした焼結摩擦材の場合、制動時に摩擦材の摩耗量や相手材(例えば、ブレーキディスク。主として普通鋳鉄、低合金鋼、ステンレス等の鉄系材料から成る。)の摩耗量が大幅に増加するという現象が生じ、しかも要求される摩擦係数を確保することができない。また、鉄系材料以外でPRTR法の指定化学物質でないアルミニウム、マグネシウム、チタン等の材料は焼結摩擦材の主成分としては問題が多く、環境保護に優れた焼結摩擦材の実用化はなかなか困難であった。   Against this background, research and development have been carried out on sintered friction materials having a formulation that uses as little PRTR-designated chemical substances as possible. However, in the case of a sintered friction material mainly composed of an iron-based material that does not use copper or tin, which has been used as a main component until now, the wear amount of the friction material or the counterpart material (for example, brake disc. In other words, the wear amount of a low-alloy steel, stainless steel, or other iron-based material is greatly increased, and the required coefficient of friction cannot be ensured. In addition, materials such as aluminum, magnesium, and titanium that are not specified chemical substances in the PRTR method other than ferrous materials have many problems as the main component of sintered friction materials, and practical application of sintered friction materials excellent in environmental protection is quite easy. It was difficult.

本出願人は、鋳鉄粉又は還元鉄粉を基材とした鉄系焼結摩擦材を発明し、銅系焼結摩擦材と同等の性能を得ている(例えば、特許文献4)。本出願人は、更に、フェライト組織を保持した基材によれば、高温域の摩擦特性が上記の性能を上回る結果を得た(特願2006−228358)。基地組織を制御した鉄系焼結摩擦材において600℃までの摩擦特性が銅系焼結摩擦材よりも優れた摩擦材が得られている。しかしながら、更に過酷なロータ最高温度900℃においては鉄の同種摩擦が顕著になり、摩擦係数の低下や多量の火花の発生という問題点が生じることが判明した。
特公昭63−15976号公報(第2欄、第2行〜第4欄第1行) 特開2002−181095号公報(段落[0022]〜[0026]) 特許第2958493号公報 特開2007−107068号公報
The present applicant has invented an iron-based sintered friction material based on cast iron powder or reduced iron powder, and has obtained performance equivalent to that of a copper-based sintered friction material (for example, Patent Document 4). Further, according to the base material retaining the ferrite structure, the present applicant has obtained a result that the friction characteristics in the high temperature range exceed the above performance (Japanese Patent Application No. 2006-228358). In the iron-based sintered friction material in which the base structure is controlled, a friction material having a friction characteristic up to 600 ° C. is superior to that of the copper-based sintered friction material. However, it has been found that at the severer rotor maximum temperature of 900 ° C., the same kind of iron friction becomes prominent, resulting in a problem that the friction coefficient is reduced and a large amount of sparks are generated.
Japanese Examined Patent Publication No. 63-15976 (second column, second line to fourth column, first line) JP 2002-181095 A (paragraphs [0022] to [0026]) Japanese Patent No. 2958493 JP 2007-107068 A

そこで、焼結摩擦材の原材料として、PRTR法の特定第一種指定化学物質である六価クロム化合物やニッケル化合物は勿論のこと、第一種指定化学物質である亜鉛、アンチモン、銅、錫、鉛、モリブデン等の材料をまったく使用せずに、鉄系の摩擦材とすることで環境保護に貢献するとともに、金属量と黒鉛量とに着目して、高温域における上記問題点の解決を図る点で解決すべき課題がある。   Therefore, as a raw material of the sintered friction material, not only hexavalent chromium compounds and nickel compounds which are specified first class designated chemical substances of PRTR method, but also first class designated chemical substances zinc, antimony, copper, tin, Contributes to environmental protection by using iron-based friction materials without using any material such as lead or molybdenum, and also focuses on the amount of metal and graphite to solve the above problems at high temperatures. There is a problem to be solved in terms of points.

この発明の目的は、PRTR法の指定化学物質をまったく含まないことで、環境保護の面で好ましいとともに、高温域における同種摩擦の発生を回避して摩擦係数の低下を防止するとともに、潤滑性を高めて多量の火花の発生を防止することができる焼結摩擦材を提供することである。   The object of the present invention is not to include any PRTR-designated chemical substances, which is preferable in terms of environmental protection, avoids the generation of the same type of friction in a high temperature range, prevents the friction coefficient from decreasing, and improves lubricity. An object of the present invention is to provide a sintered friction material that can be increased to prevent the generation of a large amount of sparks.

本出願人は、更に高温域の摩擦特性を改善するため、検討を重ね今回の発明に至った。即ち、この発明による焼結摩擦材は、金属量:18〜26vol%及び黒鉛量:45〜65vol%を含んで構成されている。   The applicant of the present invention has made extensive studies and improved the present invention in order to further improve the high temperature frictional characteristics. That is, the sintered friction material by this invention is comprised including the metal amount: 18-26vol% and the graphite amount: 45-65vol%.

この焼結摩擦材によれば、同種摩擦の原因となる金属量を18〜26vol%としており、また潤滑効果の高い黒鉛量を45〜65vol%として潤滑効果を高めているので、従来の金属系焼結摩擦材と比較して金属量が少なく、同種摩擦に起因した摩擦係数の低下が防止される。また、潤滑性を高めることで制動時に多量の火花が発生するのを防止している。   According to this sintered friction material, the amount of metal causing the same kind of friction is set to 18 to 26 vol%, and the amount of graphite having a high lubricating effect is set to 45 to 65 vol%. Compared with the sintered friction material, the amount of metal is small, and the reduction of the friction coefficient due to the same kind of friction is prevented. Further, by increasing the lubricity, a large amount of sparks is prevented during braking.

この焼結摩擦材において、黒鉛化促進元素として、アルミニウム、シリコン、チタンの元素群から選ばれる1又は2以上の元素を添加することができる。黒鉛化傾向は、大きいほうから、アルミニウム、シリコン、チタン、炭素の順である。   In this sintered friction material, one or more elements selected from the element group of aluminum, silicon, and titanium can be added as a graphitization promoting element. The graphitization tendency is from the largest to aluminum, silicon, titanium, and carbon.

この焼結摩擦材において、金属の主成分として、還元鉄粉又は鋳鉄粉を含むことができる。還元鉄粉と鋳鉄粉とは組み合わせて用いることが好ましい。   In this sintered friction material, reduced iron powder or cast iron powder can be included as the main component of the metal. The reduced iron powder and cast iron powder are preferably used in combination.

上記の効果を出すための成分範囲は、金属量が還元鉄:3〜8vol%及び鋳鉄粉:10〜20vol%とアルミニウム・チタン・シリコンとを含んで合計で18〜26vol%であり、更に、黒鉛:45〜65vol%の他に添加する成分として、微細アルミナ(平均粒径:0.3〜2μm):3〜10vol%、マグネシア(平均粒径:50〜250μm):2〜10vol%及びアルミナ(平均粒径:5〜20μm):2〜20vol%であることが好ましい。   The component range for producing the above effect is 18 to 26 vol% in total including the amount of metal including reduced iron: 3 to 8 vol% and cast iron powder: 10 to 20 vol% and aluminum, titanium and silicon, Graphite: Fine alumina (average particle size: 0.3 to 2 μm): 3 to 10 vol%, magnesia (average particle size: 50 to 250 μm): 2 to 10 vol% and alumina as components to be added in addition to 45 to 65 vol% (Average particle diameter: 5 to 20 μm): 2 to 20 vol% is preferable.

上記の効果を出すため、真密度に対する焼結体密度の相対密度を/百分率として80%以上とすることが好ましい。焼結後の上記相対密度が百分率として80%以上とすることで、鉄系材料間の結合力が強くなり、強度、耐摩耗性に優れた焼結摩擦材を得ることができる。焼結法としては、加圧焼結法を用いることができる。   In order to obtain the above effect, the relative density of the sintered body density to the true density is preferably 80% or more as a percentage. By setting the relative density after sintering to 80% or more as a percentage, the bonding force between the iron-based materials becomes strong, and a sintered friction material excellent in strength and wear resistance can be obtained. As the sintering method, a pressure sintering method can be used.

本発明による焼結摩擦材は、同種摩擦の原因となる金属量を18〜26vol%としており、また潤滑効果の高い黒鉛量を45〜65vol%としているので、従来の金属系焼結摩擦材と比較して金属量の配合を抑えていて同種摩擦に起因した摩擦係数の低下を防止しているとともに、黒鉛量の配合を増やすことで潤滑性を高めることで多量の火花の発生を防止している。したがって、本発明によれば、高温域での摩擦係数の低下や摩耗量の増加・火花の発生を抑制する焼結摩擦材を提供することができる。   In the sintered friction material according to the present invention, the amount of metal causing the same kind of friction is 18 to 26 vol%, and the amount of graphite having a high lubricating effect is 45 to 65 vol%. In comparison, the amount of metal is suppressed to prevent a reduction in the coefficient of friction due to the same kind of friction, and the increase in the amount of graphite increases the lubricity to prevent the generation of a large amount of sparks. Yes. Therefore, according to the present invention, it is possible to provide a sintered friction material that suppresses a decrease in friction coefficient, an increase in wear amount, and generation of sparks in a high temperature range.

また、この焼結摩擦材において、黒鉛化傾向(Al>Si>Ti>C)の大きい元素を添加することにより基地組織の一部をフェライトに保つことができる。基地組織の一部をフェライトに保つことで、主成分の鉄の融点の低下が少なく、高温特性・耐蝕性に優れた摩擦材とすることができる。フェライトは黒鉛が固溶した(Fe,C)より軟らかいため、相手材攻撃性も少ない。   Moreover, in this sintered friction material, a part of the matrix structure can be kept in ferrite by adding an element having a large graphitization tendency (Al> Si> Ti> C). By keeping a part of the base structure in ferrite, a friction material excellent in high temperature characteristics and corrosion resistance can be obtained with little decrease in the melting point of the main component iron. Since ferrite is softer than (Fe, C) in which graphite is dissolved, there is little attack on the counterpart material.

また、この焼結摩擦材において、還元鉄粉と鋳鉄粉とを組み合わせて用いることにより、各鉄粉の特徴を活かした基材とすることができる。具体的には、還元鉄粉は融点が高く比較的軟らかいため、耐熱性・耐摩耗性・相手材攻撃性の改善を期待することができ、鋳鉄粉は還元鉄粉より融点は低いがセメンタイトの存在により比較的硬いため、摩擦係数の向上が期待できる。   Moreover, in this sintered friction material, it can be set as the base material which utilized the characteristic of each iron powder by using reduced iron powder and cast iron powder in combination. Specifically, since reduced iron powder has a high melting point and is relatively soft, it can be expected to improve heat resistance, wear resistance, and attack of the counterpart material. Cast iron powder has a lower melting point than reduced iron powder, but is cementite. Since it is relatively hard due to its presence, an improvement in the coefficient of friction can be expected.

更に、この焼結摩擦材において、還元鉄:3〜8vol%及び鋳鉄粉:10〜20vol%と、アルミニウム・チタン・シリコンとを含む金属量が合計で18〜26vol%を含み、更に、黒鉛:45〜65vol%の他に、微細アルミナ(平均粒径:0.3〜2μm):3〜10vol%、マグネシア(平均粒径:50〜250μm):2〜10vol%、及びアルミナ(平均粒径:5〜20μm):2〜20vol%を添加することができる。このような配合とした理由は、高温の摩擦係数を確保するために還元鉄の配合量よりも鋳鉄の配合量を多くし、鉄成分と基地組織をフェライトに保つための黒鉛化促進元素(アルミニウム・チタン・シリコン)との合計が18vol%未満であると、強度確保が困難であり、26vol%より多いと高温域における鉄の同種摩擦による摩擦係数の低下・摩耗量の増加・火花の発生を抑制することができない、ということによる。黒鉛量は潤滑効果を増すために多く配合したが、65vol%よりも多いと、他の成分が不足し、45vol%未満であると潤滑効果が充分に発揮されない。   Further, in this sintered friction material, the total amount of metal including reduced iron: 3 to 8 vol%, cast iron powder: 10 to 20 vol%, and aluminum, titanium, and silicon includes 18 to 26 vol%, and graphite: In addition to 45 to 65 vol%, fine alumina (average particle size: 0.3 to 2 μm): 3 to 10 vol%, magnesia (average particle size: 50 to 250 μm): 2 to 10 vol%, and alumina (average particle size: 5 to 20 μm): 2 to 20 vol% can be added. The reason for this blending is that the blending amount of cast iron is larger than the blending amount of reduced iron in order to ensure a high temperature coefficient of friction, and the graphitization promoting element (aluminum) to keep the iron component and the base structure in ferrite.・ If the total amount of titanium and silicon is less than 18 vol%, it is difficult to ensure the strength. If it exceeds 26 vol%, the friction coefficient decreases due to the same kind of iron friction at high temperatures. This is because it cannot be suppressed. The amount of graphite is added in order to increase the lubrication effect, but if it is more than 65 vol%, the other components are insufficient, and if it is less than 45 vol%, the lubrication effect is not fully exhibited.

更にまた、加圧焼結法を用い、焼結後の相対密度(焼結体密度/真密度の百分率)が80%以上で鉄系材料間の結合力が強いため、強度、耐摩耗性に優れている。   Furthermore, the pressure sintering method is used, and the relative density after sintering (percentage of sintered body density / true density) is 80% or more, and the bonding strength between ferrous materials is strong. Are better.

以下、本発明による焼結摩擦材の実施例について更に詳細に説明する。
まず、原材料として平均粒径約160μmの還元鉄粉末と、平均粒径約85μmの鋳鉄粉末(FC250を粉砕、篩別した粉末)と、基地組織をフェライトに保つための黒鉛化促進元素である平均粒径約20μmのアルミニウム粉末、平均粒径約24μmのシリコン(珪素)、平均粒径約10μmのチタン粉末、平均粒径約12μmと平均粒径約1μmとの二種類のアルミナ粉末、平均粒径約190μmのマグネシア粉末、平均粒径約170μmの天然黒鉛粉末、及び平均粒径約240μmと平均粒径約700μmとの二種類の人造黒鉛粉未を用意した。
Hereinafter, examples of the sintered friction material according to the present invention will be described in more detail.
First, reduced iron powder with an average particle size of about 160 μm as raw materials, cast iron powder with an average particle size of about 85 μm (powder obtained by pulverizing and sieving FC250), and an average that is a graphitization promoting element for keeping the base structure in ferrite Aluminum powder having a particle size of about 20 μm, silicon having an average particle size of about 24 μm, titanium powder having an average particle size of about 10 μm, two types of alumina powders having an average particle size of about 12 μm and an average particle size of about 1 μm, an average particle size There were prepared magnesia powder having an average particle size of about 190 μm, natural graphite powder having an average particle size of about 170 μm, and two types of artificial graphite powder having an average particle size of about 240 μm and an average particle size of about 700 μm.

表1に示すように、本発明による焼結摩擦材(発明材)であるA1〜A6は還元鉄の配合割合が3〜6vol%の範囲内にあり、その一方で鋳鉄の配合割合は11〜17vol%であり、試料記号の順に漸増している。黒鉛化傾向の大きい元素としてアルミニウム2vol%、チタン0.5vol%及びシリコン0.5vol%が添加されている。鉄系成分と黒鉛化促進元素との合計金属量は、A1〜A6の順に18〜26vol%と漸増している。一方、45〜62vol%の黒鉛が添加されており、その他に更に、微細アルミナが5〜9vol%、マグネシアが5〜8vol%、アルミナが10〜18vol%、及び黒鉛:45〜65vol%が添加されている。

Figure 2009001613
As shown in Table 1, A1 to A6, which are sintered friction materials (invention materials) according to the present invention, has a reduced iron content in the range of 3 to 6 vol%, while a cast iron content in the range of 11 to 10%. It is 17 vol%, and is increasing gradually in the order of the sample symbol. As elements having a large tendency to graphitize, 2 vol% of aluminum, 0.5 vol% of titanium, and 0.5 vol% of silicon are added. The total metal amount of the iron-based component and the graphitization accelerating element gradually increases from 18 to 26 vol% in the order of A1 to A6. On the other hand, 45 to 62 vol% of graphite is added, and further, fine alumina is added to 5 to 9 vol%, magnesia is 5 to 8 vol%, alumina is 10 to 18 vol%, and graphite: 45 to 65 vol% is added. ing.
Figure 2009001613

次に、上記の各原材料を表1に示す配合(発明材A1〜A6)と比較材(B1〜B5)に各々秤量後、攪拌らい潰機(石川工場製)を用い、混合時の偏析を防ぐため混合物に4%のメタノールを添加して10分間混合することにより混合粉末を作製した。   Next, after weighing each of the above-mentioned raw materials into the formulations shown in Table 1 (invention materials A1 to A6) and comparative materials (B1 to B5), using a stirring crusher (made by Ishikawa Factory), segregation during mixing is performed. To prevent this, 4% methanol was added to the mixture and mixed for 10 minutes to produce a mixed powder.

更に、各混合粉末を23mm×35mmのキャビティを有する黒鉛型に充填し、放電プラズマ焼結装置(住友石炭鉱業製、型式SPS−515S)を用い、圧力14〜25MPa、昇温速度100℃/min、焼結温度1000〜1025℃、保持時間5minの条件で焼結を行った。   Furthermore, each mixed powder is filled in a graphite mold having a cavity of 23 mm × 35 mm, and a discharge plasma sintering apparatus (manufactured by Sumitomo Coal Mining Co., Ltd., model SPS-515S) is used, pressure is 14 to 25 MPa, heating rate is 100 ° C./min. Sintering was performed under the conditions of a sintering temperature of 1000 to 1025 ° C. and a holding time of 5 minutes.

焼結後、各焼結体の相対密度(焼結体の見掛け密度/焼結体の真密度で算出される割合の百分率)、及び硬さを測定した。また、900℃での高温ブレーキ性能試験を実施し、摩擦係数、摩擦材及び相手材の摩耗量を求めた。焼結体の見掛け密度は大気及び水中の重量から算出し、真密度は原材料の真密度と配合割合から算出した。硬さはロックウエル硬さ試験機のSスケール(HRS)で測定した。ブレーキ性能試験については、当社所有の1/10スケールテスタ試験機及び1/5スケールテスタ試験機を用いて、相手材温度500℃、減速度5.88m/s2、初速度が120km/hから0km/h(停止)までの制動を20回、及び相手材温度900℃、減速度0.39m/s2、初速度が120km/hから0km/h(停止)までの制動を実施した。表1に焼結条件、相対密度、硬さ、及びブレーキ性能試験における摩擦係数と摩擦材摩耗量と相手材摩耗量を示す。 After sintering, the relative density of each sintered body (apparent density of the sintered body / percentage of the ratio calculated by the true density of the sintered body) and hardness were measured. In addition, a high-temperature brake performance test at 900 ° C. was performed, and the friction coefficient, the friction material, and the wear amount of the counterpart material were determined. The apparent density of the sintered body was calculated from the weight in the air and water, and the true density was calculated from the true density of the raw materials and the blending ratio. Hardness was measured with the S scale (HRS) of a Rockwell hardness tester. For the brake performance test, using our own 1/10 scale tester and 1/5 scale tester tester, the mating material temperature is 500 ° C, the deceleration is 5.88 m / s 2 , and the initial speed is 120 km / h. Braking was performed 20 times to 0 km / h (stop), the counterpart material temperature was 900 ° C., the deceleration was 0.39 m / s 2 , and the initial speed was 120 km / h to 0 km / h (stop). Table 1 shows the sintering conditions, relative density, hardness, and friction coefficient, friction material wear amount, and counterpart material wear amount in the brake performance test.

比較材B1は金属量が16vol%であるように本発明の構成外にある配合であり、金属量が少なく目標となる物性値が得られず、ブレーキ性能試験は実施できなかった。比較材B2は金属量が28vol%であるように本発明の構成外にある配合であり、本発明材と比較して900℃試験時の摩擦係数が低く、摩擦材と相手材の摩耗量が多い。更に金属量を増やしたB3〜B5については、900℃試験時の摩擦係数は高いが摩擦材と相手材の摩耗量が大幅に増加している。   Comparative material B1 was a composition outside the structure of the present invention such that the amount of metal was 16 vol%, and the target physical property value was not obtained because the amount of metal was small, and a brake performance test could not be performed. Comparative material B2 is a composition outside the structure of the present invention such that the amount of metal is 28 vol%, and has a lower coefficient of friction during the 900 ° C. test than the present invention material, and the wear amount of the friction material and the counterpart material Many. Further, for B3 to B5 in which the amount of metal was increased, the friction coefficient during the 900 ° C. test was high, but the wear amount of the friction material and the counterpart material was greatly increased.

本発明材A1〜A6は、500℃及び900℃試験時の摩擦係数は高く、摩擦材及び相手材の摩耗量は少ないといった摩擦特性のバランスが良好である。その中で、発明材A2,A3(金属量20vol%)は特に摩擦係数が高く、摩擦材と相手材の摩耗量が少なく良好な配合であることが判明した。   The inventive materials A1 to A6 have a high friction coefficient at the time of the 500 ° C. and 900 ° C. tests, and have a good balance of friction characteristics such that the friction material and the counterpart material have a small amount of wear. Among them, the inventive materials A2 and A3 (metal content 20 vol%) were found to have a particularly high friction coefficient and a good blend with a small amount of wear between the friction material and the counterpart material.

Claims (5)

金属量:18〜26vol%、及び黒鉛量:45〜65vol%を含んで成る焼結摩擦材。   A sintered friction material comprising a metal amount: 18 to 26 vol% and a graphite amount: 45 to 65 vol%. 黒鉛化促進元素として、アルミニウム、シリコン、チタンの元素群から選ばれる1又は2以上の元素が添加されていることから成る請求項1に記載の焼結摩擦材。   The sintered friction material according to claim 1, wherein one or more elements selected from the group consisting of aluminum, silicon, and titanium are added as a graphitization promoting element. 前記金属量の主成分は還元鉄粉又は鋳鉄粉であることから成る請求項1又は2に記載の焼結摩擦材。   The sintered friction material according to claim 1 or 2, wherein a main component of the metal amount is reduced iron powder or cast iron powder. 前記金属量は、還元鉄:3〜8vol%及び鋳鉄粉:10〜20vol%とアルミニウム・チタン・シリコンとを含み合計で18〜26vol%であり、更に、微細アルミナ(平均粒径:0.3〜2μm):3〜10vol%、マグネシア(平均粒径:50〜250μm):2〜10vol%、及びアルミナ(平均粒径:5〜20μm):2〜20vol%が添加されていることから成る請求項1〜3のいずれか1項に記載の焼結摩擦材。   The amount of the metal is 18 to 26 vol% in total including reduced iron: 3 to 8 vol% and cast iron powder: 10 to 20 vol% and aluminum, titanium, and silicon, and fine alumina (average particle diameter: 0.3 ˜2 μm): 3 to 10 vol%, magnesia (average particle size: 50 to 250 μm): 2 to 10 vol%, and alumina (average particle size: 5 to 20 μm): 2 to 20 vol% Item 4. The sintered friction material according to any one of Items 1 to 3. 真密度に対する焼結体密度の相対密度が、百分率として80%以上であることから成る請求項1〜4のいずれか1項に記載の焼結摩擦材。   The sintered friction material according to any one of claims 1 to 4, wherein the relative density of the sintered body density with respect to the true density is 80% or more as a percentage.
JP2007161444A 2007-06-19 2007-06-19 Sintered friction material Active JP5405725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161444A JP5405725B2 (en) 2007-06-19 2007-06-19 Sintered friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161444A JP5405725B2 (en) 2007-06-19 2007-06-19 Sintered friction material

Publications (2)

Publication Number Publication Date
JP2009001613A true JP2009001613A (en) 2009-01-08
JP5405725B2 JP5405725B2 (en) 2014-02-05

Family

ID=40318373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161444A Active JP5405725B2 (en) 2007-06-19 2007-06-19 Sintered friction material

Country Status (1)

Country Link
JP (1) JP5405725B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100476A (en) * 2011-10-11 2013-05-23 Akebono Brake Ind Co Ltd Friction material
JP2022533706A (en) * 2019-05-20 2022-07-25 バテル エナジー アライアンス,エルエルシー Spark plasma sintering method for making dense graphite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7078359B2 (en) 2017-06-27 2022-05-31 曙ブレーキ工業株式会社 Manufacturing method of sintered friction material and sintered friction material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09507285A (en) * 1994-01-10 1997-07-22 ジンテルメタルヴェルク・クレープゼーゲ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Sintered friction work material for rub resistant member and rub resistant member
JP2001501650A (en) * 1996-09-17 2001-02-06 アクティーゼルスカブ ローリュンドス ファブリーケル Friction material, method of preparing the friction material and friction lining
JP2002181095A (en) * 2000-12-11 2002-06-26 Toyota Motor Corp Iron-based sintered frictional material and manufacturing method therefor
JP2007107660A (en) * 2005-10-14 2007-04-26 Akebono Brake Ind Co Ltd Sintered friction material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09507285A (en) * 1994-01-10 1997-07-22 ジンテルメタルヴェルク・クレープゼーゲ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Sintered friction work material for rub resistant member and rub resistant member
JP2001501650A (en) * 1996-09-17 2001-02-06 アクティーゼルスカブ ローリュンドス ファブリーケル Friction material, method of preparing the friction material and friction lining
JP2002181095A (en) * 2000-12-11 2002-06-26 Toyota Motor Corp Iron-based sintered frictional material and manufacturing method therefor
JP2007107660A (en) * 2005-10-14 2007-04-26 Akebono Brake Ind Co Ltd Sintered friction material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100476A (en) * 2011-10-11 2013-05-23 Akebono Brake Ind Co Ltd Friction material
JP2022533706A (en) * 2019-05-20 2022-07-25 バテル エナジー アライアンス,エルエルシー Spark plasma sintering method for making dense graphite
JP7455864B2 (en) 2019-05-20 2024-03-26 バテル エナジー アライアンス,エルエルシー Spark plasma sintering method for producing dense graphite

Also Published As

Publication number Publication date
JP5405725B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP6032389B1 (en) Friction material
CN102782349B (en) Material for sliding bearing
JP2008007796A (en) Cu-Ni-Sn SERIES COPPER BASED SINTERED ALLOY HAVING EXCELLENT FRICTION/WEAR RESISTANCE AND BEARING MATERIAL COMPOSED OF THE ALLOY
WO2016190403A1 (en) Sintered friction material for high speed railway vehicles and method for manufacturing same
EP2511388B1 (en) Sintered sliding member
JP2008025018A (en) Sintering friction material
JP5405725B2 (en) Sintered friction material
JP6360270B1 (en) Sintered friction material for brake
JP2006348379A (en) Sintered metal friction material, and friction member
JP4589215B2 (en) Sintered friction material
JPH05179232A (en) Sintered metallic friction material for brake
JP2014529005A (en) Process for manufacturing lead-free plain bearing materials
JP5214158B2 (en) Sintered friction material
JP2007126738A (en) Sintered frictional material
JP2007107068A (en) Sintered friction material
JP2007107067A (en) Copper based sintered friction material
WO2020090725A1 (en) Sintered friction material and method for producing sintered friction material
JP2008138036A (en) Sintered friction material
JP2007107662A (en) Sintered friction material
JPS6089543A (en) Erosion resistant metal-ceramics composite material
JP2007107066A (en) Sintered friction material
JP2905731B2 (en) Brake lining material for tilting motor
JP2008007795A (en) Cu-Ni-Sn SERIES COPPER BASED SINTERED ALLOY FOR BEARING HAVING EXCELLENT CORROSION RESISTANCE, FRICTION-WEAR RESISTANCE AND SEIZURE RESISTANCE
JP5266601B2 (en) Wear resistant cobalt base alloy
JP2005220385A (en) Cu-BASED ALLOY FOR SLIDING MEMBER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

R150 Certificate of patent or registration of utility model

Ref document number: 5405725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250