JPS6089543A - Erosion resistant metal-ceramics composite material - Google Patents

Erosion resistant metal-ceramics composite material

Info

Publication number
JPS6089543A
JPS6089543A JP19689983A JP19689983A JPS6089543A JP S6089543 A JPS6089543 A JP S6089543A JP 19689983 A JP19689983 A JP 19689983A JP 19689983 A JP19689983 A JP 19689983A JP S6089543 A JPS6089543 A JP S6089543A
Authority
JP
Japan
Prior art keywords
ceramics
erosion
composite material
metal
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19689983A
Other languages
Japanese (ja)
Inventor
Yoshiaki Shida
志田 善明
Hisao Fujikawa
富士川 尚男
Nobuyuki Maruyama
丸山 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19689983A priority Critical patent/JPS6089543A/en
Publication of JPS6089543A publication Critical patent/JPS6089543A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a metal-ceramics composite material showing superior erosion resistance when used as a material for a high temp. apparatus by adding a specified amount of ceramics having a specified particle size to a metallic base material. CONSTITUTION:A metallic base material having about 0.5-50mum particle size such as Fe, Ni or Ni-Cr powder is blended with 5-80vol% one or more kinds of ceramics having <=10mum average particle size to obtain a metal-ceramics composite material. One or more kinds of compounds selected among oxides such as Al2O3 and Y2O3, carbides such as NbC and SiC, and nitrides such as Si3N4 and TaN are used as the ceramics. When the composite material is used, damage due to erosion at high temp. can be surely prevented in a high temp. apparatus such as an energy apparatus utilizing coal.

Description

【発明の詳細な説明】 本発明は、高温装置に使用してエロージョンに対し優れ
た抵抗性を有する耐エロージヨン性に優れた金属・セラ
ミックス複合材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal-ceramic composite material having excellent erosion resistance when used in high-temperature equipment.

火力ボイラのような高温発生装置は、従来は石油利用が
主体でおったが、近時においては、微粉炭燃焼ボイラ、
流動床ボイラのような石炭火力ボイラのように石炭の利
用が再認識されてきている。
High-temperature generators such as thermal power boilers have traditionally used oil as their main source, but in recent years, pulverized coal-fired boilers,
The use of coal, such as coal-fired boilers such as fluidized bed boilers, is being rediscovered.

しかしながら、その装置設計は、石油利用のときの設計
思想によって行なわれている。たとえば、石炭火、カボ
イラにおいても石油火力ボイラと同様の材料構成で製作
されているが、石炭火力ボイラにおいては、石油火力ボ
イラと異なシ、ボイラ内部で同形のアッシュ分がクリン
カとなって落下したり、フライアツンユとして浮瀞して
いたシするために、石炭火力ボイラを構成するボイラチ
ューブが高温でいちじるしいエロージョン損傷を受ける
ものである。
However, the device design is based on the design concept when using petroleum. For example, coal-fired boilers and cab boilers are manufactured using the same material composition as oil-fired boilers, but unlike oil-fired boilers, coal-fired boilers differ from oil-fired boilers in that ash of the same shape falls out as clinker inside the boiler. The boiler tubes that make up the coal-fired boiler are subject to severe erosion damage at high temperatures due to the boiler tubes that form the coal-fired boiler.

しかして、このようなエロージョンを防止する方法とし
ては、たとえば石炭火力ボイラにおいては、流速を下げ
たシ、プロテクタやパンフルプレートを取シ付けたシす
るなどの対策がとられているにすぎなかった。しかしな
がら、このような設計的な対処として、流速を制限した
場合でも、予想以上に流速の早い偏流部ができたシ、折
角取り付けたン°ロテクタやバッフルプレートなどそれ
自体がエロージョン損傷をうけて損耗するなどの問題が
ある。また高温におけるエロージョンに関する研究例は
少なく、その挙動が明確にされていない。したがって材
料に関する対策もほとんどなされていないこともあって
適確な耐エロージョン材料が望まれている現状でちる。
However, the only ways to prevent such erosion are, for example, in coal-fired boilers, by lowering the flow velocity and installing protectors and pan-full plates. Ta. However, even if the flow velocity is limited as a design measure, it may result in uneven flow areas where the flow velocity is higher than expected, and the installed protectors and baffle plates themselves may suffer erosion damage and wear out. There are problems such as Furthermore, there are few studies on erosion at high temperatures, and its behavior is not clear. Therefore, there is currently little demand for appropriate erosion-resistant materials, partly because little countermeasures have been taken regarding materials.

ところで、エロージョンとは、固体粒子が運動エネルギ
ーを持って物体に衝突することによって生ずる現象でお
るため、短絡的には通常の摩耗現象と同様、被衝突物体
の硬度を高くすることで防止が可能であると考えられが
ちであるが、実際にはそれほど単純なものでなく、例え
ば、金属材料等の軟らかい延性材料と、セラミックス等
のように硬いが脆いという脆性材料とのエロージョン特
性を比較すると、衝突角の小さい場合には延性材料の方
が大きなエロージョンを起こすが、衝突角の大きい場合
には脆性材料の方が大きなエロージョンを引き起こすと
言うように、わずかの条件の違いで全く異なる結果がも
たらされるものであって、衝突角や衝突速度等が異なる
など、諸条件が一定しない実操業下でのエロージョン現
象は、通常の摩耗現象とは異なシ、解明されないいろい
ろな問題を有しているものである。ましてや、高温での
エロージョンは、更に複雑な現象や挙動をともなうもの
である。
By the way, erosion is a phenomenon that occurs when solid particles collide with an object with kinetic energy, so in a short-term sense, it can be prevented by increasing the hardness of the object being collided, just like normal wear phenomena. However, in reality, it is not that simple. For example, if we compare the erosion characteristics of soft ductile materials such as metals and hard but brittle materials such as ceramics, we find that Slight differences in conditions can lead to completely different results, such as ductile materials causing greater erosion when the collision angle is small, but brittle materials causing greater erosion when the collision angle is large. However, the erosion phenomenon under actual operation, where various conditions such as the collision angle and collision speed are different, is different from normal wear phenomena, and there are various problems that have not been solved. It is. Furthermore, erosion at high temperatures is accompanied by even more complex phenomena and behavior.

本発明者は、従来 エロージョン防止のために行なわざ
るを得なかった装置内流速制限を軽減し、装置熱効率の
向上及び装置の小型化などを実施し得、又、耐エロージ
ヨン性と耐食性がともに望まれる環境や従来以上に耐エ
ロージヨン性が望まれる環境も多くなっている現状にも
対応し得、適用可能であって従来の金属材料では得られ
なかったようなきわめて強大な耐エロージヨン性を付与
し得、したがって強エロージョン部分に適用することが
でき、装置寿命を一段と延ばし得るような耐エロージヨ
ン性材を得べく多くの研究を重ねた結果、金属材料にお
いては材質によシエロージョン特性が変化するがエロー
ジョン損傷を完全に近く防止することは困難でめること
を認め、金属基材にセラミックスを含有せしめることに
より、さらに、セラミックスの粒子の硬さよpもその径
と含有率が重要であること、すなわち金属基材に特定大
きさのセラミックスを特定量含有せしめることによって
目的を達し得ることを認めて本発明をなしたものである
。すなわち、本発明は、好ましくは、粉末粒径が0.5
〜50μmの金属基材に、平均径が10μm以下の大ぎ
さの少なくとも一種類のセラミックスを体積率で5〜8
0%含有せしめた耐エロージヨン性金属・セラミックス
複合材である。
The present inventor has realized that it is possible to reduce the flow rate restriction in the device, which had conventionally been necessary to prevent erosion, to improve the thermal efficiency of the device, to downsize the device, and to achieve both erosion resistance and corrosion resistance. It can be used in many environments where erosion resistance is required more than ever before, and it can be applied to environments where erosion resistance is required more than ever before. As a result of extensive research in order to obtain an erosion-resistant material that can be applied to highly eroded parts and further extend the life of the equipment, we have discovered that the erosion-resistant properties of metal materials vary depending on the material. Recognizing that it is difficult to completely prevent erosion damage, by incorporating ceramics into the metal base material, we also recognize that the diameter and content of ceramic particles are important as well as the hardness of the ceramic particles. That is, the present invention was made based on the recognition that the object can be achieved by containing a specific amount of ceramics of a specific size in a metal base material. That is, the present invention preferably has a powder particle size of 0.5
A metal base material of ~50 μm is coated with at least one type of ceramic having an average diameter of 10 μm or less at a volume ratio of 5 to 8.
This is an erosion-resistant metal/ceramic composite material containing 0%.

本発明において使用する金属基材としては、使用温度及
び使用雰囲気などに耐え得るものである限9とくに限定
されないが、高温用には、P’es Ns及びCOなど
あるいはこれらをベースとしてCr。
The metal base material used in the present invention is not particularly limited as long as it can withstand the operating temperature and atmosphere, but for high temperature applications, P'es Ns and CO, or Cr based on these may be used.

AL Sis Moなどを適渋配合したものが好ましい
It is preferable to mix AL Sis Mo or the like in an appropriate amount.

又、使用するセラミックスとしては、たとえは、Tio
、、Al2O3,5i02、Y2O3、The、、Zr
02(安定化ジルコニアを含む)などのような酸化物系
セラミックス、たとえばTics 5iCs W2Cz
 B4C% TaCXNbC,Cr2Cs、Cr、C,
、Cr、、Co、MO2Cなどのような炭化物及びグラ
ファイト炭素(繊維)などの炭化物系セラミックス、及
び、たとえばTiN、 TaNXSi3N、、BN% 
Cr2N%CrNなどのような窒化物系セラミックスな
どであって、少なくともこれらのうちから選ばれたいず
れか一種あるいは二種以上のセラミックスを適宜組合せ
て使用するものである。
In addition, examples of ceramics used include Tio
,,Al2O3,5i02,Y2O3,The,,Zr
02 (containing stabilized zirconia), such as Tics 5iCs W2Cz
B4C% TaCXNbC, Cr2Cs, Cr, C,
, Cr, Co, MO2C, etc. and carbide-based ceramics such as graphite carbon (fiber), and for example TiN, TaNXSi3N, BN%
Nitride ceramics such as Cr2N%CrN are used, and at least one kind or two or more kinds of ceramics selected from these are used in an appropriate combination.

しかして、添加するセラミックスは、いずれも通常の全
域材料よりも硬匿は高いのであるが、耐エロージヨンの
目的のため姉は、粒子の硬さよりも、その粒径と含有率
が重要でるって、高温エロージョン試験の結果、分散粒
の平均径としては、10μm以下であることが必要であ
り、かつ、含有率が体積率で5〜80%であることが必
要である。
However, the hardness of the added ceramics is higher than that of ordinary wide-area materials, but for the purpose of erosion resistance, the particle size and content are more important than the particle hardness. As a result of a high temperature erosion test, the average diameter of the dispersed particles needs to be 10 μm or less, and the content rate needs to be 5 to 80% by volume.

すなわち、平均径が10μm以上の場合及び体積率が5
チ以下では、金属基材の性質が表面に出てしまい耐エロ
ー7ヨン性の向上に至らないし、体積率が80%以上で
は、靭性及び延性が劣化して部材として使用不可となる
ものである。なお、平均径は、炭素繊維などひも状のセ
ラミックスの場合は、平均円柱断面とし、真球と異なる
場合は、同一体積を1する球の径と考えるものである。
That is, when the average diameter is 10 μm or more and the volume fraction is 5
If the volume fraction is less than 80%, the properties of the metal base material will be exposed to the surface and the erosion resistance will not improve, and if the volume fraction is more than 80%, the toughness and ductility will deteriorate and the material cannot be used as a member. . In addition, in the case of string-like ceramics such as carbon fibers, the average diameter is considered to be the average cylindrical cross section, and when it is different from a true sphere, it is considered to be the diameter of a sphere that has the same volume as 1.

次に、本発明複合材の製造方法としては、たとえば、■
金属部材も粉体とし、粉末冶金後成形体とする方法、■
メッキ浴にセラミックスを懸濁しておいてメッキ皮膜に
分散混合析出せしめる方法、■セラミックス粉末を金属
基材に塗布した後、金属元素を表面より拡散浸透せしめ
る方法、■酸化物、炭化物、窒化物を形成する元素を含
有する金属基材に、内部酸化、浸炭、窒化などの処理を
行ない表面層に後合材層を形成する方法などがあるが、
部品の形状、用途などによってどの方法によって行なっ
ても支障がない。したがって、製品形態としては、全体
が複合材でもよく、必要とする表面だけが複合材であっ
てもよい。
Next, as a method for manufacturing the composite material of the present invention, for example,
A method of turning metal parts into powder and making them into compacts after powder metallurgy, ■
A method in which ceramics are suspended in a plating bath and then dispersed and precipitated on a plating film; ■ A method in which ceramic powder is applied to a metal base material and then the metal elements are diffused and penetrated from the surface; ■ A method in which oxides, carbides, and nitrides are There are methods in which a metal base material containing the elements to be formed is subjected to treatments such as internal oxidation, carburizing, and nitriding to form a post-mixture layer on the surface layer.
There is no problem with any method depending on the shape of the part, purpose, etc. Therefore, as a product form, the entire product may be made of composite material, or only the required surface may be made of composite material.

本発明は、金属基材に、平均径が10μm以下の少なく
とも一種類のセラミックスを体積率で5〜80%含有せ
しめるようにしたので、高温における苛酷な条件下で使
用してもきわめて優れた耐エロージヨン性を持った複合
材を得ることができたものであって、この複合材を使用
することによって、装置寿命を大巾に延ばし得、あるい
は装置内流速制限を軽減し得るため装置熱効率を向上し
得、装置の小型化を可能とし得る。本発明材は、高温環
境下ばかシでなく低温環境下においても優れた耐エロー
ジヨン性、耐食性を得ることができるなど優れた効果が
認められる。
In the present invention, the metal base material contains at least one type of ceramic with an average diameter of 10 μm or less in a volume ratio of 5 to 80%, so it has excellent durability even when used under harsh conditions at high temperatures. It was possible to obtain a composite material with erosion properties, and by using this composite material, it is possible to significantly extend the life of the equipment, or to reduce the flow rate restriction within the equipment, thereby improving equipment thermal efficiency. This can make it possible to downsize the device. The material of the present invention is recognized to have excellent effects such as being able to obtain excellent erosion resistance and corrosion resistance not only in a high temperature environment but also in a low temperature environment.

次に、本発明の実施例を述べる。Next, examples of the present invention will be described.

実施例1〜21 金属基材として、Fe % Ni N Ni −20C
r、 NiNi−5O、C01AI、Siなどを添加し
た合金、その他の合金などの粉末でいずれも原料粉とし
ては、高純度の粉末、例えば〜Fll+では99.3%
、残部がMn% 02等を含んだもの、又、Niでは9
9.7%で、残部がC011?’6等を含んだもので、
籾米粒径が1〜10μmのものを用い、セラミックス粉
として、A la Os 、Y203、Tio、、Zr
O2、NbCz S I CN Cr23 Ca、’r
ict WCX%C%B4 CN S 131’J4、
TaN、 BN を第2表に示すごとくに分散平均径及
び分敢体槓率をそれぞれ鋭化させた配合比で混合し、H
IP法(熱間圧縮成形法)を採用し、成形条件として温
度: 1150℃、圧力ニ900Kd10A で複合材
を作成し、第1表に示す条件によって高温エロージョン
試験を行なった。結果をエロージョン減肉速度として示
したが、これは、試験片に生じた最大減肉深さを表面粗
さ計により10時間まで測定することによ勺、時間当9
の減肉速度(μ:m/h )に換算してめた。これらの
結果を第比較例 1〜9 実施例と同様にして比較試料を作成し、実施例と同様に
第1表に示す条件でエロージョン試験を行なった。結果
を第3表に示す。
Examples 1 to 21 As a metal base material, Fe%NiNNi-20C
r, NiNi-5O, C01AI, Si, etc.-added alloys, and other alloy powders, all of which are high purity powders as raw material powders, for example ~Fll+, 99.3%
, the balance contains Mn% 02, etc., and Ni has 9
9.7% and the rest is C011? 'Including 6th grade,
Paddy rice with a grain size of 1 to 10 μm was used, and ceramic powders such as A la Os, Y203, Tio, and Zr were used.
O2, NbCz S I CN Cr23 Ca,'r
ict WCX%C%B4 CN S 131'J4,
TaN and BN were mixed at a blending ratio that sharpened the average dispersion diameter and the parting ratio as shown in Table 2, and
Using the IP method (hot compression molding method), a composite material was prepared under molding conditions of temperature: 1150° C. and pressure: 900 Kd10A, and a high temperature erosion test was conducted under the conditions shown in Table 1. The results are shown as erosion thickness reduction rate, which is calculated by measuring the maximum thickness reduction depth that occurred on the test piece using a surface roughness meter for up to 10 hours.
It was calculated by converting it into the rate of thinning (μ: m/h). Based on these results, Comparative Examples 1 to 9 Comparative samples were prepared in the same manner as in the examples, and erosion tests were conducted under the conditions shown in Table 1 in the same manner as in the examples. The results are shown in Table 3.

第3表 上述のように、この発明によれば、石炭利用エネルギー
装置等の高温装置における高温エロージョン損傷を確実
に防止することができ、高温装置の熱効率の同上、並び
に寿命の飛躍的な延命化が可能になるなど、産莱上極め
て有用な効果がもたらされるものである。
As shown in Table 3 above, according to the present invention, it is possible to reliably prevent high-temperature erosion damage in high-temperature equipment such as coal-based energy equipment, improve the thermal efficiency of the high-temperature equipment, and dramatically extend the service life of the high-temperature equipment. This brings about extremely useful effects on labor production, such as making it possible to

特許出願人 住友金属工業株式会社Patent applicant: Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)金属基材に、平均径が10μmn以下の大きさの少
なくとも一種類のセラミックスを体積率で5〜80%含
有せしめたことを特徴とする耐エロージヨン性金属・セ
ラミックス複合材。
1) An erosion-resistant metal-ceramic composite material comprising a metal base material containing 5 to 80% by volume of at least one type of ceramic having an average diameter of 10 μm or less.
JP19689983A 1983-10-20 1983-10-20 Erosion resistant metal-ceramics composite material Pending JPS6089543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19689983A JPS6089543A (en) 1983-10-20 1983-10-20 Erosion resistant metal-ceramics composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19689983A JPS6089543A (en) 1983-10-20 1983-10-20 Erosion resistant metal-ceramics composite material

Publications (1)

Publication Number Publication Date
JPS6089543A true JPS6089543A (en) 1985-05-20

Family

ID=16365493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19689983A Pending JPS6089543A (en) 1983-10-20 1983-10-20 Erosion resistant metal-ceramics composite material

Country Status (1)

Country Link
JP (1) JPS6089543A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863514A (en) * 1985-09-11 1989-09-05 Degussa Atiengesellschaft Material for facing denture
JPH01294844A (en) * 1988-05-24 1989-11-28 Tocalo Co Ltd Composite material showing superior corrosion resistance under chloride-containing environment
JPH0336230A (en) * 1989-06-30 1991-02-15 Toshiba Corp Erosion-resistant alloy steel and its manufacture
WO1994002297A1 (en) * 1992-07-17 1994-02-03 Sandvik Ab Hard alloys for tools in the wood industry
US5925197A (en) * 1992-01-24 1999-07-20 Sandvik Ab Hard alloys for tools in the wood industry
WO2004104251A1 (en) * 2003-05-20 2004-12-02 Exxonmobil Research And Engineering Company Advanced erosion resistant oxide cermets
CN100372959C (en) * 2003-05-20 2008-03-05 埃克森美孚研究工程公司 Advanced erosion resistant oxide cermets
CN100443619C (en) * 2006-10-20 2008-12-17 西安理工大学 Chromium oxide and chromium dispersion-strengthened copper-base composite material and its preparing method
US7544228B2 (en) 2003-05-20 2009-06-09 Exxonmobil Research And Engineering Company Large particle size and bimodal advanced erosion resistant oxide cermets

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863514A (en) * 1985-09-11 1989-09-05 Degussa Atiengesellschaft Material for facing denture
JPH01294844A (en) * 1988-05-24 1989-11-28 Tocalo Co Ltd Composite material showing superior corrosion resistance under chloride-containing environment
JPH0336230A (en) * 1989-06-30 1991-02-15 Toshiba Corp Erosion-resistant alloy steel and its manufacture
US5925197A (en) * 1992-01-24 1999-07-20 Sandvik Ab Hard alloys for tools in the wood industry
WO1994002297A1 (en) * 1992-07-17 1994-02-03 Sandvik Ab Hard alloys for tools in the wood industry
WO2004104251A1 (en) * 2003-05-20 2004-12-02 Exxonmobil Research And Engineering Company Advanced erosion resistant oxide cermets
US7153338B2 (en) 2003-05-20 2006-12-26 Exxonmobil Research And Engineering Company Advanced erosion resistant oxide cermets
CN100372959C (en) * 2003-05-20 2008-03-05 埃克森美孚研究工程公司 Advanced erosion resistant oxide cermets
US7544228B2 (en) 2003-05-20 2009-06-09 Exxonmobil Research And Engineering Company Large particle size and bimodal advanced erosion resistant oxide cermets
CN100443619C (en) * 2006-10-20 2008-12-17 西安理工大学 Chromium oxide and chromium dispersion-strengthened copper-base composite material and its preparing method

Similar Documents

Publication Publication Date Title
US4124737A (en) High temperature wear resistant coating composition
TWI417373B (en) Erosion resistant cermet linings for oil &amp; gas exploration, refining and petrochemical processing applications
CN107500782B (en) Preparation method of modified antifriction wear-resistant corrosion-resistant nano ceramic powder material for additive manufacturing
PT1322794E (en) Thermally applied coating for piston rings, consisting of mechanically alloyed powders
Fu et al. Microstructure and properties of high velocity oxygen fuel sprayed (WC-Co)-Ni coatings
Sun et al. High-performance TiN reinforced Sialon matrix composites: a good combination of excellent toughness and tribological properties at a wide temperature range
JPS6089543A (en) Erosion resistant metal-ceramics composite material
KR20060012007A (en) Multi-scale cermets for high temperature erosion-corrosion service
Wang et al. Nanostructured ceramic composite coating prepared by reactive plasma spraying micro-sized Al–Fe2O3 composite powders
Shi et al. Fine TiC dispersed Al2O3 composites fabricated via in situ reaction synthesis and conventional process
Manoj Kumar et al. Erosion wear behavior of TiCN–Ni cermets containing secondary carbides (WC/NbC/TaC)
JP2007516349A (en) Advanced erosion resistant carbide cermet with excellent hot corrosion resistance
US5837327A (en) Method for producing a TiB2 -based coating
Fang et al. High-performance Ti (C, N)-based cermet with ZrO2 whiskers and Al0. 3CoCrFeNi high-entropy alloy
JP5405725B2 (en) Sintered friction material
Rengarajan et al. Oxidation behavior of near nanostructured coating developed by the HVOF process
Sahani et al. Nonlubricated sliding wear behavior study of SiC–B4C–Si cermet against a diamond indenter
Price et al. Some comparative properties of Laves-and carbide-strengthened coatings deposited by plasma or detonation gun
Kulu et al. Abrasive wear of powder materials and coatings
JP2014009390A (en) Thermal spray powder, sintered body of thermal spray material and method for producing thermal spray material
Gu et al. Structure and mechanical properties of Cu/AlN nano-composites with high strength and high conductivity
Singh et al. DEVELOPMENT AND PERFORMANCE ANALYSIS OF Ni–15Cr2O3–5TiO2 AND Ni–15Al2O3–5TiO2 HVOF COATINGS IN EROSIVE FLY ASH SLURRY
Kommel et al. Boron carbide based composites manufacturing and recycling features
KR102106486B1 (en) Thermal spraying powder, method of forming a thermal sprayed coating layer using the same and Grate bar with thermally sprayed coating layer
Chun et al. Erosion–Corrosion‐Resistant Titanium Diboride Cermets for High‐Temperature Process Applications