JP2013100476A - Friction material - Google Patents

Friction material Download PDF

Info

Publication number
JP2013100476A
JP2013100476A JP2012214923A JP2012214923A JP2013100476A JP 2013100476 A JP2013100476 A JP 2013100476A JP 2012214923 A JP2012214923 A JP 2012214923A JP 2012214923 A JP2012214923 A JP 2012214923A JP 2013100476 A JP2013100476 A JP 2013100476A
Authority
JP
Japan
Prior art keywords
friction material
friction
graphite
sintering
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012214923A
Other languages
Japanese (ja)
Other versions
JP6061592B2 (en
Inventor
Sei Kurihara
生 栗原
Yosuke Kawakami
洋介 川上
Yuki Takahashi
祐樹 高橋
Eri Nio
英里 仁王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP2012214923A priority Critical patent/JP6061592B2/en
Priority to PCT/JP2012/076358 priority patent/WO2013054857A1/en
Publication of JP2013100476A publication Critical patent/JP2013100476A/en
Application granted granted Critical
Publication of JP6061592B2 publication Critical patent/JP6061592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a friction material excellent in heat resistance, wear resistance, fade resistance and strength even at high-temperature and high-load ranges.SOLUTION: The friction material contains ceramics, which is used as a matrix thereof, and a carbonaceous material. Since a base stock having high heat resistance, high toughness and high strength is used as the matrix thereof, the friction material can withstand bad influences such as pyrolysis. Even when the friction material is used in high-temperature and high-load ranges, the friction material keeps excellent heat resistance, excellent wear resistance and a high coefficient of friction.

Description

本発明は、自動車、鉄道車両、産業機械等のブレーキパッド、ブレーキライニング、クラッチフェーシング等に用いられる摩擦材に関し、特に、優れた耐熱性と強度を有する摩擦材に関する。   The present invention relates to a friction material used for brake pads, brake linings, clutch facings and the like of automobiles, railway vehicles, industrial machines, and the like, and particularly relates to a friction material having excellent heat resistance and strength.

近年、車両の燃費向上や原材料の高騰といった環境変化の影響を受けて、車両部品の軽量化や小型化の要求が高まっている。ブレーキ部品に関しては、ブレーキディスクの小径化に伴い、摩擦材への熱的及び機械的負荷が増加している。
また、ブレーキ部品の耐熱性及び強度を高める観点から、例えば、ロータに従来のFC製(片状黒鉛鋳鉄)からセラミックス複合材料(Ceramic Matrix Composites(以下「CMC」と称する))が適用される等、相手材の材料も多様化している。
このような状況下、高温及び高負荷下での耐熱性、耐摩耗性及び耐フェード性等の性能がより一層優れた摩擦材が望まれている。
In recent years, demands for weight reduction and miniaturization of vehicle parts have been increased under the influence of environmental changes such as improvement in vehicle fuel efficiency and soaring raw materials. With regard to brake parts, the thermal and mechanical loads on the friction material are increasing as the diameter of the brake disc is reduced.
From the viewpoint of increasing the heat resistance and strength of the brake parts, for example, a ceramic composite material (Ceramic Matrix Composites (hereinafter referred to as “CMC”)) is applied to the rotor from a conventional FC (flaky graphite cast iron). The materials of the counterparts are also diversifying.
Under such circumstances, there is a demand for a friction material that is further superior in performance such as heat resistance, wear resistance, and fade resistance under high temperature and high load.

従来の摩擦材としては、有機繊維等の繊維状物質を繊維基材とし、これに結合材や摩擦調整材を配合したNon−Asbestos−Organic系摩擦材(以下「NAO材」と称する)が広く知られている。特許文献1及び特許文献2には、有機結合材を使用した摩擦材を非酸化性雰囲気下、250〜700℃の高温にて焼成炭化させることで耐熱性及びフェード性を高めた摩擦材が記載されている。また、特許文献3には、有機結合材を用いた摩擦材を不活性ガス中で550〜1300℃で焼成炭化することで耐熱性及び耐フェード性を向上した摩擦材が記載されている。   As a conventional friction material, a non-Asbestos-Organic friction material (hereinafter referred to as “NAO material”) in which a fibrous material such as organic fiber is used as a fiber base material, and a binder and a friction adjusting material are blended therein is widely used. Are known. Patent Document 1 and Patent Document 2 describe a friction material that has improved heat resistance and fade properties by baking and carbonizing a friction material using an organic binder at a high temperature of 250 to 700 ° C. in a non-oxidizing atmosphere. Has been. Patent Document 3 describes a friction material having improved heat resistance and fade resistance by baking and carbonizing a friction material using an organic binder in an inert gas at 550 to 1300 ° C.

一方、金属を基材とすることで強度及び耐フェード性を高めた摩擦材が提案されており、特許文献4では銅を基材とした焼結摩擦材が記載されている。   On the other hand, the friction material which improved the intensity | strength and fade resistance by using a metal as a base material is proposed, and the patent document 4 describes the sintered friction material which used copper as the base material.

特開平5−215164号公報JP-A-5-215164 特開平9−111007号公報JP-A-9-111007 特開2006−306970号公報JP 2006-306970 A 特開2007−107067号公報JP 2007-107067 A

しかしながら特許文献1〜3に記載の有機結合材を炭化させた摩擦材では、使用時において製造時の温度を超える高温下に長時間さらされる場合に熱分解し、強度、耐摩耗性及びフェードの低下を招く懸念がある。
また、特許文献4に記載される金属を基材とした摩擦材では、NAO材に比べて重量が増加することや、基材である金属の融点付近の高温下で強度が低下したり、塑性流動を起こしたりするため摩耗の増加や相手材と固着するといった問題が懸念される。
このように従来の摩擦材では、特にCMCロータを相手材とするような高温及び高負荷領域における性能に改良の余地があった。
However, the friction material obtained by carbonizing the organic binder described in Patent Documents 1 to 3 is thermally decomposed when used for a long time at a high temperature exceeding the manufacturing temperature during use, and has strength, wear resistance, and fade. There is a concern of causing a decline.
In addition, the friction material using a metal as a base material described in Patent Document 4 increases in weight as compared with the NAO material, and the strength decreases at a high temperature near the melting point of the metal that is the base material. There are concerns about problems such as increased wear and sticking to the mating material due to flow.
As described above, in the conventional friction material, there is room for improvement in the performance in a high temperature and high load region particularly with the CMC rotor as the counterpart material.

本発明は上記課題を解決するものであり、高温及び高負荷領域においても耐熱性、耐摩耗性、耐フェード性及び強度に優れた摩擦材を提供することを目的とする。   The present invention solves the above-described problems, and an object thereof is to provide a friction material that is excellent in heat resistance, wear resistance, fade resistance, and strength even in a high temperature and high load region.

本発明者らは、セラミックスをマトリックスとすることにより上記課題を解決できることを見出した。すなわち本発明は以下のとおりのものである。
〔1〕 セラミックスをマトリックスとする摩擦材であって、炭素材料を含有する摩擦材。
〔2〕 前記セラミックスが、酸化物系セラミックス、窒化物系セラミックス及び炭化物系セラミックスからなる群より選ばれる少なくとも一種である上記〔1〕に記載の摩擦材。
〔3〕 前記酸化物系セラミックスが、ジルコニア及びアルミナのうち少なくとも一方である上記〔2〕に記載の摩擦材。
〔4〕 前記窒化物系セラミックスが、窒化ケイ素、窒化アルミニウム及びサイアロンからなる群より選ばれる少なくとも一種である上記〔2〕に記載の摩擦材。
〔5〕 前記炭化物系セラミックスが、炭化ケイ素、炭化ホウ素、炭化チタン及び炭化タングステンからなる群より選ばれる少なくとも一種である上記〔2〕に記載の摩擦材。
〔6〕 前記炭素材料が、黒鉛及び炭素繊維のうち少なくとも一方である上記〔1〕〜〔5〕のいずれか1つに記載の摩擦材。
〔7〕 ケイ素、チタン及び鉄からなる群より選ばれる少なくとも一種の金属をさらに含有する、上記〔1〕〜〔6〕のいずれか1つに記載の摩擦材。
The present inventors have found that the above problem can be solved by using ceramics as a matrix. That is, the present invention is as follows.
[1] A friction material containing a ceramic material as a matrix and containing a carbon material.
[2] The friction material according to [1], wherein the ceramic is at least one selected from the group consisting of oxide ceramics, nitride ceramics, and carbide ceramics.
[3] The friction material according to [2], wherein the oxide ceramic is at least one of zirconia and alumina.
[4] The friction material according to [2], wherein the nitride ceramic is at least one selected from the group consisting of silicon nitride, aluminum nitride, and sialon.
[5] The friction material according to [2], wherein the carbide ceramic is at least one selected from the group consisting of silicon carbide, boron carbide, titanium carbide, and tungsten carbide.
[6] The friction material according to any one of [1] to [5], wherein the carbon material is at least one of graphite and carbon fiber.
[7] The friction material according to any one of [1] to [6], further including at least one metal selected from the group consisting of silicon, titanium, and iron.

本発明によれば、高耐熱性、高靭性、高強度の素材をマトリックスとして用いることにより、摩擦材が熱分解等の影響を受けることがなく、高温及び高負荷領域での使用時においても耐熱性及び耐摩耗性に優れ、摩擦係数の高い摩擦材を提供することができる。また、制動時における欠けや割れに対しても耐久性を有する摩擦材を提供することができる。   According to the present invention, by using a material having high heat resistance, high toughness and high strength as a matrix, the friction material is not affected by thermal decomposition or the like, and is heat resistant even when used in a high temperature and high load region. It is possible to provide a friction material that is excellent in wear resistance and wear resistance and has a high friction coefficient. Further, it is possible to provide a friction material having durability against chipping and cracking during braking.

図1は、実施例34で作成した摩擦材(焼結体)の摩擦試験後の制動面を光学顕微鏡で観察した図である。FIG. 1 is a diagram in which the braking surface of the friction material (sintered body) prepared in Example 34 after the friction test is observed with an optical microscope. 図2は、実施例36で作成した摩擦材(焼結体)の摩擦試験後の制動面を光学顕微鏡で観察した図である。FIG. 2 is a diagram in which the braking surface of the friction material (sintered body) prepared in Example 36 after the friction test is observed with an optical microscope.

<摩擦材の構成>
本発明の摩擦材は、セラミックスをマトリックスとする。セラミックスの組成は特に限定されないが、例えば、酸化物系セラミックス、窒化物系セラミックス、炭化物系セラミックス等を用いることができる。酸化物系セラミックスとしては、アルミナ、フォルステライト、ジルコニア、チタニア、シリカ、マグネシア、ジルコン、ムライト、フェライト、コーディエライト、ステアタイト、チタン酸バリウム、酸化亜鉛、ハイドロキシアパタイト、リン酸三カルシウム、フッ化アパタイト等が挙げられる。窒化物系セラミックスとしては、窒化アルミニウム、窒化ケイ素、窒化チタン、窒化ホウ素、サイアロン等が挙げられる。炭化物系セラミックスとしては、炭化ケイ素、炭化ホウ素、炭化チタン、炭化タングステン等が挙げられる。中でも、機械的強度や靭性が高い観点から酸化物系セラミックスであるジルコニアや窒化物系セラミックスである窒化ケイ素が好ましい。ジルコニアは安定化されていることが好ましく、例えば、イットリア(Y)安定化ジルコニア又はカルシア(CaO)安定化ジルコニアが特に好ましい。また、ジルコニアの一次粒子の平均粒径は焼結性の観点から100nm以下が好ましい。
<Configuration of friction material>
The friction material of the present invention uses ceramics as a matrix. The composition of the ceramic is not particularly limited. For example, oxide ceramics, nitride ceramics, carbide ceramics, and the like can be used. As oxide ceramics, alumina, forsterite, zirconia, titania, silica, magnesia, zircon, mullite, ferrite, cordierite, steatite, barium titanate, zinc oxide, hydroxyapatite, tricalcium phosphate, fluoride And apatite. Examples of the nitride ceramics include aluminum nitride, silicon nitride, titanium nitride, boron nitride, sialon and the like. Examples of the carbide ceramics include silicon carbide, boron carbide, titanium carbide, tungsten carbide and the like. Of these, zirconia, which is an oxide ceramic, and silicon nitride, which is a nitride ceramic, are preferable from the viewpoint of high mechanical strength and toughness. The zirconia is preferably stabilized, for example, yttria (Y 2 O 3 ) stabilized zirconia or calcia (CaO) stabilized zirconia is particularly preferable. The average particle diameter of the primary particles of zirconia is preferably 100 nm or less from the viewpoint of sinterability.

また、上記セラミックスは単一組成であっても、二種以上の混合組成であってもよい。混合組成としては例えば、ジルコニアを母材とした場合はアルミナを併用することが好ましく、この場合のアルミナの含有量は摩擦材全体において5〜25体積%が好ましい。アルミナをかかる範囲で含有することで摩擦材の焼結性が向上し緻密化すると共に、制動時の欠けや割れを抑制できる。   The ceramics may be a single composition or a mixed composition of two or more. As a mixed composition, for example, when zirconia is used as a base material, it is preferable to use alumina together. In this case, the content of alumina is preferably 5 to 25% by volume in the entire friction material. By containing alumina in such a range, the sinterability of the friction material is improved and densified, and chipping and cracking during braking can be suppressed.

さらに、必要に応じて焼結助剤を添加することが好ましい。特に窒化ケイ素を母材とした場合は添加することで焼結性を高めることができ好ましい。本発明で用いる焼結助剤としては特に限定されるものではなく、通常の焼結助剤として使用されるものであれば、いずれのものも使用することができる、例えば、Y、MgO、ZrO、ZrO、Al、HfO等が挙げられる。焼結助剤の含有量は、摩擦材全体において1〜15重量%であることが好ましい。 Furthermore, it is preferable to add a sintering aid as required. In particular, when silicon nitride is used as a base material, it is preferable to add it because the sinterability can be improved. The sintering aid used in the present invention is not particularly limited, and any one can be used as long as it is used as a normal sintering aid, such as Y 2 O 3 , MgO, ZrO 2, ZrO 2, Al 2 O 3, HfO 2 , and the like. The content of the sintering aid is preferably 1 to 15% by weight in the entire friction material.

本発明の摩擦材はさらに、炭素材料を含有する。セラミックスマトリックスのみからなる摩擦材では、強度が高く摩擦係数が高い反面、摩擦界面のせん断応力が大きくなる為、摩擦材の摩耗が増大し、摩擦係数が不安定となるおそれがある。炭素材料を配合することにより摩擦材の耐摩耗性が向上するとともに、制動時の欠けや割れを抑制することができる。炭素材料としては、フラーレン、カーボンナノチューブ、炭素繊維、黒鉛、アモルファスカーボン、活性炭、及びコークス等が挙げられ、中でも黒鉛及び炭素繊維が好ましい。
黒鉛としては人造黒鉛、天然黒鉛(鱗片状黒鉛、塊状黒鉛、土状黒鉛、弾性黒鉛、膨張黒鉛)等を用いることができる。また、黒鉛の平均粒径はレーザー回折法粒度分布法またはふるい分け法による測定値(メジアン径)で10〜1000μmが好ましい。かかる範囲であれば焼結性が低下せず、制動時の欠けや割れを抑制することができる。
炭素繊維としては、平均繊維長が0.1〜6.0mmであることが好ましく、0.1〜3.0mmがより好ましい。平均繊維長がかかる範囲であれば炭素繊維の引き抜き効果が大きく、摩擦材が欠けにくく、強度も保たれる。また平均直径が5〜20μmであることが好ましい。なお、炭素繊維は、原料の段階で上記繊維長のものを配合してもよいし、配合段階で混合条件等を適宜設定することにより上記範囲となるように調整してもよい。また、炭素繊維は束の状態よりも単繊維に解繊した状態で用いた方が、分散性の点で好ましい。
なお上記炭素材料は単独で用いても、二種以上を併用してもよい。
また、上記炭素材料に炭化物系セラミックスは含まれない。
The friction material of the present invention further contains a carbon material. A friction material made only of a ceramic matrix has high strength and a high friction coefficient, but on the other hand, since the shear stress at the friction interface increases, wear of the friction material increases and the friction coefficient may become unstable. By blending the carbon material, the wear resistance of the friction material is improved, and chipping and cracking during braking can be suppressed. Examples of the carbon material include fullerene, carbon nanotube, carbon fiber, graphite, amorphous carbon, activated carbon, and coke. Among these, graphite and carbon fiber are preferable.
As graphite, artificial graphite, natural graphite (flaky graphite, massive graphite, earthy graphite, elastic graphite, expanded graphite) and the like can be used. The average particle diameter of graphite is preferably 10 to 1000 μm as measured by a laser diffraction particle size distribution method or a sieving method (median diameter). If it is this range, sinterability does not fall and it can suppress the chipping and cracking at the time of braking.
The carbon fiber preferably has an average fiber length of 0.1 to 6.0 mm, more preferably 0.1 to 3.0 mm. If the average fiber length is within this range, the carbon fiber pulling effect is great, the friction material is hardly chipped, and the strength is maintained. Moreover, it is preferable that an average diameter is 5-20 micrometers. Carbon fibers having the above fiber length may be blended at the raw material stage, or may be adjusted to be within the above range by appropriately setting the mixing conditions and the like at the blending stage. In addition, it is preferable from the viewpoint of dispersibility that the carbon fiber is used in a state of being fibrillated into a single fiber rather than a bundle.
In addition, the said carbon material may be used independently or may use 2 or more types together.
The carbon material does not include carbide-based ceramics.

炭素材料の摩擦材全体における含有量は40体積%以下が好ましく、30体積%以下がさらに好ましく、2〜20体積%がより好ましい。かかる範囲であれば耐摩耗性を向上できる。
また、炭素材料として黒鉛を用いる場合、含有量が多いほど耐摩耗性は向上する傾向にある一方でセラミックスの焼結性が低下する懸念がある。そのため、摩擦材を無加圧焼結により製造する場合は焼結密度の低下により黒鉛の含有量は制限され、2〜5体積%が好ましい。一方、加圧焼結により製造する場合は高密度の焼結体が得られるため、黒鉛の含有量は2〜30体積%とすることが可能となり、焼結性の低下を懸念することなく耐摩耗性を一層向上することができる。
The content of the carbon material in the entire friction material is preferably 40% by volume or less, more preferably 30% by volume or less, and more preferably 2 to 20% by volume. Within such a range, the wear resistance can be improved.
Moreover, when using graphite as a carbon material, there exists a possibility that the sinterability of ceramics may fall while there exists a tendency for abrasion resistance to improve, so that there is much content. Therefore, when the friction material is produced by pressureless sintering, the graphite content is limited due to a decrease in the sintered density, and 2 to 5% by volume is preferable. On the other hand, in the case of producing by pressure sintering, a high-density sintered body is obtained, so the graphite content can be made 2 to 30% by volume, and there is no concern about deterioration of sinterability. Abrasion can be further improved.

本発明の摩擦材はさらに、ケイ素、チタン、鉄、ニッケル等の金属(粉末)を含有してもよく、ケイ素、チタン及び鉄からなる群より選ばれる一種以上の金属を含有することが好ましい。金属を含有することで、摩擦材の潤滑性付与による耐摩耗性向上に有効である。添加する金属は、耐摩耗性改善効果が大きく、高融点かつ低環境負荷の観点から、ケイ素及びチタンが特に好ましい。なお、これらの金属は単体で添加し、セラミックス材料としての炭化ケイ素や炭化チタン、窒化ケイ素等の金属化合物とは区別される。
摩擦材における金属の含有量は1〜5体積%が好ましい。かかる範囲であれば耐摩耗性を向上しつつ摩擦係数及び摩擦材強度を良好に維持できる。
また、金属を添加すると耐摩耗性を向上できる一方でセラミックスの焼結性が低下する懸念があるため、加圧焼結により緻密化を図ることが好ましい。
The friction material of the present invention may further contain a metal (powder) such as silicon, titanium, iron and nickel, and preferably contains one or more metals selected from the group consisting of silicon, titanium and iron. By containing a metal, it is effective in improving wear resistance by imparting lubricity to the friction material. As the metal to be added, silicon and titanium are particularly preferable from the viewpoints of a large effect of improving wear resistance and a high melting point and low environmental load. These metals are added alone and are distinguished from metal compounds such as silicon carbide, titanium carbide, and silicon nitride as ceramic materials.
The metal content in the friction material is preferably 1 to 5% by volume. Within such a range, the friction coefficient and the friction material strength can be maintained well while improving the wear resistance.
In addition, when metal is added, wear resistance can be improved, but there is a concern that the sinterability of ceramics may be reduced. Therefore, it is preferable to achieve densification by pressure sintering.

本発明の摩擦材は、本発明の効果を損なわない範囲で上記以外の配合成分として、スチール繊維等の金属繊維、炭化ケイ素繊維、Al−SiO系セラミック繊維、生体溶解性無機繊維等の無機繊維といった繊維基材、硫酸バリウム、フッ化カルシウム、炭化チタン、窒化チタン、バーミキュライト、マイカ等の無機化合物、アルミナ、マグネシア、ジルコニア、チタニア、酸化鉄、酸化スズ等の金属酸化物、窒化ホウ素、窒化アルミニウム等の固体潤滑材といった摩擦調整材等を含有してもよい。 The friction material of the present invention includes metal fibers such as steel fibers, silicon carbide fibers, Al 2 O 3 —SiO 2 ceramic fibers, and biosoluble inorganic fibers as blending components other than the above as long as the effects of the present invention are not impaired. Fiber base materials such as inorganic fibers such as barium sulfate, calcium fluoride, titanium carbide, titanium nitride, vermiculite, mica and other inorganic compounds, alumina, magnesia, zirconia, titania, iron oxide, tin oxide and other metal oxides, nitriding You may contain friction modifiers, such as solid lubricants, such as boron and aluminum nitride.

上記成分から構成される本発明の摩擦材は、密度が60%以上であることが好ましく、80%以上であることがさらに好ましい。密度がかかる範囲であればセラミックス間の結合力が強化され、耐摩耗性、制動時の欠けや割れの抑制に優れた摩擦材を得ることができる。なおここでの密度とは、下記式から算出される相対密度である。
(焼結体密度/理論密度)×100=相対密度(%)
密度を上記範囲とするには、例えば、焼結温度を高める、または加圧焼結等の方法が挙げられる。
The friction material of the present invention composed of the above components preferably has a density of 60% or more, and more preferably 80% or more. If the density is within the range, the bonding force between the ceramics is strengthened, and a friction material excellent in wear resistance and suppression of chipping and cracking during braking can be obtained. Here, the density is a relative density calculated from the following formula.
(Sintered body density / theoretical density) × 100 = relative density (%)
In order to make a density into the said range, methods, such as raising sintering temperature or pressure sintering, are mentioned, for example.

<摩擦材の製造方法>
本発明の摩擦材は、上記のセラミックスの原料となる金属/無機化合物粉体と、炭素材料と、任意の配合成分とを所定量配合して原料粉末を調整する工程、成形工程、及び焼結工程を経て得ることができる。
<Friction material manufacturing method>
The friction material of the present invention includes a step of adjusting a raw material powder by mixing a predetermined amount of metal / inorganic compound powder, a carbon material, and an arbitrary blending component, which are raw materials for the ceramic, a molding step, and a sintering step. It can be obtained through a process.

上記原料粉末を調整する工程は、例えば、セラミックスの原料となる金属/無機化合物粉体と炭素材料と配合成分とを、エタノール等の分散媒中でボールミルにより所定時間混合した後、乾燥して分散媒を除去し、ふるい目が100〜500μmの範囲のふるい等を用いて整粒する工程を順次含むことが好ましい。
また、上記セラミックスの原料となる金属/無機化合物粉体と炭素材料と配合成分とを混合する方法として、分散媒を使わずにサンプルミルにより所定時間乾式混合してもよい。
なお、各材料を混合する順序は特に限定されず、全ての材料を一度に混合してもよいし、セラミックス原料と炭素材料を混合・整粒した後に、金属や繊維基材等の任意成分を混合・整粒してもよい。
The step of preparing the raw material powder includes, for example, mixing a metal / inorganic compound powder, which is a raw material for ceramics, a carbon material, and a compounding component in a dispersion medium such as ethanol by a ball mill for a predetermined time, followed by drying and dispersing. It is preferable to sequentially include a step of removing the medium and sizing using a sieve having a sieve having a size of 100 to 500 μm.
In addition, as a method of mixing the metal / inorganic compound powder as the raw material of the ceramic, the carbon material, and the blending component, dry mixing may be performed for a predetermined time by a sample mill without using a dispersion medium.
In addition, the order in which each material is mixed is not particularly limited, and all materials may be mixed at one time. After mixing and sizing the ceramic raw material and the carbon material, optional components such as metal and fiber base material are added. You may mix and granulate.

上記成形工程及び焼結工程では、公知のセラミックスの成形方法及び焼結方法が適宜用いられる。
成形方法としては例えば、一軸加圧成形、CIP成形(冷間静水圧成形)等の乾式成形法が挙げられる。
一軸加圧成形とは、粉体調合物を金型中で一軸加圧を行うことにより成形体を得る方法である。CIP成形とは、顆粒等の粉体調合物、あるいはあらかじめほぼ所定の形状にされた予備成形体をゴム製の容器に入れて、それを静水圧で加圧することにより成形体を得る方法である。この方法は圧力を周囲から均等に加えるもので、一軸加圧成形より均一な成形体の製造に適する。
成形方法としては上記乾式成形法の他、射出成形、押出成形等の塑性成形法;泥漿鋳込み、加圧鋳込み、回転鋳込み等の鋳込み成形法;ドクターブレード法等のテープ成形法等も適用できる。
上記成形方法は単独でも、2種以上を組み合わせてもよい。
In the forming step and the sintering step, known ceramic forming methods and sintering methods are appropriately used.
Examples of the molding method include dry molding methods such as uniaxial pressure molding and CIP molding (cold isostatic pressing).
Uniaxial pressure molding is a method of obtaining a compact by uniaxially pressing a powder formulation in a mold. CIP molding is a method of obtaining a molded body by putting a powder preparation such as granules or a preformed body that has been formed into a predetermined shape in advance into a rubber container and pressurizing it with hydrostatic pressure. . This method applies pressure evenly from the surroundings, and is suitable for the production of a more uniform molded body than uniaxial pressure molding.
As the molding method, in addition to the dry molding method described above, plastic molding methods such as injection molding and extrusion molding; casting molding methods such as mud casting, pressure casting and rotary casting; tape molding methods such as a doctor blade method and the like can be applied.
The above molding methods may be used alone or in combination of two or more.

焼結方法としては、例えば、雰囲気焼結法、反応焼結法、常圧焼結法、熱プラズマ焼結法等が挙げられる。また、焼結温度及び焼結温度での保持時間はセラミックスの種類に応じて適宜設定することができ、通常1000〜2000℃、2〜6時間が好ましい。例えばジルコニアの場合は、1000〜1800℃、2〜4時間が好ましい。   Examples of the sintering method include an atmosphere sintering method, a reaction sintering method, a normal pressure sintering method, a thermal plasma sintering method, and the like. In addition, the sintering temperature and the holding time at the sintering temperature can be appropriately set according to the type of ceramic, and usually 1000 to 2000 ° C. and 2 to 6 hours are preferable. For example, in the case of zirconia, 1000 to 1800 ° C. and 2 to 4 hours are preferable.

また、加圧しながら焼結を行うことも可能であり、かかる方法として、HP(ホットプレス)、HIP成形(熱間静水圧成形)及び放電プラズマ焼結法等の加圧焼結法を適用することもできる。また、HPとは一軸加圧成形しながら焼結を行う方法である。HIP成形とは静水圧で加圧しながら焼結を行う方法である。加圧焼結法は、得られる焼結体が上述のように高密度となる結果、耐摩耗性を付与する黒鉛の配合量を増大できる点で好ましい。焼結圧力、焼結温度及び焼結温度での保持時間はセラミックスの種類に応じて適宜設定することができ、通常10〜400MPa、1000〜2000℃、0.5〜6時間が好ましい。例えばジルコニアの場合は、10〜200MPa、1000〜1800℃、より好ましくは1000〜1400℃、0.5〜4時間が好ましい。   It is also possible to perform sintering while applying pressure. As such a method, pressure sintering methods such as HP (hot press), HIP molding (hot isostatic pressing), and discharge plasma sintering are applied. You can also. HP is a method of performing sintering while uniaxial pressure forming. HIP molding is a method in which sintering is performed while being pressurized with hydrostatic pressure. The pressure sintering method is preferable in that the resulting sintered body has a high density as described above, and as a result, the blending amount of graphite imparting wear resistance can be increased. The holding time at the sintering pressure, the sintering temperature and the sintering temperature can be appropriately set according to the type of ceramic, and is usually preferably 10 to 400 MPa, 1000 to 2000 ° C., and 0.5 to 6 hours. For example, in the case of zirconia, 10 to 200 MPa, 1000 to 1800 ° C., more preferably 1000 to 1400 ° C., and 0.5 to 4 hours are preferable.

なお、焼結は、セラミックスの種類や添加する材料の種類によって、大気中や、窒素ガス、アルゴンガス等の不活性ガス中で行ってもよいし、一酸化炭素ガス、水素ガス等のような還元性ガス中で行ってもよい。また、真空中で行ってもよい。   Sintering may be performed in the atmosphere or in an inert gas such as nitrogen gas or argon gas depending on the type of ceramic or the material to be added, or carbon monoxide gas, hydrogen gas, etc. You may carry out in reducing gas. Moreover, you may carry out in a vacuum.

上記の工程を経て得られる焼結体を、必要に応じて切削、研削、研摩等の処理を施すことにより本発明の摩擦材が製造される。   The sintered compact obtained through the above steps is subjected to treatments such as cutting, grinding, and polishing as necessary to produce the friction material of the present invention.

なお、本発明に係る摩擦材は乾式摩擦材、湿式摩擦材のいずれにも適用できる。   The friction material according to the present invention can be applied to either a dry friction material or a wet friction material.

以下に示す実施例によって本発明を具体的に説明するが、本発明はこれらに限定されない。   The present invention will be specifically described with reference to the following examples, but the present invention is not limited thereto.

<実施例1〜3、比較例1(無加圧焼結)>
使用材料を下記に示す。
イットリア安定化ジルコニア:東ソー(株)製 TZ−3Y−E
鱗片状黒鉛:日本黒鉛(株)製 CB−150(平均粒径40μm)
易焼結性アルミナ:大明化学工業(株)製 TM−DAR(平均粒径0.1μm)
<Examples 1-3, Comparative Example 1 (pressureless sintering)>
The materials used are shown below.
Yttria stabilized zirconia: TZ-3Y-E manufactured by Tosoh Corporation
Scale-like graphite: CB-150 (average particle size 40 μm) manufactured by Nippon Graphite Co., Ltd.
Easily sinterable alumina: TM-DAR (average particle size 0.1 μm) manufactured by Daimei Chemical Co., Ltd.

実施例1
3mol%イットリア安定化ジルコニア347gと、鱗片状黒鉛2gとを、エタノール溶媒中で回転速度100rpmにて24時間ボールミル混合し、乾燥後、200μmのふるいを用いて整粒し原料粉を得た。原料粉150gを20MPaで一軸成形した後、245MPaでCIP成形を行い、アルゴン中1400℃で2時間焼結し、焼結体を得た。
Example 1
347 g of 3 mol% yttria-stabilized zirconia and 2 g of scaly graphite were ball-milled in an ethanol solvent at a rotation speed of 100 rpm for 24 hours, dried, and sized using a 200 μm sieve to obtain raw material powder. After 150 g of raw material powder was uniaxially molded at 20 MPa, CIP molding was performed at 245 MPa and sintered at 1400 ° C. for 2 hours in argon to obtain a sintered body.

実施例2
3mol%イットリア安定化ジルコニア338g、鱗片状黒鉛12gを用いた以外は、実施例1と同様に焼結体を得た。
Example 2
A sintered body was obtained in the same manner as in Example 1 except that 338 g of 3 mol% yttria-stabilized zirconia and 12 g of flaky graphite were used.

実施例3
3mol%イットリア安定化ジルコニア285g、鱗片状黒鉛7g、易焼結性アルミナ58gを用いた以外は、実施例1と同様に焼結体を得た。
Example 3
A sintered body was obtained in the same manner as in Example 1 except that 285 g of 3 mol% yttria-stabilized zirconia, 7 g of flake graphite, and 58 g of easily sinterable alumina were used.

比較例1
3mol%イットリア安定化ジルコニア150gを20MPaで一軸成形した後、245MPaでCIP成形を行い、アルゴン中1400℃で2時間焼結し、焼結体を得た。
Comparative Example 1
150 g of 3 mol% yttria-stabilized zirconia was uniaxially molded at 20 MPa, then CIP-molded at 245 MPa, and sintered in argon at 1400 ° C. for 2 hours to obtain a sintered body.

<物性評価>
1)相対密度(%)
(焼結体密度/理論密度)×100により、相対密度を求めた。
焼結体密度は得られた焼結体の重量と体積から算出し、理論密度は原材料の真密度と配合割合から算出した。
2)曲げ試験
焼結体から試験片(3×4×40mm)を作製し、JIS R 1601に準拠して試験を行った。
<Physical property evaluation>
1) Relative density (%)
The relative density was determined by (sintered body density / theoretical density) × 100.
The sintered body density was calculated from the weight and volume of the obtained sintered body, and the theoretical density was calculated from the true density and mixing ratio of the raw materials.
2) Bending test A test piece (3 × 4 × 40 mm) was prepared from the sintered body, and the test was performed in accordance with JIS R 1601.

<摩擦試験>
焼結体から試験片(13×15×35mm)を作製し、曙エンジニアリング(株)製フリクションアナライザー摩擦試験機により下記摩擦試験を実施した。
相手材:SGLカーボン製CMCロータ
初速度:50km/h
減速度:0.3G
制動温度:100℃
制動回数:200回
評価項目:平均摩擦係数、パッド摩耗量、ロータ摩耗量、制動時欠け・割れの有無(1:試験片破壊、2:試験片中央部の割れ、3:試験片端部の欠け大、4:試験片端部の欠け小、5:欠け無し)
<Friction test>
A test piece (13 × 15 × 35 mm) was prepared from the sintered body, and the following friction test was performed using a friction analyzer friction tester manufactured by Sakai Engineering Co., Ltd.
Opposite material: CMC rotor made of SGL carbon Initial speed: 50 km / h
Deceleration: 0.3G
Braking temperature: 100 ° C
Number of brakings: 200 Evaluation items: Average friction coefficient, pad wear amount, rotor wear amount, presence / absence of chipping / cracking during braking (1: specimen breakage, 2: cracking at the center of the specimen, 3: chipping at the end of the specimen) Large: 4: Small chip at the end of the test piece, 5: No chipping)

評価結果を表1に示す。   The evaluation results are shown in Table 1.

表1より、実施例の試験片はいずれも強度及び摩擦試験において良好であることが分かる。また、鱗片状黒鉛を配合した実施例1及び実施例2はパッド摩耗量、ロータ摩耗量が減少した。さらに、アルミナと黒鉛を併用した実施例3は特に効果が大きく、焼結性の改善により相対密度が大きくなった。   From Table 1, it can be seen that all of the test pieces of the examples are good in the strength and friction test. Further, in Examples 1 and 2 in which scaly graphite was blended, the pad wear amount and the rotor wear amount were reduced. Furthermore, Example 3 using both alumina and graphite was particularly effective, and the relative density increased due to the improvement in sinterability.

<実施例4〜20、比較例2(加圧焼結)>
使用材料を下記に示す。
イットリア安定化ジルコニア:東ソー(株)製 TZ−3Y−E
鱗片状黒鉛:日本黒鉛工業(株)製 CB−150(平均粒径40μm)
人造黒鉛A:新日本テクノカーボン(株)製 EG−1(平均粒径40μm)
人造黒鉛B:東海カーボン(株)製 G−152A(平均粒径500μm)
弾性黒鉛:Superior Graphite Co.製 RGC14A(平均粒径250μm)
炭素繊維:東邦テナックス(株)製 PAN繊維(3mmチョップ品)
<Examples 4 to 20, Comparative Example 2 (Pressure Sintering)>
The materials used are shown below.
Yttria stabilized zirconia: TZ-3Y-E manufactured by Tosoh Corporation
Scale graphite: CB-150 (average particle size 40 μm) manufactured by Nippon Graphite Industries Co., Ltd.
Artificial graphite A: EG-1 (average particle size 40 μm) manufactured by Shin Nippon Techno Carbon Co., Ltd.
Artificial graphite B: Tokai Carbon Co., Ltd. G-152A (average particle size 500 μm)
Elastic graphite: Superior Graphite Co. RGC14A (average particle size 250 μm)
Carbon fiber: PAN fiber (3mm chop product) manufactured by Toho Tenax Co., Ltd.

上記材料を表2に示す比率で配合したものをエタノール溶媒中で回転速度100rpmにて24時間ボールミル混合し、乾燥後、200μmのふるいを用いて整粒し原料粉を得た。原料粉をアルゴン中、焼結面圧20MPa、焼結温度1300℃、1150℃または1100℃、保持時間2時間の条件下でホットプレス成形した後、焼結体を得た。   A mixture of the above materials in the ratio shown in Table 2 was ball mill mixed in an ethanol solvent at a rotation speed of 100 rpm for 24 hours, dried, and then sized using a 200 μm sieve to obtain a raw material powder. The raw material powder was hot press-molded in argon under a sintering surface pressure of 20 MPa, a sintering temperature of 1300 ° C., 1150 ° C. or 1100 ° C., and a holding time of 2 hours, and then a sintered body was obtained.

各焼結体について、実施例1と同様に物性評価及び摩擦試験を行った。結果を表2に示す。なお、実施例15、16、19及び20の各焼結体における炭素繊維の平均繊維長は、混合状態を光学顕微鏡で観察して、30本の平均値から0.1mmであることを確認した。   About each sintered compact, the physical-property evaluation and the friction test were done like Example 1. FIG. The results are shown in Table 2. In addition, the average fiber length of the carbon fibers in each of the sintered bodies of Examples 15, 16, 19, and 20 was confirmed to be 0.1 mm from the average value of 30 by observing the mixed state with an optical microscope. .

表2より、実施例の試験片はいずれも強度及び摩擦試験において良好であることが分かる。比較例2と実施例4〜8との対比から、鱗片状黒鉛を配合することによりパッド摩耗量及びロータ摩耗量が低減し、さらに制動時の摩擦材の欠けを抑制する効果が確認された。また、実施例4〜8より、鱗片状黒鉛の配合量は20〜30体積%であれば摩耗量が最小となり好ましいことが分かる。
実施例9〜16、19及び20では炭素材料として他種の黒鉛又は炭素繊維を用いた。これらの結果から、人造黒鉛、弾性黒鉛ともに、同程度の鱗片状黒鉛を配合した場合と近い摩擦特性を示した。これより、物性及び摩擦特性に及ぼす効果は、黒鉛であればその形状を問わずほぼ同等に得られることが分かる。炭素繊維の場合も配合することで耐摩耗性の向上が確認された。
また、実施例7、17及び18の対比、ならびに実施例15、19及び20の対比から、焼結温度が1150〜1300℃(相対密度80%以上)であれば、摩擦係数や摩耗量は良好な結果となった。一方、実施例18や実施例20のように、焼結温度が低い(相対密度が80%を下回る)と、摩耗量が増加する。これより、焼結温度は1150℃以上(相対密度80%以上)が好ましいことが分かる。
From Table 2, it can be seen that all the test pieces of the examples are good in the strength and friction test. From the comparison between Comparative Example 2 and Examples 4 to 8, it was confirmed that the amount of pad wear and the amount of rotor wear was reduced by adding scaly graphite, and further the effect of suppressing frictional material chipping during braking was confirmed. In addition, Examples 4 to 8 show that the amount of scaly graphite is preferably 20 to 30% by volume, so that the wear amount is minimized and preferable.
In Examples 9 to 16, 19 and 20, another type of graphite or carbon fiber was used as the carbon material. From these results, both artificial graphite and elastic graphite showed frictional characteristics similar to those when flaky graphite of the same degree was blended. From this, it can be seen that the effects on the physical properties and friction characteristics can be obtained almost equally regardless of the shape of graphite. In the case of carbon fiber, improvement in wear resistance was confirmed by blending.
From the comparison of Examples 7, 17 and 18 and the comparison of Examples 15, 19 and 20, if the sintering temperature is 1150 to 1300 ° C. (relative density of 80% or more), the friction coefficient and the wear amount are good. It became a result. On the other hand, when the sintering temperature is low (relative density is lower than 80%) as in Example 18 and Example 20, the amount of wear increases. This shows that the sintering temperature is preferably 1150 ° C. or higher (relative density of 80% or higher).

<実施例21〜26(金属添加、加圧焼結)>
使用材料を下記に示す。
イットリア安定化ジルコニア:東ソー(株)製 TZ−3Y−E
炭素繊維:東邦テナックス(株)製 PAN繊維(3mmチョップ品)
チタン:(株)高純度化学研究所製、粒径45μmパス
ケイ素:(株)高純度化学研究所製、粒径5μm
<Examples 21 to 26 (metal addition, pressure sintering)>
The materials used are shown below.
Yttria stabilized zirconia: TZ-3Y-E manufactured by Tosoh Corporation
Carbon fiber: PAN fiber (3mm chop product) manufactured by Toho Tenax Co., Ltd.
Titanium: manufactured by Kojundo Chemical Laboratory, Inc., particle size 45 μm pass Silicon: manufactured by Kojundo Chemical Laboratory Co., Ltd., particle size 5 μm

上記材料のうち、ジルコニアと炭素繊維を表3に示す比率で配合したものをエタノール溶媒中で、回転速度400rpmにて60分間ボールミル混合し、乾燥後、200μmのふるいを用いて整粒した。ここに、チタン又はケイ素を表3に示す比率でさらに配合したものをエタノール溶媒中で回転速度100rpmにて24時間ボールミル混合し、乾燥後、200μmのふるいを用いて整粒し原料粉を得た。原料粉をアルゴン中、焼結面圧20MPa、焼結温度1300℃、保持時間2時間の条件下でホットプレス成形した後、焼結体を得た。   Of the above materials, zirconia and carbon fiber blended in the ratios shown in Table 3 were mixed in a ball mill for 60 minutes at a rotational speed of 400 rpm in an ethanol solvent, dried, and then sized using a 200 μm sieve. Here, titanium or silicon further blended at a ratio shown in Table 3 was ball mill mixed in an ethanol solvent at a rotation speed of 100 rpm for 24 hours, dried and then sized using a 200 μm sieve to obtain a raw material powder. . The raw material powder was hot press-molded in argon under conditions of a sintering surface pressure of 20 MPa, a sintering temperature of 1300 ° C., and a holding time of 2 hours to obtain a sintered body.

各焼結体について、実施例1と同様に物性評価及び摩擦試験を行った。結果を表3に示す。なお、炭素繊維の平均繊維長は、混合状態を光学顕微鏡で観察して、30本の平均値から0.1mmであることを確認した。   About each sintered compact, the physical-property evaluation and the friction test were done like Example 1. FIG. The results are shown in Table 3. In addition, the average fiber length of carbon fiber confirmed that it was 0.1 mm from the average value of 30 pieces, observing the mixed state with the optical microscope.

ジルコニアと炭素繊維が同組成で金属を配合しない実施例15と比較すると、チタンを配合した実施例21〜23及びケイ素を配合した実施例24〜26の摩擦材は、パッド摩耗量が低減された。また、金属の配合量とパッド摩耗量の関係を対比すると、ケイ素ではあまり変化がないが、チタンでは配合量の増加と共にパッド摩耗量が低減できた。   Compared with Example 15 in which zirconia and carbon fiber had the same composition and no metal was blended, the friction materials of Examples 21 to 23 in which titanium was blended and Examples 24 to 26 in which silicon was blended had reduced pad wear. . Further, when comparing the relationship between the amount of metal blended and the amount of pad wear, there was not much change with silicon, but with titanium, the amount of pad wear could be reduced as the amount blended increased.

<実施例27〜32、比較例3(加圧焼結)>
使用材料を下記に示す。
窒化ケイ素:電気化学工業(株)製 SN−9FWS(平均粒径0.7μm)
アルミナ(焼結助剤):大明化学工業(株)製 TM−DAR(平均粒径0.1μm)
イットリア(焼結助剤):シーアイ化成(株)製 NanoTek Y203(平均粒径29nm)
鱗片状黒鉛:日本黒鉛工業(株)製 CB−150(平均粒径40μm)
炭素繊維:東邦テナックス(株)製 PAN繊維(3mmチョップ品)
<Examples 27 to 32, Comparative Example 3 (Pressure Sintering)>
The materials used are shown below.
Silicon nitride: SN-9FWS (average particle size 0.7 μm) manufactured by Denki Kagaku Kogyo Co., Ltd.
Alumina (sintering aid): TM-DAR (average particle size 0.1 μm) manufactured by Daimei Chemical Co., Ltd.
Yttria (sintering aid): NanoTek Y203 (average particle size 29 nm) manufactured by CI Kasei Co., Ltd.
Scale graphite: CB-150 (average particle size 40 μm) manufactured by Nippon Graphite Industries Co., Ltd.
Carbon fiber: PAN fiber (3mm chop product) manufactured by Toho Tenax Co., Ltd.

上記材料を表4に示す比率で配合したものをエタノール溶媒中で回転速度100rpmにて24時間ボールミル混合し、乾燥後、200μmのふるいを用いて整粒し原料粉を得た。原料粉を窒素ガス中、焼結面圧20MPa、焼結温度1600℃、保持時間2時間の条件下でホットプレス成形した後、焼結体を得た。   A material blended in the ratio shown in Table 4 was mixed in a ball mill for 24 hours in an ethanol solvent at a rotation speed of 100 rpm, dried, and then sized using a 200 μm sieve to obtain a raw material powder. The raw material powder was hot press molded in nitrogen gas under the conditions of a sintering surface pressure of 20 MPa, a sintering temperature of 1600 ° C., and a holding time of 2 hours, and then a sintered body was obtained.

各焼結体について、実施例1と同様に物性評価及び摩擦試験を行った。結果を表4に示す。   About each sintered compact, the physical-property evaluation and the friction test were done like Example 1. FIG. The results are shown in Table 4.

炭素材料を含有しない比較例3の摩擦材はロータ摩耗量が格段に大きく、ロータ攻撃性が非常に高いが、実施例27〜32の摩擦材のように炭素繊維又は黒鉛を配合することでロータ攻撃性は大幅に改善されることが分かる。また、炭素材料を10体積%以上配合した実施例29、30及び32はほとんどロータが摩耗せず、ロータ攻撃性が非常に低い結果となった。   The friction material of Comparative Example 3 that does not contain a carbon material has a remarkably large rotor wear amount and very high rotor attack. However, the rotor can be obtained by blending carbon fiber or graphite as in the friction materials of Examples 27 to 32. It can be seen that the aggression is greatly improved. In Examples 29, 30 and 32 containing 10% by volume or more of a carbon material, the rotor was hardly worn and the rotor aggression was very low.

<実施例33〜36(炭素繊維、加圧焼結)>
炭素繊維の繊維長や繊維状態を変えて摩擦材を作製した。使用材料を下記に示す。
イットリア安定化ジルコニア:東ソー(株)製 TZ−3Y−E
炭素繊維:東邦テナックス(株)製 PAN繊維(3mmチョップ品(実施例33、34、36)又は6mmチョップ品(実施例35))
<Examples 33 to 36 (carbon fiber, pressure sintering)>
Friction materials were produced by changing the fiber length and fiber state of the carbon fiber. The materials used are shown below.
Yttria stabilized zirconia: TZ-3Y-E manufactured by Tosoh Corporation
Carbon fiber: PAN fiber (3 mm chopped product (Examples 33, 34, 36) or 6 mm chopped product (Example 35)) manufactured by Toho Tenax Co., Ltd.

上記材料を表5に示す比率で配合したものを、表5に示す条件でサンプルミル混合し、原料粉を得た。原料粉をアルゴン中、焼結面圧20MPa、1300℃で2時間の条件下でホットプレス成形した後、焼結体を得た。
なお、炭素繊維の平均繊維長は、混合状態を光学顕微鏡で観察し、30本の平均値より算出し、表5に示した。また、繊維の状態は、光学顕微鏡で混合状態を観察し確認した。図1に実施例34で作成した摩擦材(焼結体)の、図2に実施例36で作成した摩擦材(焼結体)の、摩擦試験後の制動面を光学顕微鏡で観察した図をそれぞれ示す。図1では炭素繊維が解繊した状態、図2では束の状態が観察された。
The above materials were blended at the ratio shown in Table 5 and sample milled under the conditions shown in Table 5 to obtain raw material powder. The raw material powder was hot press molded in argon at a sintering surface pressure of 20 MPa at 1300 ° C. for 2 hours, and then a sintered body was obtained.
The average fiber length of the carbon fibers was observed from the mixed state with an optical microscope, calculated from the average value of 30 fibers, and shown in Table 5. The state of the fiber was confirmed by observing the mixed state with an optical microscope. FIG. 1 is a diagram of the friction material (sintered body) prepared in Example 34 in FIG. 1 and the friction material (sintered body) prepared in Example 36 in FIG. Each is shown. In FIG. 1, the carbon fiber was disassembled, and in FIG. 2, the bundle was observed.

表5より、いずれの実施例も摩擦試験においては良好な結果を示した。実施例33〜35の対比より、炭素繊維の平均繊維長は長いほうが曲げ強度を大きいことが分かる。また、実施例34と36の対比より、炭素繊維は束の状態よりも解繊された状態の方が摩擦材の強度が大きく、摩耗試験の結果も良好である。これは繊維が解繊された状態の方が単繊維で存在しやすく、繊維が摩擦材中に埋まった状態で存在できるため、脱離しにくく、繊維の潤滑が効果的に発現され摩耗量の低減に効果的であるためと考えられる。   From Table 5, all the examples showed good results in the friction test. From the comparison of Examples 33 to 35, it can be seen that the longer the average fiber length of the carbon fibers, the greater the bending strength. Further, compared with Examples 34 and 36, the strength of the friction material is higher in the defibrated state of the carbon fiber than in the bundle state, and the result of the wear test is also good. This is because the fiber is more easily disassembled when it is defibrated, and it can exist in a state where the fiber is buried in the friction material, so it is difficult to detach, and the lubrication of the fiber is effectively expressed and the amount of wear is reduced. It is thought that this is effective.

本発明の摩擦材は、高温・高負荷領域においても優れた耐熱性と強度を有しており、自動車、鉄道車両、各種産業機械等のディスクパッド、ブレーキライニング、クラッチフェーシング等に好適に用いることができる。   The friction material of the present invention has excellent heat resistance and strength even in a high temperature / high load region, and is preferably used for disk pads, brake linings, clutch facings, etc. for automobiles, railway vehicles, and various industrial machines. Can do.

Claims (7)

セラミックスをマトリックスとする摩擦材であって、炭素材料を含有する摩擦材。   A friction material containing a ceramic material as a matrix and containing a carbon material. 前記セラミックスが、酸化物系セラミックス、窒化物系セラミックス及び炭化物系セラミックスからなる群より選ばれる少なくとも一種である請求項1に記載の摩擦材。   The friction material according to claim 1, wherein the ceramic is at least one selected from the group consisting of oxide ceramics, nitride ceramics, and carbide ceramics. 前記酸化物系セラミックスが、ジルコニア及びアルミナのうち少なくとも一方である請求項2に記載の摩擦材。   The friction material according to claim 2, wherein the oxide ceramic is at least one of zirconia and alumina. 前記窒化物系セラミックスが、窒化ケイ素、窒化アルミニウム及びサイアロンからなる群より選ばれる少なくとも一種である請求項2に記載の摩擦材。   The friction material according to claim 2, wherein the nitride-based ceramic is at least one selected from the group consisting of silicon nitride, aluminum nitride, and sialon. 前記炭化物系セラミックスが、炭化ケイ素、炭化ホウ素、炭化チタン及び炭化タングステンからなる群より選ばれる少なくとも一種である請求項2に記載の摩擦材。   The friction material according to claim 2, wherein the carbide ceramic is at least one selected from the group consisting of silicon carbide, boron carbide, titanium carbide, and tungsten carbide. 前記炭素材料が、黒鉛及び炭素繊維のうち少なくとも一方である請求項1〜5のいずれか1項に記載の摩擦材。   The friction material according to any one of claims 1 to 5, wherein the carbon material is at least one of graphite and carbon fiber. ケイ素、チタン及び鉄からなる群より選ばれる少なくとも一種の金属をさらに含有する、請求項1〜6のいずれか1項に記載の摩擦材。   The friction material according to any one of claims 1 to 6, further comprising at least one metal selected from the group consisting of silicon, titanium, and iron.
JP2012214923A 2011-10-11 2012-09-27 Friction material and friction material manufacturing method Active JP6061592B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012214923A JP6061592B2 (en) 2011-10-11 2012-09-27 Friction material and friction material manufacturing method
PCT/JP2012/076358 WO2013054857A1 (en) 2011-10-11 2012-10-11 Friction material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011224022 2011-10-11
JP2011224022 2011-10-11
JP2012214923A JP6061592B2 (en) 2011-10-11 2012-09-27 Friction material and friction material manufacturing method

Publications (2)

Publication Number Publication Date
JP2013100476A true JP2013100476A (en) 2013-05-23
JP6061592B2 JP6061592B2 (en) 2017-01-18

Family

ID=48621396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012214923A Active JP6061592B2 (en) 2011-10-11 2012-09-27 Friction material and friction material manufacturing method

Country Status (1)

Country Link
JP (1) JP6061592B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387814A (en) * 2013-07-30 2013-11-13 王光明 Novel wear-resistant material and preparation method thereof
JP2015093935A (en) * 2013-11-12 2015-05-18 曙ブレーキ工業株式会社 Friction material
JP2015121266A (en) * 2013-12-24 2015-07-02 日清紡ブレーキ株式会社 Friction material
JP2016050283A (en) * 2014-09-02 2016-04-11 日産自動車株式会社 Friction material
JP2017082215A (en) * 2015-10-29 2017-05-18 東レ株式会社 Fiber reinforced thermoplastic resin molded article and fiber reinforced thermoplastic resin molding material
JPWO2016060129A1 (en) * 2014-10-14 2017-07-27 日本ブレーキ工業株式会社 Friction material composition, friction material and friction member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7078359B2 (en) 2017-06-27 2022-05-31 曙ブレーキ工業株式会社 Manufacturing method of sintered friction material and sintered friction material
EP3875561B1 (en) 2018-10-31 2024-05-15 Akebono Brake Industry Co., Ltd. Sintered friction material and method for producing sintered friction material

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224884A (en) * 1990-12-27 1992-08-14 Mitsubishi Materials Corp Composite rotor disc
JPH06346932A (en) * 1993-06-08 1994-12-20 Akebono Brake Ind Co Ltd Frictional material
JPH0959595A (en) * 1995-08-24 1997-03-04 Nisshinbo Ind Inc Frictional material
JPH0987050A (en) * 1995-09-29 1997-03-31 Toshiba Corp Braking material and braking device for emergency stop of elevator
JPH1180855A (en) * 1997-09-04 1999-03-26 Sumitomo Electric Ind Ltd Sintered friction material
JPH11132270A (en) * 1997-06-28 1999-05-18 Daimler Benz Ag Brake device composed of brake disc and brake lining, and manufacture of it
JP2001089255A (en) * 1999-09-16 2001-04-03 Sgl Technik Gmbh Fiber-strand-reinforced composite material
JP2006306970A (en) * 2005-04-27 2006-11-09 Akebono Brake Ind Co Ltd Friction material
JP2009001613A (en) * 2007-06-19 2009-01-08 Akebono Brake Ind Co Ltd Sintered friction material
JP2009227768A (en) * 2008-03-21 2009-10-08 Nisshinbo Holdings Inc Friction material
JP2010059396A (en) * 2008-08-08 2010-03-18 Akebono Brake Ind Co Ltd Solid lubricant and method of manufacturing the same
JP2011149018A (en) * 2009-12-22 2011-08-04 Akebono Brake Ind Co Ltd Friction material and method for producing friction material

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224884A (en) * 1990-12-27 1992-08-14 Mitsubishi Materials Corp Composite rotor disc
JPH06346932A (en) * 1993-06-08 1994-12-20 Akebono Brake Ind Co Ltd Frictional material
JPH0959595A (en) * 1995-08-24 1997-03-04 Nisshinbo Ind Inc Frictional material
JPH0987050A (en) * 1995-09-29 1997-03-31 Toshiba Corp Braking material and braking device for emergency stop of elevator
JPH11132270A (en) * 1997-06-28 1999-05-18 Daimler Benz Ag Brake device composed of brake disc and brake lining, and manufacture of it
JPH1180855A (en) * 1997-09-04 1999-03-26 Sumitomo Electric Ind Ltd Sintered friction material
JP2001089255A (en) * 1999-09-16 2001-04-03 Sgl Technik Gmbh Fiber-strand-reinforced composite material
JP2006306970A (en) * 2005-04-27 2006-11-09 Akebono Brake Ind Co Ltd Friction material
JP2009001613A (en) * 2007-06-19 2009-01-08 Akebono Brake Ind Co Ltd Sintered friction material
JP2009227768A (en) * 2008-03-21 2009-10-08 Nisshinbo Holdings Inc Friction material
JP2010059396A (en) * 2008-08-08 2010-03-18 Akebono Brake Ind Co Ltd Solid lubricant and method of manufacturing the same
JP2011149018A (en) * 2009-12-22 2011-08-04 Akebono Brake Ind Co Ltd Friction material and method for producing friction material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387814A (en) * 2013-07-30 2013-11-13 王光明 Novel wear-resistant material and preparation method thereof
CN103387814B (en) * 2013-07-30 2015-07-29 王光明 A kind of abrasion resistance material and preparation method thereof
JP2015093935A (en) * 2013-11-12 2015-05-18 曙ブレーキ工業株式会社 Friction material
JP2015121266A (en) * 2013-12-24 2015-07-02 日清紡ブレーキ株式会社 Friction material
JP2016050283A (en) * 2014-09-02 2016-04-11 日産自動車株式会社 Friction material
JPWO2016060129A1 (en) * 2014-10-14 2017-07-27 日本ブレーキ工業株式会社 Friction material composition, friction material and friction member
JP2017082215A (en) * 2015-10-29 2017-05-18 東レ株式会社 Fiber reinforced thermoplastic resin molded article and fiber reinforced thermoplastic resin molding material

Also Published As

Publication number Publication date
JP6061592B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6061592B2 (en) Friction material and friction material manufacturing method
JP5959853B2 (en) Method for manufacturing a ceramic matrix material for brake friction parts
KR101456352B1 (en) Sliding material based on graphite-containing resin, and sliding member
Zhu et al. Enhanced densification and mechanical properties of ZrB2–SiC processed by a preceramic polymer coating route
US7862897B2 (en) Biphasic nanoporous vitreous carbon material and method of making the same
JP2003034581A (en) Silicon nitride abrasion resistant member and method for producing the same
US7364794B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and process for producing the same
JP3350394B2 (en) Graphite composite silicon carbide sintered body, graphite composite silicon carbide sintered composite, and mechanical seal
EP0404571B1 (en) Sliding member
RU2718682C2 (en) Method of making ceramics based on silicon carbide, reinforced with silicon carbide fibres
Meena et al. Mechanical and tribological properties of alumina toughened zirconia composites through conventional sintering and microwave sintering
WO2013054857A1 (en) Friction material
KR101793031B1 (en) Manufacturing method of alumina-graphene composites with excellent wear resistance
Mor et al. Tribological behavior of carbon fiber reinforced ZrB2 based ultra high temperature ceramics
JP5824316B2 (en) Friction material
WO2020090725A1 (en) Sintered friction material and method for producing sintered friction material
CN105198435B (en) Silicon carbide-carbon composite material and preparation method thereof
JP6093228B2 (en) Friction material
Liu et al. Addition of Al–Ti–C master alloys and diopside to improve the performance of alumina matrix ceramic materials
JP2017160402A (en) Friction material
US9108885B2 (en) Alumina-based ceramic materials and process for the production thereof
JP6026731B2 (en) Friction material
JPH1143372A (en) Silicon nitride-based ceramic and its production
JP2020076064A (en) Sintered friction material and method for producing sintered friction material
JPH09170629A (en) Carbon fiber reinforced carbon type sintered body clutch

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161213

R150 Certificate of patent or registration of utility model

Ref document number: 6061592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250