JP2008522778A - 電気透過性増加を用いた薬物又は物質の局所輸送 - Google Patents

電気透過性増加を用いた薬物又は物質の局所輸送 Download PDF

Info

Publication number
JP2008522778A
JP2008522778A JP2007546305A JP2007546305A JP2008522778A JP 2008522778 A JP2008522778 A JP 2008522778A JP 2007546305 A JP2007546305 A JP 2007546305A JP 2007546305 A JP2007546305 A JP 2007546305A JP 2008522778 A JP2008522778 A JP 2008522778A
Authority
JP
Japan
Prior art keywords
drug
tract
capsule
electrodes
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007546305A
Other languages
English (en)
Inventor
ベルスキー,ズィブ
ツァドキン−タミル,マリナ
Original Assignee
イー−ピル ファーマ リミティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イー−ピル ファーマ リミティド filed Critical イー−ピル ファーマ リミティド
Publication of JP2008522778A publication Critical patent/JP2008522778A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0097Micromachined devices; Microelectromechanical systems [MEMS]; Devices obtained by lithographic treatment of silicon; Devices comprising chips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • A61M31/002Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • A61B5/4839Diagnosis combined with treatment in closed-loop systems or methods combined with drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Medicinal Preparation (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Electrotherapy Devices (AREA)

Abstract

患者の胃腸(GI)に輸送される薬物(35)と連動して使用するための装置が提供される。この装置は、1以上の電極(16)を含む摂取可能なカプセル(30)、そして、GI管の標的組織において薬物(36)の局所輸送を誘導する電流を適用するための電極(16)を駆動するように適用される制御部(14)を含む。追加の態様もまた記載される。

Description

関連出願への相互参照
本出願は、本出願の譲受人に譲渡された2004年12月14日出願の米国仮特許出願60/636,447の利益を主張し、これは本明細書に参照により援用される。
本出願は、本出願の譲渡人に譲渡された「透過性を増大する薬物溶離丸薬の長期化された通過時間」と題する、本出願と同日付けで出願されたPCT出願に関連し、本明細書中に参照により援用される。
発明の分野
本発明は、胃腸管薬物輸送システムに関し、より具体的には、胃腸壁を通して薬物の吸収を増大する摂取可能な薬物輸送促進システムに関する。
発明の背景
体循環内への薬物(又は薬物前駆体)の吸収は、薬物の物理化学的特性、その製剤、及び投与経路、経口、直腸内、局所、吸引又は静脈内投与によって決定される。経口投与は、嚥下、咀嚼、吸い込み、並びに口腔投与、即ち、ガムと頬の間に薬物を置くこと、そして舌下投与、即ち、舌下へ薬物を置くことを含む。吸収の前提条件は薬物溶解である。
経口投与された薬物の腸環境への吸収は、一般的に、小腸においてほとんど独占的に行われる。小腸は、密接結合によって連結した上皮細胞の層で裏打ちされている。小腸の内腔から内部環境に、そして、そこから体循環に通過するために、溶解した薬物は、上皮細胞の半透性膜を介して(細胞間通過)又は上皮細胞間の密接結合を介して通過しなければならない。細胞間通過の速度は、小さな脂質可溶性分子を除いて、一般的には低い。さらに、密接結合は、一般的に、大部分の溶解した分子の通過を妨げる。薬物は、受動拡散によって、あるいは他の天然に発生する移動方法、例えば、促進した受動拡散、活性移動又は飲作用によって、生体障壁を横切るするかもしれない。その代わりに、薬物は、生体障壁を横切るように人工的に支援されてもよい。
受動拡散において、運搬は、生体障壁を横切る溶質の濃度勾配に依存する。薬物分子は、体循環によって急激に除去されるので、投与部位の周辺における血中の薬物濃度は、投与部位と比較して低く、大きな濃度勾配を生じる。薬物拡散速度は、その勾配に正比例する。薬物拡散速度はまた、他のパラメータ、例えば、分子の脂質可溶性及び大きさに依存する。細胞膜は脂質であるため、脂質可能性薬物は、相対的に脂質に不溶性の薬物よりもより急速に分散する。同様に、小さい薬物分子は、大きいものよりも急速に生体障壁を貫通する。
別の天然に発生する移動様式は、グルコースのようなある種の分子に対して発生する促進した受動分散である。担体成分は、細胞膜の外側で基質分子と可逆的に一緒になると信じられている。担体−基質複合体は、膜を横切って急速に分散し、内表面で基質を放出する。この過程は、選択性及び飽和性によって特徴付けられる。担体は、相対的に特定の分子の立体構造を有する基質に対してのみ有効であり、この過程は、担体の有効性によって制限される。
能動運搬は、別の天然に発生する移動様式であり、構造的には、内因性物質に類似した薬物に制限されるようである。能動運搬は、選択性及び飽和性によって特徴付けられ、細胞によってエネルギー消費を要求する。種々のイオン、ビタミン、糖、及びアミノ酸について同定されている。
更に別の天然に発生する移動様式は、飲作用であり、流動物や粒子が細胞によってその中に取り込まれる。細胞膜は、流動仏又は粒子を取り囲み、次に、再度、融合し、後で細胞内部に離し移動する小胞を形成する。能動運搬のように、この機構は、エネルギー消費を要求する。タンパク質薬物の薬物運搬において役割を果たすことが知られる。
前述の検討は、天然に発生する移動様式に関連する。これらが不十分である場合、例えば、巨大分子及び極性化合物の場合において、生体障壁を効果的に横切ることができず、薬物運搬は人工的に誘導してもよい。
電気運搬は、一般的には、生体障壁を通る薬物(又は薬物前駆体)の電気的に誘導した通過を意味する。いくつかの電気運搬機構が、下記のように知られている:
イオントフォレーシスは、低レベルの直流(DC)を薬剤の溶液に適用することによって、荷電イオンの電気的に誘導した運搬を必要とする。電荷は反発するのと同様に、正電流の適用は、正に荷電した薬物分子を電極から離し、組織へと駆動し;同様に、負電流は、負に荷電したイオンを組織内に駆動するであろう。イオントフォレーシスは、水溶性のイオン化した薬剤を輸送するための効果的であり迅速な方法である。薬物分子自体が水溶性でない場合、それは、水溶性の実態を形成してもよいコーティング(例えば、ラウリル硫酸ナトリウム(SLS))でコーティングしてもよい。
電気浸透は、電場の影響下で膜を通る試薬を含む溶質の移動を必要とする。
電気泳動は、電磁場における荷電種の移動に基づく。電荷を有するイオン、分子、及び粒子は、電磁場がかけられる場合、溶液中に電流を運ぶ。荷電種の動きは、反対の電荷の電極に向かう傾向がある。連続的な電気泳動の電圧はむしろ高い(数百ボルト)。
エレクトロポレーションは、生体障壁が高電圧交流(AC)サージ即ちパルスに供される方法である。ACパルスは、生物学的膜に一時的な孔を作る。孔は、大きな分子、例えば、タンパク質、DNA,RNA及びプラスミドが生体障壁を介して通過することを可能にする。
イオントフォレーシス、電気浸透、及び電気泳動は、電気的若しくは電磁的駆動力により拡散が促進される拡散過程である。対照的に、エレクトロポレーションは、細胞の境界に沿って生体障壁を物理的に穿孔して、大きな分子の上皮の通過を可能にする。
一般的に、電気運搬中、1を越えるこれらの方法の組み合わせは、受動拡散及び他の天然に発生する移動様式と一緒に発生する。したがって、電気運搬は、少なくとも1つの、及び可能であれば、前述した運搬機構の組み合わせを意味し、天然に発生する移動様式を補足する。
電気運搬による薬物輸送を含む医療機器は、例えば、米国特許第5,674,196号(Donaldsonら)、米国特許第5,961,482号(Chienら)、米国特許第5,983,131号(Weaverら)、米国特許第5,983,134号(Ostrow)、米国特許第6,477,410号(Henleyら)、及び米国特許第6,490,482号(Moriら)に記載され、これら全ては、本明細書中に参照により援用される。
前述の電気運搬法に加えて、他の電気的に支援された薬物輸送機構が存在し、下記を含む。
ソノフォレーシス、即ち超音波の適用は、空洞部分(空洞化として知られる現象)の増大と振動を誘導する。これらは、それによって運搬を増大する脂質二重層を破壊する。効果的な薬物運搬については、治療的周波数よりはむしろ20kHzと1MHz未満との間の低周波数が使用されるべきである。ソノフォレーシス装置は、例えば、米国特許第6,002,961号、第6,018,678号及び第6,002,961号(Mitragotriら)、米国特許第6,190,315号及び第6,041,253号(Kostら)、米国特許第5,947,921号(Johnsonら)、そして、米国特許第6,491,657号及び第6,234,990号(Roweら)に記載され、これら全ては、本明細書中に参照により援用される。
アブレーションは、生体障壁を介した薬物通過を促進する別の方法である。例えば、皮下注射針を用いた機械的アブレーションに加えて、アブレーション技術には、レーザーアブレーション、低温アブレーション、熱アブレーション、マイクロ波アブレーション、高周波アブレーション、液体ジェットアブレーション又は電気的アブレーションが含まれる。
米国特許第6,471,696号(Berubeら)は、薬物輸送装置として用いてもよいマイクロ波アブレーションカテーテルを記載する。米国特許第6,443,945号(Marchittoら)は、レーザーアブレーションを用いて医薬輸送のための装置を記載する。米国特許第4,869,248号(Narula)は、薬物投与の目的で、局所的熱アブレーションを実行するためのカテーテルを記載する。米国特許第6,148,232号及び第5,983,135号(Avrahami)は、電気的アブレーションを用いた薬物輸送システムを記載する。これら全ての特許の開示は、本明細書中に参照により援用される。
経口的薬物投与は、普通の薬物輸送経路である。経口的に投与される薬物の薬物生物学的利用能、即ち、薬物が標的組織に利用され得る程度は、薬物溶解、胃腸(GI)管での薬物分解、及び薬物吸収によって影響される。
薬物溶解は、薬物が、塩、結晶又は水和物形態であるかどうかによって影響される。溶解を改善するために、崩壊剤及び他の賦形剤、例えば、希釈剤、潤滑剤、界面活性剤(薬物の湿潤性、可溶性、及び分散性による溶解速度を増加する物質)、結合剤又は分散剤はまた、しばしば、製造過程で添加される。
GI管における薬物分解は、GI分泌物、低いpH値、及び分解酵素による。管腔のpHは、GI管に沿って変化するので、薬物は、異なるpH値に抵抗しなければならない。血液、食物スタッフ、粘液及び胆汁との相互作用はまた、薬物に影響してもよい。薬物に影響を与え、生物利用能を減少する反応は、(a)例えばテトラサイクリンと多価金属イオンの間の錯体形成;(b)胃酸又は消化酵素による加水分解、例えば、ペニシリン及びパルミチン酸クロラムフェニコール加水分解;(c)腸壁における抱合、例えば、イソプロテレノールの硫酸抱合;(d)他の薬物、例えば、ジゴキシン及びコレスチラミンへの吸着;そして、(e)管腔の微生物叢による代謝を含む。
経口投与された薬物の薬物吸収は、GI管の上皮細胞によって示された生体障壁を横切る薬物の運搬に関する。腸上皮の性質は、薬物吸収を阻害する傾向にある。図1(Martinit,F.H.,et al.,Human Anatomy,Prentice Hall,Englewood Cliffs,NJ,1995)に見られるように、小腸の腸上皮は、腸絨毛と呼ばれる一連の指様突起として形成される。これらは、微絨毛で絨毯を敷いた柱状上皮によって覆われる。微絨毛に沿っている上皮細胞は、閉塞帯とも呼ばれる密接結合によって互いに強力に結合される。密接結合は、腸管腔から身体の内部環境をシールする。ヒトにおける密接結合間のギャップの大きさは、空腸において約8nm、回腸及び結腸において約0.3nmである。したがって、約11.5オングストロームより大きな直径、及び/又は数千ダルトンを有する粒子は、一般的に、このギャップを貫通することができない。
全体としては、低い生物学的利用能は、水に難溶性であり、徐々に吸収される薬物の経口投与形体で最も一般的である。GI管における不十分な時間は、低い生物学的利用能の別の一般的な原因である。摂取された薬物は、1〜2日の間、全体のGI管に、そして、たった約2〜4時間、小腸に晒される。薬物が容易には溶解せず、急速に上皮膜に貫通できない場合、その生物学的利用能は低いであろう。年齢、性別、活動性、遺伝的表現形、ストレス、疾患(例えば、塩酸欠乏症、吸収不良症候群)又は以前のGI外科的処置は、薬物の生物学的利用能に影響し得る。
下記の表1(Edith Mathiowitzによって編集されたEncyclopeda of Controlled Drug Deliveryから)は、薬物の生物学的利用能に影響する経口経路のいくつかのパラメータを要約する。
Figure 2008522778
上皮細胞の物理的障壁に加えて、化学的及び酵素的障壁が薬物吸収に影響を与える。
上皮層を横切る薬物の通過を直接的に促進する薬物及び化学物質を含む摂取可能なカプセルを提供することが知られる。例えば、薬物(化学物質の作用によって間接的に促進される)が分散によって上皮層を横切ると直に、化学物質は、薬物に対して一時的により透過性よくさせる上皮層の変化を誘導してもよい。
薬物吸収に対する別の重要な障壁は、全身前の初回通過の代謝である大部分の肝代謝である。この代謝の支配的な酵素は、薬物の代謝に中心的な役割を有するシトクロームP450の多遺伝子ファミリーである。個体間のP450の変異体は、それらの同じ薬物を代謝する能力における変形体へと導くようである。
加えて、多剤耐性(MDR)は、薬物吸収に対して障壁となってもよい。MDRは、癌治療の失敗の主要な原因であり、それによって、癌細胞が広範な化学療法剤に対する広い耐性を発生する現象である。MDRは、P−糖タンパク質の過剰発現又は多剤耐性に関連したタンパク質(MRP)と関連しており、2つの膜貫通型トランスポーター分子が腫瘍細胞からの毒性薬物を除去するポンプとして作用する。P−糖タンパク質は、急性骨髄性白血病(AML)細胞の膜における一方向流出ポンプとして作用し、白血病細胞の外へそれらをポンプで汲み出すことによって細胞毒製剤の細胞内濃度を低下させる。さらに、ダウノルビシンを含む種々の化学療法剤に対して耐性を授与する。
送信機及び他の電気的部分を含有する摂取可能なカプセルである摂取可能なラジオ丸薬が知られる。1964年に、Heidelberg大学の研究者は、GI管のpHを監視するための丸薬を開発した(Noller,H.G.,“The Heidelberg Capsule Used For the Diagnosis of Peptc Diseases”,Arospace Medcine, Feb,1964、pp.115−117)。
1989年7月に発行された“Ingestible size continuously transmitting temperature monitoring pill”と題する米国特許第4,844,076号(Leshoら)は、本明細書中に参照により援用されるが、摂取可能な大きさのカプセルにカプセル化した温度応答性送信機を記載する。このカプセルは、小腸的に、平均的な体温を監視するように構成される。摂取可能な大きさの温度丸薬は、再充電可能な態様において構成することが可能である。この態様において、この丸薬は、再充電可能なニッケルカドミウム電池を充電するために磁気ピックアップとしてタンク回路に誘導コイルを使用する。
“Telemetry capsule and process”と題する米国特許第5,279,607号(Schentagら)は、本明細書中に参照により援用され、消化管への薬剤の輸送、特に繰り返し可能な輸送のための摂取可能なカプセル及び方法を記載する。摂取可能なカプセルは、本質的に消化されないカプセルであり、電気エネルギー放出手段、無線シグナル送達手段、薬剤貯蔵手段及び遠隔作動可能な薬剤放出手段を含有する。カプセルは、予め計画された経路において消化管を通じて進行する場合、遠隔の受信機にシグナルを送信し、特定の部位に到達した場合に、薬剤の投与量を放出するように遠隔的に誘発される。
“Sampling capsule and process”を題する米国特許第5,395,366号(D’Andreaら)は、本明細書中に参照により援用され、消化管の流動体のサンプリングのための類似の摂取可能なカプセル及び方法を記載する。
蠕動を促進するための電気刺激カプセルの使用が知られる。PCT公開WO97/31679(Dirin)及びWO97/26042(Terekhin)は、両者とも本明細書中に参照により援用され、例えば、外科的処理後の治療として、消化管疾患の予防対策として、又は蠕動の促進のために使用される消化管の電気刺激のための摂取可能なカプセルを記載する。
PCT公開WO97/31679は、さらに、“Gastrointestinal tract Electrostimulator”と題するPekaraskyらによるUSSR Inventor’s Certificate No.1223922,Int.Cl.A61N 1/36,Bulletin No.14を開示し、それは、本明細書中に参照により援用され、外科的処置後の治療として、消化管疾患の予防対策として、又は蠕動の促進のための消化管の電気刺激のために適合される飲み込めるカプセルを記載し、それは、さらに、薬剤投薬のために適合される。
米国特許出願2003/0125788(Long)は、本明細書中に参照により援用され、体腔内に導入するためのカプセルを記載する。このカプセルは、導電性流動体で満たされたバルーンを含み、あるいは、電極を支持する羽根を作動するための機構を含む。臍孔は、カプセルの後端に付着してもよい。制御ユニットは、体腔を通してカプセルの推進力を制御する。
米国出願2003/0093031(Long)は、本明細書中に参照により援用され、下記:体腔へ導入するためのカプセル;カプセルが体腔の内側にある場合の体腔の外側に伸長するのに十分な柔軟性と長さであるカプセルに付着した臍孔;及びカプセルを通して内腔に薬剤を投薬する手段を含む薬物輸送システムを記載する。このカプセルは、第一及び第二電極を含んでもよい。チャネルは、体腔の外側から体腔の壁まで薬剤を流動的に連結するためのカプセル中に複数の水抜き孔まで臍孔を通して伸長してもよい。
ラジオ丸薬のような摂取可能な装置を追跡する方法は、例えば、上述の米国特許第5,279,607号(Schentagら)、上述の米国特許第5,395,366号(D’Andreaら)及び米国特許第6,082,366号(Andriiら)(“Method and arrangement for dtermining the position of a marker in an organic cavity”と題する)に記載され、これら全ては、本明細書中に参照により援用される。
摂取可能な装置によるGI管の視覚的試験が知られる。米国特許第5,984,460号は、“Pass−through duodenal enteroscopic device”と題し、この開示は、本明細書中に参照により援用され、小腸の自然の収縮波を利用して小腸の中のいかなる他の物体ともほぼ同一速度で進ませる、繋留した摂取可能な腸検査ビデオカメラを記載する。ビデオカメラは、前端で照明源を含む。より良好に見るためにカメラの直前の小腸を穏やかに膨張させるように適合化された透明の膨張可能なバルーンが、カメラのレンズおよび発光源を覆っている。小径の通信および電源ケーブルは、カメラが小腸を通って動く際に、カメラの後方の開口を通ってほどける。小腸を通る動きが完了すると、ケーブルは自動的に分離して、該ケーブルが胃および腸を通って引き出されることを可能にする。カメラは大腸を通り続け、そして直腸を通って患者から通り抜ける。
米国特許第5,604,531号(Iddanら)(“In vivo video camera system”と題する)は、本明細書中に参照により援用され、摂取可能なカプセル内にカプセル化されたビデオカメラシステムを記載し、これは、全体の消化管を通じて通過するように配置され、自立したビデオ内視鏡として作動する。摂取可能なカプセルは、カメラシステム、及びこのカメラシステム上の目的とする領域を画像化するための光学系、及びカメラシステムのビデオアウトプットを体外の受信システムに中継する送信機を含む。光源は光学系のボアホール内に配置される。
同様に、米国特許出願2001/0035902(Iddanら)(“Device and system for in vivo imaging” と題する)は、本明細書中に参照により援用され、インビボ画像を得るためのシステム及び方法を記載する。このシステムは、画像化系、およびCMOS画像化カメラから患者の体外に配置した受信系にシグナルを送信する超低出力高周波送信機を含有する。
その代わりに、米国特許第6,428,469号(Iddanら)(“Energy management of a video capsule”と題する)は、本明細書中に参照により援用され、胃腸管のインビボでの画像を得るための省エネルギー装置を記載する。自立したカプセルのような装置は、少なくとも1つの画像ユニット、この画像ユニットに接続された制御ユニット、及びこの制御ユニットに接続された電源を含む。制御ユニットは、スイッチユニット、及びスイッチシステムに接続した軸方向運動検出器を含み、重複画像の獲得を避けるために電源の電源を切る。
米国特許第6,632,216号(Houzegoら)及び米国特許出願公開2005/0075559(Houzegoら)は、本明細書中に参照により援用され、GI管における選択された位置に物質を輸送するための摂取可能な装置を記載する。この装置は、物質の投与のための開口した位置に装置の開口可能部に電力で動かすための電磁気放射の受信機を含む。受信機は、エネルギー場を結合するコイル状ワイヤーを含み、このワイヤーは空芯若しくはフェライトコアを有する。装置は、場合により、発熱エレメント及び可溶性制限によって規定されるラッチを含む。装置はまた、物質の投与を知らせるための送信機回路の起動および該物質を排出するために使用されるピストンの抑止の一方若しくは双方の機能を果たしうる可撓性部材を含んでもよい。
PCT公開WO02/094369(Walla)は、本明細書中に参照により援用され、特にイオントフォレーシスの手段によって、皮膚を通じて、液体、軟膏又はゲル様稠度を有する薬剤のような物質を適用するための装置を記載する。物質の吸収は、DC電流の適用によって生じる。この刊行物はまた、身体開口部への挿入のためのカプセル状の密封容器を記載し、外側部分の連続的な電場を発生する少なくとも2つの電極を有する。適用される物質を受け入れる装置は、電極上に提供される。容器は、身体開口部、特に、泌尿生殖器、膣、及び/又は肛門管、及び/又は口、耳及び/鼻の空洞における粘膜及び/又は皮膚と接触するように配置される。
米国特許第5,217,449号(Yudaら)は、本明細書中に参照により援用され、外筒、及び外筒中を動くことができるピストンを有するカプセルを記載し、このピストンはカプセルの外側に薬剤を排出し、又はサンプリング目的で体液を吸収するように外部から与えられたシグナルにより起動される。カプセルは、外的に与えられる磁気シグナルに応答して起動手段に電源を接続してそれによりカプセルの起動を開始する、通常は開放のリードスイッチを包含する遠隔制御可能な手段を有する。
米国特許第5,464,395号(Faxonら)は、本明細書中に参照により援用され、身体の通路を取り囲む組織内に直接的に治療薬及び/又は診断薬を輸送するカテーテルを記載する。カテーテルは、組織に所望の試薬を輸送するように、カテーテルの外側に突出されることが可能な少なくとも1つの針カニューレを含む。カテーテルはまた、好ましくは、1又はそれより多くの膨張可能なバルーンを含む。
米国特許第5,925,030号(Grossら)は、本明細書中に参照により援用され、透水性材料の壁を有するハウジング、及び置換可能なメンブレンによって分別された少なくとも2つのチャンバーを有する経口薬物輸送装置を記載する。第一チャンバーは、薬物を受け入れ、薬物が圧力で放出される開口部を有する。第二チャンバーは、第二チャンバー内にイオン性水溶液の移入によって閉ざされる電気回路の部分を形成する2つの間隔を空けて離れた電極の1つを含有する。電流は回路を通じて流れる場合、気体が発生し、第一チャンバーを圧縮し、GI管に進行的な輸送のための開口部を通じて有効成分を排除する置換可能なメンブレンに作用する。
米国特許第4,239,040号(Hosoyaら)は、本明細書中に参照により援用され、身体に薬物を排出し、身体からサンプルを回収するためのカプセルを記載する。カプセルは、内筒がスライド可能なように据え付けられている外筒を含む。内筒は、圧縮バネのバイアス力に対して外筒の一端で溶解可能な糸によって保持される。糸の溶解に応じて、バネが、外筒の他端に内筒の滑動をもたらし、この滑動中に、移動中の内筒より先の外筒から薬物が押し出され、あるいは、身体サンプルが、動いている内筒の後ろの外筒中に引き出される。調節可能な受信機を含む電気回路は、外部から送信された電気シグナルに応答して、糸を溶融するためのヒーターにエネルギーを与え、それによって所望の時間で内筒の滑動をもたらす。
米国特許第4,425,117号(Hugemannら)は、本明細書中に参照により援用され、消化管の所定又は所望の位置で物質を放出するカプセルを記載する。カプセルは、内部に分離壁を有し、第一チャンバー及び第二チャンバーを形成し、第一チャンバーは、その壁に1個の孔がある。圧縮した状態で、圧縮バネは、第二チャンバー内に位置した本体に固着される。針は、分離壁に面する圧縮バネ上に据え付けられる。第二チャンバーの共振回路は、高周波数の電磁場に同調させられている。共振回路は、本体周辺に位置したカップリング回路、コイルの他端に接続し、第一チャンバーから離れて伸長するコンデンサ、及びカップリング回路及びコンダンサーに取り付けられた抵抗ワイヤーを有する。ヒューズワイヤーは、圧縮バネに接続され、本体の縦の通路を通じて伸長し、第一チャンバーから離れて面する本体端に接続される。ヒューズワイヤーは、抵抗ワイヤーに接続する。膨張した状態のバルーンは、第一チャンバーに配置される。該共振回路が同調させられている高周波数を有する外的電磁場に装置がかけられる場合に、ヒューズワイヤが過熱しかつ破断する。圧縮バネが解放されて針の先端を分離壁およびバルーンを通して押し、バルーンが破裂して第一チャンバーに含有される任意の物質を放出する。
米国特許第4,507,115号(Kambaraら)は、本明細書中に参照により援用され、内側に形成されたチャンバー及びチャンバーを外部と連絡するための連絡用通路を有するカプセル本体、チャンバー内に配置され、該チャンバーの体積が最大となる液体受領位置と該チャンバーの体積が最小となる液体押出位置との間で移動できる移動可能な部材、そして、選択的に液体を受領し押し出す位置に移動可能な部材を移動するために超音波によって加熱される形状記憶合金からできたコロイド状の操作部材を含むカプセルを記載する。
米国特許第5,951,538号(Joshiら)は、本明細書中に参照により援用され、生物学的に活性な試薬を保持し、投与するための制御された輸送装置を記載する。この装置は、第一端部を有するハウジング、第二端部、そしてハウジングに付属したポートを含む。置換部材、化学的又は電機化学的ガス発生セル、そして起動及び制御回路はハウジングの中に取り囲まれる。電気化学的又は化学的セルは、ハウジングの中にガスを発生し、ハウジングの中に含有した有益な試薬に対して置換部材を押し、そして、予め決定した速度で出口ポートを通り、体腔に有益な試薬を押す。ハウジングを体腔の内側に固定するための固定機材をハウジングに付属させてもよい。
米国特許第5,167,626号及び第5,170,801号(Casperら)は、本明細書中に参照により援用され、GI管の所定の位置に物質を放出するためのカプセルを記載する。カプセル本体は、その外周壁に1以上の開口を規定し、その中に回転可能に配置されたスリーブ弁は、その外周壁に1個若しくはそれ以上の対応する開口を有する。該スリーブ弁は、コイルおよび電気的に接続された加熱可能な抵抗器を含み、それらは熱に応答して形状記憶合金から成形した作動装置部材と動作上関連づけられ、加熱されない第一の形状から加熱された第二の形状に移行することができる。加熱されない第一の形状から加熱された第二の形状までの移行の間に作動装置部材の動きがスリーブ弁を開放位置まで回転させるのに役立つように作動装置部材により係合されるために、カプセル本体中に作動装置停止手段が提供される。
PCT公開WO01/45552(Houzegoら)は、本明細書中に参照により援用され、部位特異的薬物輸送カプセル(SSDC)の物質リザーバーのための閉鎖部材を記載する。SSDCは、閉鎖部材の開口に抵抗する非直線的な力を提供する保持装置を包含する。非直線的な力は、開放力が抵抗力の最大値を超えた場合にのみ閉鎖部材がリザーバーを開封し、それによりリザーバーの時期尚早の又は偶発的な排出を確実に防止できるとして記載されている。抵抗力の好ましい提供手段は、開口中に閉鎖部材を付加的に封止する回転するエラストマー製Oリングである。
米国特許第6,344,027号(Goll)は、本明細中に参照により援用され、心組織において注入液(流動物)保持を増加するために高圧注入を利用して、心組織内に流動物を輸送及び注入するための技術を記載する。カテーテルを通じて伸長する注入管腔を有する軸を含むカテーテルが記載され、軸の近位端は、1000psiを越える一時的な圧力を生じることができる加圧した流動物供給源に接続されている。軸の遠位末端は、注入管腔を有する流動物伝達における注入部分を有するノズルを含み、それによって、加圧した流動物供給源からの流動体が、部分的に心組織を貫通するのに十分に高い流出速度で心組織に輸送されてもよい。
米国特許第6,369,039号(Palasisら)は、本明細書中に参照により援用され、体腔、脈管系又は組織内の標的位置に部位特異的に治療薬を輸送するための方法を記載する。この方法は、関連した治療薬の実質的に飽和した溶液を有する医療用装置を提供し;体腔、脈管系又は組織へ医療用装置を導入し;標的位置で約0〜約5気圧の圧力で最大約5分で医療用装置から多量の治療薬の溶液を放出し;そして、体腔、脈管系又は組織から医療用装置を引き出すことを含む。本特許はまた、体腔、脈管系又は組織への治療薬を輸送するためのシステムを記載し、それに関連した治療薬の実質的に飽和した溶液を有する装置を含む。
米国特許第5,964,726号(Korensteinら)は、本明細書中に参照により援用され、(a)連続した低い単極若しくは交流電圧パルスを分子/巨大分子および細胞に適用すること、(b)細胞の表面で該分子/巨大分子の濃度を増大させて、該分子/巨大分子の細胞の膜との増大した相互作用に導きつつ、細胞膜中の荷電したタンパク質および脂質の電気泳動的動きもまた引き起こすこと、ならびに(c)細胞膜の脱安定化を引き起こして、それによりエンドサイトーシス過程および膜脂質二重層中の構造的欠陥を通る拡散を介して細胞質中に分子/巨大分子が浸透することによる、分子および巨大分子の膜小胞、細胞若しくは組織中への導入技術を記載する。
PCT公開WO02/098501(Keisariら)は、本明細書中に参照により援用され、腫瘍組織を治療する方法を記載し、この方法は、腫瘍組織の細胞に、エンドサイトーシスを介した細胞死を誘導できる選択された強度、繰り返し周波数、及びパルス幅を有する電場パルスを適用することを含み、それによって腫瘍組織を治療する。
米国特許第3,659、600号(Merrill)は、本明細書中に参照により援用され、薬物を放出するために磁力によって起動される移植可能なカプセルを記載する。米国特許第3,485,235号(Felson)、第3,315,660号(Abella)、第3,118,439号(Perrenoud)、及び第3,057,344号(Abella)は、本明細書中に参照により援用され、治療及び/診断目的でGI管に挿入するためのカプセルを記載する。
米国特許第6,572,740号(Rosenblumら)、本明細書中に参照により援用され、電解質K2HPO4又はより小さなアルカリ性リン酸緩衝液、(b)修飾した組成物を有する電極、あるいは(c)電解質及び修飾した組成物電極の組み合わせを含む電解セルを記載する。K2HPO4電解質又はより小さいアルカリ性リン酸緩衝液、及び修飾した電極は、液体輸送装置に使用することができ、それは、経時的に一定速度で、又は制御した可変速度で液体を輸送する。
米国特許出願公開2004/0162501(Iram)は、本明細書中に参照により援用され、腸管を通過するカプセルを用いて、腸管の状態をマッピングし、診断し及び治療する技術を記載する。手術の治療及び/又は検出様式を採用するため、腸管の長さに沿ってカプセルの位置を追跡するためのカプセル追跡システムが記載される。記載されている治療様式は、管の特定の部分での能動若しくは受動薬物輸送、又は遺伝子治療を含む。例えば、平滑筋応答、即ち、収縮又は蠕動運動の刺激又は阻害を引き起こすために、電気シグナルを小腸組織に輸送することもまた記載される。
米国特許第6,709,388号(Mosseら)は、本明細書中に参照により援用され、収縮組織を含有する壁を有する通路を通じて、本体、及び選択的に順方向に装置を駆り立てる壁を刺激するために少なくとも1つの収縮組織刺激手段を含む。刺激手段は、電極であってよく、通路は、動物又はヒトの消化管であり得る。この装置は、内視鏡として特に有用であるように記載される。
米国特許出願公開2005/0158246(Takizawaら)は、本明細書中に参照により援用され、カプセル薬剤投与システムを記載し、身体内部のマーキングのための第一カプセル;薬剤のための第二カプセル;生体内でマーキングを行うマーキング装置;薬物を放出する放出装置;検出装置によって検出されたマーキングが特定のマーキングであるかどうかを決定する決定装置;そして、特定したマーキングであることを決定装置によって検出された場合、放出装置を操作する放出制御装置を含み、ここで、第一カプセルがマーキング装置を含む。第二カプセルは、薬物保持セクション及び放出装置を含む。
米国特許第6,951,536号(Yokoiら)は、本明細書中に参照により援用され、複数のハードユニット、及びその複数のハードユニットに接続するソフト接続ユニットを含むカプセル型医療用装置を記載し、それは、ハードユニットのいずれかよりも小さな径を有し、複数のハードユニットの1つは、他のハードユニットとはサイズが異なる。
米国特許第6,958,034号(Iddan)は、本明細書中に参照により援用され、典型的には、実質的に又は完全に検出装置内にある推進システムを含む検出装置を記載する。推進システムは、例えば、回転プロペラを含んでもよい。検出装置は、撮影装置を有するインビボで自立したカプセルであってもよい。
米国特許出願公開2003/0167000(Mullickら)は、本明細書中に参照により援用され、複数の治療又は診断的機能を実行することができる小規模の摂取可能なカプセルを記載し、外部制御、ポーズビーコン、そして視覚アレイ及び送信機から中継される情報の組み合わせによって制御される。
米国特許第6,535,764号(Imranら)は、本明細書中に参照により援用され、胃疾患の診断及び治療のための技術を記載する。機能的装置は、患者の胃の内部に駐在し、付属装置による胃壁に固定される。機能的装置は、胃の種々のパラメータ又は胃の環境感受性であるセンサーであってもよく、あるいは治療的輸送装置であってもよい。一態様において、胃の電気的刺激を適用するための電極を刺激することは、付着措置又は別のものによる胃壁に固定される。内視鏡装置システムは、それが胃壁に付着される場合、食道を通じて胃内に機能的装置を輸送する。内視鏡器具は、付着装置及び機能的装置を胃壁に接着又は取り除き、最適な付着位置の決定を支援するために使用されてもよい。
GI運動性を調節するための移植可能な電極が記載されている。例えば、米国特許第6,327,503号(Familoni)は、本明細書中に参照により援用され、移植可能なパルス発生装置を用いて、GI管の要求に応じた刺激を提供する技術を記載し、1以上の治療用導線を通じて胃システムに結合してよいことが記載され、そして、米国特許第6,238,423号(Bardy)は、本明細書中に参照により援用され、導線及びいくつかの電極対を通じて、食道から肛門まで、患者の管の標的部分と関連した筋肉に電気的刺激を供給する移植可能な刺激発生機器を用いることを含む便秘予防技術を記載する。
GI運動性を調節するための化学物質もまた記載されている。例えば、米国特許第5,987,136号(Kreekら)は、本明細書中に参照により援用され、オピオイド拮抗薬の投与によるヒトにおける胃腸運動障害を調節する方法を記載し、そして、米国特許第4,959,485号(Youssefyehら)は、本明細書中に参照により援用され、ある種のジベンゾフランカルボキサミド、及び支障のある胃腸の運動性に関連した障害を治療するための5HT3拮抗剤としてのそれらの使用を記載する。
米国特許出願公開2004/0127942(Tomtovら)は、本明細書中に参照により援用され、神経組織の電気刺激のための技術及び患者への調節された薬物輸送を記載する。装置は、複数の容器、各容器に含有した少なくとも1つの薬物を含む放出システム、及び各容器から医薬として有効量の薬物を選択的に放出するための調節手段を含む移植可能な薬物の輸送モジュール;患者の神経組織を用いた操作可能な連動のための少なくとも1つの刺激電極に連結したシグナル発生装置を含む神経電気的刺激体;そして、薬物輸送モジュール及び新規電気刺激体の操作可能な相互作用を調節するための少なくとも1つのマイクロコントローラーを含む。マイクロコントローラーは、薬物モジュールのシグナル送信機及び制御手段を調節してもよい。この装置はまた、例えば、電気刺激、薬物又はその両方を輸送する場合に表示するマイクロコントローラーにシグナルを輸送するための操作可能なセンサーをさらに含んでもよい。
Cheung Eらによる、“Endoscopic microcapsule”(NanoRobotics Lab at Carnegie Mellon University)と題する日付のない調査企画書は、http://www.me.cmu.edu/faculty1/sitti/nano/projects/capsules/で利用可能であり、本明細書中に参照により援用され、カプセルがGI管に付着し、消化器系内に移動できるようにするためのマイクロカプセルに関する制御系を開発する企画を記載する。
Lambertらによる、“Autonomous telemetric capsule to explore the small bowel”(Med Bio Eng Comput 29(2):191−6(1991))と題する論文は、本明細書中に参照により援用され、ヒトにおける小腸を研究するために開発された腸の遠隔測定カプセルを記載する。それは、位置検出器、無線送信機、リチウム電池及び互換性の先端を含有するシリンダー(直径11mm、長さ39mm)からなる。患者によって飲み込まれた後、カプセルは、全管を通して通過し、排泄物中で回収される。小腸を通過中、無線送信機から提供される情報はまた、幽門から包括される距離ならびに進行の方向および速度の連続的モニタリングを可能にする。さらに、互換性の先端のタイプにしたがって、その後の分析のために0.5mlの管腔内液をサンプリングすること、又は薬理学的研究のために正確に決定された場所でいずれかの液体物質を1ml放出することが、遠隔制御により可能である。
Conway BRによる“Drug delivery strategies for the treatment of Helicobacter pylori infections”Curr Pharm Des 11(6):775−90(2005)は、本明細書中に参照により援用され、ピロリ菌の治療のための薬物輸送戦略を要約する。彼は、「胃粘膜における滞留部位への薬物輸送は、現在の新しい治療の効率を改善するかもしれない。胃保持輸送システムは、潜在的に、粘液層の貫通を増加させ、したがって、作用部位での薬物濃度を増加させることができる。局所薬物輸送の増大のための提案される胃保持システムは、フローティングシステム、拡張できる膨潤システム及び生体接着システムを含む。一般的に、これらの製剤に伴う問題は、特異性の欠如であり、粘液の代謝回転に限定され、胃に保持することができない。胃粘膜接着システムは、この組織を処置するための見込みある技術として支持され、粘膜層を貫通し、粘膜−上皮内面で活性を延長する。」と記載した。
下記の論文は、本明細書中に参照により援用され、関心があるものである。
Leonard M et al.,“Iontophoresis−enhanced absorptive flux of polar molecules across intestinal tissue in vitro”,Pharm Res 17(4):476−8(2000)
Ghartey−Tagoe EB et al.,“Electroporation−mediated delivery of molecules to model intestinal epithelia”,Int J Pharm 270(1−2):127−38(2004)
Hildebrand KR et al.,“Intrinsic neuroregulaiton of ion transport in porcine distal jejunum”J Pharmacol Exp Ther 255(1):285−92(1990)
Neunlist M et al.,“Human ENS regulates the intestinal epithelial barrier permeability and a tight junction−associated proein ZO−1 via VIPergic pathways”,Am J Physiol Gastrointest Liver Physiol 285(5):G1028−36(2003)(Epub July 24,2003)
Mosse CA et al.,“Electrical stimulation for propelling endoscoes”,Gastrointestinal Endoscopy 54(1):79−83(2001)
Wang Y et al.,“Endoscopin Nd:YAG laser therapy combined with local chemotherapy of superficial carcinomas of the oesophagus and gastric cardia”,Lasers Med Sci 16(4):299−303(2001)
Hejazi R et al.,“Stomach−specific anti−H.pylori therapy;part III:effect of chitosan microspheres crosslinking on the gastric residence and local tetracycline concentrations in fasted gerbilis”,Int J Pharm 272(1−2)99−108(2004)
Brzozowski T et al.,“Effect of local application of growth factors on gastric ulcer healing and mucosl expression of cyclooxygenase−1 and −2”,Digestion 64(1):15−29(2001)
Lundin PD et al.,“Pharmacokinetics of budesonide controlled ideal release capsules in children and adults with active Crohn’s disease”,Aliment Pharmacol Ther 17(1):85−92(2003)
Shojaei AH et al.,“Buccal mucosa as a route for systemic drug delivery:a review”,J Pharm Pharmaceut Sci 1(1):15−30(1998)
Rutgeerts P et al., “Review article:the expanding role of biological agents in the treatment of inflammatory bowel disease−focus on selective adhesion molecule inhibition”,Aliment Pharmacol Ther 17:1435−1450(2003)
米国特許第6,600,953号(Fleslerら)は、本明細書中に参照により援用され、肥満のような状態を治療するための装置を記載する。この装置は、一連の1以上の電極を含み、それらは、患者の胃本体の周辺で1以上のそれぞれの部位に適用されるように適合される。制御ユニットは、胃の本体にシグナルを適用するために電極セットを駆動すように適合され、その応用が、胃の本体の筋組織の部分の伸縮レベルを増加させ、約3秒よりも長い実質的に連続した期間、胃の本体の一部の断面積を減少させる。ある実施態様において(図4)、1又はそれより多くの電極は、患者の小腸の動脈供給の各部位に又はその周辺で適用される。例えば、電極のいくつか又は全部は、上腸間膜動脈上又はその周辺に配置されるように記載される。制御ユニットは、これらの電極が接続する動脈の収縮の制御可能なレベルを引き起こすシグナルを適用するための電極を駆動することを記載する。その代わりに又は加えて、他の変換機(示されていない)は、動脈供給の周辺におきて患者に移植され、収縮するための動脈供給における動脈のいくつか又は全部を誘導する制御ユニットによって駆動されることが記載される。例えば、これらの変換機は、機械的又は化学的手段を用いてこの収縮を誘導するように記載される。この装置によって発生する収縮は、肉を摂取中及び摂取後の患者の血流への最終的に吸収される総カロリー数を減少させるために、小腸への血液の流れを一時的及び制御可能に減少することを記載する。
米国特許第6,676,657号(Wood)は、本明細書中に参照により援用され、中空器官の内壁に高周波エネルギーを輸送することによって中空器官の内腔を閉塞するための技術を記載する。配置された状態で、器官の壁を収縮するために伸長する高周波電極が記載される。いくつかの態様において、電極は、治療的収縮を増加するための内壁に実質的に適合する。’657特許はまた、中空器官の内腔を閉塞することに加えて、いくつかの臨床的状況下において、気管支、食道、腸のセグメント、又は血管における絞窄又は狭窄を減少するような、内腔の直径を増加することが治療的に望まれるかもしれない。
発明の概要
本発明のいくつかの実施態様において、摂取可能な活性薬物輸送システムは、胃腸(GI)管に提供される薬物の吸収を増加するための電気的手段を含む。いくつかの適用について、このような手段は、GI管の壁を通して薬物を能動的に輸送するために、薬物の電気運搬を実行するための装置を含む。典型的には、この薬物輸送システムは、輸送手段を含み、GI管に薬物が放出されるまで保持する丸薬形状でありその大きさのカプセルを含む。
典型的には、GI管の壁を介した薬物の能動的駆動は、(a)小腸の上皮層の密接結合を介した薬物の通過によって壁を通じて薬物を駆動すること、及び/又は(b)上皮細胞それ自体を貫通することによる壁を通じて薬物を駆動することによって達成される。典型的には、薬物の治療的に重要な部分が、それによってGI管の毛細管供給との直接的接触に通じ、それから全身循環へと通じる。したがって、この態様は、典型的には、(例えば、大きさ又は化学的特性により)正常に大部分排除されるであろう薬物分子の血流への移入を可能にすることに気づかれたい。
本発明のいくつかの実施態様において、薬物輸送システムは、電気運搬を促進するために設計された電気シグナル送信機及び少なくとも2つの電極を含む。いくつかの適用について、電気運搬は、「低強度時変」(LITV)シグナルによって促進され、それは、請求の範囲を含む本出願において、下記:
・約5ボルト/cm未満であり、約1Hzを超える比率で変化する場を付与するシグナル;
・(LITVシグナルがない場合の薬物の通過の程度と比較して)薬物の通過における少なくとも100%の増加を可能にするの十分な程度までGI管の上皮層の密接結合を開口することができるシグナル;及び
・GI管の上皮層の細胞のエレクトロポレーションを引き起こすには不十分なシグナル
からなるリストから選択される電気シグナルを含むものとして理解されるべきである。
その代わりに又はそれに加えて、電気運搬は、上皮細胞を通じた拡散過程を増加するイオントフォレーシス、電気浸透及び電気泳動法、及び/又はエレクトロポレーションのいずれか1つ、又はそれらの組み合わせを含む。エレクトロポレーションは、請求の範囲を含む本出願において(本明細書中に参照により引用された特許、特許出願又は論文のいずれかにおいて見出されるいずれかの他の定義にかかわらず)、典型的には、高電圧を用いて、上皮を通じて大きな分子の通過を可能にする上皮細胞膜における一時的な透過可能な構造又は微小孔を創作する電気運搬として理解されるべきである。
本発明のいくつかの態様において、電気運搬に達成するパラメータは、少なくとも部分的に薬物の特定の性質に基づいて選択される。より大きな分子を含む薬物は、より強力な刺激を要求する。その代わりに又はそれに加えて、パラメータは、薬物が輸送されるべきGI管の部分に少なくとも部分的に基づいて選択される。典型的には、パラメータは、GI管壁を通じた薬物通過を達成するのに十分な最低量のエネルギーを適用するパラメータが選択される。
本発明のいくつかの実施態様において、薬物輸送システムは、例えば、pH感受性コーティングのような環境に応答するように作動的である機材を含む。コーティングは、典型的には、当該技術分野に既知の技術を用いて、患者の小腸への移入に応じて溶解するように設定される。本発明の他の実施態様に従って、環境感受性の機材は、例えば、センサー(例えば、電気センサー、及び/又は温度センサー若しくはpHセンサー)、タイマー、送信機/受信機又はカメラを含む。
本発明のいくつかの実施態様において、コーティングの溶解は、次々とGI管壁の壁を通じて薬物を能動的に駆動する駆動手段の活性化を誘発する。いくつかの適用について、コーティングは、小腸に典型的なpH範囲で溶解するように設定される。
本発明のいくつかの実施態様において、コーティングは、カプセルの第一部分全体の第一の厚さで、そして、カプセルの第二部分全体の第二の厚さで適用される。その代わりに又はそれに加えて、異なるタイプのコーティングは、異なる時間で小腸に晒されるべきであるカプセルのそれぞれの部分を提供するために、カプセルの異なる部分に適用される。
本発明のいくつかの実施態様において、駆動機材を活性化するための官能性は、コーティングによって提供されるものとして上記に記載され、他の活性化官能性によって補足又は置換される。いくつかの適用について、カプセルは、生物学的又は生理学的パラメータを検出し、それに応答する駆動機材を活性化するバイオセンサーを含む。必要に応じて、バイオセンサーは、下記:酵素センサー、温度センサー、pHセンサー又はタイマー(典型的には、カプセルを押し込んでいる患者又はカプセルを摂取している患者のような事象の所定時間で駆動機材を活性化するために既知のやり方で反応する化学物質を含むタイマー)の1又はそれより多くを含んでもよい。その代わりに又はそれに加えて、カプセルは、オンボード分析のためのGI管の画像、及び、必要に応じて、この画像に応答して駆動機材の活性化を記録するカメラを含む。
いくつかの適用について、カプセルは、カメラによって記録された画像に応答して、及び/又はバイオセンサーによる読み取りに応答して、シグナルを伝達するように適合される送信/受信ユニットを含む。送信されたデータは、典型的には、リアルタイムで分析され、そして、薬物を投与するかどうか、及びいつ薬物を投与するかの決定が、(例えば、医師によって又は患者の外部のコンピュータによって)なされる。
本発明のいくつかの実施態様において、摂取可能な電気的に支援された薬物輸送促進システムは、例えば、このシステムを摂取する前、同時又はその後に、薬物輸送システムを摂取することと連動して、患者によって摂取される商業的に利用可能な薬物丸薬に含有される薬物の吸収を増加する電気的な手法を含む。このように、このシステムは、GI管において薬物丸薬から放出された薬物の吸収を増加するために使用される。これらの態様において、薬物輸送システムは薬物を含有せず、薬物を含む統合ユニットに取り付けられない。
本発明のいくつかの実施態様において、摂取可能な電気的に支援された薬物輸送促進システムは、このシステムに結合した商業的に利用可能な薬物丸薬に含有した薬物の吸収を増大するための電気的手法を含む。丸薬は、例えば、医療、安全性、商業的考察又は他の考察に応じて、製造業者、患者又はヘルスケアワーカーによってシステムに結合させてもよい。
本発明のいくつかの実施態様において、摂取可能な電気的に支援された薬物輸送又は薬物輸送促進システムは、小腸における薬物の輸送時間を延長するために、このシステムが小腸にある期間を延長するように適合される。いくつかの適用については、薬物は、延期された薬物輸送期間、実質的に継続的に輸送され、一方、他の適用については、薬物は、脈動的に輸送される。いくつかの適用について、薬物の制御された放出形態が使用され、その放出曲線は、システム及び薬物が小腸にある延長された期間と調和するように構成される。得られる長期の平らな放出曲線は、しばしば、薬物の有効性及び/又は安全性を改善する。
いくつかの実施態様において、薬物輸送システムは、GI管に電流を適用することによる薬物輸送期間を延長するように設定され、薬物輸送システムの周辺の平滑筋の局所的収縮を誘導するために電流を設定し、それによってGI管内でシステムの動きを減少(即ち、停止、減速又は逆転)する。結果として、薬物輸送システムの移動時間及び/又はGI管における薬物の滞留時間が延長される。薬物輸送システムは、本目的のために使用される電極を用いて、あるいはLITVシグナルをも適用する電極を用いて電流を適用する。その代わりに又はそれに加えて、薬物輸送システムは、GI管における薬物輸送システムの動きを緩める機械的手段を用いることによって、薬物輸送期間を延長するように設定される。いくつかの適用について、この薬物輸送システムは、1又はそれより多くの延長可能な要素を含み、これらはGI管の壁によって本システムに適用される抵抗を増加するために拡大するように適合される。
本発明のいくつかの実施態様において、速度減少成分は、薬物輸送要素と連動してGI管に輸送されるように適合する自己膨張性であり柔軟性のある構造を含む。いくつかの適用について、薬物輸送要素は、(a)摂取可能な電気的に支援された薬物輸送システム又は薬物促進システム(例えば、本明細書中に記載したもの)、(b)慣用的な薬物丸薬、及び/又は(c)徐放性薬物リザーバーを含む。GI管の適した位置で一度、この構造は膨張し、結果として生じるGI管との接触は、GI管を通じた構造の動き、つまり、薬物輸送成分の動きを減少する。典型的には、この構造は、薬物輸送要素に結合し、又は薬物輸送要素の統合された成分である。
いくつかの適用について、この構造は、当該分野において知られた技術を用いて、崩壊形態で、GI管のある種の位置、例えば、小腸におけるある種の位置で溶解するように構成されるカプセルでGI管に輸送される。GI管とのカプセルの天然に発生する配列は、GI管を有する構造を適切に配列するように使用される。
典型的には、自己膨張性の構造は、GI管において膨張後、ある種の期間、その形状を喪失するように適合される。例えば、この構造の全て又は部分は、GI管の流動体との接触に応じた制御したやり方で溶解する材料を含んでもよい。いくつかの適用について、自己膨張性構造は、少なくとも同じ数の連結要素によって連結した3個又はそれより多く(例えば、4個)のリングを含む。典型的には、この要素は、GI管の流動体との接触に応じて制御したやり方で溶解するように適合される固体状の徐々に溶解する材料を含む。これらの要素が溶解する場合、構造は、別々のリングに分解し、それらは、GI管を通じた通路と関連した実質的に正常な速度で、実質的に、GI管に薬物輸送システム又は他の材料の通過をさらに遮断又は減速することなしに、GI管を通過する。この構造は、典型的には、GI管で膨張する前に集密貯蔵のために折り畳まれる。例えば、構造は、溶解可能なカプセル中に折り畳まれ貯蔵されてもよい。
したがって、本発明の実施態様にしたがって、下記:
カプセルによって貯蔵される薬物;
患者の胃腸(GI)管内にカプセルの位置に応答可能なようにその状態を変化するように適合された環境に反応性の構造;
第一及び第二電極;そして
約5mA未満の電流、約12Hz〜約24Hzの周波数で一連のパルスを約0.5ミリ秒〜約3ミリ秒の間のパルス幅を伴って適用するための第一及び第二電極を駆動することによって、GI管の上皮層を通じて、環感受性の機材の様態変化に応じて、薬物の通過を促進するように適合される制御部
を含む、摂取可能なカプセルを含む薬物投与のための装置を提供する。
いくつかの適用について、パルスは、単相方形パルスを含み、制御部は、一連の単相方形パルスを適用するための第一及び第二電極を駆動するように適合される。
いくつかの適用について、第一及び第二電極はステンレススチールを含む。
いくつかの適用について、環境感受性の機材は、GI管におけるカプセルによって移動した距離の指示を察知するために適用されるセンサーを含み、環境感受性の機材は、距離に応答した状況変化を受けるために適用される。その代わりに又はそれに加えて、環境感受性の構造はGI管を画像にするために適用されるカメラを含み、制御部は、カメラによって獲得した画像に応答して、一連のパルスを適用するために第一及び第二電極を駆動するように適合される。
いくつかの適用について、カプセルの配置は、カプセル周辺の温度を含み、環境感受性の機材は、温度センサーを含み、そして、制御部は、温度センサーによって察知した温度に応答して、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。その代わりに又はそれに加えて、カプセルの配置はカプセル周辺のpHを含み、環境感受性の機材はpHセンサーを含み、制御部はpHセンサーによって察知したpHに応答して、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
いくつかの適用について、環境感受性の構成は、GI管の特徴を察知するように適合されるセンサーを含み、制御部は察知した特徴に応答して、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
いくつかの適用について、制御部は、一連のパルスを適用するために第一及び第二電極を駆動するように、そして、第一電極と第二電極との間のイオントフォレーシス電流を駆動するように適合される。
いくつかの適用について、制御部は、GI管内でカプセルの配置に応答して少なくとも部分的に選択されるパラメータを用いて一連のパルスを設定するように適合される。その代わりに又はそれに加えて、制御部は、薬物の特性に応答可能なように、少なくとも部分的に選択されるパラメータを用いて一連のパルスを設定するように適合される。
いくつかの適用について、カプセルは、第一及び第二電極の中間にある中心部分を含み、中心部分の形状は、GI管の内腔中の電流を減じるようなものである。いくつかの適用について、カプセルは、第一及び第二電極の中間にある中心部分を含み、中心部分は、GI管の上皮層と接触して、中心部分をもたらすようにな径を有し、それによりGI管の内腔に電流を減じる。いくつかの適用について、カプセルは、第一及び第二電極の中間にある自己膨張性の中心部分を含み、GI管に存在することに応答して、膨張するように適合される中心部分は、GI管の上皮層と接触して、中心部分をもたらすようにする径を有し、それにより、GI管の内腔中の電流を減じる。いくつかの適用について、カプセルは、第一及び第二電極の中間にある中心部分を含む、中心部分の外側表面は、疎水性材料を含む。いくつかの適用について、カプセルは、第一及び第二電極の中間にある中心部分を含み、中心部分の外側の表面が脂溶性材料を含む。
いくつかの適用について、環境感受性の機材は、本質的に全体として生分解性である。いくつかの適用について、第一及び第二電極及び制御部は、本質的に全体として生分解性である。
いくつかの適用について、少なくとも80%の量のカプセルは生分解性である。いくつかの適用について、少なくとも95%の量のカプセルは生分解性である。いくつかの適用について、本質的に全カプセルは生分解性である。
いくつかの適用について、環境感受性の機材は、カプセル表面へのコーティングを含む。いくつかの適用について、コーティングは、pH感受性コーティングを含む。
一態様において、制御部は、約2mAと約4mAとの間の電流で一連のパルスを適用するように適合される。いくつかの適用について、制御部は、約3mAの電流で一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約16Hzと約20Hzとの間の周波数で一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約18Hzの周波数で一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約0.5ミリ秒と約1.5ミリ秒の間のパルス幅を有する一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約1ミリ秒のパルス幅を有する一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部部は、約1分と約360分との間の期間、一連のパルスを適用するための第一及び第二電極を駆動するために適用される。いくつかの適用において、制御部は、約60分と約240分との間の期間、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
本発明の一態様にしたがって、薬物を貯蔵するのに適合した摂取可能なカプセルであって、下記:
患者の胃腸(GI)管内にカプセルの配置に応答可能なようにその状態を変化するように適合される環境感受性の機材;
第一及び第二電極;そして
約0.5ミリ秒及び約3ミリ秒との間のパルス幅を有し、約5mA未満の電流で、約12Hzと約24Hzとの間の周波数で一連のパルスを適用するために第一及び第二電極を駆動することによって、GI管の上皮層を通じて、環境感受性の機材の状態の変化に応答して、薬物の通過を促進するように適合される制御部
を含むカプセルを含む、薬物を投与するための装置もまた提供される。
ある実施態様において、制御部は、約2mAと約4mAとの間の電流で一連のパルスを適用するように適合される。いくつかの適用について、制御部は、約3mAの電流で一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約16Hzと約20Hzとの間の周波数で一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約18Hzの周波数で一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約0.5ミリ秒と約1.5ミリ秒との間のパルス幅を適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約1ミリ秒のパルス幅を用いて一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約1分と約360分との間の期間、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約60分と約240分との間の期間、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
本発明の態様に従って、丸薬に含有される薬物の投与を促進するための装置であって、薬物を含有し及び統合ユニットに薬物で積層しないように適合される摂取可能なハウジングを含み、このハウジングは、下記:
患者の胃腸(GI)管内でその配置に応答可能なようにその状態を変化するよう適合される摂取可能な環境感受性の機材;
第一及び第二電極;そして
約0.5ミリ秒及び約3ミリ秒との間のパルス幅を有し、約5mA未満の電流で、約12Hzと約24Hzとの間の周波数で一連のパルスを適用するために第一及び第二電極を駆動することによって、GI管の上皮層を通じて、環境感受性の機材の状態の変化に応答して、薬物の通過を促進するように適合される制御部
を含む。
いくつかの適用について、環境感受性の機材は、GI管にハウジングによって移動した距離の指示に感受性であるように適合されるセンサーを含み、環境感受性の機材は、その距離に応答して状態変化を受けるように適合される。
いくつかの適用について、環境感受性の機材は、GI管を画像にするように適合されるカメラを含み、制御部は、カメラによって獲得した画像に応答して、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
いくつかの適用について、環境感受性の機材の配置は、環境感受性の機材の周辺の温度を含み、その環境感受性の機材は温度センサーを含み、制御部は、温度センサーによって察知される温度に応答して一連のパルスを適用するための第一及び第二電極を駆動するために適用される。
いくつかの適用について、環境感受性の機材の配置は、環境感受性の機材の周辺におけるpHを含み、環境感受性の機材は、pHセンサーを含み、制御部は、pHセンサーによって察知されるpHに応答して一連のパルスを提供するための第一及び第二電極を駆動するように適合される。
いくつかの適用について、環境感受性の機材は、GI管の特徴を察知するように適合されるセンサーを含み、制御部は、察知された特徴に応答して、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
いくつかの適用について、環境感受性の機材は、薬物丸薬からの薬物の放出の期待される時間で一般的に状態変化を受けるように適用される。
いくつかの適用について、環境感受性の機材は、ハウジングの表面上にコーティングを含む。いくつかの適用について、このコーティングはpH感受性のコーティングを含む。
ある実施態様において、制御部は、約2mAと約4mAとの間の電流で一連のパルスを適用するように適合される。いくつかの適用において、制御部は、約3mAの電流で一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約16Hzと約20Hzとの間の周波数で一連のパルスを適用するための第一及び第二電極を駆動するように適用される。いくつかの適用について、制御部は、約18Hzの周波数で一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約0.5ミリ秒と約1.5ミリ秒との間のパルス幅を有する一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約1ミリ秒のパルス幅を有する一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約1分と約360分との間の期間、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約60分と約240分との間の期間、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
本発明の実施態様に従って、下記:
薬物丸薬を装置に結合するように適合されるカップリング機構;
第一及び第二電極;そして
約0.5ミリ秒及び約3ミリ秒との間のパルス幅を有し、約5mA未満の電流で、約12Hzと約24Hzとの間の周波数で一連のパルスを適用するために第一及び第二電極を駆動することによって、GI管の上皮層を通じて、環境感受性の機材の状態変化に応答して、薬物の通過を促進するように適合される制御部
を含む薬物丸薬を用いた使用のための装置が提供される。
いくつかの適用について、薬物丸薬は、商業的に利用可能な薬物丸薬を含み、そして、カップリング機構は、商業的に利用可能な薬物丸薬を装置に結合させるように適合させる。いくつかの適用について、カップリング機構は接着剤を含む。
いくつかの適用について、カップリング機構は、少なくとも1つの電極を含む。いくつかの適用について、少なくとも1つの電極は、薬物丸薬が装置に結合された場合に、薬物丸薬の部分を取り囲むように構成される。
ある実施態様において、制御部は、約2mAと約4mAとの間の電流で一連のパルスを適用するように適合される。いくつかの適用について、制御部は、約3mAの電流で一連のパルスを適用するための第一及び第二電極を駆使するように適合される。
ある実施態様において、制御部は、約16Hzと約20Hzとの間の周波数で一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約18Hzの周波数で一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約0.5ミリ秒と約1.5ミリ秒との間のパルス幅を有する、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約1ミリ秒のパルス幅を有する一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約1分と約360分との間の時間、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用において、制御部は、約60分と約240分との間の時間、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
さらに追加として、本発明の実施態様に従って、患者への薬物投与を促進するための装置が提供され、この装置は、下記:
センサーユニット:
患者の血液循環において物質濃度の指示を検出するように適合されるセンサー;及び
無線でその指示を送信するように適合される無線送信機;そして
摂取可能なカプセル:
この指示を受信するように適合される無線受信機;
第一及び第二電極;及び
約0.5ミリ秒及び約3ミリ秒との間のパルス幅を有し、約5mA未満の電流で、約12Hzと約24Hzとの間の周波数で一連のパルスを適用するために第一及び第二電極を駆動することによって、胃腸(GI)管の上皮層を通じて、環境感受性の機材の状態変化に応答して、薬物の通過を促進するように適合される制御部
を含む。
いくつかの適用について、物質は薬物を含み、センサーは血液循環中の薬物濃度の指示を検出するように適合される。
いくつかの適用について、物質は検定物質を含み、センサーは血液循環中の検定物質の濃度の指示を検出するように適合され、そして、制御部は、受信した指示に応答可能なように、GI管の上皮層を通じた検定物質及び薬物の通過を促進するように適合される。
いくつかの適用について、センサーは、非侵襲性外部センサーを含む。その代わりに、センサーは、侵襲性センサーを含む。
いくつかの適用について、摂取可能なカプセルは、薬物を貯蔵するように適合される。その代わりに、摂取可能なカプセルは、薬物を含有するために、及び薬物を含む統合ユニットに積層されるために適合されない。
いくつかの適用について、薬物は薬物丸薬に含有され、摂取可能なカプセルは、カップリング機構を有し、摂取可能なカプセルに薬物丸薬を結合するように適合される。
いくつかの適用について、摂取可能なカプセルは、環境感受性の機材を含み、GI管内にカプセルの配置に応用可能なようにその状態を変化するように適合され、そして、環境感受性の機材の状態変化に応答して、上皮層を通じて薬物の通過を促進するように適合される。
いくつかの適用について、指示は、それぞれの第一及び第二時間で察知されるそれぞれの第一及び第二指示を含み、無線送信機は、第一時間の経過後に第一指示を送信するように適合され、そして、第二時間の経過後に第二指示を送信するように適合され、並びに、制御部は、第一及び第二指示に応答して、第一及び第二の一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、センサーユニットは、少なくとも10分によって第一及び第二時間を隔てるために適合される。いくつかの適用について、制御部は、少なくとも1つの指示に応答して、一連のパルスの少なくとも1つのパラメータを制御するように適合される。
いくつかの適用について、摂取可能なカプセルは、カプセル無線送信機を含み、センサーユニットは、センサーユニット無線受信機を含み、そして、摂取可能なカプセルは、カプセル無線送信機及びセンサーユニット無線受信機を介して、カプセルの特性のセンサーユニットを無線的に通知するために適合される。いくつかの適用について、その特性は、カプセルの位置、制御部の状況、GI管のpHレベル、及びGI管の温度からなるリストから選択され、そして、カプセルは、選択された性質のセンサーを無線的に通知するために適合される。
いくつかの適用について、物質は、化学物質を含み、その血液濃度は、薬物の血中濃度によって影響され、そして、センサーは、血液循環中の化学物質の濃度の指示を検出するように適合される。いくつかの適用について、化学物質は、グルコース、成長ホルモン、及びヘモグロビン結合酸素からなるリストから選択され、そして、センサーは、血液循環中の選択された化学物質の濃度の指示を検出するように適合される。
ある実施態様において、制御部は、約2mAと約4mAとの間の電流で一連のパルスを適用するように適合される。いくつかの適用について、制御部は、約3mAの電流で一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約16Hzと約20Hzとの間の周波数で一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約18Hzの周波数で一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約0.5ミリ秒と約1.5ミリ秒との間のパルス幅を有する一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約1ミリ秒のパルス幅を有する一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約1分と約360分との間の期間、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約60分と約240分との間の期間、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
さらに加えて、本発明の態様に従って、患者への薬物投与を促進するための装置が提供され、この装置は、下記:
下記:
患者の生理的パラメータの指示を検出するように適合されるセンサー;及び
この指示を無線で送信するように適合される無線送信機
を含むセンサー;そして
下記:
この指示を受信するように適合される無線受信機;
第一及び第二電極;及び
約0.5ミリ秒及び約3ミリ秒との間のパルス幅を有し、約5mA未満の電流で、約12Hzと約24Hzとの間の周波数で一連のパルスを適用するために第一及び第二電極を駆動することによって、胃腸(GI)管の上皮層を通じて、環境感受性の機材の状態の変化に応答して、薬物の通過を促進するように適合される制御部
を含む摂取可能なカプセル
を含む。
いくつかの適用について、本発明は、患者の血圧の指示を含み、そして、センサーは、血圧の指示を察知するために適用される。その代わりに又はそれに加えて、この指示は、患者の心臓に関連したパラメータの指示を含み、このセンサーは、心臓に関連したパラメータの指示を察知するように適合される。さらに、その代わりに又はそれに加えて、この指示は、患者の活性レベルの指示を含み、そして、センサーは、活性レベルの指示を察知するように適合される。
いくつかの態様について、この指示は、患者の温度の指示を含み、そして、センサーは、温度の指示を察知するように適合される。その代わりに又はそれに加えて、指示は、患者の24時間周期の指示を含み、そして、センサーは、24時間周期の指示を察知するように適合されるクロック回路を含む。
ある実施態様において、制御部は、約2mAと約4mAとの間の電流で一連のパルスを適用するように適合される。いくつかの適用について、制御部は、約3mAの電流で一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約16Hzと約20Hzとの間の周波数で、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約18Hzの周波数で、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約0.5ミリ秒と約1.5ミリ秒との間のパルス期間を有する一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約1ミリ秒のパルス期間を有する一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約1分と約360分との間の期間、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約60分と約240分との間の期間、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
なお更には、本発明の態様に従って、患者に薬物の投与を促進するための装置が提供され、この装置は、下記:
第一及び第二電極;そして
約0.5ミリ秒及び約3ミリ秒との間のパルス幅を有し、約5mA未満の電流で、約12Hzと約24Hzとの間の周波数で一連のパルスを適用するために第一及び第二電極を駆動することによって、胃腸(GI)管の上皮層を通じて、薬物の通過を促進するように適合される制御部
を含む。
ある実施態様において、制御部は、約2mAと約4mAとの間の電流で一連のパルスを適用するように適合される。いくつかの適用について、制御部は、約3mAの電流で一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約16Hzと約20Hzとの間の周波数で、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約18Hzの周波数で、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約0.5ミリ秒と約1.5ミリ秒との間のパルス幅を有する一連のパルスを適用するための第一及び第二電極を駆動するように適合される。いくつかの適用について、制御部は、約1ミリ秒のパルス幅を有する一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
ある実施態様において、制御部は、約1分と約360分との間の期間、一連のパルスを適用するための第一及び第二電極を駆動するように適用される。いくつかの適用について、制御部は、約60分と約240分との期間、一連のパルスを適用するための第一及び第二電極を駆動するように適合される。
本発明の実施態様に従って、薬物の投与方法は、下記:
薬物を含む摂取可能なカプセルを患者に投与すること;
患者の胃腸(GI)管内でカプセルの配置を検出すること;そして
配置の検出に応じて、このカプセルによって、約0.5ミリ秒及び約3ミリ秒との間のパルス幅を有し、約5mA未満の電流で、約12Hzと約24Hzとの間の周波数で一連のパルスを適用することによって、GI管の上皮層を通じて、薬物の通過を促進するように適合されること
を含む。
さらに、本発明の実施態様に従って、丸薬に含有される薬物の投与方法は、下記:
丸薬を患者に経口的に投与すること;
薬物含まない摂取可能なカプセルを患者に経口的に投与すること;
患者の胃腸(GI)管内でカプセルの標的位置を検出すること;そして
標的位置の検出に応じて、カプセルによって、約0.5ミリ秒及び約3ミリ秒との間のパルス幅を有し、約5mA未満の電流で、約12Hzと約24Hzとの間の周波数で一連のパルスを適用することによって、GI管の上皮層を通じて、薬物の通過を促進すること
を含む。
なお更に、本発明の実施態様に従って、薬物の投与方法は、下記:
摂取可能なカプセルに薬物丸薬を含有する薬物を結合すること;
カプセルを患者に投与すること;
患者の胃腸(GI)管内でカプセルの標的位置を検出すること;そして
標的位置の検出に応じて、カプセルによって、約0.5ミリ秒及び約3ミリ秒との間のパルス幅を有し、約5mA未満の電流で、約12Hzと約24Hzとの間の周波数で一連のパルスを適用することによって、GI管の上皮層を通じて、薬物の通過を促進すること
を含む。
さらに、本発明の実施態様に従って、患者への薬物投与を促進するための方法が提供され、この方法は、下記:
摂取可能なカプセルを患者に投与すること;
患者の血液循環中の物質濃度の指示を検出すること;
この指示を無線送信すること;
摂取可能なカプセルを受信すること;
受信した指示に応答可能なように、カプセルによって、約0.5ミリ秒及び約3ミリ秒との間のパルス幅を有し、約5mA未満の電流で、約12Hzと約24Hzとの間の周波数で一連のパルスを適用することによって、胃腸(GI)管の上皮層を通じて、薬物の通過を促進すること
を含む。
さらに付加的に、本発明の実施態様に従って、患者への薬物投与を促進する方法が提供され、この方法は、下記:
摂取可能なカプセルを患者に投与すること;
患者の生理学的パラメータの指示を検出すること;
この指示を無線送信すること;
摂取可能なカプセルで指示を受信すること;そして
受信した指示に応答可能なように、カプセルによって、約0.5ミリ秒及び約3ミリ秒との間のパルス幅を有し、約5mA未満の電流で、約12Hzと約24Hzとの間の周波数で一連のパルスを適用することによって、胃腸(GI)管の上皮層を通じて、薬物の通過を促進すること
を含む。
いくつかの適用について、指示は、患者の24時間周期の指示を含み、そして、この指示を検出することには、24時間周期の指示を検出することが含まれる。いくつかの適用について、薬物は抗血栓剤を含み、この薬物の通過を促進することは、上皮層を通じて抗血栓剤の通過を促進することを含む。
いくつかの適用について、指示は、患者の体温の指示を含み、そして、この指示を検出することには、体温の指示を検出することが含まれる。いくつかの適用について、薬物は、抗生物質を含み、そして、この薬物の通過を促進することは、上皮層を通じて抗生物質の通過を促進することを含む。
本発明の実施態様に従って、薬物の投与方法もまた提供され、この方法は、下記:
患者の胃腸(GI)管に薬物を投与すること;そして
約0.5ミリ秒及び約3ミリ秒との間のパルス幅を有し、約5mA未満の電流で、約12Hzと約24Hzとの間の周波数で一連のパルスを適用することによって、GI管の上皮層を通じて、薬物の通過を促進すること
を含む。
さらに、本発明の実施態様に従って、薬物投与のための装置は、摂取可能なカプセルを含み、下記:
カプセルに貯蔵された薬物;
患者の胃腸(GI)管内でのカプセルの配置に応答可能なようにその状態を変化するように適合される環境感受性の機材;
環境感受性の機材の状態変化に応答して、電流を適用するための薬物通過促進電極を駆動することによって、薬物通過を促進するように適合される制御部;そして
制御部が薬物通過を促進している少なくとも一時期にGI管を通じてカプセルの速度を減少するように適合される速度減少要素
を含む。
いくつかの適用について、速度減少要素は、1又はそれより多くの速度減少要素を含み、そして、制御部は、GI管に、薬物輸送システム周辺の平滑筋の局部収縮を含むことができる電流を適用するための速度減少電極を駆動するために適用され、それによって、速度を減少するように、GI管内でカプセルの動きが減少する。いくつかの適用について、速度減少電極は、薬物通過促進電極を含む。その代わりに又はそれに加えて、速度減少要素は、速度を減少するように膨張するように適合される1又はそれより多くの膨張性要素を含む。
さらに、本発明の実施態様に従って、薬物投与のための装置が提供され、この装置は、下記:
薬物の貯蔵及び放出に適合される摂取可能な薬物輸送要素;そして
薬物輸送要素が薬物を放出している少なくとも期間の一部で患者の胃腸(GI)管を通じて薬物輸送要素の速度を減少するように適合される速度減少
を含む。
なおさらに、本発明の実施態様に従って、患者の胃腸(GI)管に輸送される薬物とともに使用される装置が提供され、この装置は、薬物周辺でGI管に患者の血管収縮を誘導するように適合される摂取可能なカプセルを含む装置である。
いくつかの適用について、カプセルは化学物質を貯蔵し、そして、血管収縮を誘導するための化学物質を放出するように適合される。その代わりに又はそれに加えて、カプセルは、血管収縮を誘導することができる電流をGI管に適用するように適合される1又はそれより多くの血管収縮を誘導する電極を含む。さらに、その代わりに又はそれに加えて、カプセルは、血管収縮を誘導することができる1又はそれより多くの力をGI管に適用するように適合される1又はそれより多くの血管収縮誘導機械的作動装置を含む。
ある実施態様において、カプセルは、薬物を貯蔵及び放出するために適用される。
ある実施態様において、装置は、電流を適用するための薬物通過促進電極を駆動することによって薬物の通過を促進するように適合される1又はそれより多くの薬物通過促進要素、及び制御部を含む。
さらに追加的に、本発明の実施態様に従って、患者の胃腸(GI)管における使用のための装置が提供され、この装置は、カプセルによる非GI管の血管収縮のいずれかの誘導よりも大きな程度まで患者のGI管の血管収縮を誘導するように適合される摂取可能なカプセルを含む。
ある実施態様において、カプセルは薬物を含む。その代わりに、カプセルは、薬物を含まない。
いくつかの適用について、装置は、複数の摂取可能なカプセルを含み、カプセルは、患者による1日当り少なくとも1つのカプセルの摂取が、血管収縮によって、1週間当り少なくとも1kgの患者の体重減少を誘導するのに十分な程度までGI管の血管収縮を誘導するように適合される。
いくつかの適用について、カプセルは、化学物質を貯蔵し、血管収縮を誘導する化学物質を放出するように適合される。その代わりに又はそれに加えて、カプセルは、血管収縮を誘導することができる電流をGI管に適用するように適合される1又はそれより多くの血管収縮誘導電極を含む。さらに、その代わりに又はそれに加えて、カプセルは、血管収縮を誘導することができる1又はそれより多くの血管収縮機械的力をGI管に適用するように適合される、1又はそれより多くの血管収縮誘導の機械的作動装置を含む。
なおさらに、本発明の実施態様に従って、患者の胃腸(GI)管に輸送される薬物とともに使用するための装置が提供され、この装置は、下記:
1又はそれより多くの電極;そして
GI管の標的組織に薬物の局所輸送を誘導する電流を適用するための電極を誘導するために適用される制御部
を含む。
ある実施態様において、カプセルは、GI管内の部位でカプセルの配置に応答して、その状態を変化するように適合される環境感受性の機材を含み、そして、制御部は、その状態変化に応答して、電極を駆動するように適合される。
いくつかの適用について、薬物は、抗炎症剤を含み、そして、制御部は、抗炎症剤の局所輸送を誘導する電流を適用するための電極を駆動するように適合される。その代わりに又はそれに加えて、薬物は、化学物質を含み、そして、制御部は、化学療法剤の局所輸送を誘導する電流を適用するための電極を駆動するように適合される。さらに、その代わりに又はそれに加えて、薬物は抗菌剤を含み、そして、制御部は、抗菌剤の局所輸送を誘導する電流を適用するための電極を駆動するように適合される。
いくつかの適用について、標的組織は、小腸の粘膜層を含み、そして、制御部は、粘膜層に薬物の局所輸送を含む電流を適用するための電極を駆動するように適合される。その代わりに又はそれに加えて、標的組織は、小腸の粘膜下層を含み、そして、制御部は、粘膜下層に薬物の局所輸送を誘導する電流を適用するための電極を駆動するように適合される。さらに、その代わりに又はそれに加えて、標的組織は、小腸の粘膜層を含み、そして、制御部は、粘膜下層に薬物の局所輸送を誘導する電流を適用するための電極を駆動するように適用される。
ある実施態様において、カプセルは、薬物の貯蔵及び放出に適合される。
いくつかの適用について、カプセルは、薬物周辺でGI管において患者の血管収縮を誘導するように適合される。
ある実施態様において、1又はそれより多くの電極間の少なくとも1つの電極間は、薬物の局所輸送を誘導するように十分に小さい。例えば、少なくとも1つの電極間距離は、5mm未満、例えば3mm未満であってよい。
ある実施態様において、制御部は、薬物の局所輸送を誘導するのに十分に低い振幅を有する低強度時変(LITV)シグナルを適用するための電極を駆動するように設定される。例えば、制御部は、LITVシグナルの振幅を0.8mA未満になるようにセットするように設定してもよい。
ある実施態様において、制御部は、薬物が密接結合を貫通し、GI管の上部の上皮層に入ることを可能にするのには十分であるが、より深い層及び血管内に薬物を運搬するのには十分でない「オン」の継続期間、そして、(b)薬物が標的組織に到達することができるのに十分な「オフ」の継続期間を有する負荷サイクルを伴うLITVシグナルを適用するために電極を駆動するように制御部が設定される。例えば、制御部は、0.5〜2秒の継続期間を有するようなそれぞれの「オン」の期間、そして、5〜20秒の期間を有するようなそれぞれの「オフ」の期間を設定するように設定されてもよい。
本発明の実施態様に従って、摂取可能なカプセルを含む装置はまた提供され、この装置は、下記:
カプセルに貯蔵された第一及び第二薬物;
1又はそれより多くの電極;そして
下記:
第一薬物の全身輸送を誘導する第一電流を適用するための2又はそれより多くの電極の第一セットを駆動し、及び
患者に胃腸(GI)管の標的組織において第二の薬物の局所輸送を誘導する第二の電流を適用するための2又はそれより多くの電極の二次セットを駆動する
ために適合された制御部
を含む。
いくつかの適用について、電極の第一及び第二セットは少なくとも1つの共通の電極を含む。
いくつかの態様について、第二セットの2又はそれより多くの電極間の少なくとも1つの電極間距離が、薬物の局所輸送を誘導するのに十分に小さい。その代わりに又はそれに加えて、制御部は、薬物の局所輸送を誘導するには十分に低い振幅を有する低強度時変(LITV)シグナルを適用するための第二セットの電極を駆動するように設定される。さらに、その代わりに又はそれに加えて、薬物が密接結合を貫通し、GI管の上部の上皮層に入ることを可能にするのには十分であるが、より深い層及び血管内に薬物を運搬するのには十分でない「オン」の継続期間、そして、(b)薬物が標的組織に到達するのに十分な「オフ」の継続期間を有する負荷サイクルを伴うLITVシグナルを適用するために電極を駆動するように制御部が設定される。
いくつかの適用について、カプセルは、第二薬物の周辺のGI管における患者の血管収縮を誘導するように適合される。
ある実施態様において、第一薬物は、GI管の感染を治療するための全身性抗生物質を含み、第二薬物は、感染の局所的治療のための試薬を含む。いくつかの適用について、感染は、ピロリ菌による感染を含み、全身性抗生物質は、ピロリ菌感染を治療するための全身性抗生物質を含み、そして、局所治療のための試薬は、ピロリ菌感染の局所治療のための試薬を含む。
さらに、本発明のある実施態様に従って、摂取可能なカプセルを含む装置が提供され、この装置は、下記:
カプセルに貯蔵された薬物;
1又はそれより多くの電極;
患者の胃腸(GI)管内の第一セグメントでカプセルの配置に応答してその第一状態を変化させ、そして、GI管内の第二セグメントでカプセルの配置に応答してその第二状態を変化させるために適合した環境的に感受性のメカニズム;そして
下記:
第一状態の変化に応答して、第一セグメントで薬物の通過を促進する電流を適用するために、第一期間、電極を駆動し、および
第二状態の変化に応答して、第二セグメントで薬物の通過を促進する電流を適用するために、第二期間、電極を駆動する
ように適合される制御部を含む。
いくつかの適用について、制御部は、第一期間及び第二期間の少なくとも1つの期間、GI管の標的組織における薬物の局所輸送を誘導するための電流を構成するように適合される。
いくるかの応用について、カプセルは、第一期間及び第二期間の少なくとも1つの期間、薬物周辺でGI管における患者の血管収縮を誘導するように適合される。
いくつかの適用について、薬物は、胃潰瘍の治療のための薬物を含む。
他に指示がなければ、本明細書中で使用される全ての技術的及び科学的用語は、この発明の属する技術分野における当業者によって一般に理解されるのと同じ意味を有する。本明細書中に記載したのと同じか又は均等な方法及び材料は本発明の実施又は試験に用いることができるが、適した方法及び材料が下記に記載される。不一致の場合、定義を含む特許明細書が規制するであろう。さらに、材料、方法及び実施例は、例示のみであり、限定されることは意図されない。
例示のみを目的として、添付の図面を参照しながら、本発明は、本明細書中に記載される。図面を詳細に具体的に参照しながら、示される具体的なものは、一例として、及び本発明のみの態様の例示的な検討の目的のためであり、そして、本発明の原理及び概念的側面の最も有用であり容易に理解される記載であると信じられるものの提供のために提示されることが強調される。この点に関して、本発明の本質的な理解に必要であるよりも詳細に本発明の構成的詳細を示すという試みはなされておらず、図面を伴う記載は、本発明のいくつかの形態が実施においてどのように具体化されるのかを当業者に明確にする。
実施態様の詳細な説明
本発明のいくつかの実施態様は、典型的には、摂取可能な電気的に支援した薬物輸送システムを含む。具体的には、本発明のこれらの実施態様は、薬剤担体として作用し、それは、胃腸(GI)管壁を通じて薬剤の吸収を増大する電気的に誘導される手段を利用する。
典型的な摂取可能な電気的に支援された薬物輸送システムの原理及び操作は、本発明のこれらの実施態様に従って、図面及び添付の記述を参照にしてより良く理解され得る。
詳細に本発明の少なくとも1つの実施態様を説明する前に、本発明が、その適用において、下記の記述に記載され又は図面に例示された構成の詳細及び成分のアレンジに限定されないことは理解されるべきである。本発明は、他の態様又は種々の方法で実行され又は実施されることができる。また、本明細書中で使用した語法及び術後は記載の目的であり、限定とみなすべきでないことは理解されるべきである。
実際に図面を参照すると、図2は、本発明のいくつかの実施態様に従って、電気的に支援された薬物装置10の略図である。装置10は、生物学的に不活性であり、生物学的に適合性があり、そして、典型的には摂取に適合される。装置10は、電源12、電源12を有する電力通信における制御部14、及び電気的に支援された薬物運搬のための少なくとも1つの装置17を含み、制御部14を有する単一通信及び電源12を有する電力通信である。制御部14は、当該技術分野において知られる専用の回路、コントローラー、又はマイクロコンピュータであってもよい。
いくつかの適用について、装置17は、電気運搬のために設計された電気的シグナル発生装置15及び少なくとも2つの電極16を含む。その代わりに、4又はそれより多くの電極16が提供されてもよい。装置17は、米国特許第5,674,196号(Donaldsonら)、米国特許第5,961,482号(Chienら)、米国特許第5,983,131号(Weaverら)、米国特許5,983,134号(Ostrow)、及び米国特許第6,477,410号(Henleyら)のいずれか1つ又はそれらの組み合わせに記載されるように、例えば、電気運搬装置として設計されてもよく、そして、これらの文献は、本明細書中に参照により援用される。いくつかの適用について、電極16は、ステンレススチール型316Sリードを含む。その代わりに、電極は、他の材料を含む。いくつかの適用について、電極16は、約1と約100mm2の間、例えば、約10と約50mm2の間、例えば、36mm2又は42mm2の表面積を有する。
それに加えて又はその代わりに、装置17は、ソフォレーシスを実行するため、又はソノフォレーシス及び電気運搬の組み合わせを実行するために設計され、少なくとも1つの超音波変換機22を含む。装置17は、米国特許第6,002,961号、第6,018,678号、及び第6,002,961号(Mitragotriら)、米国特許第6,190,315号及び代6,041,253号(Kostら)、米国特許第5,947,921号(Johnsonら)、そして米国特許第6,491,657号及び第6,234,990号(Roweら)のいずれか1つ又はそれらの組み合わせに記載されるように、例えば、ソノフォレーシス装置として設計されてもよく、それらの文献は全て、本明細書中に参照により援用される。
それに加えて又はその代わりに、装置17は、アブレーションを実行するため、又はアブレーションと電気運搬、アブレーションとソノフォレーシス、又はアブレーション、電気運搬とソノフォレーシスの組み合わせを実行するために設計され、少なくとも1つのアブレーション装置24を含む。アブレーション法は、例えば、レーザーアブレーション、低温アブレーション、温度アブレーション、マイクロ波アブレーション、ラジオ波(RF)アブレーション、電気アブレーション、及び液体ジェットアブレーションのいずれか1つ又はそれらの組み合わせであってもよい。装置17は、米国特許第6,471,696号(Berubeら)(薬物輸送装置として使用してもよいマイクロ波アブレーションカテーテルを記載する)、米国特許第6,443,945号(Marchittoら)(レーザーアブレーションを用いた医薬輸送のための装置を記載する)、米国特許第4,869,248号(Narula)(薬物輸送用の局所化された温度アブレーションを実行するためのカテーテルを記載する)、そして、米国特許第6,148,232号及び第5,983,135号(Avrahami)(電気アブレーションを用いた薬物輸送システムを記載する)のいずれか1つ又はそれらの組み合わせに記載されるように、例えば、アブレーション装置として設計されてもよい。これら特許の全ては、本明細書中に参照により援用される。
本発明のいくつかの態様に従って、装置10は、さらに、少なくとも1つのセンサー18を含む。センサー18は、例えば、温度センサー又は圧力センサーのような物理センサーであってもよい。その代わりに、センサー18は、pHセンサー又は薬物濃度センサーのような化学センサーであってもよい。その代わりに、センサー18は、フルコースセンサー又は細菌カウントセンサーのような生物センサーであってよい。いくつかの適用について、1を超えるセンサー18が使用される。これらは、同じタイプ又は異なるタイプのであってもよい。
本発明のいくつかの態様に従って、装置10は、さらに、体外ステーション、例えば、リモートコントールを用いた通信を提供するために、例えば、RF赤外放射によって、又は超音波によって操作される遠隔測定システム20を含む。その代わりに又はそれに加えて、体外ステーション21は、コンピュータシステムを含む。その代わりに又はそれに加えて、遠隔測定システム20は、必要に応じて、体外ステーション21に送信される電磁波放射又は超音波エネルギーを受信するように、そして、薬物輸送装置10の操作に電力を供給するための電流に放射を変換するように適合される、当該技術分野において既知である電力変換器(例えば、コイル又は圧電変換器)を含む。必要に応じて、電力変換器は、電源12に置換し、又はその操作を補足してもよい。
本発明のいくつかの態様に従って、装置10は、さらに、例えば、センサー18からのインプットに応答して、薬剤を拡散するための少なくとも1つの電子バルブ26を含む。
実際に図3A及び3Bに参照されるように、それらは、本発明の実施態様に従って、摂取可能な電気的に支援された薬物輸送システム30を例示する。システム30は、例えば、ステンレススチール若しくはシリコン、又は別の生体適合性な不活性な材料から形成された生体適合性の生物学的に不活性なハウジング32内に包含される装置10を含む。本実施態様の装置10は、典型的には、電気輸送を提供するために、少なくとも電源12、制御部14、シグナル発生装置15、及び少なくとも2つの電気刺激電極16を含む。
図3Aに示される実施態様において、装置10のハウジング32は、装置10の部分が位置される内部空洞を定義する。図3Bに示される実施態様において、ハウジング32は、空洞なしとして定義され;むしろ、装置10の部分が埋め込まれている場合、例えばシリコンの鋳物として形成される。
システム30は、さらに、装置10及び薬物36の両方をカプセルにする装置10に接合し、ハウジング34によって閉ざされた薬物36を含む。その代わりに、ハウジング34は、薬物36だけをカプセルにする。薬物36は、薬物拡散空洞23に保持され、典型的には、システム30の2つの端で、又は一端で形成される。ハウジング34は、典型的には、GI管への薬物36の分散を可能にする生物学的に適合可能であり、生物学的に不活性な高分子剤狼、例えば、酢酸セルロース又はエチルセルロースを含む。その代わりに、ハウジング34は、水溶性マトリックス、例えばポリ酢酸ビニル又はアクリル酸共重合体中に水溶性粒子の混合物から形成され、それにより、水溶性粒子は、GI管に溶解し、マトリックス中の微小孔から離れ、約部36が微小孔を通じて拡散する。その代わりに、ハウジング34は、薬物36が吸収されるまで薬物が装置10と一緒に移動する場合、GI管に薬物36を放出するように、水と接触した場合、又は特定のpHで分解する生物学的に分解性材料から形成される。例えば、生物学的に分解性材料は、ヒドロキシプロピルセルロール又はベヘン酸グリセロールを含んでもよい。システム30は、GI管中で移動するので、小腸上皮を横切って吸収を増加する電気ウレアパンのために装置10の電極16が提供される。
本発明のいくつかの実施態様に従って、電気運搬体は、上皮細胞を通じて拡散プロセスを増加するイオントフォレーシス、電気浸透及び電気泳動のいずれか1つ又はそれらの組み合わせを含んでもよく、そして、いくつかの適用について、典型的には、高圧で、上皮を通じて巨大分子の通過を可能にする上皮細胞膜に一時的な透過性構造又は微小孔を作製するエレクトロポレーションを付加的に含んでもよい。
本発明のいくつかの実施態様において、エレクトロトランスポレートは、上記で定義したように、「低強度時変」(LITV)シグナルを適用することによって促進される。
いくつかの適用について、適切な電気刺激パラメータは、3ボルトまでのDC電圧を含み、又は1〜50Hzの低周波数で3ボルトまでの方形パルスを含んでもよい。これらのパラメータは、典型的には、イオントフォレーシスに適している。その代わりに、パラメータは、約1Hzと約300Hzとの間の周波数で、約3ボルトと約50ボルトの間のACボルトを含んでもよい。これらのパラメータは、典型的には、エレクトロポレーションに適している。さらに、その代わりに、LITVシグナルを応用するために、電気刺激は、(a)約5mAより小さい電流、(b)約1Hzと約10Hzとの間、又は約10Hzと約100Hとの間の周波数、(c)約0.1ミリ秒と約10ミリ秒との間、又はy区1ミリ秒と約10ミリ秒との間のパルス幅、そして、(d)約1分と約15分との間、又は約15分と約120分との間の刺激期間を含むパラメータを有する一連のパルスとして適用されてもよい。パルスは、単相又は二相であってもよい。LITVシグナルは、典型的には、平滑筋の局所活性化を引き起こさないように十分弱く、正常に発生する蠕動運動を妨げてもよい。約5mA未満の電流の適用は、電極の表面積、薬物36が輸送されるべきGI管の部分、GI管の容積、患者の個々の生理機能(例えば、患者のGI壁組織)、及び他の因子に依存して、典型的には、約0.1と8ボルト/cmの間(例えば、約0.5と約5ボルト/cmの間)の電圧に帰着する。
いくつかの適用について、LITVシグナルは、高周波数バーストの低周波数トレインに適用される。典型的には、トレインは、約6〜約30Hzの間の反復周波数を有し、即ち、約6〜約30バーストが1秒当たり適用される。各バーストは、各連続パルスの開始の間で約4〜約8ミリ秒(即ち、約125〜250Hzの間のバースト内のパルスの周波数)の遅延を伴って、1と約4パルスの間に典型的には含む。各パルスは、典型的には、約0.1と約2ミリ秒の幅を有する。
いくつかの適用について、DC又は低周波方形パルス電圧及びAC電圧は、2以上の電気運搬法の組み合わせを促進するために付加される。
他の形状及び(又は)負荷サイクルのシグナルが同様に使用されてもよいことは理解されるであろう。さらに、前述のパラメータは、例として提供され;本発明の実施態様に従って、より高い又はより低いものであってよい他のパラメータが使用されてもよい。
一般的に、GI管の上皮細胞を横切る薬物の運搬に適した電気運搬パラメータは、GI管が皮膚に見られる角質層障壁を欠損しているため、経皮的な薬物運搬に適したパラメータより低いことが理解されるであろう。
本発明の実施態様において、刺激パラメータは、下記の少なくとも一部に基づいて選択される:
・薬物36の特性。より大きな分子を含む薬物は、典型的には、より強力な刺激を必要とする。例えば、電気運搬は、LITVシグナルを適用することによって促進される場合、より強力な刺激は、より長いパルス、より多くのパルスのより長いパルストレイン、及び/又はより高い電圧を用いて刺激することによって提供されてもよい。さらに、より長いパルスでさえ、荷電した分子を有する薬物の吸収を増加するために使用されてもよい。
・薬物36が輸送されるべきであるGI管の部分。例えば、空腸の固有の吸収特性は、回腸のものとは異なる。結果として、同じパラメータを用いた刺激は、一般的に、回腸よりも空腸におけるより多い吸収の原因となる。したがって、いくつかの適用について、より強力な刺激は、薬物36が回腸よりも空腸において放出される場合に適用される。
いくつかの適用について、GI管壁を通じて薬物の通過を達成するのに十分なエネルギーの最低量を適用するパラメータが選択される。より高いエネルギーレベルの使用は、いくつかの場合において、(組織に対する実際の障害が、使用されるエネルギーの範囲のより高い末端でさえなさそうであるが)上皮組織の局所照射の可能性を増大するかもしれない。さらに、より低いエネルギーレベルは、より長い刺激期間と増大した薬物吸収を可能にし得る。このような増大した薬物吸収は、薬物のより低い服用量を可能にし得て、いくつかの適用については、薬物の費用及び/又は薬物輸送システムの大きさを低減することができる。
その代わりに、他の適用について、この最低量のエネルギーより大きなエネルギーを適用するパラメータが選択される。
現に図4及び5に参照されるように、これらは、本発明の実施態様に従って、摂取可能な電気的に支援された薬物システム30を図示する。これらの実施態様において、薬物輸送システム30は、複数の電極16を含む。例えば、図4に示される構造において、システム30は、1個の陰極16Aと2個の陽極16B、又は1個の陽極16Aと2個の16Bを含む。その代わりに、図5に示されるように、システム30は、複数の陽極及び陰極16を含む。
図6A及び6Bは、本発明の実施態様に従って、それぞれ休止段階及びその薬物輸送段階の摂取可能な電気的に支援された薬物輸送システム30を図示する。この実施態様において、装置10は、生物学的に不活性であり生体適合性の弾性フィルム、例えば、天然又は合成の薄いゴムに取り囲まれた自己膨張性部分33を含む。いくつかの適用について、電極16は、電極16とGI壁との間のより良好な接触のために弾性フィルム上に塗布される。自己膨張性効果は、例えば、CO2(図6B)のようなガス37を生成する物質35(図6A)の化学反応によって生じさせてもよい。本態様において、投薬空洞23は、自己膨張性部分33と装置10の本体との間に位置してもよい。いくつかの適用について、本態様のシステム30は、電極16と結腸のGI壁との間の接触を促進するために使用される。
いくつかの適用について、装置10は、その上の電極16を有する自己膨張性部分33の間に配置された自己膨張性部分を含む中心部分33aを含む。典型的には、部分33aは、胃腸管の内壁に接触するまで膨張するように適合される。このように、部分33aは、典型的には、自己膨張性部分33と少なくとも同じ径まで膨張することができ、それによって、胃腸管の内腔の流動体に電流フローを阻害し、(一定の電圧について)胃腸管の組織自体により高い電流を促進する。必要に応じて、同じような中心の自己膨張性部分は、本特許出願の他の1以上の図を参考にして記載される本発明の実施態様に統合されてもよい。
あるいは部分33aは、自己膨張性部分を含まないが、代わりに患者に摂取される前に、図6Bにおいて波線によって示された状態にある。この場合において、部分33aは、薬物輸送が期待される胃腸管の領域において胃腸管の内部の壁に接触するのに適した径となるように予め大きさが設定される。必要に応じて、同じような中心の部分33aは、本特許出願の1以上の図を参考にして記載される本発明の実施態様に統合されてもよい。
いくつかの態様について、部分33aの外部表面は、胃腸管の内腔自体の内部に電極16間に流れる電流が通過する程度を最小にするために、疎水性及び/又は脂溶性材料を含む。ある実施態様において、部分33aは、疎水性及び/又は脂溶性材料を含み、自己膨張性部分33より小さい径を有する。
図7、8及び9は、本発明の実施態様に従って、摂取可能な電気的に支援された薬物輸送システム30を図示する。これらの実施態様において、システム30は、複数の電極16及び自己膨張性形態を含む。
図10は、本発明の実施態様に従って、GI管50に移動するような摂取可能な電極的に支援された薬物輸送システム30を図示する。その外部を覆うシステム30の自己膨張性部分及び複数の電極16は、電気的刺激に適するように、GI管50の壁及びシステム30との間の滑動接触を促進するために作動する。
図11A−11Dは、本発明の実施態様に従って、摂取可能な電気的に支援された薬物輸送システム30を図示する。これらの態様において、自己膨張性薬物マトリックスが使用される。典型的には、薬物36は、膨潤性高分子42によって取り囲まれ、それは、GI流動体と接触した場合に膨張する、ヒドロキシプロピルメチルセルロース−HPMC又はPOLYOX(商標)(The Dow Chemical Companyによって製造される)のような生分解性であってもよい。典型的には、薬物は、それとともに膨潤するような膨潤性高分子と混合される。
図12は、本発明の実施態様に従って、カプセル45として形成され、マイクロペレット43として薬物36を含有する摂取可能な電気的に支援された薬物輸送システム30を図示する。生分解性フィルム46は、マイクロペレット43をカプセル化する。フィルム46はGI管で分解されるので、マイクロペレット43の形態で薬物36が放出される。
図13は、本発明の実施態様に従って、摂取可能な電気的に支援された薬物輸送システム30を図示する。この実施態様において、薬物36を含有するためにフィルムは使用されない。むしろ、薬物36は、生体適合性固体バー48上に圧縮され、GI管に徐々に溶解する。
図14A及び14Bは、本発明の実施態様に従って、それぞれ休止段階及び薬物輸送段階の摂取可能な電気的に支援される薬物輸送システム30を図示する。本実施態様において、薬物輸送は、浸透作用によって生じる。水溶性プラグ29(図14A)が溶解されるので、開口部38が開く(図14B)。投薬空洞23への水の取り込みは、このシステム内で浸透圧を増加する。浸透圧勾配の集積は、制御されるやり方で開口部38を通じてを輸送する。
その代わりに、薬物36のさや34は、ポリエチレングリコール(PEG)と組み合わせた酢酸セルロースのように形成されてもよい。摂取後、PEGが溶解し、浸透機構によって薬物の放出を制御する半透過膜で覆われた薬物36を放出する。薬物コアに添加される、NaClのようなオスモグネート(osmognate)な付加物、及び/又はさや34のせん孔は、放出パターンをより良く調節することに貢献するかもしれない(オスモグネートは、高溶解性及び高浸透圧を作るための能力を有し、水を攻撃するための高溶解性、そして、高浸透圧を作る水を攻撃するための材料であり、通常、塩である)。
図15は、本発明の実施態様に従って、摂取可能な電気的に支援された薬物輸送システム30を図示する。この実施態様において、薬物放出はpH依存的である。薬物36は、少なくとも1つのフィルム46Aによって取り囲まれ、特異的なpH値で溶解する。いくつかの態様について、pH値は、胃において薬物の初期の放出を実質的に妨げながら、小腸内に薬物36を放出するために、小腸に一般的に見られる範囲、例えば、約4.7〜約6.5であるように選択される。その代わりに、pHは、大腸のようなGI管の別の部分に一般的に見られる範囲にあるように選択される。(例示的なpH値に関する背景欄の表1を参照されたい。)
他の適用について、pH値は、胃において一般的に見られる範囲、例えば、約1.2〜約3.5になるように選択され、それにより、フィルム46は、胃において溶解し、薬物36の少なくとも部分36Aを放出する。場合により、システム30は、第二のフィルム46Bを含み、小腸のようなGI管のより遠い部分のpH特性で溶解し、その中で薬物36の第二の部分36Bを放出する。さらに、場合により、システム30は、第三のフィルム46Cを含み、大腸のようなGI管のさらにより遠い部分のpH特性(大腸については約7.5及び約8.0のpH値)で溶解し、それによって、薬物36の第三の部分36Cを放出する。このようなやり方で、特定の薬物部分、又は異なってさえいる薬物36A、36B及び36Cは、GI管の異なる部分に対して標的化されてもよい。その代わりに又はそれに加えて、pH値は、小腸における薬物の第一の部分、そして、大腸における第二の部分を放出するために選択される。
図16は、本発明の実施態様に従って、摂取可能な電気的に支援される薬物輸送システム30を図示する。この実施態様において、薬物放出はpH依存的である。薬物36は、3つの電子管26A、26B、及び26Cによってシールされた、それぞれ投薬空洞23A、23B、及び23Cのような2以上の薬物空洞のハウジング32によって取り囲まれ、その操作は、制御部14によって調節される。pHセンサー18は、典型的には、特定のpH値又は値の範囲を察知し、制御部14に情報を送信し、その察知に応答して、1以上の値26A、26B、及び26Cを開口する。
図17は、本発明の実施態様に従って、摂取可能な電気的に支援された薬物輸送システム30を図示する。この実施態様において、装置10は、薬物運搬機構としてソノフォレーシスを適用するための超音波変換機22を含む。ソノフォレーシスは、電極16を用いて、単独で適用されてもよく、あるいは電気運搬と組み合わせて適用されてもよいことは、理解されるであろう。
図18は、本発明の実施態様に従って、摂取可能な電気的に支援された薬物輸送システム30を図示する。この実施態様において、装置10は、薬物輸送機構として、RFアブレーションのようなアブレーションを提供するこためのアブレーション装置24を含む。アブレーションは、電極16を用いて、単独で適用されてもよく、あるいは電気運搬と組み合わせて適用されてもよいことは、理解されるであろう。
典型的には、RFアブレーションは、約50〜約150kHzの周波数、及び約3〜100ボルトの電位を含む。これらのパラメータは、例として提供され;本発明の実施態様に従って、他のパラメータは、より高いか又はより低いものであってもよく、使用されてもよい。
その代わりに、アブレーション装置24は、マイクロ波アブレーション、レーザーアブレーション、低温アブレーション、温度アブレーション、又は液体ジェットアブレーションを実行する。
図19は、本発明の実施態様に従って、摂取可能な電気的に支援された薬物輸送システム30を図示する。この実施態様において、装置10は、体外ステーション21との通信を提供するために遠隔測定システム20を含む(図2)。例えば、センサー18は、GI管に沿って、体外ステーション21に温度値を送信してもよい。これらの値は、システム30を用いて、問題を思わせる突然の又は局在化した温度上昇をヒトに知らせるために使用されてもよい。その代わりに、センサー18は、pHセンサーを含んでもよく、そして、体外ステーション21は、図16の値26A、26B、及び26Cのような値を遠隔に調節するために使用されてもよい。
図20は、本発明の実施態様に従って、摂取可能な電気的に支援された薬物輸送システム30を図示する。この実施態様において、装置10の電源は、陽極64、陰極66、及び開口部68を含むガルバニ電池60として構成される。システム30は、GI管を通して移動するので、GI流動体62は、開口部68を介してガルバニ電池60に入り、電池の電極として使用される。
薬物の半減期が所望より小さい場合、放出制御された剤形は、血漿の薬物濃度におけるばらつきを減少し、より均一な治療効果を提供するように設計されてもよい。経口的な放出制御形態は、しばしば、少なくとも12時間、治療的な薬物濃度を維持するように設計される。いくつかの放出制御した機構は、例えば、Encyclopedia of Controlled Drug Delivery,volume 2,Edith Mathiowitzにより編集,pp.838−841に教示されるように使用されてもよい。これらは、特定の物質、一般的には、マトリックス又はコーティングのような高分子の使用に基づく。これらは、所望の効果に依存して、即座又は徐々に分解する材料であってよい。
本発明の実施態様に従って、薬物36は、制御されたやり方で、1以上の下記の技術を用いて放出される:
・薬物は、固体、液体又は液体中の懸濁物であってもよく、高分子材料にカプセル化されてもよく、それによって、薬物放出が、カプセルの壁を介した分散によって調節される。
・薬物粒子は、ワックス又は難溶性材料、あるいは水溶性孔質形成化合物と混合した不溶性材料(例えば、ポリ塩化ビニル)でコーティングされてもよく、それにより、薬物放出が、コーティングの崩壊によって調節される。
・薬物は、生分解性又は非生分解性であってもよい徐放出性マトリックス中に包埋されてもよく、それにより、薬物放出が、材料、材料の侵食又はその両方を介した分散によって調節される。
・薬物は、その放出をゆっくりにするイオン交換レジンと複合化されてもよい。
・薬物は、生分解性又は非生分解性であってもよい高分子材料のようなフィルムを用いて、ゼリーロールとして薄板にされてよく、それによって、薬物は、拡散、浸食又はその両方によって放出される。
・薬物は、ハイドロゲル中、又はGI管においてハイドロゲルを形成する物質中に分散されてもよく、それによって、薬物放出は、水で膨潤したハイドロゲルから薬物の分散によって調節される。
・浸透圧は、制御されたやり方で薬物を放出するために使用されてもよい。剤形単位への水の取り込みは、システム内で浸透圧を増加する。浸透圧勾配の作製は、剤形中の1以上の開口部を介して薬物を駆動し、調節されたやり方で薬物を放出する。
・薬物は、GI流動体よりも低い密度であるマイクロペレットとして形成されてもよい。マイクロペレットは、溶解前に長期間浮かせてもよい。
・薬物は、GI管における薬物の期間を拡張するために、上皮表面に接着する生体付着性高分子を含有してもよい。
・薬物は、高分子に化学的に結合し、加水分解によって放出されてもよい。
・薬物の巨大分子構造は、イオン又は共有結合を介して形成されてもよく、加水分解、熱力学的解離又は微生物分解によって薬物放出を調節する。
・薬物は、可溶性及び不溶性高分子の組み合わせを用いてコーティングされてもよい。可溶性粒子が溶解する場合、それらは薬物コアの周辺で微小孔性層を形成し、それによって、薬物は微小孔を通じて徐々に浸透する。放出速度は、コーティング層の多孔率及び厚さに依存する。コーティング層は、投与単位が特定のpH(例えば、結腸標的について)の存在下になるまで薬物の放出を長期化するのを変化し得る。
・薬物は、GI管の特定部分を標的化するために、特定のpH値で溶解するように設計された層で薄板にさせてもよい。
・薬物は、いくつかの層で薄板にさせてもよく、各々は、GI管の異なる部分を標的化するために、例えば、結腸を標的化するために異なる特定のpH値で溶解するように設計される。
・薬物は、pHに依存しない放出制御のために設計され、そして、緩衝剤及び適切な賦形剤と混ぜた酸性又は塩基性薬物を湿式造粒によって製造してもよく、ここで、顆粒は、GI流動体中に浸透されるフィルムでコーティングされ、錠剤に圧縮される。経口投与に応じて、GI流動体は、フィルムコーティングを浸透し、緩衝剤は錠剤のpH値を調整し、それによって、薬物は、GI管のpHレベルとは独立して、溶解し、一定速度で投与形態の外へ浸透することができる。薬物製剤は、水溶性プラグ及びハイドロゲルプラグの手段で不溶性カプセル本体にシールされてもよい。カプセルが膨潤する場合、水溶性プラグは、胃液中で溶解し、ハイドロゲルを晒し、膨潤が開始する。摂取後の所定の時間で、ハイドロゲルプラグは、押し出され、カプセル化した薬物製剤は、消化管に放出される。
その代わりに又はそれに加えて、当該技術分野において知られた他の放出制御手段が使用される。
必要に応じて、カプセルのいくつか又は全ての部分は、患者の結腸における細菌によって生分解されるように設定される。
本発明の実施態様に従って、薬物放出は、下記のオプション:放出制御、遅延制御、パルス放出、時間療法的放出、即時放出、腸管被服放出(活性化は小腸で開始し、pH依存性コーティングが胃酸環境から保護される)のいずれかを採用してもよい。剤形は、複数のコーティングシステムに基づいて、時間療法的(24時間周期のリズムに適合)又は結腸輸送タイプであってもよい。薬物は、硬質ゼラチンのカプセル、圧縮粉末、又は当該技術分野において既知の任意の他の代替物、例えば、ヒドロキシプロピルメチルセルロース(HPMC)として形成されてもよい。
薬物がペプチド形成又はタンパク質薬物である場合、機能的付加物は、経口輸送を可能にするために使用されてもよい。典型的な実体は、プロテアーゼ阻害剤、安定化剤、吸収促進剤、及びPGP阻害剤、例えば、ベラパミル又はキニジンである。
加えて、種々の付加物は、薬物36とともに使用されてもよい。これらは、プロテアーゼ阻害剤を含んでもよく、それらは、内腔ブラシ、広範なペプチダーゼ、例えば、トリプシン阻害剤、ケモスタチン、ボーマン・バーク阻害剤、アプロチニン、SBTI、及びポリカルボフィルに対して保護する。
加えて、吸収促進剤、例えば、NSAID、デカン酸、サリチル酸ナトリウム、SLS、四級アンモニウム塩、胆汁塩−Na−コール酸塩、オクタン酸、グリセリド、サポニン、及び/又は中鎖脂肪酸が使用されてもよい。
多数の場合において、化学的促進剤は、ペプチド及びタンパク質と相互作用することが理解されるであろう。本発明のいくつかの実施態様の利点は、化学的促進剤に代えて、電気的に支援した吸収を用いることによって、この相互作用を回避する能力である。
加えて、安定化剤、例えば、タンパク質、糖類、ポリオール、アミノ酸、無機塩、及び/又は界面活性剤が使用されてもよい。
さらに、ペプチドに対する他の医薬的なアジュバント、例えば、緩衝剤及び/又は抗酸化剤が使用されてもよい。
経口薬物の制御放出又は減速放出のためのマトリックス形成に適した高分子は、アクリレート、アクリル酸共重合体、Eudragit、RL/RSタイプ、エチルセルロースのようなセルロース誘導体、HPMC、カルボキシメチルセルロース、カルボマー、酢酸セルロース、PVA、ゴム、及び任意の他の医薬として許容される高分子を含む。
高分子に加えて、ある種のタイプの脂質は、例えば、ベヘン酸グリセロール又はモノステアリン酸グリセロールと同じく、マトリックス形成体として使用してもよい。
マトリックス形成高分子は、カプセル中に充填され、又は錠剤中に圧搾されてもよいことは理解されるであろう。
制御又は減速薬物放出のための経口薬物の機能的コーティングに適した高分子は、Ethocel(エチルセルロース)、HPMC、Kollicoat(PVA、PVP併用物)、CAエステル、Eudragit、及び腸溶コーティング(pH依存性)タイプの高分子(Eudragi L,S、CAP、HPMCP等)を含む。加えて、MCC、ラクトース、及びCa−リン酸塩のような医薬として許容されるフィルムが同様に使用されてもよい。
これらのコーティング剤は、錠剤及びカプセル剤の両方に適用されてよい。
コーティングのタイプは、薬物、及び徐放、腸溶(主に、ペプチドタイプに関する)、時間的療法、結腸、浸透などのような所望の放出プロフィールに従って決定されるであろう。
さらに、コーティングは、錠剤又はカプセル剤のいずれかのためのマトリックスを基礎とした剤形に付加的であってもよいことが理解されるであろう。
本発明のいくつかの実施態様に関する薬物候補は、ペプチド、タンパク質、巨大分子、ホルモン、極性化合物、及び難溶性化合物を含む。
本発明の実施態様に従って、薬物36として使用してもよい薬物のいくつかの例は、インターロイキン2、TGF−ベータ3、ヘパリン、エリスロポエチン、シクロスポリン、抗癌剤、遺伝子輸送用のウイルス性及び非ウイルス性ベクター、TNF、ソマトロピン、インターフェロン、コパキソン、組換えタンパク質、免疫系調節剤、モノクローナル抗体(ハーセプチン)、ワクチン、フィルガストリン、ソマトスタチン、インスリン、LHRH拮抗剤及び類似体(デカペプチド、ロイプロリド、ゴセラリン、カルシトニン、トリプトレリン、オキシトシン、及びサンドスタチン)を含む。
加えて、小分子薬物、例えば、スタチン、免疫抑制剤(例えば、シロリムス、タクロリムス)、ガランタミン、セレブレックス、及び他の難溶性薬物、又は低利用性の薬物が使用されてもよい。これらの薬物は、Cox2阻害剤、CNS薬物、抗生物質、及びそれらの経口的生物学的利用能において改良を要求する任意の他の物であり得る。
加えて、吸収の弱い他の既知の薬物を使用してもよい。
下記の実施例が参照され、上記の記載と一緒に、本発明の実施態様を非制限的に例証する。
実施例1
電気的に支援された薬物輸送装置10
活性薬物:インスリン
充填剤:微結晶性セルロース、ラクトース
プロテアーゼ阻害剤:ケモスタチン、トリプシン阻害剤
これらの化合物を錠剤に混合し圧搾する。腸溶コーティングが適用され、胃環境から保護する。Eudragit Lを使用してもよい。
実施例2
実施例1に類似するが、加えて、デカン酸のような吸収促進剤を含む。
実施例3
コパキソンの経口輸送のためのカプセルは、実施例1のように調製した。化合物は、乾燥混合し、カプセルに充填し、HPMCPのような腸溶性高分子でコーティングする。
実施例4
シクロスポリンの放出制御用の錠剤。
装置10及びHPMCと薬剤物質の両方を一緒に混合し、錠剤に圧搾する(図13を参照されたい)。完成のシステム30は、次に、セルロースエチルでコーティングし、HPMCと一緒に、薬剤放出を遅延及び制御する。
実施例5
浸透性装置。実施例4の錠剤は、PEGと組み合わせた酢酸セルロースでコーティングしてもよい。摂取後、PEGが溶解し、浸透機構によって薬物放出を制御する半透膜でコーティングした錠剤を放出する。オスモグネート付加物(上記で定義される)、例えば、NaClは、薬物コアに添加され、コーティングのせん孔は、放出パターンをより良く制御するために貢献してもよい。
薬物−高分子の任意の既知の組み合わせ、剤形は、本発明の実施態様に従って許容されることが理解されるであろう。
本発明の実施態様に従って、電気的に支援された薬物輸送システムは、さらに、例えば、米国特許第5,984,860号(Shan)、米国特許第5,604,531号及び第6,428,469号、及び米国特許出願2001/0035902(全て、Iddanら)に記載されるように、視覚的画像装置を含み、これらの文献は全て、本発明中に参照により援用される。
本発明の実施態様に従って、電気的に支援された薬物輸送システムは、さらに、徐々に溶解する薬物の溶解速度を増加する。例えば、ソノフォレーシスは、キャビテーションを生じ、研磨効果を有し、そして、難溶性薬物の溶解を促進するために有効であるかもしれない。
本発明の実施態様に従って、電気的に支援された薬物輸送システムは、摂取可能である。典型的には、GI管を自由に通過する。その代わりに、患者の身体の一部、例えば、歯、患者の頭部の周りにセットされたバンドにつながれてもよい。その代わりに、電気的に支援された薬物輸送システムは、カテーテル上に積層されてもよい。
本発明の実施態様に従って、電気的に支援された薬物輸送システムは、内視鏡(例えば、結腸内視鏡)を含む。内視鏡は、刺激電極を含み、一方、このシステムの他の要素(例えば、電源及び制御ユニット)は、内視鏡に連結し、典型的には、体外に残存するように適合される。この実施態様において、薬物は、典型的には、液体溶液中に投与される。さらに、内視鏡は、内視鏡に付着した柔軟性のある管のような薬物輸送機構を含む。このような管の遠位端は、典型的には、刺激電極に近い薬物を放出するように位置される。いくつかの適用について、この実施態様のシステムは、慣用的な内視鏡の機能性を用いて同定される、例えば、内視鏡を用いて視覚的に同定される特定部位に薬物を輸送するために使用される。刺激内視鏡及び薬物輸送管の遠位端は、典型的には、薬物放出の視覚的観察及び標的化を可能にするために、内視鏡の遠位端の近傍に配置される。
本発明の実施態様は、経口的に輸送されるタンパク質及びペプチド薬物の以前には満たされていない効率及び生物学的利用性を達成するために設計される。電気的に支援された改良は、既知の薬物促進剤及び安定化剤に加えて及び相乗的に実行されてもよいことは理解されるであろう。本発明の実施態様において、低濃度の化学的促進剤と併用して、本明細書中に記載した電気的に促進する技術の少なくとも1つを用いて達成される相乗的な薬物吸収促進は、(a)電気的促進技術単独で達成可能な促進、及び(b)低濃度の化学的促進剤単独で達成可能な促進の合計よりも多い。
図21を参照すると、それは、本発明の実施態様に従って、摂取可能な電気的に支援された薬物促進システム300の略図である。システム300は、一般的には、例えば、図3A及び3Bに関連して、上述して薬物輸送システム30に類似する。システム300は、装置10、ハウジング32、電源12、制御部14、シグナル発生機15、及び少なくとも2つの電気刺激電極16を含む。システム300は、システム30に関して上記で記載した電極立体構造のいずれか、例えば、必要に応じて変更を加えて、図4、5、6A、6B、7、8及び9に関して記載されるものを採用してもよい。
しかしながら、システム30とは異なって、システム300は、薬物36を含まない。その代わりに、患者は、典型的には、例えば、薬物丸薬を摂取する前、同時、又はその後に薬物36を含有する商業的に利用可能な薬物丸薬の摂取とともにシステム300を摂取する。このように、システム300は、GI管において薬物丸薬から放出される薬物の吸収を促進するために使用される。いくつかの適用について、システム300は、一般的に、例えば、上述した1以上の放出時間技術を用いることによって、薬物丸薬からの期待される放出を伴う電気刺激の応用を協調する(例えば、同調する)ように設定される。例えば、システム300は、薬物丸薬の制御された放出時間を一般的に適合する放出制御されるコーティングを用いてコーティングされてもよい。電気刺激と薬物放出とを協調するための無数の技術は本特許出願を読んだ当業者に明らかとなるであろうし、本発明の範囲内である。
図22を参照すると、それは、本発明の実施態様に従って、摂取可能な電気的に支援された薬物輸送システム350の略図である。システム350は、一般的に、例えば、図3A及び3Bに関連して、上述した薬物輸送システム30に類似する。システム350は、装置10、電源12、制御部14、及びシグナル発生機15を含む。これらの要素は、典型的には、システム380のハウジング358内に含有される。システム350は、典型的には、GI管内にその配置に応答してその状態を変化するように適合される、摂取可能な環境的に応答性の構造を含む。
しかしながら、システム30とは異なって、システム350は、薬物36を含まない。その代わりに、システム350は、商業的に利用可能な薬物丸薬362をシステム350に結合させるカップリング機構360を含む。いくつかの適用について、カップリング機構360は、適所に丸薬362を保持する付着体364を含む。他のカップリング機構、例えば、クリップ又は他の圧力調整機構(構成は示されない)は、本出願を読んだ当業者に明らかになるであろうし、本発明の範囲内である。丸薬362は、例えば、医療、安全性、コマーシャル、又は他の考慮に依存して、製造業者、患者又はヘルスケアワーカーによってシステム350に結合されてもよい。
システム350は、さらに、GI管の上皮層と通じて薬物丸薬に含有される薬物の通過を促進するように適合される薬物通過促進機構を含む。いくつかの適用について、薬物通過促進機構は、少なくとも2つの電気刺激電極366を含む。図22に示される構成において、電極366は、丸薬が一度システム350に結合すると、丸薬362の部分を取り囲むように構成される。電極は、典型的には、1以上の電気的に絶縁された支持要素368によって支持される。その代わりに、電極366は、丸薬362の周辺の他の場所、例えば、ハウジング358上に配置される。例えば、システム350は、システム30に関して上述した電極配置のいずれかを使用してもよく、必要な変更を加えて、図3A、3B、4、5、6A、6B、7、8及び9に関して記載したものを使用してもよい。
図23を参照すると、それは、本発明の実施態様に従って、カップリング機構370の略図である。この実施態様において、システム350は、カップリング機構360(図22)に代えて又はそれに加えて、カップリング機構370を含む。カップリング機構370は、少なくとも1つの電気刺激電極366(図22)を含む。電極は、2つの実質的に半円のセグメント372を含み、各々は、1以上のスパイク374を含み、又はそれを定義するように形成される。丸薬362(図23には示されていない)は、セグメント間に挿入され、そして、セグメントの遠位端376は一緒になって、それにより、スパイク374を丸薬362に圧縮され、丸薬を適所に保持する。丸薬の摂取後、遠位端376は、典型的には、例えば、端に挿入されるピン378によって、又は別の閉鎖機構によって一緒に保持される。
図23に示される特定の形状は、丸薬がシステム350に結合され得る方法の別の非制限的な例の提供を意図することが理解されるべきである。必要に応じて、図23に示される種々の化合物は、システム350への丸薬の積層を促進するように、大きさ、位置、又は数において変化させてもよい。
図24を参照すると、それは、本発明の実施態様に従って測定されるインビトロの実験結果を示すグラフである。300gのウィスターラットは、ケタミン(100mg/kg)及びキシラジン(10mg/kg)を用いて麻酔する。上部の空腸の3cmの長さの2つの切片を取り出し、2つの長方形の組織片が利用可能なように内腔に沿って開いた。漿膜層及び筋層は、顕微鏡のカバーガラスを用いて取り出した。腸組織セグメントはスライドに置き、図26に関して下記に記載するように、実験的拡散チャンバー500に類似した拡散チャンバーに挿入した。各拡散チャンバーは、2.8cm×8mmの窓によって連結したドナー及びアクセプター細胞を有した。スライド上の組織セグメントは、ドナー細胞とアクセプター細胞との間の窓を完全に覆った。細胞は、ハンクス平衡塩溶液(HBSS)(pH7.4)の15mlで満たした。次に、ドナー細胞は、組織を僅かに接している分離板で2つの別々のセクションに分割し、それにより、各ドナー細胞の2つの部分の間での流動体通過が(不可能でなければ)減速する。溶液は、37℃で維持し、各細胞の底に位置した1mm ID管を通して提供される95% O2/5% CO2を供給する。正方形のステンレススチール電極(316S、6mm×6mm)は、組織から0.5mmの距離で、組織セグメントと平衡してドナー細胞(各セクションに1つの電極)を配置した。電極中心間の距離は、10mmであった。この状態で30分後、ドナー細胞中のHBSSは、1mg/mlの酢酸オクトレオチド(サンドスタチン)を含有するHBSSで置換した。
分散チャンバー(対照として使用される)の1つにおいて、組織セグメントを介したオクトレオチドの透過は、電気刺激の適用なしに測定した。別の拡散チャンバーにおいて、1ミリ秒の長さの12Hzの単相パルスのトレインは、Thurlby Thandar Instruments TGP110パルス送信機を用いて生じた。パルス発生機の電圧出力は、3mAの電流が電極を通じて流れるように調節した。電極に連続的に連結したEZ Digital Co.DM330デジタルマルチメーターは、電流を測定するために使用された。このマルチメーターは、電流メーターとして操作し、mAレベルの電流に感受性があるようにセットした。1mlの試料は、パルストレイン開始後30分、その後15分毎に90分間にわたってアクセプター細胞の各々から採用した。試料をオクトレオチドの含有量についてHPLC−UV 205nm分光器(Hewlett−Packard 1100,アセトニトリル:リン酸緩衝液(pH7.4)(40:60)、C18カラム)によって分析した。
図24のグラフに見ることができるように、オクトレオチド透過の実質的により大きな増加が、対照のアクセプター細胞に発生したものより、LITBパルスに晒されたアクセプター細胞に発生した。(酢酸オクトレオチドは、実験のpHで帯電した分子ではないので、発明者らは、イオントフォレーシスがチャンバー間でその通過の原因ではないと信じている。)
本出願を読んだ当業者に明確になるであろうので、投与される薬物106の量を制御するカプセル102を構成することも可能である。例えば、薬物106は、カプセル102内でいくつかのチャンバーに貯蔵されてもよく、送信/受信ユニットに送信されるシグナルは、チャンバーのない、1つ、いくつか、又は全てからの薬物を輸送する駆動機構を指示する。
図25を参照すると、それは、本発明の実施態様に従って、閉ループの活性薬物輸送システム400の略図である。システム400は、患者414のGI管412の上皮層を通じた薬物の通過を促進するための少なくとも1つの摂取可能な薬物輸送装置410(例えば、下記に記載する摂取可能な薬物輸送装置の1つ)を含む。システム400は、さらにセンサー415を含み、それは、無線的に又はワイヤ上のいずれかで無線送信機417に結合したセンサー416を含む。
センサー416は、患者414の血液循環における薬物濃度の指示を検出するように適合される。例えば、センサー416は、非侵入的外部センサー418、例えば、腕時計として使い古されるように適合されるセンサーを含んでもよい。非侵入的センサー418は、例えば、イオントフォレーシス、赤外分光法、又は血糖値を察知するための当該技術分野において既知であるような薬物の血中濃度を検出するためのソノフォレーシス技術を利用してもよい。その代わりに、センサー416は、侵入的センサー、例えば、血糖値を検出するための当該技術分野において既知であるような移植可能なセンサーを含む(構成は示されていない)。
送信機417は、摂取可能な薬物輸送装置410に結合した受信機に対して検出した指示を無線的に送信するように適合される(受信機は示されていない)。薬物輸送装置410は、血液循環における薬物のレベルを制御するために、受信した指示に応答して、薬物通過の促進レベルを調節するために構成される。装置410は、典型的には、血中薬物レベルが標的値よりも低い場合には促進レベルを増加させ、そして、血中薬物レベルが標的値よりも高い場合には促進レベルを減少する。このような血中薬物レベルの閉ループ制御は、医師が、薬物の投与量のみというよりはむしろ、薬物の血液レベルを予め処方することを可能にする。いくつかの適用について、薬物輸送装置410は、付加的に送信機を含み、そして、センサーユニット415は、付加的に受信機を含む。薬物輸送装置は、薬物輸送装置の位置(例えば、小腸における装置の到着)、運搬の促進状態、GI管のpH、GI管の温度、及び/又は薬物輸送装置の他の操作上のパラメータのセンサーユニット415を無線的に通知するように適合される。
本発明のある実施態様において、摂取可能な薬物輸送装置410は、上皮層を通じた薬物のトランス−上皮通過を促進することに加えて、較正物質のトランス−上皮通過を促進する。使用される薬物輸送装置410の特定のタイプに依存して、較正物質は、典型的には、装置内、装置に結合した丸薬内、又は装置と連結して投与される丸薬内に含有される。(いくつかの適用について、薬物及び較正物質は、同じ丸薬内に含有される。その代わりに、いくつかの適用について、薬物及び較正物質は別々の丸薬内に含有される。)センサーユニット415は、血液循環における薬物のレベルの代用として、血液循環における較正物質のレベルを測定する。較正物質の使用は、一般的に、センサー416の血液濃度検出技術の標準化を可能にし、特定の薬物の血中濃度がセンサー416によって容易に検出できない場合でさえも薬物輸送システム400の使用を可能にする。
いくつかの適用について、センサー416は、薬物106の服用が薬物輸送装置410によって投与又は差し控えられる応答により、化合薬品(例えば、グルコース )の血液レベルを検出するように適合される。その代わりに又はそれに加えて、LITVシグナル又は別の適用されるシグナルのパラメータは、検出されるレベルに応答して変化する。適したパラメータは、シグナル増幅、バースト周期(即ち、単位時間当たりのバースト数)、内部バーストパルス周波数、及び/又は適用されるパルスのパルス幅を含む。断続的に(例えば、毎分又は10分毎に)、センサー416は、別の読み取りを実行し、そして、薬物輸送装置410の操作は、更新した読み取りに応答して制御される。他の応用について、インスリン投与を調節するために化学グルコースを測定する代わりに、他の化学物質/薬物対が利用され、例えば、成長ホルモンの血中濃度及び投与される成長ホルモン阻害剤(例えば、サンドスタチン)、並びにセンサー416中のパルス酸素測定ユニットによって測定される血液酸化及び血管を拡張する投与される薬物である。
ある実施態様において、センサー416は、薬物輸送装置410の操作の適した制御を促進するために、非化学的パラメータを測定する。例えば、センサー416は、血圧を測定してもよく、薬物106は、利尿薬を含んでもよい。この例において、血圧レベルが正常であれば、利尿薬投与は、典型的には、減少し又は差し控えられる。別の応用において、センサー416は、心臓モニター(例えば、パルスモニター又はECGモニター)を含む。さらに別の応用において、センサー416は、加速度計及び/又は患者414の24時間周期の状態の指示計(例えば、タイミング回路)を含み、そして、薬物輸送装置410の操作は、それに応答して制御される。例えば、薬物輸送装置410は、その日中、抗血栓剤(例えば、低分子量ヘパリン)の投与を増加してもよく、夜にはその投与を減少してもよい。別の応用において、センサー416は、温度センサーを含み、そして、薬物106は、抗生物質(例えば、セファゾリン)を含む。
薬物輸送システム400の各々の使用に関して、いくつかの適用について、患者414は、スケジュールに従って、一般的には、薬物に必要な電流は関係なく、カプセルを取り込んでもよい。必要性が生じた場合、薬物は、典型的には、リアルタイムで(即ち、カプセルが患者の身体にあること)制御される投与量で輸送される。必要性が生じなければ、薬物は投与されない。
図26を参照すると、それは、実験的拡散チャンバー500の図示的な断面図であり、図27〜36は、本発明のそれぞれの実施態様に従って生じたインビトロの実験結果において示されるグラフである。多数の300gのウィスターラットは、ケタミン(100mg/kg)及びキシラジン(10mg/kg)を用いて麻酔した。腸の3cmの長さの2つのセクションは、各ラットから取り出し、腸間膜線に沿って開き、それにより、2つの長方形の組織片は、各ラットから利用可能であった(1つの組織片510は、図26に示される)。図27〜35に関して下記に記載される実験に関して、腸片は、上部の空腸から採取され、一方、図36に関して下記に記載される実験に関して、腸片は、上部の空腸、近接した回腸、及び遠方の回腸から採取した。腸片の漿膜層及び筋層は、顕微鏡のカバーガラスを用いて取り除かれた。各腸組織片は、スライド上に位置し、拡散チャンバー500挿入した。
拡散チャンバー500は、28mm×8mm窓524に連結したドナー細胞520及びアクセプター細胞522を規定するように形成される。スライド上の組織切片510は、窓524を完全に覆った。組織セグメント510は、窓524を完全に覆うように設置され、それにより、ドナー細胞及びアクセプター細胞522を分離する。組織セグメント510は、その粘膜部がドナー細胞520に面し、その漿膜部がアクセプター細胞522に直面するように配置した。ドナー細胞520は、pH7.4に調整した15mlのハンクス平衡塩溶液(HBSS)で満たした(mM:136.9 NaCl、5.4 KCl、0.5 MgCl2、0.4 MgSO4、4.5 KH2PO4、0.35 Na2HPO4、1.0 CaCl2、4.2 NaHCO3、5.5 D−グルコース)。アクセプター細胞522は、pH7.4に調整されたD−グルコース添加リン酸緩衝塩溶液(PBS)で満たした(mM:136.9 NaCl、2.7 KCl、0.5 MgCl2、1.5 KH2PO4、8.1 Na2HPO4、0.7 CaCl2、5.5 D−グルコース)。
組織セグメント510は、窓524にわたって置かれた後、ドナー細胞は、組織セグメント510に僅かに接触するように配置した電気的に分離する分割機528によって、2つの別々の区分526aと526bに分割し、それにより、区分525aと526bとの間の流動体通過が(不可能でなければ)減速した。(ドナー細胞520は、図33に関連して、下記に記載される実験において区分526a及び526bに分割しなかった。)溶液は、37℃で維持し、核細胞に底に設置した1mm ID管を介して提供される95% O2/5% CO2を提供した(管は図26に示されていない)。
1つの正方形の電極530は、ドナー細胞520の区分526aと526bの各々に設置し、それにより、各電極の電極表面532は、組織セグメント510から0.5mm離れて、組織セグメント510の表面に平行した(図32に関して下記に記載される実験を除く)。電極530は、ステンレススチール(SS316L、6mm×6mm)を含んだ(図34に関して下記に記載される実験を除く)。電極表面532の中心間の距離は、10mmであった。組織セグメントが30分間、窓524を覆って配置された後、ドナー細胞520のHBSSを1mg/mlの酢酸オクトレオチド(サンドスタチン)含有のHBSSと置換した。
図27〜36に関して下記に記載される実験の各々において、ドナー細胞520のHBSSのオクトレオチドによる置換を開始して、LITVパルスのトレインは、電極530を介して適用され、組織セグメント510を介したドナー細胞520からアクセプター細胞522へのオクトレオチドの透過を測定した。単相方形パルスのこのトレインは、Thurlby Thandar Instruments TGP110パルス発生装置を用いて発生させた。パルス発生機の電圧出力は、3mAの電流が電極を通じて流れるように調整した。EZ Digital Co.DM330デジタルマルチメーターは、電極に連続的に連結され、電流を測定するために使用した。マルチメーターは、電流メーターとして操作し、mAレベルの電流に感受性のあるようにセットした。
インキュベーション培地の1mlの試料は、HBSSをオクトレオチドで置換後の7分及び14分、その後15分毎で90分に亘ってアクセプター細胞522から採取した。試料は、HPLC−UV 205nm分光器(Hewlett−Packard 1100)によってオクトレオチドの含有量について分析した。定組成溶離は、移動層としてリン酸緩衝液(pH7.4)とアセトニトリル(40:60w/w)を用いて、流速1.2ml/分で実行した。100×3mm C18カラムを使用した。
各々の実験について、異なったラットからの少なくとも2つの組織セグメントは、実験群又は群(いずれかの実験のいずれかの実験群に対して1より多くの組織セグメントを提供した1つのラットもなかった)として使用した。各組織セグメントは、拡散チャンバー500に別々に設置し、電機パルスを適用し、そして、組織セグメントを介してオクトレオチドの透過を測定した。加えて、各々の実験について、異なるラットからの少なくとも2つ(通常、3つ)の組織セグメントは対照(いずれかの実験の対照群に対して1より多くの組織セグメントを提供したラットは1匹もいなかった)として使用した。対照群の組織セグメントは、拡散チャンバーに別々に設置し、そして、組織セグメントを介したオクトレオチドの透過は、電気シグナルの適用なしに測定した。
図27〜36に関して下記に記載される実験について、電気シグナルの適用の有効性は、透過効率(PE)として表現され、(a)組織切片510を介して透過したオクトレオチドの量と(b)拡散チャンバー500のドナー細胞520におけるオクトレオチドの初期量と比較として定義され、下記の式:
PE(%)=dQ/Qi×100%
(ここで、dQは、所定の時間点までチャンバー500のアクセプター細胞522を入ってオクトレオチド量を表し、そして、Qiは、チャンバー500のドナー細胞520に投与したオクトレオチドの初期量を表す)
によって定義される。
図28、30及び32に関して下記に記載される実験について、電気シグナルの適用の有効性は、運搬増強率(ER)として表現され、(a)実験群におけるシグナル適用中に測定したPEと(b)対照群において測定したPEの比として定義される。
図27を参照すると、それは、本発明の実施態様によって生じた透過効率における電気シグナル適用の効果を示すグラフである。単相方形パルスは、6匹の異なるラットから採取した6つの空腸組織試料に適用され、一方、3匹の異なるラットから採取した3つの空腸組織試料は対照群として使用した。(これらの実験群及び対照群からのデータはまた、図28〜36に関して下記に記載される実験において使用した。)パルスは、1ミリ秒のパルス幅、18Hzの周波数、及び3mAの強度を有した。このグラフに示すことができるように、パルスの適用は、刺激していない対照群におけるオクトレオチド透過と比較したオクトレオチド透過を実質的に促進した。
図28及び29は、本発明の実施態様に従って生じる、透過効率に対するパルス周波数の効果を示すグラフである。単相方形パルスは、図28に示されるデータを生じるために15個の空腸組織試料に適用され、そして、図29に示されるデータを生じるために8個の空腸組織試料に適用される。上述したように、図27の対照群が対照群として使用された。パルスは、1ミリ秒のパルス幅及び3mAの強さを有した。いくつかのパルス周波数が試験された(5Hz(n=1)、12Hz(n=5)、18Hz(n=6)、24Hz(n=2)、30Hz(n=2)、及び60Hz(n=1))。(18Hzの実験群については、図27の実験群が使用された。)図28のグラフに見られるように、HBSSをオクトレオチドに置換後30分で、18Hzでパルスの適用が最大の促進率を達成した。図29のグラフに見ることができるように、5Hz及び60Hzでのパルスの適用は、対照群におけるオクトレオチド透過より高いオクトレオチド透過を生じなかった。
図30は、本発明の実施態様に従って生じた、透過効率に対するパルス幅の効果を示すグラフである。単層方形パルスは、13個の空腸組織試料に適用され、図27の対照群が対照群として使用された。パルスは、18Hzの周波数及び3mAの強さを有した。いくつかのパルス幅が試験された(0.2ミリ秒(n=2)、0.5ミリ秒(n=3)、1ミリ秒(n=6)、及び3ミリ秒(n=2))。(1ミリ秒の実験群については、図27の実験群が使用された。)グラフに見ることができるように、HBSSをオクトレオチドによる置換後15分で、1ミリ秒のパルス幅を有するパルスの適用が、最大の促進率を達成した。
図31は、本発明の実施態様に従って生じた、透過効率に対するパルスサイクルの効果を示すグラフである。単相方形パルスは、10個の空腸組織試料に適用され、図27の対照群が対照群として使用された。パルスは、18Haの周波数、3mAの強さ、及び1ミリ秒のパルス幅を有した。いくつかのパルスサイクル(即ち、パルスのトレインにおいてパルス適用当りのパルス数)が試験された(1パルス/サイクル(n=6);2パルス/サイクル(n=2)、一次パルス(n=2)の開始後5ミリ秒を始める二次パルスを用いる;そして、3パルス/サイクル、5ミリ秒の間隔(n=2)を始める連続パルスを用いる)。(1パルス/サイクルの実験群については、図27の実験群が使用された。)グラフに見られるように、1サイクル当りのパルス数が増加するにつれて、透過効率が減少し、それによい、最大の透過効率が1パルス/サイクルで達成された。
図32は、本発明の実施態様に従って生じた、透過効率に対する空腸組織からの電極距離の効果を示すグラフである。単相方形パルスは、8個の空腸試料に適用され、図27の対照群が対照群として使用された。パルスは、18Hzの周波数、3mAの強さ、そして、1ミリ秒のパルス幅を有した。パルスは、空腸組織からの2つの電極距離、0.5mm(n=2)及び3mm(n=6)で適用された。(3mmの実験群については、図27の実験群が使用された。)グラフに見られるように、HBSSのオクトレオチドによる置換後15分で、透過効率の大きさは、空腸組織から3mmより0.5mm大きかった。
図33は、本発明の実施態様に従って生じた、透過効率に対する電極絶縁の効果を示すグラフである。単相方形パルスは、7個の空腸組織試料に適用し、図27の対照群が対照群として使用された。パルスは、18Hzの周波数、3mAの強さ、そして、1ミリ秒のパルス幅を有した。パルスは、2つの電極(図27の実験群が使用された(n=6))の間での電気絶縁を提供される分割機528(図26)を用いて、そして、分割機528を用いないで適用し、それにより、電極は、双方から電気的に絶縁されなかった(n=1)。グラフに見ることができるように、パルスの適用は、電極が分割機528によって双方から絶縁されない場合、透過効率を増加しなかった。
図34は、本発明の実施態様に従って生じた、透過効率に対する電極材料の効果を示すグラフである。単相方形パルスは、11個の空腸組織試料に適用され、図27の対照群が対照群として使用された。パルスは、18Hzの周波数、3mAの強さ、そして、1ミリ秒のパルス幅を有した。パルスは、ステンレススチール(SS316L)電極(n=6)、窒化チタン(TN)電極(n=3)、及び塩化銀(AgCl)電極(n=2)を用いて適用された。(ステンレススチール電極の実験群については、図27の実験群が使用された。)グラフに示されるように、ステンレススチール電極を用いたパルスの適用は、実質的に、透過効率を増加させたが、一方、窒化チタン電極及び塩化銀電極を用いてパルスの適用は、透過効率を増加させなかった。
図35は、本発明の実施態様に従って生じた、透過効率に対するパルス適用の効果を示すグラフである。単相方形パルスは、7個の空腸組織試料に適用された。実験群は、パルス適用が適用10分後に停止された1つの組織試料を含んだ。図27に関連して上述した実験群は、対照群として使用され;パルスは、実験期間を通じて連続的に対照群に適用された(全60分に対して、45分を図35に示す)。実験群及び対照群の両方に適用したパルスは、18Hzの周波数、3mAの強さ、及び1ミリ秒のパルス幅を有した。グラフに見られるように(図27の対照群のオクトレオチド透過に対して標準化される)は、パルスの連続適用が、10分後のパルス適用の停止と比較して実質的により高い透過効率に帰着した。
図36は、本発明の実施態様に従って生じた、腸の異なる領域における透過効率を示すグラフである。単相方形パルスは、6個の空腸組織試料(図27の実験群が使用された)、2近位回腸組織試料、及び2遠位回腸組織試料に適応された。3つの回腸組織試料(図27の対照群が使用された)、2つの近位回腸組織試料、及び3つの遠位回腸組織試料は、対照群として使用した。パルスは、18Hzの周波数、3mAの強度、及び1ミリ秒のパルス幅を有した。グラフに見ることができるように、HBSSのオクトレオチドによる置換後7分で、3つ全ての腸領域由来の組織に対するパルス適用は、透過効率を増加させ、空腸組織試料におけるパルス適用の最大の効果をもたらし、遠位回腸試料においてポジティブであるがより小さい顕著な効果をもたらした。
これらの実験におけるパラメータがラットに適用されたが、発明者らは、同様のパラメータが、ラットとヒトとの間の関連した生理学的類似性を与えるので、ヒト患者への適用に適していると信じる。
本発明のある実施態様において、摂取可能な電気的に支援された薬物輸送又は薬物輸送促進システムは、小腸において薬物の輸送時間を延長するために、このシステムが小腸に存在する期間を延長するように適合される。例えば、薬物輸送システムは、図3A〜20及び図22に関して下記に記載されるそれぞれ輸送システム30又は薬物輸送システム350を含んでもよく、薬物輸送促進システムは、図21に関して下記に記載される薬物輸送促進システム300を含んでもよい。いくつかの適用について、薬物は、延長された薬物輸送期間、実質的に連続的に輸送され、一方、他の応用については、薬物は、パルス的に輸送される。いくつかの適用について、薬物の制御放出が使用され、その放出曲線は、システムと薬物が小腸に存在する延長された期間と対応するように構成される。得られたより長く及びより平らな放出曲線は、しばしば、薬物の有効性及び/又は安全性を改善する。いくつかの適用について、上述した1以上の制御された薬物放出技術が使用される。
ある実施態様において、薬物輸送システムは、GI管に電流を適用することによって、そして、薬物輸送システム周辺の平滑筋の局所的収縮に電流を設定することによって、薬物輸送期間を延長するように設定され、それによって、GI管内のシステムの動きを減少(即ち、停止、減速及び反転)する。結果として、薬物輸送システムの移動時間及び/又はGI管における薬物の滞留時間が延長される。いくつかの適用について、1つの電極セットは、速度を減少する電流及び薬物輸送を促進する電流(例えば、システム30又は350の電極16、又はシステム300の電極366)を適用するために使用される。その代わりに、電極の別々のセットは、これらの機能のそれぞれについて使用される。同様に、1つのセット又は別々のセットのシステムの他の成分、例えば、電源、制御ユニット、及びセンサーが提供されてもよい。典型的には、GI管の任意の可能性のある閉塞を妨げるために、薬物輸送システムの動きは、数時間減速されるだけである。いくつかの適用について、上記の米国特許第6,709,388号(Mosseら)、及びMosse CAらによる文献に記載された技術は、必要な変更を加えて、GI管内の薬物輸送システムの動きを減少するために使用される。
ある実施態様において、薬物輸送システムは、GI管における薬物輸送システムの動きを減じるための機械的手段を用いることによって、薬物輸送期間を延長するように設定される。いくつかの適用について、薬物輸送システムは、1以上(例えば、1、2又は3)の膨張性要素を含み、GI管の壁によるシステムに適用される抵抗を増加するのを拡大するように適合される。いくつかの適用について、膨張性の要素は、1以上の、図6Aと6Bに関して下記に記載される自己膨張性部分33のような自己膨張性要素、又は図8、9、11B又は11Dに関して下記に記載される自己膨張性要素を含む。これらの応用において、自己膨張性部分は、典型的には、抵抗を増加させ、及びGI管の壁とより近接してその上に電極をもたらすために使用する。その代わりに、別々の膨張性要素が適用され、GI管の壁と電気的な接触を用いては必ずしも支援されない。
典型的には、膨張性要素は、約100%と約300%との間まで薬物輸送システムの少なくとも一部の径を増加する。膨張性要素は、典型的には、必ずしもそうではないが、数時間までの期間に亘って接触するように構成され、それによって、薬物輸送システムがGI管を通じてその正常な移動速度を回復することを可能にする。
本発明のある実施態様において、速度減少要素は、薬物輸送要素とともにGI管に輸送されるように適合される自己膨張性のフレキシブルな構造を含む。いくつかの適用について、薬物輸送要素は、(a)摂取可能な電気的に支援される薬物輸送システム又は薬物輸送促進システム(例えば、本明細書中に記載される)、(b)慣用的な薬物丸薬、及び/又は(c)放出緩和薬物リザーバーを含む。GI管の適切な位置で一度、この構造が拡張し、GI管との得られた接触は、GI管を通じた構造の動き、つまり、薬物輸送要素のうごきを減速する。典型的には、この構造は、薬物輸送要素に結合し、又は薬物輸送要素の統合した成分である。
いくつかの適用について、この構築物は、当該技術分野において既知の技術を用いて、小腸におけるある位置のようなGI管のある位置で溶解するように構成されるカプセル中において崩壊性の形態でGI管に輸送される。カプセルとGI管の天然に発生する整列は、典型的には、この構造とGI管とを適切に整列するために使用する。
典型的には、自己膨張性構造は、GI管において伸長後、ある期間その形状を失うように適合される。例えば、この構造の全部又は一部は、GI管の流動体との接触に応じて、制御されてやり方で溶解する材料を含んでもよい。
図37を参照すると、それは、本発明の実施態様に従って、GI管(GI管は示されていない)の中心軸460周囲に配置した例示の自己膨張性フレキシブル構造450の略図である。上述したように、構造450は、薬物輸送要素とともにGI管に輸送されるように適合される。構造450は、少なくとも多くの連結要素464に連結した3以上(例えば、図に示されるように4)の環462を含む。いくつかの適用について、連結要素464の数は、環462の数に等しい。いくつかの適用について、環462は、ニチノールを含む。構造450はGI管の直径に近い、それを通じた縦の開口を定義するように形成されるので、GI管の閉塞は、一般的に避けられる。つまり、構造450は、実質的な期間、GI管に膨張したままであり得る。(図37の点線は、構造450の配列を図示するために使用し、構造の要素を表していない。)
図38を参照すると、それは、本発明の実施態様に従って、別の自己膨張性フレキシブル構造470の略図である。構造470は、GI管の内腔とほぼ等しい径Dを有し、縦開口部が一般的に断面において回状であるように環462が湾曲していることを除き、図37に関連して下記に記載される構造450に類似する。(図38の点線は、構造470の配列を図示するために使用し、構造の要素を表していない。)
いくつかの適用について、構造450又は470の環462は、システム30又は350の電極16として、あるいはシステム300の電極366として使用する。
典型的には、要素464は、GI管の流動体との接触に応じて、制御されるやり方で溶解するように適合される、固体であり徐々に溶解する材料を含む。要素464が溶解する場合、構造450は、別々の環462に分けられ、実質的に、GI管における薬物輸送システム又は他の材料の通過を崩壊又は減速することなしに、GI管の実質的に正常な速度でGI管を通して通過する。
構造450は、典型的には、GI管において拡大する前に、コンパクトな貯蔵のために折り畳むことができる。例えば、構造450は、折り畳むことができ、溶解性カプセルに貯蔵し得る。いくつかの適用について、各環462は、1.5cmの径を有し、そして、構造450は、折り畳まれ、カプセルの中心軸に平行な構造の中心軸を有して、標準サイズ0カプセルに貯蔵される。
本発明の実施態様において、システム30、300又は350は、システムによって輸送される薬物分子の局所的輸送を促進し、その全身輸送を減少するように適合される。いくつかの適用について、このシステムは、GI管の標的組織、例えば、小腸の粘膜層、粘膜下層、及び/又は筋層に薬物分子の局所輸送を促進するように適合される。請求の範囲を含む本出願において使用されるとき、薬物分子の「局所輸送」は、下記の条件:
(a)GI管における分子の放出に起因する薬物分子の任意の所定の全身濃度について、GI管の標的組織における分子の濃度は、局所輸送技術の適用なしに起こったであろう標的組織における分子の濃度の少なくとも300%である;あるいは
(b)GI管における分子の放出に起因する薬物分子の任意の所定の濃度は、分子の全身濃度は、局所輸送技術の適用なしに起こったであろう分子の全身濃度の33%以下である
の1つが満たされる場合に発生すると言われる。
いくつかの適用について、このシステムは、(a)腸の潰瘍性大腸炎を治療するために粘膜層に抗炎症剤の輸送、(b)クローン病を治療するために粘膜層、粘膜下層、及び/又は筋層に抗炎症剤の輸送、(c)典型的にはGI管における特異的部位への化学療法剤の局所輸送、又は(d)細菌感染、例えば、ヘリコバクター・ピロリ菌に対する薬物の局所輸送を促進する。本明細書中に記載される活性薬物輸送技術の使用は、典型的には、このような試薬に対するGI管の天然の薬物耐性を克服する。いくつかの適用について、このシステムは、局所薬物輸送を送信し、そして、システムが小腸に存在する期間を延長するように適合され、これは、例えば、上記に、及び/又は“Prolonged transit time of permeability−enhancing drug eluting pill”と題する、同日付で出願された上述のPCT出願において記載される延長技術を用いることによる。例えば、このシステムは、上記に、及び/又は上述したPCT出願に記載される1以上の速度減少要素を含んでもよい。
薬物分子の局所輸送の促進及び全身輸送の減少のための第一の技術に従って、システム30又は350の電極間の距離が減少される。結果として、電気シグナルの効果は、GI管の壁のより深い層よりはむしろ電極に近い組織層に集中する。したがって、薬物分子は、上皮層に浸透することができるが、しかし、より深い層に浸透し血管に入る能力が低下する。典型的な電極間距離は、約5mm未満、例えば、約1と約3mmとの間である。
薬物分子の局所輸送の促進及び全身輸送の減少のための第二の技術に従って、LITVシグナルの振幅が減少し、それにより、血管への薬物分子の運搬を減少する。例えば、この振幅は、約0.3と約0.8mAとの間にセットされてもよい。
薬物分子の局所輸送の促進及び全身輸送の減少のための第三の技術に従って、LITVシグナルは、相対的に短い「オン」の期間を有する負荷サイクルをもって適用される。刺激は、(a)薬物分子が密接結合を貫通し、上部の上皮層に入ることを可能にするのに十分であるが、より深い層及び血管に分子を運搬するには十分でない「オン」の期間、そして、(b)薬物分子が組織の標的治療部位を到達することができるには十分である「オフ」の期間で適用される。いくつかの適用について、LITVシグナルは、「オン」と「オフ」を変更する期間に適用され、約0.5と約2秒の間の「オン」期間の各々の期間、及び約5と約20秒との間の「オフ」機関の各々の期間である。典型的には、各「オン」機kン中の上皮層を貫通する薬物分子の治療効果は、その後の「オフ」期間の少なくとも一部を通じて継続する。次いで、追加の薬物分子は、次の「オン」期間中、上皮層を貫通する。薬物輸送システムは、GI管を通じて蠕動的に動いている場合、このような短い「オン」期間は、典型的には、少量の薬物だけがGI管の任意の所定の領域で上皮層を貫通することができる。
薬物分子の局所輸送の促進及び全身輸送の減少のための第四の技術に従って、血管収縮は、薬物分子の周辺でGI管の血管において誘導される。このような血管収縮は、(a)化学的には、薬物分子と一緒に血管収縮剤を提供することによって、(b)機械的には、例えば、バイブレーションの適用によって、及び/又は(c)電気的には、適切に構成した電気シグナルをGI管に適用することによって誘導される。血管収縮は、GI管の血管の透過性を減少し、及び/又は薬物分子を含有するGI管の所定部位を通過する血液量を減少する。このやり方で、本明細書中に提供されるような血管収縮は、典型的には、薬物分子がGI管壁の組織に残存する程度を増加し、そして薬物分子の全身輸送を減少する。
本発明の実施態様において、LITVシグナルを必ずしも適用せずに、薬物分子の周辺でGI管の血管において血管収縮は、化学的、機械的及び/又は電気的に誘導される。典型的には、丸薬の形状をしたシステムは、機械的若しくは電気的シグナルを適用することによって、及び/又は化学的な血管収縮剤を放出することによって血管収縮を誘導する。いくつかの適用について、丸薬の形状をしたシステムは、薬物分子を貯蔵及び放出し、一方、他の応用については、薬物分子は、慣用的な丸薬のように別々に投与され、そして、丸薬の形状をしたシステムは、薬物分子の別々の投与と連動して飲み込まれる。いくつかの適用について、丸薬の形状をしたシステムは、化学的な血管収縮剤を含む薬物丸薬を含み、丸薬は、薬物分子の別々の投与と連動して飲み込まれる。その代わりに、化学的な血管収縮剤は、薬物分子を含む薬物丸薬に含有される。
本発明のある実施態様において、血管収縮は、GI管から全身の血液循環に栄養物(脂肪を含む)の吸収を減少するために、GI管の血管に化学的、機械的及び/又は電気的に誘導される。化学的、機械的及び/又は電気的に誘導される血管収縮は、典型的には、食事の始めと終わりの直前、その期間、又はその後に患者によって飲み込まれるシステムによって適用される。吸収におけるこのような減少は、典型的には、肥満の治療に使用される。いくつかの態様において、複数の血管収縮誘導カプセルは、1日当り少なくとも1個のカプセルの患者による摂取が血管収縮により、1週間当り少なくとも1kgの患者の体重減少を誘導するのに十分な程度までGI管の血管の血管収縮を誘導するように適合される。
本発明のある実施態様において、システム30、300又は350は、GI管の状態の治療のための第一及び第二薬物を輸送するように適合される。第一薬物は、GI管を介して全身的に輸送され、第二薬物は、GI管の壁の組織に局所的に輸送される。典型的には、2つの薬物は、システムの別々の薬物を分注する空洞に貯蔵される。第一に、全身薬は、全身輸送のための上記で記載した技術を用いて輸送され、一方、第二に、局所薬は、任意に、全身輸送を減少するための上記に記載した1以上の技術を含む、局所剤を送信するための上記で記載した技術を用いて輸送される。例えば、GI管の部位のピロリ菌による感染を治療するために、第一薬物は、GI管を通して全身輸送用の抗生物質を含んでもよく、そして、第二薬物は、試薬の局所輸送によって感染の局所治療のための試薬を含んでもよい。
本発明のある実施態様において、システム30、300又は350は、GI管の複数の非接触セグメントに薬物を局所的に輸送するように適合される。このシステムは、ある種の期間(例えば、約1と約2時間との間、約30分と1時間との間、約15分と約30分との間、又は約10分と約15分との間)のセグメントの第一に薬物を輸送し、そして、薬物の輸送を停止する。このシステムがセグメントの第二に到達する場合、システムはある種の期間、第二のセグメントに薬物を輸送する。この薬物のオン/オフ輸送は、複数のセグメントのそれぞれについて繰り返される。例えば、このシステムは、GI管の複数のセグメントにおける胃潰瘍を治療するための薬物を輸送してもよい。胃潰瘍の治療のための典型的な薬物は、増殖因子及びcox−2特異的阻害剤(例えば、上述したBrzozowski Tらによる記事を参照されたい)を含む。いくつかの適用について、このシステムは、薬物の局所輸送のための、及び/又は薬物の全身輸送を減少するための上記に記載した1以上の技術を使用する。
本発明のある実施態様において、システム30、300又は350は、GI管の特異的セグメントに対する経口薬物を輸送するように適合される。例えば、このシステムは、クローン病(例えば、上述したLundin PDらによる記事を参照されたい)を治療するための局所的グルココルチコステロイド治療薬を輸送してもよい。このシステムは、典型的には、GI管内の所望の位置で薬物を輸送するための上記で記載した1以上の技術を使用する。
本明細書中に記載した技術は、例えば、限定されないが、潰瘍性大腸炎、GIシステムの癌、クローン病、及び胃の分割の合併症を含む状態を治療するために使用されてもよい。
いくつかの適用について、上記で記載した技術は、下記の1以上の特許出願に記載される技術を併用して実施され、これらの文献は、本出願の譲受人へ譲渡され、本明細書中に参照により援用される。
・米国仮特許出願60/443,173(2003年1月29日出願、「摂取可能な電気的に支援された薬物輸送システム及び方法」と題する)
・米国特許出願10/767,663(Grossら、2004年1月29日出願、「胃腸管による活性薬物輸送」と題する)、及び国際特許出願(Grossら、同日付で出願、「胃腸管における活性薬物輸送」と題する)
・米国特許出願10/838,072(Grossら、2004年5月3日出願、「胃腸管における活性薬物輸送」と題する)
・米国特許出願10/910,742(Grossら、2004年7月29日出願、「胃腸管における活性薬物輸送」と題する)
・上述したPCT出願(同日付で出願、「透過性を促進する薬物溶離丸薬の長期化した輸送時間」と題する)
いくつかの適用について、上記で記載した技術は、1以上の上述した文献、特許及び/又は特許出願に記載される技術と併用して実施される。例の目的であって、限定されないで、ピストン及びバネを含む本発明の実施態様は、1以上のこれらの特許及び特許出願に記載されるバネ放出技術を使用してもよい。
この特許の期間中、多くの関連薬物は、開発されるであろうことが期待され、用語「薬物」の範囲は全てのこのような新規な技術を推測的に含むことが意図される。
本明細書中で使用されるとき、用語「約」は、±10%を意味する。
本発明の実施態様の上記の記載において、種々の経口剤形、例えば、カプセル剤及び錠剤が記載される。請求の範囲において、用語「カプセル」は、一般的に、即ち、薬物輸送システム30に関して図3〜20に示されるように、あるいは、カプセル102に関して図21〜30に示されるようなカプセル剤、錠剤、及び類似の形態を含む経口剤形を意味することが理解されるべきである。
本特許出願の内容及び請求の範囲において使用するとき、用語「薬物」は、疾患若しくは他の異常な状態の診断、治療、治癒、軽減又は予防の補助として投与されてもよい、あるいは健康を改善するための任意の天然若しくは合成の化学物質を意味する。
本発明のある種の特徴はまた、明確にするために、別々の実施態様の内容に記載され、1つの実施態様に組み合わせて提供されてもよい。反対に、本発明の種々の特徴はまた、簡潔にするために、1つの実施態様の内容に記載され、別々に又は任意の適切なサブコンビネーションで提供されてもよい。
必要に応じて、本特許出願に記載される技術は、米国特許出願10/767,663及びPCT特許出願PCT/IL2004/000093(ともに、「胃腸管における活性薬物輸送」と題し、2004年1月29日に出願された)に記載される技術と組み合わせて実施されてもよく、本明細書中に参照により援用され、本特許出願の譲受人に譲渡される。
本発明は、その特定の実施態様と連動して記載されているが、多くの代替、修飾及び変形が当業者に明確であろうことは明らかである。したがって、添付した請求の範囲の精神及び広範囲にある全てのこのような代替、修飾及び変形を包含することが意図される。本出願に記述した全ての刊行物、特許及び特許出願は、本明細書中、あたかもそれぞれの刊行物、特許又は特許出願が具体的に及び個別的に参照により本明細書中に援用されることが意図されているのと同程度に、参照により明細書中に全体として援用される。加えて、本出願における任意の参照の引用又は認定は、このような参照が本発明に対する先行技術として利用可能であるという承認として解釈されるべきでない。
図1は、小腸壁の略図である。 図2は、本発明のある実施態様に従った電気的に支援された薬物輸送のための装置の略図である。 図3A及び3Bは、本発明の実施態様に従った摂取可能な電気的に支援された薬物輸送システムの略図である。 図4は、本発明の実施態様に従った複数の電極を有する摂取可能な電気的に支援された薬物輸送システムの略図である。 図5は、本発明の実施態様に従った複数の電極を有する摂取可能な電気的に支援された薬物輸送システムの略図である。 図6Aは、本発明の実施態様に従った自己膨張性部分を有する摂取可能な電気的に支援された薬物輸送システムの略図である。 図6Bは、本発明の実施態様に従った自己膨張性部分を有する摂取可能な電気的に支援された薬物輸送システムの略図である。 図7は、本発明の実施態様に従った複数の電極を有する摂取可能な電気的に支援された薬物輸送システムの略図である。 図8は、本発明の実施態様に従った複数の電極及び自己慎重性部分を有する摂取可能な電気的に支援された薬物輸送システムの略図である。 図9は、本発明の実施態様に従った複数の電極及び自己慎重性部分を有する摂取可能な電気的に支援された薬物輸送システムの略図である。 図10は、本発明の態様に従って、胃腸管である場合、複数の電極及び自己膨張性部分を有する電気的に支援された薬物輸送システムの略図である。 図11A及びBは、本発明の態様に従って、投薬する空洞が自己膨張性部分として形成される、摂取可能な電気的に支援された薬物輸送システムの略図である。 図11Cは、本発明の態様に従って、投薬する空洞が自己膨張性部分として形成される、摂取可能な電気的に支援された薬物輸送システムの略図である。 図11Dは、本発明の態様に従って、投薬する空洞が自己膨張性部分として形成される、摂取可能な電気的に支援された薬物輸送システムの略図である。 図12は、本発明の実施態様に従って、生分解性キャップを有する薬物空洞を有する摂取可能な電気的に支援された薬物輸送システムの略図である。 図13は、本発明の実施態様に従って、薬物がシステムと一緒に統合された錠剤に圧縮される、摂取可能な電気的に支援された薬物輸送システムの略図である。 図14A及び14Bは、本発明の実施態様に従って、胃腸管において浸透ポンプを形成するように適合される、摂取可能な電気的に支援された薬物輸送システムの略図である。 図15は、本発明の実施態様に従って、pH依存的に制御された薬物放出を有する、摂取可能な電気的に支援された薬物輸送システムの略図である。 図16は、本発明の実施態様に従って、電気的に活性化されたpH依存的に制御された薬物放出を有する、摂取可能な電気的に支援された薬物輸送システムの略図である。 図17は、本発明の実施態様に従って、ソノフォレーシス用に適合される、摂取可能な電気的に支援された薬物輸送システムの略図である。 図18は、本発明の実施態様に従って、アブレーション用に適合される、摂取可能な電気的に支援された薬物輸送システムの略図である。 図19は、本発明の実施態様に従って、遠隔測定通信用に適合される、摂取可能な電気的に支援された薬物輸送システムの略図である。 図20は、本発明の実施態様に従って、本体を有するガルバニ電池の作製に適合される、摂取可能な電気的に支援された薬物輸送システムの略図である。 図21は、本発明の実施態様に従って、摂取可能な電気的に支援された薬物輸送促進システムの略図である。 図22は、本発明の実施態様に従って、別の摂取可能な電気的に支援された薬物輸送システムの略図である。 図23は、本発明の実施態様に従って、カップリング機構の略図である。 図24は、本発明の実施態様に従って測定されたインビトロの実験結果を示すグラフである。 図25は、本発明の実施態様に従って、閉ループの活性薬物輸送システムの略図である。 図26は、本発明の実施態様に従って、実験的拡散チャンバーの略図である。 図27は、本発明の各実施態様に従って生じたインビトロの実験結果を示すグラフである。 図28は、本発明の各実施態様に従って生じたインビトロの実験結果を示すグラフである。 図29は、本発明の各実施態様に従って生じたインビトロの実験結果を示すグラフである。 図30は、本発明の各実施態様に従って生じたインビトロの実験結果を示すグラフである。 図31は、本発明の各実施態様に従って生じたインビトロの実験結果を示すグラフである。 図32は、本発明の各実施態様に従って生じたインビトロの実験結果を示すグラフである。 図33は、本発明の各実施態様に従って生じたインビトロの実験結果を示すグラフである。 図34は、本発明の各実施態様に従って生じたインビトロの実験結果を示すグラフである。 図35は、本発明の各実施態様に従って生じたインビトロの実験結果を示すグラフである。 図36は、本発明の各実施態様に従って生じたインビトロの実験結果を示すグラフである。 図37は、本発明の各実施態様に従って自己膨張性構造の略図である。 図38は、本発明の各実施態様に従って自己膨張性構造の略図である。

Claims (43)

  1. 患者の胃腸(GI)管に輸送される薬物とともに使用するための装置であって、薬物周辺でGI管における患者の血管収縮を誘導するように適合される摂取可能なカプセルを含む、前記装置。
  2. 前記カプセルが、化学物質を貯蔵し、そして化学物質を放出して血管収縮を誘導するように適合される、請求項1に記載の装置。
  3. 前記カプセルが、血管収縮を誘導可能な電流をGI管に適用するように適合される、1又はそれより多くの血管収縮を誘導する電極を含む、請求項1に記載の装置。
  4. 前記カプセルが、血管収縮を誘導可能な1又はそれより多くの機械的力をGI管に適用するように適合される、1又はそれより多くの血管収縮を誘導する機械的作動装置を含む、請求項1に記載の装置。
  5. 前記カプセルが、薬物を貯蔵及び放出するように適合される、請求項1に記載の装置。
  6. 1又はそれより多くの薬物通過促進電極;及び
    電流を適用するための薬物通過促進電極を駆動することによって、薬物の通過を促進するように適合される制御部
    を含む、請求項1〜5のいずれか1項に記載の装置。
  7. 前記摂取可能なカプセルによって、患者の非胃腸(GI)管のいずれの血管収縮の誘導よりも大きな程度までGI管の血管収縮を誘導するように適合される該カプセルを含む、患者のGI管において使用する装置。
  8. 前記カプセルが薬物を含む、請求項7に記載の装置。
  9. 前記カプセルが薬物を含まない、請求項7に記載の装置。
  10. 複数個の摂取可能なカプセルを含む請求項7に記載の装置であって、前記カプセルは、患者による1日当り少なくとも1個のカプセルの摂取が、血管収縮に起因して1週間当り少なくとも1kgの患者の体重減少を誘導するのに十分な程度までGI管の血管収縮を誘導するように適合される、前記装置。
  11. 前記カプセルが、化学物質を貯蔵し、化学物質を放出して血管収縮を誘導するように適合される、請求項7に記載の装置。
  12. 前記カプセルが、血管収縮を誘導可能な電流をGI管に適用するように適合される、1又はそれより多くの血管収縮を誘導する電極を含む、請求項7に記載の装置。
  13. 前記カプセルが、血管収縮を誘導可能な1又はそれより多くの機械的力をGI管に適用するように適合される、1又はそれより多くの血管収縮を誘導する機械的作動装置を含む、請求項7に記載の装置。
  14. 患者の胃腸(GI)管に輸送される薬物とともに使用する装置であって、
    1又はそれより多くの電極;及び
    GI管の標的組織に薬物の局所輸送を誘導する電流を適用するための電極を駆動するように適合される制御部
    を含む摂取可能なカプセルを含む、前記装置。
  15. 前記カプセルが、GI管内の部位でカプセルの配置に応答してその状態を変えるように適合される環境感受性の機材を含み、そして前記制御部が状態変化に応答して電極を駆動するように適合される、請求項14に記載の装置。
  16. 前記制御部が電極を駆動している時間の少なくとも一部の期間、前記カプセルがGI管を通るカプセルの速度を減少させるように適合される速度減少要素を含む、請求項14に記載の装置。
  17. 前記薬物が抗炎症剤を含み、前記制御部が抗炎症剤の局所輸送を誘導する電流を適用するための電極を駆動するように適合される、請求項14に記載の装置。
  18. 前記薬物が化学療法剤を含み、前記制御部が化学療法剤の局所輸送を誘導する電流を適用するための電極を駆動するように適合される、請求項14に記載の装置。
  19. 前記薬物が抗菌剤を含み、前記制御部が抗菌剤の局所輸送を誘導する電流を適用するために電極を駆動するように適合される、請求項14に記載の装置。
  20. 前記標的組織が小腸の粘膜層を含み、ここで、前記制御部が、粘膜層に薬物の局所輸送を誘導する電流を適用するための電極を駆動するように適合される、請求項14に記載の装置。
  21. 前記標的組織が小腸の粘膜下層を含み、ここで、前記制御部が、粘膜下層に薬物の局所輸送を誘導する電流を適用するための電極を駆動するように適合される、請求項14に記載の装置。
  22. 前記標的組織が小腸の筋層を含み、ここで、前記制御部が、筋層に薬物の局所輸送を誘導する電流を適用するための電極を駆動するように適合される、請求項14に記載の装置。
  23. 前記カプセルが、薬物を貯蔵及び放出するように適合される、請求項14に記載の装置。
  24. 前記カプセルが、薬物周辺でGI管における患者の血管収縮を誘導するように適合される、請求項14に記載の装置。
  25. 前記1又はそれより多くの電極間の少なくとも1つの電極間距離が、薬物の局所輸送を誘導するには十分小さい、請求項14〜24のいずれか1項に記載の装置。
  26. 前記少なくとも1つの電極間距離が5mm未満である、請求項25に記載の装置。
  27. 前記少なくとも1つの電極間距離が3mm未満である、請求項26に記載の装置。
  28. 前記制御部が、薬物の局所輸送を誘導するのに十分に低い振幅を有する低強度時変(LITV)シグナルを適用するために電極を駆動するように設定される、請求項14〜24のいずれか1項に記載の装置。
  29. 前記制御部が、LITVシグナルの振幅を0.8mA未満に調節するように設定される、請求項28に記載の装置。
  30. 前記制御部が、(a)薬物が密接結合を貫通し、GI管の上部の上皮層に移入することを可能にするのには十分であるが、より深い層及び血管内に薬物を運搬するには十分でない「オン」の継続期間、そして(b)薬物が標的組織に到達することを可能にするには十分である「オフ」の継続期間を有する負荷サイクルを伴うLITVシグナルを適用するための電極を駆動するように設定される、請求項14〜24のいずれか1項に記載の装置。
  31. 前記制御部が、それぞれの「オン」の期間を0.5〜2秒の間の継続時間を有するように調節し、そして、それぞれの「オフ」の期間を5〜20秒の間の継続時間を有するように調節するように設定される、請求項30に記載の装置。
  32. カプセルに貯蔵された第一及び第二薬物;
    1又はそれより多くの電極;そして
    第一薬物の全身輸送を誘導する第一電流を適用するための第一セットの2又はそれより多くの電極を駆動するようにし、及び
    患者の胃腸(GI)管の標的組織に第二薬物の局所輸送を誘導する第二電流を適用するための第二セットの2又はそれより多くの電極を駆動するように適合される制御部
    を含む、摂取可能なカプセルを含む装置。
  33. 第一及び第二セットの電極が、少なくとも1つの共通電極を含む、請求項32に記載の装置。
  34. 第二セットの2又はそれより多くの電極間の少なくとも1つの電極間が、薬物の局所輸送を誘導するには十分に小さい、請求項32に記載の装置。
  35. 前記制御部が、薬物の局所輸送を誘導するには十分に低い振幅を有する低強度時変(LITV)シグナルを適用するための第二セットの電極を駆動するように設定される、請求項32に記載の装置。
  36. 前記制御部が、(a)薬物が密接結合を貫通し、GI管の上部の上皮層に移入することを可能にするには十分であるが、より深い層及び血管内に薬物を運搬するのには十分でない「オン」の継続期間、そして(b)薬物が標的組織に到達することを可能にするには十分である「オフ」の継続期間を有する負荷サイクルを伴うLITVシグナルを適用するための第二セットの電極を駆動するように設定される、請求項32に記載の装置。
  37. 前記カプセルが、第二の薬物周辺でGI管における患者の血管収縮を誘導するように適合される、請求項32に記載の装置。
  38. 第一薬物が、GI管の感染を治療するための全身性抗生剤を含み、そして第二薬物が、感染の局所治療剤を含む、請求項32〜37のいずれか1項に記載の装置。
  39. 前記感染がピロリ菌(Helicobacter pylori)による感染を含み、ここで、前記全身性抗生物質がピロリ菌を治療するための全身性抗生剤を含み、そして前記局所治療剤がピロリ菌感染の局所治療剤を含む、請求項38に記載の装置。
  40. カプセルに貯蔵された薬物;
    1又はそれより多くの電極;
    患者の胃腸(GI)管内の第一セグメントでカプセルの配置に応答してその第一状態を変化し、及び、GI管内の第二セグメントでカプセルの配置に応答してその第二状態を変化するように適合される環境感受性の機材;そして
    第一状態の変化に応答して、第一期間、第一セグメントに薬物の通過を促進する電流を適用するための電極を駆動するように適合され、及び
    第二状態の変化に応答して、第二期間、第二セグメントに薬物の通過を促進する電流を適用するための電極を駆動するように適合される制御部
    を含む、摂取可能なカプセルを含む装置。
  41. 前記制御部が、少なくとも1つの第一期間及び第二期間、GI管の標的組織において薬物の局所輸送を誘導するための電流を設定するように適合される、請求項40に記載の装置。
  42. 前記カプセルが、少なくとも1つの第一期間及び第二期間、薬物周辺でGI管における患者の血管収縮を誘導するように適合される、請求項40に記載の装置。
  43. 前記薬物が胃潰瘍の治療のための薬物を含む、請求項40に記載の装置。
JP2007546305A 2004-12-14 2005-12-14 電気透過性増加を用いた薬物又は物質の局所輸送 Pending JP2008522778A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63644704P 2004-12-14 2004-12-14
PCT/IL2005/001346 WO2006064502A2 (en) 2004-12-14 2005-12-14 Local delivery of drugs or substances using electronic permeability increase

Publications (1)

Publication Number Publication Date
JP2008522778A true JP2008522778A (ja) 2008-07-03

Family

ID=36588273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007546305A Pending JP2008522778A (ja) 2004-12-14 2005-12-14 電気透過性増加を用いた薬物又は物質の局所輸送

Country Status (4)

Country Link
US (2) US20080275430A1 (ja)
EP (2) EP1827388A2 (ja)
JP (1) JP2008522778A (ja)
WO (2) WO2006064502A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234331A (ja) * 2005-05-31 2013-11-21 E I Du Pont De Nemours & Co ナノ粒子太陽光制御コンセントレートを含むポリマーブレンドの製造方法
JP2018165281A (ja) * 2010-03-10 2018-10-25 ラニ セラピューティクス, エルエルシー 嚥下可能な薬物送達デバイスを用いた腸管の内腔への送達のための治療薬調製物
JP2022502383A (ja) * 2018-09-25 2022-01-11 ラニ セラピューティクス, エルエルシー 拡張可能なエンクロージャを備えた摂取可能なデバイス

Families Citing this family (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8346363B2 (en) 1999-03-05 2013-01-01 Metacure Limited Blood glucose level control
US9101765B2 (en) 1999-03-05 2015-08-11 Metacure Limited Non-immediate effects of therapy
US8700161B2 (en) 1999-03-05 2014-04-15 Metacure Limited Blood glucose level control
US8666495B2 (en) 1999-03-05 2014-03-04 Metacure Limited Gastrointestinal methods and apparatus for use in treating disorders and controlling blood sugar
US8792985B2 (en) 2003-07-21 2014-07-29 Metacure Limited Gastrointestinal methods and apparatus for use in treating disorders and controlling blood sugar
US9821158B2 (en) 2005-02-17 2017-11-21 Metacure Limited Non-immediate effects of therapy
US8730031B2 (en) 2005-04-28 2014-05-20 Proteus Digital Health, Inc. Communication system using an implantable device
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
US8836513B2 (en) 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
WO2006116718A2 (en) 2005-04-28 2006-11-02 Proteus Biomedical, Inc. Pharma-informatics system
WO2007028035A2 (en) 2005-09-01 2007-03-08 Proteus Biomedical, Inc. Implantable zero-wire communications system
US8295932B2 (en) * 2005-12-05 2012-10-23 Metacure Limited Ingestible capsule for appetite regulation
KR20140018439A (ko) 2006-05-02 2014-02-12 프로테우스 디지털 헬스, 인코포레이티드 환자 주문형 치료법
US8273063B2 (en) 2006-05-30 2012-09-25 Yossi Gross Implantable pump for drug delivery to treat erectile dysfunction
US8147482B2 (en) 2006-06-20 2012-04-03 MEDIMETRICS Personalized Drug Delivery B.V. Electronic capsule for treating gastrointestinal disease
EP2087589B1 (en) 2006-10-17 2011-11-23 Proteus Biomedical, Inc. Low voltage oscillator for medical devices
KR101611240B1 (ko) 2006-10-25 2016-04-11 프로테우스 디지털 헬스, 인코포레이티드 복용 가능한 제어된 활성화 식별자
RU2009120512A (ru) 2006-10-31 2010-12-10 Конинклейке Филипс Электроникс Н.В. (Nl) Конструкция глотаемого дозирующего устройства с множеством форсунок для выпуска лекарств в желудочно-кишечный тракт
US8718193B2 (en) 2006-11-20 2014-05-06 Proteus Digital Health, Inc. Active signal processing personal health signal receivers
US8187174B2 (en) * 2007-01-22 2012-05-29 Capso Vision, Inc. Detection of when a capsule camera enters into or goes out of a human body and associated operations
CN101686800A (zh) 2007-02-01 2010-03-31 普罗秋斯生物医学公司 可摄入事件标记器系统
AU2008216170B2 (en) 2007-02-14 2012-07-26 Otsuka Pharmaceutical Co., Ltd. In-body power source having high surface area electrode
US8932221B2 (en) 2007-03-09 2015-01-13 Proteus Digital Health, Inc. In-body device having a multi-directional transmitter
EP2063771A1 (en) 2007-03-09 2009-06-03 Proteus Biomedical, Inc. In-body device having a deployable antenna
US8152711B2 (en) 2007-03-21 2012-04-10 Yossi Gross Implantable peristaltic pump to treat erectile dysfunction
US8540632B2 (en) 2007-05-24 2013-09-24 Proteus Digital Health, Inc. Low profile antenna for in body device
US7925351B2 (en) 2007-06-13 2011-04-12 Betastim, Ltd. Gastrointestinal device for treating obesity and diabetes
US8961412B2 (en) 2007-09-25 2015-02-24 Proteus Digital Health, Inc. In-body device with virtual dipole signal amplification
US8626299B2 (en) 2008-01-31 2014-01-07 Enopace Biomedical Ltd. Thoracic aorta and vagus nerve stimulation
US7818062B2 (en) 2008-01-31 2010-10-19 Ed Tech Medical Ltd. Peristaltic pump for treatment of erectile dysfunction
US20090198271A1 (en) * 2008-01-31 2009-08-06 Rainbow Medical Ltd. Electrode based filter
US8538535B2 (en) 2010-08-05 2013-09-17 Rainbow Medical Ltd. Enhancing perfusion by contraction
US8626290B2 (en) 2008-01-31 2014-01-07 Enopace Biomedical Ltd. Acute myocardial infarction treatment by electrical stimulation of the thoracic aorta
US9005106B2 (en) 2008-01-31 2015-04-14 Enopace Biomedical Ltd Intra-aortic electrical counterpulsation
CN102014867A (zh) 2008-03-05 2011-04-13 普罗秋斯生物医学公司 多模式通信可摄取事件标记和系统,及使用其的方法
CN102006822B (zh) * 2008-04-18 2015-01-21 西门子公司 胶囊内窥镜
JP2009270901A (ja) * 2008-05-07 2009-11-19 Yoichi Kaneko パッシブrfidタグの三次元位置を高精度に計測する方法
US20090326516A1 (en) * 2008-06-30 2009-12-31 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Preparatory dispensation systems and methods
DK2313002T3 (en) 2008-07-08 2018-12-03 Proteus Digital Health Inc Data basis for edible event fields
US8287902B2 (en) 2008-07-23 2012-10-16 Rainbow Medical Ltd. Enhanced-diffusion capsule
CA2734251A1 (en) * 2008-08-13 2010-02-18 Proteus Biomedical, Inc. Ingestible circuitry
KR101192690B1 (ko) 2008-11-13 2012-10-19 프로테우스 디지털 헬스, 인코포레이티드 섭취 가능한 치료 활성화 시스템, 치료 장치 및 방법
CN102271578B (zh) 2008-12-11 2013-12-04 普罗秋斯数字健康公司 使用便携式电子内脏造影系统的胃肠功能的评估及其使用方法
TWI424832B (zh) 2008-12-15 2014-02-01 Proteus Digital Health Inc 與身體有關的接收器及其方法
US9439566B2 (en) 2008-12-15 2016-09-13 Proteus Digital Health, Inc. Re-wearable wireless device
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
KR20110103446A (ko) 2009-01-06 2011-09-20 프로테우스 바이오메디컬, 인코포레이티드 섭취-관련 바이오피드백 및 개별화된 의료 치료 방법 및 시스템
WO2010080764A2 (en) 2009-01-06 2010-07-15 Proteus Biomedical, Inc. Pharmaceutical dosages delivery system
WO2010111403A2 (en) 2009-03-25 2010-09-30 Proteus Biomedical, Inc. Probablistic pharmacokinetic and pharmacodynamic modeling
JP5284846B2 (ja) * 2009-03-30 2013-09-11 オリンパス株式会社 生体内観察システム、該生体内観察システムの作動方法
JP2010240104A (ja) * 2009-04-03 2010-10-28 Olympus Corp 体内観察システム、該体内観察システムの駆動方法
EP2424427B1 (en) 2009-04-28 2021-06-16 Otsuka Pharmaceutical Co., Ltd. Highly reliable ingestible event markers
US8414559B2 (en) 2009-05-07 2013-04-09 Rainbow Medical Ltd. Gastroretentive duodenal pill
WO2010132331A2 (en) 2009-05-12 2010-11-18 Proteus Biomedical, Inc. Ingestible event markers comprising an ingestible component
WO2011008534A1 (en) * 2009-06-30 2011-01-20 Boston Scientific Scimed, Inc. Implantable self-powered biodegradable medical device to treat or prevent reperfusion injury
CN109157742B (zh) 2009-08-03 2022-04-05 因卡伯实验室有限责任公司 用于刺激肠道内肠促胰岛素产生的吞咽式囊和方法
EP2467707A4 (en) 2009-08-21 2014-12-17 Proteus Digital Health Inc DEVICE AND METHOD FOR MEASURING BIOLOGICAL PARAMETERS
TWI517050B (zh) 2009-11-04 2016-01-11 普羅托斯數位健康公司 供應鏈管理之系統
UA109424C2 (uk) 2009-12-02 2015-08-25 Фармацевтичний продукт, фармацевтична таблетка з електронним маркером і спосіб виготовлення фармацевтичної таблетки
US8759284B2 (en) 2009-12-24 2014-06-24 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9014779B2 (en) 2010-02-01 2015-04-21 Proteus Digital Health, Inc. Data gathering system
WO2011092710A2 (en) 2010-02-01 2011-08-04 Metacure Limited Gastrointestinal electrical therapy
CN102905672B (zh) 2010-04-07 2016-08-17 普罗秋斯数字健康公司 微型可吞服装置
TWI557672B (zh) 2010-05-19 2016-11-11 波提亞斯數位康健公司 用於從製造商跟蹤藥物直到患者之電腦系統及電腦實施之方法、用於確認將藥物給予患者的設備及方法、患者介面裝置
EP2575700B1 (en) * 2010-05-27 2015-08-05 The Regents of the University of Michigan Device system for gastric volume reduction to facilitate weight loss
US20110301414A1 (en) * 2010-06-04 2011-12-08 Robert Hotto Intelligent endoscopy systems and methods
US10010439B2 (en) 2010-06-13 2018-07-03 Synerz Medical, Inc. Intragastric device for treating obesity
US10420665B2 (en) 2010-06-13 2019-09-24 W. L. Gore & Associates, Inc. Intragastric device for treating obesity
US9526648B2 (en) 2010-06-13 2016-12-27 Synerz Medical, Inc. Intragastric device for treating obesity
US8628554B2 (en) 2010-06-13 2014-01-14 Virender K. Sharma Intragastric device for treating obesity
US9314523B2 (en) * 2010-09-21 2016-04-19 Elwha Llc Ingestible salt grabber
JP2014504902A (ja) 2010-11-22 2014-02-27 プロテウス デジタル ヘルス, インコーポレイテッド 医薬品を有する摂取可能なデバイス
US8846040B2 (en) 2010-12-23 2014-09-30 Rani Therapeutics, Llc Therapeutic agent preparations comprising etanercept for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9259386B2 (en) 2010-12-23 2016-02-16 Rani Therapeutics, Llc Therapeutic preparation comprising somatostatin or somatostatin analogoue for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9283179B2 (en) 2010-12-23 2016-03-15 Rani Therapeutics, Llc GnRH preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US10639272B2 (en) 2010-12-23 2020-05-05 Rani Therapeutics, Llc Methods for delivering etanercept preparations into a lumen of the intestinal tract using a swallowable drug delivery device
US8809269B2 (en) 2010-12-23 2014-08-19 Rani Therapeutics, Llc Therapeutic agent preparations comprising insulin for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9402806B2 (en) 2010-12-23 2016-08-02 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8969293B2 (en) 2010-12-23 2015-03-03 Rani Therapeutics, Llc Therapeutic agent preparations comprising exenatide for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8734429B2 (en) 2010-12-23 2014-05-27 Rani Therapeutics, Llc Device, system and methods for the oral delivery of therapeutic compounds
US8764733B2 (en) 2010-12-23 2014-07-01 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8809271B2 (en) 2010-12-23 2014-08-19 Rani Therapeutics, Llc Therapeutic agent preparations comprising liraglutide for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9415004B2 (en) 2010-12-23 2016-08-16 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9629799B2 (en) 2010-12-23 2017-04-25 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9284367B2 (en) 2010-12-23 2016-03-15 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8980822B2 (en) 2010-12-23 2015-03-17 Rani Therapeutics, Llc Therapeutic agent preparations comprising pramlintide for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9149617B2 (en) 2010-12-23 2015-10-06 Rani Therapeutics, Llc Device, system and methods for the oral delivery of therapeutic compounds
US9861683B2 (en) 2010-12-23 2018-01-09 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9402807B2 (en) 2010-12-23 2016-08-02 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
JP2014514032A (ja) 2011-03-11 2014-06-19 プロテウス デジタル ヘルス, インコーポレイテッド 様々な物理的構成を備えた着用式個人身体関連装置
US20130053928A1 (en) * 2011-05-31 2013-02-28 Daniel Gat Device, system and method for in vivo light therapy
PT3653223T (pt) * 2011-06-29 2021-12-06 Rani Therapeutics Llc Dispositivo para a entrega oral de compostos terapêuticos
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
CA2842952C (en) 2011-07-21 2019-01-08 Proteus Digital Health, Inc. Mobile communication device, system, and method
WO2013035092A2 (en) 2011-09-09 2013-03-14 Enopace Biomedical Ltd. Wireless endovascular stent-based electrodes
US8855783B2 (en) 2011-09-09 2014-10-07 Enopace Biomedical Ltd. Detector-based arterial stimulation
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
US9386991B2 (en) 2012-02-02 2016-07-12 Rainbow Medical Ltd. Pressure-enhanced blood flow treatment
US9770588B2 (en) 2012-04-30 2017-09-26 Carnegie Mellon University Ingestible, electrical device for stimulating tissues in a gastrointestinal tract of an organism
KR20150038038A (ko) 2012-07-23 2015-04-08 프로테우스 디지털 헬스, 인코포레이티드 섭취 가능한 부품을 포함하는 섭취 가능한 이벤트 마커를 제조하기 위한 기술
US20140088345A1 (en) * 2012-09-27 2014-03-27 Palo Alto Research Center Incorporated Single channel, multiple drug delivery device and methods
BR112015008434A2 (pt) 2012-10-18 2017-07-04 Proteus Digital Health Inc aparelho, sistema e método para otimizar adaptativamente a dissipação de potência e a potência de radiodifusão em uma fonte de alimentação para um dispositivo de comunicação
WO2014120669A1 (en) 2013-01-29 2014-08-07 Proteus Digital Health, Inc. Highly-swellable polymeric films and compositions comprising the same
WO2014144738A1 (en) 2013-03-15 2014-09-18 Proteus Digital Health, Inc. Metal detector apparatus, system, and method
JP6498177B2 (ja) 2013-03-15 2019-04-10 プロテウス デジタル ヘルス, インコーポレイテッド 本人認証装置システムおよび方法
US9446187B2 (en) 2013-06-03 2016-09-20 Bigfoot Biomedical, Inc. Infusion pump system and method
EP3005281A4 (en) * 2013-06-04 2017-06-28 Proteus Digital Health, Inc. System, apparatus and methods for data collection and assessing outcomes
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
CA2965941C (en) 2013-09-20 2020-01-28 Proteus Digital Health, Inc. Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US9577864B2 (en) 2013-09-24 2017-02-21 Proteus Digital Health, Inc. Method and apparatus for use with received electromagnetic signal at a frequency not known exactly in advance
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
CN105899166B (zh) 2013-11-06 2018-07-06 伊诺佩斯生医有限公司 无线型血管内基于支架的电极
WO2015187289A1 (en) 2014-06-03 2015-12-10 Pop Test Abuse Deterrent Technology Llc Drug device configured for wireless communication
US9492396B2 (en) 2014-07-15 2016-11-15 Yossi Gross Enhanced drug delivery pill
US20160058272A1 (en) * 2014-08-28 2016-03-03 Panasonic Intellectual Property Management Co., Ltd. Capsule endoscope, capsule endoscope system, and method for controlling posture of capsule endoscope
US20160067466A1 (en) 2014-09-05 2016-03-10 Elwha LLC, a limited company of the State of Delaware Systems, methods, and devices addressing the gastro-intestinal tract
US10183154B2 (en) * 2014-09-05 2019-01-22 Elwha Llc Systems, methods, and devices addressing the gastro-intestinal tract
US11116658B2 (en) 2015-06-28 2021-09-14 Oberon Sciences Ilan Ltd. Devices for gastrointestinal stimulation and uses thereof
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
CA3006322C (en) * 2015-11-30 2022-06-07 Jvd, Inc. Medicine delivery and animal management systems
JP6654031B2 (ja) * 2015-12-14 2020-02-26 セイコーインスツル株式会社 小型電子機器
US9770591B2 (en) 2015-12-29 2017-09-26 Rainbow Medical Ltd. Disc therapy
US9950156B2 (en) 2016-09-13 2018-04-24 Rainbow Medical Ltd. Disc therapy
US10518085B2 (en) 2015-12-29 2019-12-31 Rainbow Medical Ltd. Disc therapy
US10779980B2 (en) 2016-04-27 2020-09-22 Synerz Medical, Inc. Intragastric device for treating obesity
EP3487393A4 (en) 2016-07-22 2020-01-15 Proteus Digital Health, Inc. ELECTROMAGNETIC CAPTURE AND DETECTION OF INGERABLE EVENT MARKERS
GB2554354B (en) 2016-09-21 2021-06-02 Vibrant Ltd Systems for adaptive treatment of disorders in the gastrointestinal tract
US11504024B2 (en) * 2018-03-30 2022-11-22 Vibrant Ltd. Gastrointestinal treatment system including a vibrating capsule, and method of use thereof
TWI735689B (zh) 2016-10-26 2021-08-11 日商大塚製藥股份有限公司 製造含有可攝食性事件標記之膠囊之方法
US10905378B1 (en) 2017-01-30 2021-02-02 Vibrant Ltd Method for treating gastroparesis using a vibrating ingestible capsule
US10888277B1 (en) 2017-01-30 2021-01-12 Vibrant Ltd Method for treating diarrhea and reducing Bristol stool scores using a vibrating ingestible capsule
US11541015B2 (en) 2017-05-17 2023-01-03 Massachusetts Institute Of Technology Self-righting systems, methods, and related components
AU2018269556B2 (en) 2017-05-17 2024-01-25 Massachusetts Institute Of Technology Tissue anchoring articles
US10537720B2 (en) 2018-04-09 2020-01-21 Vibrant Ltd. Method of enhancing absorption of ingested medicaments for treatment of parkinsonism
US20210023357A1 (en) * 2018-04-09 2021-01-28 Vibrant Ltd. Vibrating capsule for enhancing absorption of ingested medicaments
US11638678B1 (en) 2018-04-09 2023-05-02 Vibrant Ltd. Vibrating capsule system and treatment method
WO2019199913A1 (en) * 2018-04-11 2019-10-17 Jvd, Inc. Medicine delivery and animal management systems
US11510590B1 (en) 2018-05-07 2022-11-29 Vibrant Ltd. Methods and systems for treating gastrointestinal disorders
CA3100710A1 (en) 2018-05-17 2019-11-21 Massachusetts Institute Of Technology Systems for electrical stimulation
US20190350443A1 (en) * 2018-05-21 2019-11-21 Mark D. Noar Method For Monitoring A Property Of Tissue Of An Internal Bodily Organ And Adjusting The Tissue Property
JP2021529604A (ja) * 2018-06-29 2021-11-04 ミラキ イノベーション シンク タンク エルエルシー 小型の体内の制御可能な寒冷療法医療機器及び方法
US10675248B2 (en) 2018-08-14 2020-06-09 Alma Therapeutics Ltd. Expandable pill
EP3906086A4 (en) 2019-01-03 2022-10-19 Vibrant Ltd. DEVICE AND METHOD FOR DELIVERING AN INgestible MEDICATION INTO A USER'S GASTROINTESTINAL TRACT
GB201900780D0 (en) 2019-01-21 2019-03-06 Vibrant Ltd Device and method for delivering a flowable ingestible medicament into the gastrointestinal tract of a user
US20200238081A1 (en) * 2019-01-29 2020-07-30 The Regents Of The University Of California Oral drug delivery devices and methods using iontophoresis
US11771829B2 (en) 2019-02-01 2023-10-03 Massachusetts Institute Of Technology Systems and methods for liquid injection
GB201901470D0 (en) 2019-02-04 2019-03-27 Vibrant Ltd Vibrating capsule for gastrointestinal treatment, and method of use thereof
KR102068616B1 (ko) * 2019-03-15 2020-01-21 (주)한국원자력 엔지니어링 장내 체류를 위한 내용물 운반체
US20220211426A1 (en) * 2019-05-17 2022-07-07 Mayo Foundation For Medical Education And Research Catheters that deliver pulsed electrical field for targeted cellular ablation
US11123197B2 (en) 2019-09-03 2021-09-21 Rainbow Medical Ltd. Hydropneumatic artificial intervertebral disc
US11541216B2 (en) 2019-11-21 2023-01-03 Massachusetts Institute Of Technology Methods for manufacturing tissue interfacing components
CN110917478B (zh) * 2019-12-10 2020-11-24 河南省肿瘤医院 一种宫颈hpv感染用药物缓释器
US11883007B2 (en) * 2021-08-07 2024-01-30 Brian Michael Coyle Controlled motion capsule
WO2023034771A1 (en) * 2021-08-30 2023-03-09 Nanovis, LLC Devices and methods for treating infected tissue
US11400299B1 (en) 2021-09-14 2022-08-02 Rainbow Medical Ltd. Flexible antenna for stimulator
US20230398367A1 (en) * 2022-06-13 2023-12-14 Novocure Gmbh Systems and methods for increasing intestinal absorption of therapeutic agents

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH337989A (fr) * 1957-04-09 1959-04-30 Perrenoud Jean Pierre Dr Capsule
US3057344A (en) * 1957-05-21 1962-10-09 Abella Carlos Alberto Capsule for the study of the digestive tract and method of using the same
US3315660A (en) * 1963-08-08 1967-04-25 Carlos A Abella Capsule for insertion in the digestive track
US3485235A (en) * 1967-12-04 1969-12-23 Ronald Felson Capsule for the study and treatment of the digestive tract
US3659600A (en) * 1970-02-24 1972-05-02 Estin Hans H Magnetically operated capsule for administering drugs
US4239040A (en) * 1976-10-19 1980-12-16 Kabushiki Kaisha Daini Seikosha Capsule for medical use
DE2928477C3 (de) * 1979-07-14 1982-04-15 Battelle-Institut E.V., 6000 Frankfurt Vorrichtung zur Freisetzung von Substanzen an definierten Orten des Verdauungstraktes
JPS57163309A (en) * 1981-04-01 1982-10-07 Olympus Optical Co Ltd Capsule apparatus for medical use
US4987136A (en) * 1982-03-16 1991-01-22 The Rockefeller University Method for controlling gastrointestinal dysmotility
US5961482A (en) * 1986-07-25 1999-10-05 Rutgers, The State University Of New Jersey Iontotherapeutic device and process and iontotherapeutic unit dose
US4869248A (en) * 1987-04-17 1989-09-26 Narula Onkar S Method and apparatus for localized thermal ablation
US4959485A (en) * 1988-04-27 1990-09-25 Rorer Pharmaceutical Corporation Hexahydrodibenzofuran carboxylic acid derivatives
US4844076A (en) * 1988-08-26 1989-07-04 The Johns Hopkins University Ingestible size continuously transmitting temperature monitoring pill
US5170801A (en) * 1990-10-02 1992-12-15 Glaxo Inc. Medical capsule device actuated by radio-frequency (rf) signal
US5167626A (en) * 1990-10-02 1992-12-01 Glaxo Inc. Medical capsule device actuated by radio-frequency (RF) signal
US5217449A (en) * 1990-12-11 1993-06-08 Miyarisan Kabushiki Kaisha Medical capsule and apparatus for activating the same
US5395366A (en) * 1991-05-30 1995-03-07 The State University Of New York Sampling capsule and process
US5279607A (en) * 1991-05-30 1994-01-18 The State University Of New York Telemetry capsule and process
US6251100B1 (en) * 1993-09-24 2001-06-26 Transmedica International, Inc. Laser assisted topical anesthetic permeation
US5814599A (en) * 1995-08-04 1998-09-29 Massachusetts Insitiute Of Technology Transdermal delivery of encapsulated drugs
IL108352A (en) * 1994-01-17 2000-02-29 Given Imaging Ltd In vivo video camera system
IL108775A (en) * 1994-02-25 2003-09-17 Univ Ramot Method for efficient incorporation of molecules into cells
US5464395A (en) * 1994-04-05 1995-11-07 Faxon; David P. Catheter for delivering therapeutic and/or diagnostic agents to the tissue surrounding a bodily passageway
IE70735B1 (en) * 1994-08-15 1996-12-11 Elan Med Tech Orally administrable delivery device
US5983134A (en) * 1995-04-23 1999-11-09 Electromagnetic Bracing Systems Inc. Electrophoretic cuff apparatus drug delivery system
US5735817A (en) * 1995-05-19 1998-04-07 Shantha; T. R. Apparatus for transsphenoidal stimulation of the pituitary gland and adjoining brain structures
US6002961A (en) * 1995-07-25 1999-12-14 Massachusetts Institute Of Technology Transdermal protein delivery using low-frequency sonophoresis
US6041253A (en) * 1995-12-18 2000-03-21 Massachusetts Institute Of Technology Effect of electric field and ultrasound for transdermal drug delivery
US5947921A (en) * 1995-12-18 1999-09-07 Massachusetts Institute Of Technology Chemical and physical enhancers and ultrasound for transdermal drug delivery
US5983131A (en) * 1995-08-11 1999-11-09 Massachusetts Institute Of Technology Apparatus and method for electroporation of tissue
DE19532676C1 (de) * 1995-09-05 1997-05-07 Inst Physikalische Hochtech Ev Anordnung zur Bestimmung der Position eines Markers in einem Hohlraum innerhalb des Organismus eines Lebewesens
US5674196A (en) * 1996-01-05 1997-10-07 Donaldson; John Device for introducing medical fluid into the human ear
EA001070B1 (ru) * 1996-04-01 2000-10-30 Валерий Иванович КОБОЗЕВ Электростимулятор желудочно-кишечного тракта
US5738110A (en) * 1996-05-29 1998-04-14 Beal; Charles B. Device for the diagnosis of certain gastrointestinal pathogens
WO1998000194A2 (en) * 1996-06-28 1998-01-08 Sontra Medical, L.P. Ultrasound enhancement of transdermal transport
US7033598B2 (en) * 1996-11-19 2006-04-25 Intrabrain International N.V. Methods and apparatus for enhanced and controlled delivery of a biologically active agent into the central nervous system of a mammal
US6026326A (en) * 1997-01-13 2000-02-15 Medtronic, Inc. Apparatus and method for treating chronic constipation
DE19717023C2 (de) * 1997-04-23 2003-02-06 Micronas Gmbh Vorrichtung zum Behandeln von malignen, tumorösen Gewebebereichen
US5861014A (en) * 1997-04-30 1999-01-19 Medtronic, Inc. Method and apparatus for sensing a stimulating gastrointestinal tract on-demand
US5951538A (en) * 1997-08-07 1999-09-14 Ceramatec, Inc. Gas generating device for delivering beneficial agents to a body cavity
US6775569B2 (en) * 1997-11-05 2004-08-10 Hisamitsu Pharmaceutical Co., Inc. Electroporation device for in vivo delivery of therapeutic agents
IL122602A0 (en) * 1997-12-15 1998-08-16 Tally Eitan Zeev Pearl And Co Energy management of a video capsule
AU1622999A (en) * 1997-12-17 1999-07-05 Alza Corporation Iontophoresis with programmed adjustment of electric current
CA2317777C (en) * 1998-01-08 2005-05-03 Sontra Medical, Inc. Sonophoretic enhanced transdermal transport
US5984860A (en) * 1998-03-25 1999-11-16 Shan; Yansong Pass-through duodenal enteroscopic device
US6350470B1 (en) * 1998-04-29 2002-02-26 Cima Labs Inc. Effervescent drug delivery system for oral administration
US6369039B1 (en) * 1998-06-30 2002-04-09 Scimed Life Sytems, Inc. High efficiency local drug delivery
US6148232A (en) * 1998-11-09 2000-11-14 Elecsys Ltd. Transdermal drug delivery and analyte extraction
US5983135A (en) * 1998-12-24 1999-11-09 Avrahami; Zohar Transdermal delivery of fine powders
US6477410B1 (en) * 2000-05-31 2002-11-05 Biophoretic Therapeutic Systems, Llc Electrokinetic delivery of medicaments
US7171263B2 (en) * 1999-06-04 2007-01-30 Impulse Dynamics Nv Drug delivery device
GB2352636B (en) * 1999-08-03 2003-05-14 Univ College London Hospitals Improved passage-travelling device
US6344027B1 (en) * 1999-12-08 2002-02-05 Scimed Life Systems, Inc. Needle-less injection apparatus and method
GB9930000D0 (en) * 1999-12-21 2000-02-09 Phaeton Research Ltd An ingestible device
US6600953B2 (en) * 2000-12-11 2003-07-29 Impulse Dynamics N.V. Acute and chronic electrical signal therapy for obesity
US7039453B2 (en) * 2000-02-08 2006-05-02 Tarun Mullick Miniature ingestible capsule
IL141907A0 (en) * 2000-03-08 2002-03-10 Given Imaging Ltd A device and system for in vivo imaging
US6471696B1 (en) * 2000-04-12 2002-10-29 Afx, Inc. Microwave ablation instrument with a directional radiation pattern
US6572740B2 (en) * 2000-04-13 2003-06-03 Elan Pharma International Limited Electrolytic cell
US6676657B2 (en) * 2000-12-07 2004-01-13 The United States Of America As Represented By The Department Of Health And Human Services Endoluminal radiofrequency cauterization system
US6535764B2 (en) * 2001-05-01 2003-03-18 Intrapace, Inc. Gastric treatment and diagnosis device and method
US20020198567A1 (en) * 2001-06-07 2002-12-26 Yona Keisari Electro-endocytotic therapy as a treatment modality of cancer
US7160258B2 (en) * 2001-06-26 2007-01-09 Entrack, Inc. Capsule and method for treating or diagnosing the intestinal tract
US6951536B2 (en) * 2001-07-30 2005-10-04 Olympus Corporation Capsule-type medical device and medical system
US20030125788A1 (en) * 2001-11-09 2003-07-03 Long Gary L. Self-propelled, intraluminal device with electrode configuration and method of use
US20030093031A1 (en) * 2001-11-09 2003-05-15 Long Gary L. Self-propelled, intraluminal device with medical agent applicator and method of use
IL154391A (en) * 2002-02-11 2009-05-04 Given Imaging Ltd Self-propelled device
WO2004033034A1 (en) * 2002-10-04 2004-04-22 Microchips, Inc. Medical device for neural stimulation and controlled drug delivery
US20040253304A1 (en) * 2003-01-29 2004-12-16 Yossi Gross Active drug delivery in the gastrointestinal tract
JP4733918B2 (ja) * 2003-10-01 2011-07-27 オリンパス株式会社 カプセル投薬システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234331A (ja) * 2005-05-31 2013-11-21 E I Du Pont De Nemours & Co ナノ粒子太陽光制御コンセントレートを含むポリマーブレンドの製造方法
JP2018165281A (ja) * 2010-03-10 2018-10-25 ラニ セラピューティクス, エルエルシー 嚥下可能な薬物送達デバイスを用いた腸管の内腔への送達のための治療薬調製物
JP2022502383A (ja) * 2018-09-25 2022-01-11 ラニ セラピューティクス, エルエルシー 拡張可能なエンクロージャを備えた摂取可能なデバイス
JP7334242B2 (ja) 2018-09-25 2023-08-28 ラニ セラピューティクス, エルエルシー 拡張可能なエンクロージャを備えた摂取可能なデバイス

Also Published As

Publication number Publication date
US20080188837A1 (en) 2008-08-07
EP1827387A2 (en) 2007-09-05
EP1827388A2 (en) 2007-09-05
US20080275430A1 (en) 2008-11-06
WO2006064502A2 (en) 2006-06-22
WO2006064502A3 (en) 2006-09-21
WO2006064503A2 (en) 2006-06-22
WO2006064503A3 (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP2008522778A (ja) 電気透過性増加を用いた薬物又は物質の局所輸送
US20050058701A1 (en) Active drug delivery in the gastrointestinal tract
US20040267240A1 (en) Active drug delivery in the gastrointestinal tract
US20040253304A1 (en) Active drug delivery in the gastrointestinal tract
US20090105561A1 (en) Medical or veterinary digestive tract utilization systems and methods
US10814115B2 (en) Microneedle devices and uses thereof
US8333754B2 (en) Medical or veterinary digestive tract utilization systems and methods
US20100145301A1 (en) Spray administration of compositions including active agents such as peptides to the gastrointestinal tract
US8109920B2 (en) Medical or veterinary digestive tract utilization systems and methods
US20090137866A1 (en) Medical or veterinary digestive tract utilization systems and methods
US8789536B2 (en) Medical or veterinary digestive tract utilization systems and methods
US8303573B2 (en) Medical or veterinary digestive tract utilization systems and methods
US8707964B2 (en) Medical or veterinary digestive tract utilization systems and methods
US8808276B2 (en) Adaptive dispensation in a digestive tract
CN1953737A (zh) 胃肠道内的主动药物递送
US8808271B2 (en) Medical or veterinary digestive tract utilization systems and methods
US11660436B1 (en) Device, system, and formulation for oral delivery of functionalized particles
US20090163894A1 (en) Medical or veterinary digestive tract utilization systems and methods
GROSS et al. Patent 2514392 Summary

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728