JP2008505492A - プラズマ処理装置内を最適の温度にコントロールする装置およびその方法 - Google Patents

プラズマ処理装置内を最適の温度にコントロールする装置およびその方法 Download PDF

Info

Publication number
JP2008505492A
JP2008505492A JP2007519258A JP2007519258A JP2008505492A JP 2008505492 A JP2008505492 A JP 2008505492A JP 2007519258 A JP2007519258 A JP 2007519258A JP 2007519258 A JP2007519258 A JP 2007519258A JP 2008505492 A JP2008505492 A JP 2008505492A
Authority
JP
Japan
Prior art keywords
temperature
upper chamber
temperature control
plasma processing
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007519258A
Other languages
English (en)
Inventor
サルダナ,ミグエル,エー.
シャープレス,レオナルド,ジェイ.
ダグハーティ,ジョン,イー.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of JP2008505492A publication Critical patent/JP2008505492A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/06Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with the heat-exchange conduits forming part of, or being attached to, the tank containing the body of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0077Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • F28F2013/006Heat conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract


プラズマ処理装置の上部チャンバの温度コントロール装置が開示される。温度コントロール装置は、プラズマ処理装置の上部チャンバと熱伝導可能かつ互いに移動可能に接続する、内表面と外表面を有する熱伝導体を含む。温度コントロール装置はさらに、少なくとも一つの加熱要素を有し熱伝導体と熱伝導する複数の熱インターフェース層と;熱伝導体と接続しており、プラズマ処理装置の上部チャンバと熱的に結合され、流動体を導通するように構成された冷却要素を有する。そして温度コントロール装置は、プラズマ処理装置の上部チャンバの温度を検出する少なくとも一つの温度センサと;加熱要素と冷却要素の制御のための温度コントロールユニットと;上部チャンバの温度コントロール装置を固定するラッチ機構(latching mechanism)とを含んでいる。
【選択図】図3A

Description

本発明は半導体集積回路の作成に関し、特にプラズマ処理システムの温度制御に関する。
半導体基板装置の作成(例えば集積回路、フラットパネルディスプレイなど、)において、材料層を基板表面上に交互に、堆積(deposited)やエッチングが行われる。作成工程の間に、様々な材料層(例えばホウ素リン珪酸ガラス(BPSG:borophosphosilicate glass)、ポリシリコン、金属など)が基板の上に堆積される。堆積層は公知の技術(例えばフォトレジスト処理)によりパターン化される。そして、様々な特徴(例えば相互連結配線、ヴィア、トレンチなど)を形成するために堆積層の一部がエッチングされる。
上記技術によって理解されるように、例えばエッチング工程は半導体製造プロセスにおいて、高品質を維持するために、処理チャンバ内の種々のパラメーターを厳重に管理する必要がある。温度はそのパラメーターの一つである。エッチングの品質(および半導体基板装置の機能)はプラズマ処理システム内の構成要素の温度変動に対して非常に敏感であるため、正確な制御が必要とされる。加工寸法(feature size)が小さくなるに従って、一定で正確な半導体装置を提供するために、プラズマ処理装置の温度コントロールがより重要になってくる。
図1Aは従来技術のプラズマ処理チャンバである、上部部材(top piece)と下部部材(bottom piece)を合体させた装置を示す図である。上部部材(上部チャンバ)は、通常のRFコイル、石英の窓、ガス入力口を備えている。また下部部材(下部チャンバ)は、通常の静電的チャック、基板、ガス除去システムを備えている。
特に、図1Aは米国特許6104966号(ベイリら)の実施例に記載されているもので、ここでは参考として記載した。図1Aはプラズマ処理装置100の断面図を表している。プラズマ処理装置100は、加熱及び冷却プレート104がプラズマ処理チャンバ132と結合している。プラズマ処理チャンバ132は、基板122を処理の間に支持するための基板固定機構126を有している。
例えば、基板固定機構126は静電チャックとすることができる。基板122の表面は、処理チャンバ132内に放出されたガスのプラズマ処理によりエッチングされる。ガス源は、シャワーヘッドやガス分散プレートなどの種々の機構により放出される。吸引プレート116はプラズマ処理チャンバ132のチャンバ壁118と接着して密閉性を維持する。吸引プレート116上のコイル134は高周波(RF)電源(図示せず)と結合して、プラズマ処理チャンバ132内に放出されるガス源からプラズマを生成するために用いられる。基板固定機構126もまたRF電源を有し、エッチング処理の間も電源の供給を受けて使用される。ポンプ130は、ダクト136を通してプラズマ処理チャンバ132から処理ガス及びガス状の生成物を吸引する。
加熱及び冷却を組み合わせたプレート104は装置の一番上に置かれ、プラズマ処理装置100の吸引プレート116の温度を制御している。吸引プレート116の内面は処理中にプラズマにさらされるので、温度制御を維持する必要がある。加熱及び冷却プレート104は、加熱と冷却の両方を行うことができるように複数の物質層を用いて組み立てられている。特に、加熱及び冷却プレート104は、吸引プレート116と加熱及び冷却プレート104を熱的に結合させるために熱ガスケット138を有している。
熱ガスケット138は、吸引プレート116と加熱及び冷却プレート104の間の熱的インターフェースを満たすように設計されている。加熱及び冷却プレート104はヒーターブロック112を含む。ヒーターブロック112は、電流が流れるとヒーターブロック112から熱エネルギーを出力するための抵抗要素を含んでいる。サーマルブレイク(thermal break)140が、ヒーターブロック112と冷却ブロック108の間に設けられている。サーマルブレイク140は、ヒーターブロック112から発生する熱表面と、冷却ブロック108から発生する冷表面とを熱的に分離する。冷却ブロック108は、冷却ブロック108を熱的に連結する複数の冷却要素を含んでいる。従って、加熱及び冷却プレート104は、熱ガスケット138、ヒーターブロック112、サーマルブレイク140、冷却ブロック108を含むサンドイッチ構造を有することが判る。そして、吸引プレート116の温度は、ヒーターブロック112の加熱要素または冷却ブロック108の冷却要素の動作によって制御されているのである。
上部部材の設計は、チャンバ自体の操作上の性能を最大限利用されているが、熱的な性能は考慮されていない。従来、上部部材の製造コストはシステム全体のほんの一部と考えられており、材料を少なくしたり、熱量を小さくしたりという再設計のための動機はなかった。従って、上部部材の大きな熱容量は温度を素早く調整することに対して妨げとなり、システムが所望の温度になるまで長時間(場合によっては15分またはそれ以上)待たなければならないという問題がある。加えて、熱の変動が一度検出されると、全体の熱的慣性によって早く安定化することは一般的には不可能である。
通常のプラズマチャンバはアルミニウムを含んだ設計であり、高い熱伝導率を示す。図1Bは、大きな熱容量を有する上部チャンバ176を持つ従来のプラズマ処理装置150の一部を示す図である。プラズマ処理装置150は加熱または冷却要素158を含み、これが大きな熱容量を有する部材162と結合し、次いで上部チャンバ176と熱的に結合している。吸引プレート154は上部チャンバを密封している。被覆材または柔軟なバリア172は、下部チャンバ180から上部チャンバを分離している。大きな熱容量を有する部材162は、その容量の故に、基板処理の期間中の熱平衡の点では有利である。
さらに、多くの温度コントロールシステムが、樹脂やステンレススチールの材料を含む加熱及び冷却要素と結合し、チャンバ構造内に直接設けられて予防保全がなされている。樹脂やステンレススチールは、しばしば有用な洗浄技術を制限するので、予防保全の有効性をも制限することとなる。特に化学的な洗浄は、チャンバ壁面の残留物の除去に効果的であるが、それは同時に樹脂材料やステンレススチールに対して損傷を与える。
以上のように、プラズマ処理システムにおいて最適の温度コントロールのための方法及び装置が求められているのである。
本発明におけるプラズマ処理システムは、一つの具体例としてプラズマ処理装置の上部チャンバに温度コントロール装置を有する。この温度コントロール装置は、プラズマ処理装置の上部チャンバと熱伝導性を有し、着脱可能に結合した内側表面と外側表面を有する熱伝導体を含む。温度コントロール装置は、少なくとも一つの層が加熱要素である熱伝導体と熱伝導する複数の熱的インターフェース層を含む。また、熱伝導体の帯(banded)と結合した冷却要素を含み、該冷却要素が、プラズマ処理装置の上部チャンバと熱的に結合され、冷却要素内を流動体が導通するように構成されている。温度コントロール装置はさらに、プラズマ処理装置の上部チャンバの温度を検出するセンサを有し;加熱要素と冷却要素を制御するための温度コントロールユニット及び;上部チャンバの温度コントロール装置を固定するためのラッチ機構をも有する。
本発明においてプラズマ処理システムは、他の具体例として、プラズマ処理装置の上部チャンバの温度コントロールの為に、ラッチ機構を含む温度コントロール装置の使用方法が挙げられる。該方法は、一定の温度の熱伝導性流動体を含む冷却帯と加熱帯との組み合わせを提供する工程を含む。該方法は、上部チャンバ内の温度変化に対応して流動体の流量を調整し;同じく上部チャンバ内の温度変化に対応して加熱要素の加熱出力を調整する工程をも含む。
上記及びその他の本発明の特徴について、図面を参照しつつ以下にさらに詳述する。
以下に述べる具体例は、本発明の理解のためにのみ用いられ、本発明を限定するものではない。
本発明について、いくつかの好ましい実施例が図面とともに以下に詳細に記載されている。図面や詳細な説明は本発明の理解のためのものである。当業者においては、これらの詳細な説明の一部または全部を参照しなくても本発明が実施できることは明らかである。また、本発明が曖昧になることを避けるために良く知られた処理工程および/または構造については詳細には記載されていないことにも留意すべきである。
理論に制限されることを望むものではないが、プラズマ処理システム内の正確な温度コントロールは、素早い温度管理システムにより達成されると考えている。
一つの具体例では、温度管理システム及び方法は、半導体装置の製造においてプラズマ処理装置の上部チャンバの最適な温度コントロールを達成することである。本発明によって予測されるように、最適の温度コントロールシステムは、プラズマ処理装置の優れた処理コントロールを実現し、装置のサイズを縮小させるためにはますます重要になる。さらに、本発明は温度応答性の素早い制御方法を有するプラズマ処理システムを提供するものである。
別の具体例では、加熱及び冷却ユニットを含む温度コントロールシステムは、温度コントロールのためにプラズマ処理装置の上部チャンバの外側表面に結合している。加熱及び冷却ユニットは、同じ熱インターフェースを通じてコントロールするように、前記表面から熱を放出しまたは熱を内部に伝達させる。
別の具体例では、加熱及び冷却ユニットを含む温度コントロールシステムは、温度コントロールのためにプラズマ処理装置の上部チャンバの外側表面に、ラッチ機構を通じて結合している。
別の具体例では、ラッチ機構はクランプアセンブリ(clamp assembly)である。
別の具体例では、クランプアセンブリは加熱及び冷却ユニットに直接結合されたものである。
さらに本発明の具体例は以下に記載されている。しかし、これらの図と共に示された詳細な説明は、発明を説明するために用いられ、具体例に限定されるものではないことは当業者にとって容易に理解されるであろう。さらに図面は、寸法的に何ら規定するものではなく、単に具体例を補助する意図であると理解されるべきである。
図2は、プラズマ処理チャンバの温度対時間の関係をグラフとして表したものである。この例では、加熱要素及び冷却要素を利用しないでプラズマ処理チャンバを操作したときの温度をグラフ化したものである。曲線は温度の上昇傾向を示している。グラフでは90℃以下の温度までしか示されていないが、過剰な熱の発生によって機械的に故障するまで、温度は時間とともに上昇すると思われる。プラズマ処理サイクル内の温度スパイク(spikes、例えば204)は、温度ディップ(dips、例えば208)と共に(セットで)現れている。
温度スパイクはプラズマが消滅したときに現れる。プラズマが熱エネルギーを放出(して消滅)することにより温度が上昇するのである。当業者は、プラズマが消失後に処理チャンバ内の熱が増強されて温度が上昇し続け、処理チャンバの構造を熱容量の大きなものを使用しなければならないことが理解できるであろう。プラズマ消失後に温度が下がるのは、大気中に熱が放出されるからである。温度ディップはプラズマが点火されたポイントを示している。熱容量によって、タイムラグが生じることが判る。70分前後の時間に、劇的な温度低下210が現れているが、これはプラズマ処理チャンバが一時休止状態になって温度が低下したことを表している。
図3A〜3Cは本発明の断面図を示したものである。特に図3Aは、本発明の具体例の一つであり、プラズマ処理装置の上部チャンバ300の断面図を現したものである。上部チャンバ300は、真空閉塞蓋またはプレート304によって大気から隔離されている。プレート304は、真空状態を形成するために上部チャンバの側壁312と着脱可能に接着している。当業者は、側壁312が例えば、熱伝導性、反応性、硬さ、コストなどを含む多くの要因に基づいて選択された材料から設計されていることが理解できるであろう。
典型的には、側壁としてアルミニウムが用いられる。側壁は、環状の側面を有する、単一もしくは2以上の複数の平坦面を有する。温度コントロール装置308は、側壁312と熱伝導できるように固定されている。温度コントロール装置308は図3B〜図3Cに、より詳細に示されている。保護スカート部316は、下の処理チャンバ324から上部チャンバ300を隔てている。各種の保護スカート部を利用できることが、当業者であれば容易に理解できるであろう。最後に、上部チャンバ300は、処理チャンバ側壁320によって支持されている。
図3Bは、図3Aの一部を拡大した簡易図である。上述したように、温度コントロール装置308は上部チャンバ側壁312と熱伝導できるように固定されている。上部チャンバ側壁312内の熱伝導体334は、温度コントロール装置308の構成要素を支持するように形成されている。冷却チャネル338が、冷却導管326のハウジングとして熱伝導体334の中に形成されている。冷却チャネル338は、環状のチャネルで、熱伝導体334の熱負荷を平均化するために折り返し構造を有している。この方法においては、熱伝導体334の偏りは減少されている。冷却導管326は、上部チャンバ300から熱エネルギーの伝導効果の高い流動体を運ぶ。本発明においては各種の流動体を利用することができる。一つの態様において、水を用いることができる。冷却導管326は、公知の方法により熱伝導体334に結合させることができる。いくつかの態様においては、より高い冷却効果が求められ、冷却導管326は、冷却チャネル338の中に熱伝導性の材料(例えば樹脂)によって固定される。複数の熱インターフェース層330は、図3Cにより詳しく示されている。
図3Cは、図3Bの装置の一部を拡大した断面図である。特に図3Cは、熱インターフェース層330(図3B)を詳細に表している。本発明の一つの態様において、熱伝導材料344は熱インターフェース層を含む。(例えば上部チャンバ側壁312とエネルギ分散帯348の)金属表面間の接触を改善するために熱伝導材料344が用いられる。当業者であれば理解できるように、2つの部材間の熱伝導性の品質は、少なくとも部材間の機械的結合に依存する。
多くの場合、機械的結合には、材料の異常、製造上の欠陥、曲げたり操作ミスによる物理的変形などの欠点が存在する。効率的な熱伝導性を保証するためにはこれらを解決するインターフェースの材料が必要である。熱的負荷はインターフェース層に対して直角方向に効率的に伝導する。一つの態様として、熱伝導材料344はサーマルパッド(thermal pad)である。別の態様として、熱伝導材料344は、熱グリース(thermal grease)である。エネルギ分散帯348は複数の物理的インターフェース層を含む。エネルギ分散帯348は、熱伝導体334の表面に熱負荷を分散する。エネルギ分散帯による熱負荷の分散は、熱伝導材料による熱負荷の伝導とは異なる。分散はインターフェース層表面に対して実質的に放射状であるが、伝導はインターフェース層表面に対して実質的に垂直である。エネルギ分散帯の材料は公知の熱分散性材料の中から選択して用いることができる。一つの態様において、エネルギ分散帯348は、シリーズ(series)6000アルミニウムである。
ヒーター層350は、別の複数の熱インターフェース層を含む。一つの態様において、ヒーター層350は、カプトンのエッチドホイルヒーターである。ヒーターの容量は、プロセスが要求するパラメータに基づいて選択される。図2を参照すると、温度のダウンスパイク(例えば208)や機械の一時休止状態(210)は、共にプラズマ(熱発生プロセス)が消滅した結果生じる。熱の安定性を維持するために、ヒーター層350は用いられ、熱負荷を作り出してプラズマの点火を生じさせる。他の態様において、ヒーター層350は、プロセス初期に上部プラズマチャンバ300の温度を上昇させるために用いられる。言い換えれば、ヒーターは、実際の処理が始まる前にチャンバー内を初期化、安定化するために用いられる。どんな場合でも、ヒーターの容量は、所定の温度に維持することを基本に選択される。
熱バリア層352は、別の複数の熱インターフェース層を含む。理論に制限されることを望むものではないが、熱バリア層354は流動体の効果を打ち消す為に、選択的にヒートシンクとして機能することもできる。熱システムにおいて、当業者であれば理解できるように、熱負荷のバランスが望ましい。一つの例において、流動体が制御できない流速を与えられる所では、流動体の効率がプロセスの熱出力を越えるかもしれない。この場合、製造された装置は、所望の処理温度が得られないか、ヒーター層(ヒーター層350)からの必要以上のエネルギーを投入することによってようやく所望の処理温度に達し、その結果、製造コストが増加することになる。他の例において、流体の流れは、処理中の温度の違いや流速の違いのような不安定さに影響される。熱バリア層352は、これらの不安定さに対して熱クッションとして働き、処理温度の不安定化を減少させる。一つの態様において、熱バリアは各社から入手できるマイラー ポリカーボネート(Mylar Polycarbonate )である。
熱伝導体334の外側表面に最終層(図示せず)が結合していても良い。この最終層は、具体的には、熱防御機構(thermal arrestor)である。熱防御機構は、装置の処理コントロールを最善にするために、周囲の温度変化から温度コントロール装置を断熱することができる。上述の各層は公知の熱伝導性接着剤により結合することができる。例えば、THERM ATTACH(登録商標)T412(Chomerics社)のような両面粘着性テープが使用される。なお、図示された層は、実際の寸法を現したものでないことは理解されるべきである。また、図は例示のみの目的である。材料の選択や設計によって層のサイズは決定される。
図4を参照すると、本発明の一例である温度コントロール装置308を上から見た状態を示している。本発明例では、断面が円形である点に特徴がある。しかし、他の断面形状であっても、本発明に採用できることは理解されるべきである。固定(mounting)ブロック432は、熱伝導体334の端に結合される。固定ブロック432は複数の機能を有する。第一に、固定ブロック432は、プラズマ処理装置の上部チャンバに対して温度コントロール装置308を固定するためのクランプシステム(clamping system)428の接合点として作用する。クランプは、公知のいかなる方式をも採用できる。
一つの態様として、クランプアセンブリは温度コントロール装置を結合させる;例えば、ねじ、ソケット、ナット、鋸歯状(serration)部分を有する帯に対してねじを回転させて結合させるものなど、プラズマ処理チャンバに温度コントロール装置を固定するためのものであれば良い。ねじを回転させ、鋸歯状部分を有する帯にねじを貫通させる型のものは、帯の内径を減少することができる。
別の態様として、取り外し可能なクランプは温度コントロール装置に重ねられ、プラズマ処理チャンバに温度コントロール装置を固定するために、ペンチや特別な道具が用いられる。該クランプは、一般的に弾性の変形可能な材料から作られ、クランプから伸びたタブ(tab)に圧縮力が加えられると、クランプの内径が増大する。内部に挿入されたホースに対して圧縮力を移動させることによって圧縮力を取り除くと、クランプの内径が小さくなる。
別の態様として、クランプアセンブリが温度コントロール装置に重ねられ、上部クランプ片半と下部クランプ片半がヒンジにより結合されて、プラズマ処理チャンバに対して温度コントロール装置が固定されるような締め具(fastener)が採用される。締め具は、下部クランプ片半に固定された回転可能な旋回軸ピン(pivot pin)によって支えられるボルトを含む。アセンブリが開放されるように設けられた固定管状部であり前記各クランプ片半をかみ合わせた部分(engagement)を、前記ボルトが出入りできるように、上部クランプ片半と下部クランプ片半にスロット(slot)が提供され、クランプアセンブリの管状固定部に前記ボルトが挿入されているときは固くロックされる。
装置に与えられる張力は温度コントロール装置308の位置を維持するには十分であるが、過剰になると前記装置308や関連する構造に対して損傷や歪みが生じる。クランプ方法の選択においては、温度コントロール装置308が固定される圧力が、均一かつ繰り返し接触することを考慮して望ましい圧力になるようにする。
第二に、固定ブロック432は、冷却導管420/424のためのアタッチメントポイントとして作用する。少なくとも一つの入力420と出力424は、ともに固定ブロック432に固定される。冷却導管のためのアタッチメントポイントとして多くの公知の固定方法が有用である。
取っ手416は、温度コントロール装置308の取り扱いを補助するために用いられる。システムに熱的なノイズを減少またはカットするために、前記取っ手416は温度コントロール装置308と熱的に独立している。さらに取っ手は、本発明から逸脱しない範囲にある必要がある。404は温度センサである。温度センサ404は、温度が上がりすぎないようにプラズマコントロールシステムに連結して用いられる。一つの態様として、測温抵抗体(resistance temperature detector;RTD)が温度検出に用いられる。ヒーターアタッチメントポイント408は、熱伝導体334と接続されている。ヒーターアタッチメントポイント408はヒーター層350(図3C)に応力緩和を与え、温度コントロール装置308内に埋め込まれたヒータにアクセスし易くなっている。ヒーターアタッチメントポイント408は、システム内に熱的なノイズを与えないように温度コントロール装置308とは熱的に独立している。
図5は、本発明の有用な具体例の簡易的処理フローを表している。第一ステップ502において、プラズマチャンバが初期化される。プラズマチャンバは、処理のために洗浄完了状態かまたは準備完了の状態である。該チャンバはステップ504で、所望の操作条件に安定化される。特殊な生産方法あるいは要求に従って各種の操作条件があることは容易に理解されるであろう。安定化ステップ504の後、ステップ506で基板がチャンバ内に設置され、ステップ508でチャンバが所望の操作条件に再度安定化される。ステップ508でチャンバが安定化されると、ステップ512で基板が処理される。基板の処理方法は、多くのプラズマ処理を含む。例えばエッチング、堆積処理などを含む所望の処理が完了するまで、プラズマは、一定の周期で点火・消失が繰り返される。処理ステップ510と同時に、ステップ512では上部チャンバの熱負荷の調整が行われる。このステップは、図6A〜6Cに更に詳細に記載されている。基板の処理が行われると、別の基板を処理するかどうかをステップ514で決定する。別の基板を処理する場合にはステップ506からまた繰り返される。全ての基板が処理完了すると、終了となる。
図6A〜6Cは、本発明の具体例であるプラズマ処理チャンバ内の温度コントロールのための処理フローを示す。図に示す通り、本発明には少なくとも三通りの温度コントロール法がある。これらの方法について順に説明する。
(温度コントロール:流動体流一定/可変加熱)
図6Aは、本発明の一実施例を示す。特に図6Aは、流動体の流量を一定とし、加熱を変化させて温度コントロール装置によりコントロールする方法を示している。さらに、図6Aは図5のステップ510をより詳細に示したものである。第一ステップ602は、上部チャンバの温度を検出する。温度検出はいくつかの公知の温度センサを用いることができる。温度が一度読み込まれると、所望の操作温度と比較して、ステップ604で温度が低すぎるかを判断する。もし、温度が(所望の設定温度より)低すぎると、ステップ606で加熱要素が活性化される。加熱要素は一般にオン、オフを繰り返す。また加熱要素の熱出力は一定である。
具体的には、熱出力は電圧制限回路により規制されている(図示せず)。ステップ614で、処理が完了したか否かのクエリが実行される。もし、処理が完了していれば、ステップ514(図5)に進む。もし、処理が完了していなければ、ステップ602で上部チャンバ温度を読み取り、処理が完了するまでサイクルが繰り返される。
もし、ステップ604で温度が低すぎることはない(例えば設定温度よりも高い温度)場合、ステップ608で加熱要素がオンか否かのクエリが実行される。もし加熱要素がオンで、所望の設定温度よりも高い温度であれば、ステップ608のクエリは肯定的な答え(YES)となり、ステップ610で加熱要素はオフになる。処理方法が進行し、ステップ614で処理が完了したか否かのクエリが実行される。もし、処理が完了していれば、ステップ514(図5)に進む。もし、処理が完了していなければ、ステップ602で上部チャンバ温度を読み取り、処理が完了するまでサイクルが繰り返される。
もし、ステップ608のクエリが否定的な答え(NO)であれば、ステップ612で温度超過状態か否かのクエリに進む。もしステップ612の答えがノー(例えば、温度超過状態ではない)であればステップ614で処理が完了したか否かのクエリが実行される。もし、処理が完了していれば、終了する。もし、処理が完了していなければ、ステップ602で上部チャンバ温度を読み取り、処理が完了するまで繰り返される。もし、ステップ612で温度超過状態であれば、そこで処理が終了する。特に、各サイクルは、ステップ614で示されたように、処理が完了されたか否かのクエリを実行する。
(温度コントロール:流動体流可変/一定加熱)
図6Bは、本発明の一実施例である処理フローを示す。特に図6Bは、加熱出力を一定とし、流動体の流量を変化させて温度コントロール装置によりコントロールする方法を示している。さらに、図6Bは図5のステップ510を詳細に示したものである。第一ステップ622は、上部チャンバの温度を検出する。温度検出はいくつかの公知の温度センサを用いることができる。ステップ622で温度が一度読み込まれると、ステップ624で、ユーザーが設定した所望の操作パラメータと比較して、読み込まれた温度が低すぎるか否かのクエリが実行される。もし、読み込まれた温度が低すぎる(所望の設定温度よりも低い温度の)場合、ステップ626で温度コントロール装置により流動体の流量を減少させる。次いで、ステップ632で処理が完了したか否かのクエリが実行される。もし、処理が完了していれば、ステップ514(図5)に進む。もし、処理が完了していなければ、ステップ622で上部チャンバ温度を読み取り、処理が完了するまでサイクルが繰り返される。
もし、ステップ624で温度が低すぎることはないと判断されると、ステップ628で温度超過状態か否かのクエリに進む。もし、温度超過状態ではない場合、ステップ630で流動体の流量が増加する。次いでステップ632で処理が完了したか否かのクエリが実行される。もし処理が完了していれば、ステップ514(図5)に進む。もし処理が完了していなければ、ステップ622で上部チャンバ温度を読み取り、処理が完了するまでサイクルが繰り返される。もし、ステップ628で温度超過状態であれば、そこで処理が終了する。特に、各サイクルは、ステップ632で示されたように、処理が完了されたか否かのクエリを実行する。
(温度コントロール:流動体流可変/可変加熱)
図6Cは、本発明の一実施例である処理フローを示す。特に図6Cは、加熱出力及び流動体の流量を変化させて、温度コントロール装置によりコントロールする方法を示している。さらに、図6Cは図5のステップ510を詳細に示したものである。第一ステップ642は、上部チャンバの温度を検出する。温度検出はいくつかの公知の温度センサを用いることができる。一度温度が読み込まれると、ステップ644で、ユーザーが設定した所望の操作パラメータと比較して、読み込まれた温度が低すぎるか否かのクエリが実行される。もし、上部チャンバの読み込み温度が低すぎると判断されると、ステップ646で以下の三つのうちの一つの動作が開始される:a)加熱要素が活性になる;b)流動体流量が減少する;c)加熱要素が活性になり、かつ流動体流量が減少する。
低い温度状態に対する反応としてどの要素が活性化されるかの決定は、ユーザーが決定することができ、実行コスト、資源の有効活用、反応の速さ(例えばシステムの機敏性)などの諸条件によっても決定することができる。ユーザーが加熱要素を選択すると流動体流量は利用されず、対コスト効果がある。同様に、ユーザーが流動体流量の反応を選択すると、加熱要素の活性化エネルギーは利用されず、対コスト効果がある。対照的に、システムの最大速度を求めて、コストに制限されずに、両方を利用すれば、両要素(加熱要素の活性化、流動体流量の減少)が活性化される。次に、ステップ652で処理が完了されたか否かのクエリが実行される。もし、処理が完了していれば、ステップ514(図5)へ進む。もし処理が完了していなければ、ステップ642で上部チャンバ温度を読み取り、処理が完了するまでサイクルが繰り返される。
もし、ステップ644で温度が低すぎることはないと判断されると、ステップ648で温度超過状態か否かのクエリが実行される。もし、温度超過状態でないと判断されると、ステップ650で、以下の三つの動作のうちの一つが実行される:a)加熱要素が不活性になる;b)流動体流量が増加する;c)加熱要素が不活性になり、かつ流動体流量が増加する。上述のように、高い温度状態に対する反応としてどの要素が活性化されるかの決定は、ユーザーが決定することができ、実行コスト、資源の有効活用、反応の速さ(例えばシステムの機敏性)などの諸条件によっても決定することができる。ユーザーが加熱要素の反応を選択すれば、流動体流量の増大は実行されず、対コスト効果もある。
同様に、ユーザーが流動体流量の増大を選択すると、加熱要素の反応は利用されず、対コスト効果がある。対照的に、システムの最大速度を求めて、コストに制限されずに、両方を利用すれば、両要素(加熱要素のオフ、流動体流量の増大)が活性化される。次に、ステップ652で処理が完了されたか否かのクエリが実行される。もし、処理が完了していれば、ステップ514(図5)へ進む。もし処理が完了していなければ、ステップ642で上部チャンバ温度を読み取り、処理が完了するまでサイクルが繰り返される。もし、ステップ648で、温度超過状態が検出されれば、そこで処理が終了する。
本発明は、プラズマ処理システムに対して素早い温度コントロールを実行するものである。加えて、本発明は効果的な設計の部分で人間工学的な利点を与えるものである。
この発明では、いくつかの好ましい具体例を記載したが、変形、置換、修飾、同等な代替などは、この発明の範囲内である。例えば、ラムリサーチコーポレーション(フリーモント、CA)のTCP2300プラズマ処理装置などは本発明の実施に用いることができる。
本発明の装置及び方法の実行には多くの変形例が可能であることが理解されるべきである。従って従属請求項に加えて、本発明の思想、目的の範囲内で種々の変形、置換、修飾、同等な代替が可能である。
発明がより容易に理解されるように、図面を参照しながら単なる一例として実施形態を説明する。
図1Aは従来のプラズマ処理チャンバを表した図である。 図1Bは従来のプラズマ処理チャンバを表した図である。 図2はプラズマ処理チャンバの温度と時間の関係を表したグラフである。 図3Aは本発明の具体例の断面を表した図である。 図3Bは本発明の具体例の断面を表した図である。 図3Cは本発明の具体例の断面を表した図である。 図4は本発明の上面図である。 図5は本発明の具体例のフローチャートを示す図である。 図6Aは本発明のプラズマ処理チャンバの温度コントロールのためのフローチャートを示す図である。 図6Bは本発明のプラズマ処理チャンバの他の温度コントロールのためのフローチャートを示す図である。 図6Bは本発明のプラズマ処理チャンバの他の温度コントロールのためのフローチャートを示す図である。

Claims (21)

  1. プラズマ処理装置の上部チャンバの温度を制御する温度コントロール装置が:
    プラズマ処理装置の上部チャンバと熱伝導しかつ互いに移動可能に接続された、内表面と外表面を有する熱伝導体と;
    少なくとも一つの加熱要素を有し熱伝導体と熱伝導する複数の熱インターフェース層と;
    熱伝導体と接続しており、プラズマ処理装置の上部チャンバと熱的に結合され、流動体を導通するように構成された冷却要素と;
    プラズマ処理装置の上部チャンバの温度を検出する少なくとも一つの温度センサと;
    加熱要素と冷却要素の制御のための温度コントロールユニットと;
    上部チャンバの温度コントロール装置を固定するラッチ機構(latching mechanism)とを有する、温度コントロール装置。
  2. 前記熱伝導体がアルミニウムである請求項1記載の温度コントロール装置。
  3. 前記加熱要素が、カプトン(kapton)のエッチドホイルヒーター(etched foil heater)である請求項1記載の温度コントロール装置。
  4. 前記複数の熱インターフェース層の最も内側の層が、高い熱伝導性を有する材料である請求項1記載の温度コントロール装置。
  5. 前記複数の熱インターフェース層のうち少なくとも一つが、熱が放射状に拡散されるディフューザー(diffuser)である請求項1記載の温度コントロール装置。
  6. 前記複数の熱インターフェース層のうち少なくとも一つが、熱バリア性である請求項1記載の温度コントロール装置。
  7. 前記温度コントロール装置が周囲の環境から保護されるような熱防御機構(thermal arrestor)を、さらに有する請求項1記載の温度コントロール装置。
  8. 前記冷却要素が流動体を一定の流量で受容し、前記加熱要素が上部チャンバ内の温度変化に対応して作動するように構成されている請求項1記載の温度コントロール装置。
  9. 前記冷却要素が上部チャンバ内の温度変化に対応して流動体の流量を調整し、前記加熱要素が一定の熱を出力するように構成されている請求項1記載の温度コントロール装置。
  10. 前記冷却要素が上部チャンバ内の温度変化に対応して流動体の流量を調整し、前記加熱要素が上部チャンバ内の温度変化に対応して作動するように構成されている請求項1記載の温度コントロール装置。
  11. プラズマ処理装置の温度調整上部チャンバであって:
    連続する側壁と;
    加熱要素及び流動体を導通するように構成された冷却要素の帯を含み、前記連続する側壁と熱伝導する加熱及び冷却帯の組み合わせと;
    プラズマ処理装置の上部チャンバと熱的に結合された少なくとも一つの温度センサと;
    前記加熱要素及び冷却要素の制御の為の熱調節コントロールユニットと;
    を有することを特徴とする温度調整上部チャンバ。
  12. 前記加熱及び冷却バンドの組み合わせが、さらに複数の熱インターフェース層を含む請求項11記載のプラズマ処理装置の温度調整上部チャンバ。
  13. 前記複数の熱インターフェース層の少なくとも一つが加熱要素である、請求項12記載のプラズマ処理装置の温度調整上部チャンバ。
  14. 前記加熱要素がカプトンのエッチングホイルヒーターである、請求項13記載のプラズマ処理装置の温度調整上部チャンバ。
  15. 前記冷却要素が流動体を一定の流量で受容し、前記加熱要素が上部チャンバ内の温度変化に対応して作動するように構成されている、請求項14記載のプラズマ処理装置の温度調整上部チャンバ。
  16. 前記冷却要素が上部チャンバ内の温度変化に対応して流動体の流量を調整し、前記加熱要素が一定の熱を出力するように構成されている、請求項11記載のプラズマ処理装置の温度調整上部チャンバ。
  17. 前記冷却要素が上部チャンバ内の温度変化に対応して流動体の流量を調整し、前記加熱要素が上部チャンバ内の温度変化に対応して作動するように構成されている、請求項11記載のプラズマ処理装置の温度調整上部チャンバ。
  18. 前記流動体が水である、請求項15記載のプラズマ処理装置の温度調整上部チャンバ。
  19. プラズマ処理装置の上部チャンバを温度コントロールする為の、ラッチ機構を含む温度コントロール装置の使用方法であって:
    一定の温度の流動体を導通するように構成された冷却部を有する冷却帯および加熱帯の組み合わせを提供し;
    前記上部チャンバ内の温度変化に対応して流動体の流量を調整し;
    前記上部チャンバ内の温度変化に対応して加熱要素の熱出力を調整する;
    ことを特徴とする温度コントロール装置の使用方法。
  20. 前記流動体の流量を一定にする、請求項19記載の温度コントロール装置の使用方法。
  21. 前記加熱出力を一定にする、請求項19記載の温度コントロール装置の使用方法。
JP2007519258A 2004-06-30 2005-06-14 プラズマ処理装置内を最適の温度にコントロールする装置およびその方法 Withdrawn JP2008505492A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/882,464 US20060000551A1 (en) 2004-06-30 2004-06-30 Methods and apparatus for optimal temperature control in a plasma processing system
PCT/US2005/021202 WO2006012021A2 (en) 2004-06-30 2005-06-14 Methods and apparatus for optimal temperature control in a plasma processing system

Publications (1)

Publication Number Publication Date
JP2008505492A true JP2008505492A (ja) 2008-02-21

Family

ID=35512686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007519258A Withdrawn JP2008505492A (ja) 2004-06-30 2005-06-14 プラズマ処理装置内を最適の温度にコントロールする装置およびその方法

Country Status (6)

Country Link
US (1) US20060000551A1 (ja)
JP (1) JP2008505492A (ja)
KR (1) KR20070037500A (ja)
CN (1) CN101001975A (ja)
TW (1) TW200605135A (ja)
WO (1) WO2006012021A2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8540843B2 (en) 2004-06-30 2013-09-24 Lam Research Corporation Plasma chamber top piece assembly
US7780791B2 (en) * 2004-06-30 2010-08-24 Lam Research Corporation Apparatus for an optimized plasma chamber top piece
US20060213763A1 (en) * 2005-03-25 2006-09-28 Tokyo Electron Limited Temperature control method and apparatus, and plasma processing apparatus
JP4611409B2 (ja) * 2008-09-03 2011-01-12 晃俊 沖野 プラズマ温度制御装置
US8548312B2 (en) * 2010-02-19 2013-10-01 Applied Materials, Inc. High efficiency high accuracy heater driver
US8852347B2 (en) * 2010-06-11 2014-10-07 Tokyo Electron Limited Apparatus for chemical vapor deposition control
US20120322175A1 (en) * 2011-06-14 2012-12-20 Memc Electronic Materials Spa Methods and Systems For Controlling SiIicon Rod Temperature
JP6184958B2 (ja) 2011-08-30 2017-08-23 ワトロウ エレクトリック マニュファクチュアリング カンパニー 高精度ヒータおよびその動作方法
CN202979450U (zh) * 2011-12-31 2013-06-05 长春吉大·小天鹅仪器有限公司 一种mpt微波能量真空管水冷装置
CN104364290B (zh) 2012-06-08 2016-09-07 Adeka株式会社 固化性树脂组合物、树脂组合物、树脂片、及这些组合物和树脂片的固化物
JP6088817B2 (ja) * 2012-12-25 2017-03-01 株式会社Kelk 温度制御装置
KR101524201B1 (ko) * 2013-12-24 2015-06-01 한국철도기술연구원 고속 철도 차량용 냉·난방장치
KR101524200B1 (ko) * 2013-12-24 2015-06-01 한국철도기술연구원 전동차 차량용 냉·난방장치
CN108385070A (zh) * 2018-04-13 2018-08-10 深圳市华星光电技术有限公司 防着板以及溅射装置
CN110797249B (zh) * 2018-08-02 2022-05-27 北京北方华创微电子装备有限公司 工艺腔室和半导体处理设备
CN111383881B (zh) * 2018-12-27 2023-03-07 中微半导体设备(上海)股份有限公司 一种电容耦合等离子体处理器及其温度调节方法
TWI728774B (zh) * 2020-04-09 2021-05-21 健鼎科技股份有限公司 電路板結構的製造方法
TWI825711B (zh) * 2021-06-25 2023-12-11 美商得昇科技股份有限公司 電漿處理設備

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518848A (en) * 1981-05-15 1985-05-21 Gca Corporation Apparatus for baking resist on semiconductor wafers
US5456793A (en) * 1993-07-22 1995-10-10 Torque Converter Rebuilding Systems, Inc. Mechanism for heat bonding bands to hubs
JP3257328B2 (ja) * 1995-03-16 2002-02-18 株式会社日立製作所 プラズマ処理装置及びプラズマ処理方法
TW297135B (ja) * 1995-03-20 1997-02-01 Hitachi Ltd
TW279240B (en) * 1995-08-30 1996-06-21 Applied Materials Inc Parallel-plate icp source/rf bias electrode head
US5863376A (en) * 1996-06-05 1999-01-26 Lam Research Corporation Temperature controlling method and apparatus for a plasma processing chamber
US5885353A (en) * 1996-06-21 1999-03-23 Micron Technology, Inc. Thermal conditioning apparatus
US6308654B1 (en) * 1996-10-18 2001-10-30 Applied Materials, Inc. Inductively coupled parallel-plate plasma reactor with a conical dome
US5875096A (en) * 1997-01-02 1999-02-23 At&T Corp. Apparatus for heating and cooling an electronic device
US6074868A (en) * 1997-03-03 2000-06-13 Regents Of The University Of Minnesota Alumina plate method and device for controlling temperature
US6337102B1 (en) * 1997-11-17 2002-01-08 The Trustees Of Princeton University Low pressure vapor phase deposition of organic thin films
US6123775A (en) * 1999-06-30 2000-09-26 Lam Research Corporation Reaction chamber component having improved temperature uniformity
FI108152B (fi) * 1999-07-22 2001-11-30 Metso Paper Inc Menetelmä ja laitteisto kuitumassaseoksen pesemiseksi
US6302966B1 (en) * 1999-11-15 2001-10-16 Lam Research Corporation Temperature control system for plasma processing apparatus
CN1251294C (zh) * 1999-11-15 2006-04-12 兰姆研究有限公司 等离子体加工装置的温度控制系统
DE10005179B4 (de) * 2000-02-05 2008-03-13 Zf Sachs Ag Verfahren zur Herstellung einer Wicklung und Wicklung für elektrische Maschinen, sowie elektrische Maschine
US6939579B2 (en) * 2001-03-07 2005-09-06 Asm International N.V. ALD reactor and method with controlled wall temperature
US7354501B2 (en) * 2002-05-17 2008-04-08 Applied Materials, Inc. Upper chamber for high density plasma CVD
US6951821B2 (en) * 2003-03-17 2005-10-04 Tokyo Electron Limited Processing system and method for chemically treating a substrate
US7079760B2 (en) * 2003-03-17 2006-07-18 Tokyo Electron Limited Processing system and method for thermally treating a substrate
US7651583B2 (en) * 2004-06-04 2010-01-26 Tokyo Electron Limited Processing system and method for treating a substrate

Also Published As

Publication number Publication date
WO2006012021A3 (en) 2006-09-28
TW200605135A (en) 2006-02-01
CN101001975A (zh) 2007-07-18
US20060000551A1 (en) 2006-01-05
KR20070037500A (ko) 2007-04-04
WO2006012021A2 (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP2008505492A (ja) プラズマ処理装置内を最適の温度にコントロールする装置およびその方法
US9337067B2 (en) High temperature electrostatic chuck with radial thermal chokes
US10985045B2 (en) Electrostatic chuck mechanism and semiconductor processing device having the same
JP4955539B2 (ja) シャワーヘッド電極及びヒータを備えるプラズマ処理用の装置
US6677167B2 (en) Wafer processing apparatus and a wafer stage and a wafer processing method
JP5388704B2 (ja) ワーク支持体の表面を横切る空間温度分布を制御する方法および装置
US7838800B2 (en) Temperature controlled substrate holder having erosion resistant insulating layer for a substrate processing system
JP4549022B2 (ja) ワーク支持体の表面を横切る空間温度分布を制御する方法および装置
US8555810B2 (en) Plasma dry etching apparatus having coupling ring with cooling and heating units
US7297894B1 (en) Method for multi-step temperature control of a substrate
US8963052B2 (en) Method for controlling spatial temperature distribution across a semiconductor wafer
KR20170021211A (ko) 서셉터 및 기판 처리 장치
US6302966B1 (en) Temperature control system for plasma processing apparatus
JP2007535816A5 (ja)
US20080083723A1 (en) Temperature controlled substrate holder with non-uniform insulation layer for a substrate processing system
US20020007795A1 (en) Temperature control system for plasma processing apparatus
JP2006140455A (ja) 基板の温度を制御する方法及び装置
KR20090089449A (ko) 기판의 온도의 공간 및 시간 제어를 위한 장치
JPH09260474A (ja) 静電チャックおよびウエハステージ
US20030089457A1 (en) Apparatus for controlling a thermal conductivity profile for a pedestal in a semiconductor wafer processing chamber
US6508062B2 (en) Thermal exchanger for a wafer chuck
US20070240825A1 (en) Wafer processing apparatus capable of controlling wafer temperature
KR100493903B1 (ko) 플라즈마처리챔버용온도제어방법및장치
JP4879957B2 (ja) センシングユニットを有する基板処理装置
US5916411A (en) Dry etching system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902