JP2008503938A - 擬似雑音符号化通信システム - Google Patents

擬似雑音符号化通信システム Download PDF

Info

Publication number
JP2008503938A
JP2008503938A JP2007516764A JP2007516764A JP2008503938A JP 2008503938 A JP2008503938 A JP 2008503938A JP 2007516764 A JP2007516764 A JP 2007516764A JP 2007516764 A JP2007516764 A JP 2007516764A JP 2008503938 A JP2008503938 A JP 2008503938A
Authority
JP
Japan
Prior art keywords
phase
code
pseudo
signal
noise code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007516764A
Other languages
English (en)
Inventor
エフ ノイゲバウエル チャールズ
Original Assignee
ダブリュー ファイブ ネットワークス インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダブリュー ファイブ ネットワークス インコーポレイテッド filed Critical ダブリュー ファイブ ネットワークス インコーポレイテッド
Publication of JP2008503938A publication Critical patent/JP2008503938A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70701Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation featuring pilot assisted reception

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

【課題】通信装置内で符号位相及びマルチパスチャンネルモデルを捕捉するためのシステム、装置及び方法。
【解決手段】高速ウォルシュ変換エンジンは、放送されている無線周波数信号の擬似雑音符号位相及び擬似雑音符号ビットレートを捕捉するために用いられる。擬似雑音符号位相及び擬似雑音符号ビットレートからマルチパスフィルタ係数が再生される。擬似雑音発生器は、高速ウォルシュ変換ステップ中に捕捉した擬似雑音符号位相で初期化される。擬似雑音符号位相と擬似雑音符号ビットレートは、無線周波数信号との通信が維持されるように、位相ロックループによって追尾される。これにより、受信した雑音符号位相と擬似雑音符号ビットレートが逆拡散され、無線周波数信号中のデータが再生される。
【選択図】図9

Description

分野
本発明は、擬似雑音符号化通信システムに関し、より詳しくは、ベースの送受信機によって認識可能な、非常に抵コストの遠隔の送受信装置を有し、それによってベースの送受信装機と遠隔の送受信機がデータを交換することができる無線通信システムに関する。
背景
多くの遠隔の送受信装置と通信可能なベース(基地局)の送受信機を使用する通信システムが多用されている。一つの種類のシステムは、遠隔の送受信装置が、長い期間オフ状態に維持される構成を含んでいる。これらのシステムでは、遠隔の送受信装置は、ベースの送受信機と遠隔の送受信装置が通信することによってデータの交換を行うことができるように、周期的に短期間オンする。このようなシステムでは、ベースの送受信機は、ベースの送受信機と遠隔の送受信装置が適切なデータを交換することができるように自身をオンする遠隔の送受信装置をすばやく認識することができる必要がある。このようなシステムを提供するには、配置を困難にする多くの障害を明らかにする必要がある。
一つの障害は、遠隔の送受信装置の電力消費である。一般に、遠隔の送受信装置は、バッテリーからの電力を受ける。電量消費が減少すると、必要なバッテリー交換の頻度が減少する。このことは、遠隔の送受信装置を、頻繁にバッテリー交換を行うのが非現実的である、到達するのが困難な領域に配置してもよいため、重要である。加えて、遠隔の装置が、バッテリーを容易に交換することができる状態にある場合でも、このような通信システムは、しばしば、数千、また、数十万の場合もある遠隔の送受信装置をネットワークの一部として有しているため、そのように実行することは依然として困難である。また、頻繁なバッテリー交換は、システムの維持費を高額とし、望ましくない。
電力消費の問題点に加えて、数千の遠隔の送受信装置を有する通信ネットワークは、しばしば、無線周波数(“RF”)雑音が存在する環境に配置される。遠隔の送受信装置は、ベースの送受信機が、無線周波数雑音に拘らず認識することができるデータを伝送することができる必要がある。さらに、ベースの送受信機は、通信システムを実用的にするために、遠隔の装置を迅速に認識することができる必要がある。
遠隔の送受信装置がベースの送受信機と通信を行う場合、ベースの送受信装置は、放送される信号を解釈することができなければならない。このため、データに加えられた符号(コード)は、基地局(ベースステーション)と同期化される必要がある。同期化の一般的な方法、例えば、遠隔の送受信装置とベースの送受信機の双方に水晶を配置する方法は、実用的でない。この1つの理由は、水晶が、望ましい値より多くの電力を使用することである。これにより、水晶は、バッテリーの寿命を著しく低減する。加えて、数千の遠隔装置を使用するシステムが、同様に数千の水晶を必要とするため、水晶は、通信ネットワークに著しいコストを追加する。この追加されるコストの大きさは、許容できない。
基地局が遠隔の装置の信号を捕捉することができる通信システムが試みられている。例えば、米国特許第6750814号には、FFTベースの相関を使用する公知の無線信号捕捉システムが開示されている。米国特許第6163548号には、高速変換を使用する公知の擬似雑音符号同期化方法が開示されている。米国特許第6717977号には、擬似雑音符号及び直接シーケンス符号を捕捉するための公知の装置が開示されている。1989年、地中海電子技術会議報告書、513頁〜515頁、Srdjan Z. Budisinによる論文“FWTを使用する高速PNシーケンス相関”には、擬似雑音符号との高速相関のために高速ウォルシュ変換を使用するための公知の方法が開示されている。2001年、アテネ、オハイオ、システム理論に関する南東シンポジウム報告書、Abdulqadir Alaqeeli及びjanusz Starzykによる論文“フィールドプログラマブルゲートアレイを使用する、PN符号を有する高速コンボリューションのためのハードウェア実行”には、PN符号位相の高速捕捉のための高速ウォルシュ変換方法が開示されている。1977年1月、情報理論に関するIEEEトランザクション、135頁〜137頁、Martin Cohn及びAbraham Lempelによる論文“高速Mシーケンス変換”には、擬似雑音符号との多重相関を効率的に計算するためのアルゴリズムが開示されている。
2002年9月5日〜6日、無線通信及びネットワーク化に関するIEEEのCASワークショップ、Ian D. O’Donnnell、Mike S. Chen、Stanley B. T. Wang及びRobert W. Brodersenによる論文“低レートの室内無線システムのための集積化された低電力の超広帯域送受信機構成”は、長い擬似雑音(“PN”)符号を使用するパルス通信システムの例及びPN符号位相捕捉の一般的な方法を提供している。特に、この論文のセクション7では、並列PN符号位相サーチが説明され、また、このようなサーチが“ひどく大きい”ことが述べられている。したがって、この論文は、PN符号位相捕捉が連続して実行されることを教示している。しかしながら、連続PN符号位相捕捉は、バッテリー寿命に逆影響を与える、比較的長い期間を要する。
米国特許第6750814号 米国特許第6163548号 米国特許第6717977号 「Fast PN Sequence Correlation by using FWT」(1989年、地中海電子技術会議報告書、513頁〜515頁) 「Hardware Implementation for Fast Convolution with a PN Code Using Field Programmable Gate Array」(2001年、アテネ、オハイオ、システム理論に関する南東シンポジウム報告書) 「On Fast M−Sequence Transforms」(1977年1月、情報理論に関するIEEEトランザクション、135頁〜137頁) 「An Integrated, Low Power, Ultra−Wideband Transceiver Architecture For Low−Rate, Indoor Wireless Systems」(2002年9月5日〜6日、無線通信及びネットワーク化に関するIEEEのCASワークショップ)
これらの参考文献のいずれも、遠隔の装置の高速捕捉、高度の雑音免除及び遠隔の装置の低電力消費を提供する、基地局または遠隔の装置を有する通信システムを教示または提案していない。
概要
受信した無線周波数信号に対して高速ウォルシュ変換を実行する、改良された符号位相捕捉システム及び方法が開示されている。高速ウォルシュ変換は、無線周波数信号の擬似雑音符号位相と擬似雑音符号ビットレートを捕捉する。マルチパスフィルター係数は、擬似雑音符号位相と擬似雑音符号ビットレートから得られる。そして、擬似雑音発生器は、高速ウォルシュ変換によって捕捉した擬似雑音符号位相で初期化される。擬似雑音符号位相と擬似雑音符号ビットレートは、無線周波数信号との通信を維持するために、位相ロックループで追尾される、ロックされると、擬似雑音符号位相と擬似雑音符号ビットレートは、無線周波数信号内のデータを再生するために逆拡散される。
構成要素の実行及び組み合わせの様々な新しい詳細を含む、上述した及び他の好ましい特徴は、添付の図面を参照してより詳しく説明され、また、請求項に示されている。特別の方法及び装置は、説明のためにのみ示され、限定するものとして示されていないことが理解される。当業者に理解されるように、以下に説明する原理及び特徴は、様々の及び多くの実施例で実施可能である、
発明の詳細な説明
以下に説明されている追加の特徴及び教示のそれぞれは、同じものを設計及び使用するために改良された通信システム及び方法を提供するために、個別にまたは他の特徴及び教示と組み合わせて用いることができる。個別及び組み合わせ双方でこれらの追加の特徴及び教示の多くを使用する、本発明の代表例が、添付の図面を参照してさらに詳細に説明されている。この詳細な説明は、単に、本発明の好ましい概念を実施するためのさらなる詳細を当業者に教示するためのものであり、本発明の概念を限定するためのものではない。したがって、以下の詳細な説明に開示されている特徴およびステップの組み合わせは、最も広い意味では、本発明を実施するために必要とせず、また、本発明の代表例を特別に説明するためにのみ代わりに教示されている。
さらに、代表的な実施例及び従属請求項の種々の特徴は、本発明の教示の追加の有益な実施例を提供するために、特別に及び明白に列挙されていない方法で組み合わせてもよい。加えて、詳細な説明及び/または請求項に開示されている全ての特徴は、実施例及び/または請求項中の特徴の構成と独立している、請求されている主題を限定するためだけでなく、初期の開示のために個別及び互いに独立して開示されていることを特に注目する。また、実在物グループの全ての値の範囲または指示は、請求されている主題を限定するためだけでなく、初期の開示のために、全ての可能な中間値または中間の実在物を開示していることを特に注目する。
図1は、変調に先立って加えられる擬似雑音(“PN”)拡散符号を有するスペクトラム拡散通信システムのブロック図を示している。周波数ホッピング(“FH”)及び時間ホッピング(“TH”)等の一般的なスペクトラム拡散技術は、図1の構造を用いて実行可能である。パルス位置変調(“PPM”)及び直交周波数分割多重化(“OFDM”)、他のものの中の1つ等の変調方法は、図1のスペクトラム拡散構造と互換可能である。図1の左側に示されている、遠隔装置内に実装可能な送信機(トランスミッター)は、入力データ源100、チャンネルエンコーダ101、混合器(ミキサー)102、擬似雑音(PN)符号発生器103及び変調器104により構成されている。1つの実施例では、入力データ100は、擬似雑音符号(PN符号)でエンコード(符号化)され、また、任意の適切なデジタル変調技術を用いて変調されたパイロットまたはビーコン信号を含んでいる。マルチパスチャンネル105(すなわち、通信システムが動作している環境)は、マルチパス反射、周波数選択性フェージング、雑音、狭帯域及び広帯域の干渉等の障害をもたらす送信情報を運ぶ。図1の右側に示されている、基地局内に実装可能な受信機(レシーバー)は、復調器106、第2の混合器(ミキサー)107、第2のPN符号発生器108、チャンネルデコーダ109及び出力データストリーム110により構成されている。
この実施例では、送信される入力データ100は、チャンネルエンコーダ101によって、波形内にエンコードされる。使用可能なチャンネルエンコード及びデコードの多くの形式が存在する。例えば、ブロック符号、コンボリューション符号、ターボ符号及び低密度パリティチェック符号が存在する。この実施例は、エンコード方法及びデコード方法の選択に関しては限定されない。
送信機内のPN符号発生器103は、101からのエンコード(符号化)されたデータストリームと組み合わされる決定論的なビットストリーム(deterministic stream of bits)を生成する。1つの実施例では、PN符号発生器103は、特性のような雑音を有し、また、ほぼランダムに現れるビットストリームを出力する。大部分のスペクトラム拡散システムに対して、PN符号ストリームレートは、通常、入力データストリームレートの倍数(例えば、10:1)である。混合器102は、広帯域結合信号を作るために、決定論的な高速(広帯域)PN符号を低速(狭帯域)入力データと結合する。混合器102からの結合信号は、チャンネル105を介して広帯域信号を送信する変調器104を駆動する。チャンネル105は、マルチバンド(複数帯域)チャンネル内にもたらされるチャンネル障害だけでなく信号も復調する復調器106に到達する前に、雑音、フェージング、マルチパス反射、干渉等でデータを改悪する。受信機のPN符号発生器108は、送信機のPN符号発生器103と同期化され、同じPN符号シーケンスを発生する。当業者によく知られているように、拡散関数が逆にされ、そして、初期の狭帯域データ信号が再生される。チャンネルデコーダ109は、出力データ121を作るために、得られたビットストリームをデコード(復号化)する。混合器107による信号の帯域幅の低減は、混合器104及び106における信号の広帯域化及び峡帯域化のために用いられる同期化広帯域信号の直接の結果である。また、混合器107における信号の狭帯域化により、帯域幅の低減に比例して、受信したデータストリームの信号対雑音比が改善される。この信号対雑音比の増加は、処理ゲインと呼ばれる。また、処理ゲインは、エンコードされたデータレートにわたる拡散符号レートに関係づけられ、また、しばしば、拡散符号レートに比例するものとして定義される。エンコードされたシンボルレートよりも速い[10:1]の拡散符号レートに対しては、処理ゲインは、[10*log(10)=10dB]である。
1つの実施例では、変調器104及び復調器106は、線形またはほぼ線形である。線形変調は、重ね合わせ、例えば、[変調(A+B)=変調(A)+変調(B)]に従う変調である。また、復調に対しても同様に、例えば、[復調(A+B)=復調(A)+復調(B)]に従う。例えば、2位相偏移変調(“BPSK”)、4位相偏移変調(“QPSK”)、直交振幅変調(“QAM”)、直交波周波数分割多重(“OFDM”)、振幅変調(“AM”)、周波数変調(“FM”)、パルス振幅変調(“PAM”)、オン−オフ偏移変調(“OOK”)及びパルス位置変調(“PPM”)は、全て、本発明の教示と互換可能な線形変調方法の例である。本発明の教示は、線形またはほぼ線形であることを除いて、図1の構造に対する変調及び復調構成に関しては限定されない。スペクトラム拡散通信、エンコード/デコード方法及び変調/復調方法については、2001年、McGraw Hill社、John G. Proakisによる“デジタル通信(第4版)”を参照。
PN符号発生器103及びPN符号発生器108は、それぞれ、雑音を近似するが、実際には、決定論的及び巡回性を有する擬似ランダムビット組(pseudo random series of bits)を生成する。最大長シーケンス(Mシーケンス)として知られているPN符号の1つのクラスは、線形フィードバックシフトレジスタ(“LFSR”)によって発生可能である。Nビットを有するLFSRに対しては、Mシーケンス2値符号は、[2−1]の長さを有している。Mシーケンス及びJPL符号、Gold符号及びKasami符号等の他のPN符号は、当業者によく知られており、また、ここには開示されていない。本発明の開示は、Mシーケンス及び多相PNシーケンスやJPL符号等の関係するPN符号に関する。代わりに、ウォルシュまたはアダマール関数等の他の拡散符号が、符号発生器103及び108として使用可能である。本発明の教示は、拡散符号の特別な特性によって限定されない。
図2は、スペクトラム拡散システムの代わりの実施例を示している。図2に示されている実施例と図1に示されている実施例の間の主要な違いは、混合器の位置である。図2に示されている実施例では、混合器114は、変調器113の後に挿入されている。直接シーケンススペクトラム拡散(“DSSS”)変調は、図2によって表現可能な一般的な技術である。遠隔の装置内に実装可能な送信機は、図2の左側に示されている。送信機は、入力データ源111、チャンネルエンコーダ112、変調器113、混合器114及びPN符号発生器115により構成されている。1つの実施例では、入力データ111は、擬似雑音符号でエンコードされ、また、任意の適切なデジタル変調技術で変調されているパイロットまたはビーコン信号を含んでいる。通信システムが動作する環境を表しているマルチパスチャンネル116は、送信機によって図2の右側に示されている受信機に放送される信号を運ぶとともに改悪する。受信機は、第2の混合器117、第2のPN符号発生器118、復調器119及び出力データストリーム121を作るチャンネルデコーダにより構成されている。
1つの実施例では、図1に開示されている実施例と反対に、変調器113及び復調器119は、上述した変調構成を含む変調構成の全てでない場合でも大部分をカバーし、よく知られている非線形変調構成である連続位相周波数偏移変調(CPFSK)及び連続位相変調(CPM)を含む、線形ならびに非線形であってもよい。
図3は、変調が多重PN拡散符号シーケンスを用いる、スペクトラム拡散システムの他の形式を示している。図3に適用する変調方法の例は、巡回符号偏移変調(“CCSK”)、相補符号変調(“CCK”、802.11で使用される)、符号偏移変調(CSK)、Barker符号位置変調(“BCPM”)、M−ary直交変調(MOK)、M−ary2直交変調(MBOK)及び直交符号分割多重化(“OCDM”)、他のもののうちの1つである。本発明の教示は、図3に適用される変調の形式によって限定されない。
通信システムのこの実施例で使用される送信機は、図3の左側に示されている。チャンネルエンコーダ123は、入力データ122をエンコードする。拡散符号発生器125は、エンコードされたデータと一緒に変調器124に送られる複数のPN直交または略直交ビットストリームを発生する。変調器124は、これらの符号を選択またはエンコードされた信号と結合し、そして、結合された信号をマルチパスチャンネル126、すなわち、通信システムが動作する環境を介して送信する。図3の右側に示されている受信機は、マルチパスチャンネル126を介して放送された信号を受信する。
符号発生器125は、エンコードされたデータビットによって変調器内で選択され、マルチパスチャンネル126に送信される、2つのMシーケンスを生成可能である。1つの実施例では、拡散符号サイクル期間は、エンコードされたシンボルレートに等しい。
マルチパスチャンネル126を介して送信される信号は、入力信号を拡散符号発生器127からの調和拡散符号の同期化セットと結合することによって、受信機の復調器128に送られる。1つの実施例では、復調器128は、入力信号を拡散符号と相関させる1または複数の相関器により構成される。
信号を正しく再生するために、チャンネルの一方側のPNまたは拡散符号発生器(図1では103と108、図2では115と118、図3では125と127)は、同期化されなければならない。従来の通信システムでは、送信機及び受信機内の水晶が、送信される信号と受信される信号を同期化する。前述したように、水晶を本明細書に開示されている送信機内に配置すると、本発明が克服しようとしているコスト及び電力消費の欠点が発生する。
Mシーケンス及び他のPNシーケンスは、しばしば、狭い(1ビット)幅の自動相関ピークを有する。これは、符号分割多重アクセス(“CDMA”)におけるチャンネル化には役立つが、送信及び受信PN符号位相を同期化する時に問題が発生する。高速の捕捉は、総電池消費量を低減するために、無線機器が、延長された、時には不確定な電力低下スリープ期間に入る、低電力一時通信構成を用いる場合に特に重要である。特に、高速PN符号位相捕捉のための効率的な方法が、電力消費を最小化するために要望されている。数学的には、符号位相捕捉は、スライディング相関(sliding correlation)またはコンボリューション(convolution)問題である、
複数の高速変換方法が符号位相捕捉問題を促進するために適用された。そして、2つのカテゴリに分けられる。高速フーリエ変換(FFT)ベースのアプローチは、典型的には、入力サンプルのFFTを計算し、そして、望ましいPN符号ベクトルのFFTである基準ベクトルとの逐次複素積を実行する。得られたベクトル積は、全ての可能な偏移においてPN符号と入力サンプルのコンボリューション(たたみ込み積分)に等しい出力ベクトルを発生する逆FFTを介して送られる。入力信号の特別なPN符号位相は、出力ベクトル内にピークを生成する。
第2の高速変換のアプローチは、高速アダマール変換(FHT)としても知られている、高速ウォルシュ変換(“FWT”)に基づく。ウォルシュ変換は、MシーケンスのPN符号と特別な関係を有している。すなわち、変換マトリクスの列は、その行が、与えられたPNのMシーケンスの連続偏移である新しいマトリクスを生成するために並べ替え可能である。符号位相サーチ問題に適用することにより、入力データは、先ず並べ替えられ(permute)、次に、FWTを介して送られ、その後、逆に並べ替えられる(unpermute)。出力ベクトルは、入力データ内の主要なPN符号位相においてピークを有する。FWTは、加算と減算のみを必要とするため、ハードウェア要求を著しく低減することができるという、FFTを上回る利点を有する。
多くの通信システムでは、ビーコンまたはパイロット基準信号が、送信機と受信機を同期化するために用いられている。ビーコンによって、送信機と受信機の双方でPNシーケンスレートがセットされる。これにより、送信機の符号位相のみが、受信機において再生される必要がある。前述した他のシステムは、安定な周波数基準(例えば、水晶)に依存する。この安定な周波数基準は、送信機と受信機の双方におけるPNシーケンスレートを、PN符号発生器の位相のみが再度再生される必要があるように十分に正確である値に、同じように設定する。
グローバルポジショニングシステム(“GPS”)等の他のシステムにおいても、PN符号サイクルは非常に長く、周波数は、送信機と受信機の間での高い相対速度によるドップラー効果によって大きく偏移する。この場合、符号位相及び符号周波数の双方を変えるために、2次元サーチが必要である。
PN拡散シーケンスを使用するパルス通信システムに対しては、FWTまたはFFT等の高速または加速されたアルゴリズムを用いてPN符号位相と周波数を決定する方法が存在しない。本明細書中のさまざまな教示は、パルスシステムにおけるPN符号位相の高速捕捉を提供する。
本発明の教示の1つの実施例では、3次元サーチを用いて、受信した信号の符号位相、周波数及びサブサンプル位相を再生するための方法が提供される。この方法は、符号位相、周波数及びマルチパスフィルター(例えば、RAKE)係数に対して使用可能なマルチパスチャンネル特性に対して有用である。加えてまたは代わりに、時たまのまたはパルス通信を有する低電力無線周波数システムでは、受信機は、サンプルエイリアス(折り返し雑音)の影響を受けることなく、各受信ビット期間中に周期的に遮断可能である。1つの実施例では、送信機は、PNのMシーケンスでエンコードされた信号を送信し、受信機は、位相、周波数及びサブサンプル位相を決定する。
図4は、MシーケンスPN符号化信号の符号周波数、符号位相およびサブPNビット位相を決定するための、非干渉の同期化機構の代表的なブロック図を示している。この構成の回路実装は、一般的には、遠隔の送受信機内に見られる。入力データ135は、包絡線検波器/増幅器137に送られる。1つの実施例では、入力データ135は、PN符号でエンコードされ、また、任意の適切なパルス変調技術で変調されたパイロットまたはビーコン信号を含んでいる。加えてまたは代わりに、1つまたは複数の混合器(図示されていない)、1つまたは複数のフィルター(図示されていない)及び/または1つまたは複数の追加の増幅器(図示されていない)が、包絡線検波に先駆けてまたは包絡線検波の一部として、入力信号をベースバンド状態に移すために使用可能である。包絡線検波器/増幅器137の出力は、包絡線信号である。当業者に知られている他のフロントエンド無線周波数受信機の構成も使用可能であることに注意する。
アナログデジタル変換器(“ADC”)138は、包絡線信号を受信し、デジタル化する。他の実施例では、デジタル化が包絡線検波に先立って実行され、それによって、包絡線検波がデジタル回路内で実行可能となる。図5は、ADC138の出力で見た、デジタル化されたMシーケンスの符号信号11の例を示している。代わりの実施例では、ADC138の出力は、図5に見られるように、パルス信号14である。ADC138は、図4に示されているプログラマブル発振器139、例えば、電圧制御発振器によって決定されるレート及び位相で、包絡線検波器出力をサンプリングする。種々の技術によって、非常に低コスト、低精度の発振器の使用が可能となり、また、水晶の必要性が除去されることに注目する。[2−1]の連続するサンプルのベクトルが収集される。ここで、Mシーケンスの長さは、[2−1]である。サンプルのベクトルは、マッピングの並べ替えに応じて再配列(reorder)される。サンプルの並べ替えられたベクトルは、高速ウォルシュ変換を実行するFWTエンジン141に送られる。FWTエンジン141の出力は、FWTエンジン141の結果の最大出力を決定可能なピーク検出器(ピーク検波器)142に送られる。逆並べ替え(unpermute)機能143は、ピーク位置を符号位相内にマップする(貼り付ける)ことができる。
図6は、本発明の捕捉アルゴリズムの3次元サーチ空間を表している。図6から分かるように、発振器139(例えば、図4に見られる)は、興味ある時間範囲をカバーする、サンプルレート15とサブサンプル位相16の組み合わせの全てを走査する。興味ある範囲は、サーチ範囲であり、装置が送信していない(すなわち、装置がスリープモードにある)間にローカル発振器がどの程度変動したか、または、構成要素の老朽化(エイジング)、周囲温度、バッテリー電圧等の他の因子によってどの程度影響を受けたかに依存する。図5では、種々のサブサンプル位相に対応する、可能なサンプリング点13のセットが示されている。サンプリング時間12の各セットは、図6に示されている各FWT18に対して用いられる。各サンプルレートとサブサンプル位相において、[2−1]個のサンプルが蓄積され、また、FWTエンジン141によって処理される。各サンプルレートとサブサンプル位相に対して、ピーク検出器142は、ターゲットPNのMシーケンスを有するサンプルデータセット([2−1]個の点)内の最も大きい相関を決定する。ピーク検出器142からの最大ピークを有する発振器サンプルレートとサブサンプル位相は、最善の調和符号位相、周波数(すなわち、サンプルレート)及びサブサンプル位相であるように決定される。
他の実施例では、発振器139は、前回知られたサンプルレートとサブサンプル位相と、すぐ隣のレートと位相の動作点にわたってのみ走査する。サーチアルゴリズムは、最適結果を得るために、ピーク相関の傾斜を追随可能である。ローカルサーチの方法及び他の最適化技術が当業者に良く知られており、その選択は、本発明の教示に関して制限されない。
1つの実施例では、受信機は、電力を蓄えるために、各PNビット期間の間の短期間に対してのみ作動可能状態となる。例えば、受信包絡線検波器/増幅器137は、100nsのPNビット期間の間の10nsに対してのみ作動可能状態となる。この短期間サンプリングの場合、符号位相とサンプルレートにおける従来のサーチでは、信号ピークを見逃すことがある。この実施例では、サブサンプル位相サーチが、信号をうまく捕捉するために必要である。
他の実施例では、入力信号は、振幅変調(AM)、パルス振幅変調(PAM)またはオン−オフ偏移(OOK)変調を用いて変調される。
図7は、前述した、信号符号位相捕捉のための非干渉受信機の代わりの手段であり、典型的には、遠隔の送受信機内に配置される手段を示している。入力信号150は、パルスパイロットまたはビーコン信号、例えば、PN符号でエンコードされたパルス振幅変調信号により構成され、少なくとも1つの混合器、1または複数の任意選択可能な増幅器及び入力信号150を直交ベースバンドまたは中間周波数状態に変換するための1または複数の任意選択可能なフィルターを含む直交混合器/フィルター/増幅器152に送られる。このようなアナログのフロントエンドのダウンコンバート処理は当業者によく知られており、本発明の教示は、直交ダウンコンバートのフロントエンドの実装詳細によって制限されない。直交発振器153は、90度の相対位相を有するダウンコンバートのための2つの基準信号を作る。直交混合器/フィルター/増幅器152は、発振器154によって決定されるサンプルレートと位相においてADC155及び156によってデジタル化される2つの直交出力IとQを生成する。デジタル化された信号は、大きさ算出器(振幅算出器)157内で結合される。1つの実施例では、大きさ算出器は、I及びQ入力の実効値(“RMS”)、すなわち、[出力=(I+q1/2]を算出する。大きさ算出器の代わりの実施例では、I及びQの絶対値の和、すなわち、[出力=Iの絶対値+Qの絶対値]を算出する。本発明の教示は、大きさ算出器157の選択によって制限されない。直交ダウンコンバートのフロントエンド構成は、信号/雑音がより容易に拒絶され、また、より安価な構成要素が使用可能である帯域外の広い範囲にわたって搬送周波数を容易に調整することができるため、図4に示すように、包絡線検波器のフロントエンドが好ましい。
大きさ算出器157の出力は、[2−1]の長さのMシーケンスに対する前に[2−1]個のサンプルのベクトルに集められる。そして、このベクトルは、FWT159が後に続く並べ替え再配列158に送られる。FWT159の出力、すなわち、ターゲットのMシーケンスと入力サンプルベクトルとの並べ替えられたコンボリューションに等しい[2−1]個の点を有するベクトルは、ピーク検出器(ピーク検波器)160に送られる。ピーク検出器160の出力指標、すなわち、ピークの指標は、見つけた、入力信号のMシーケンスの符号位相を示すために、逆並べ替え機能161を通って送られる。この符号位相は、後で、スペクトラム拡散通信のために必要である、受信機のPN発生器(例えば、108、118または127)を送信機のPN発生器(例えば、103、115または125)に同期化させるために用いられる。
図8は、遠隔の送受信機内に実装可能な周波数ロック機構とデータ逆拡散器を含む、代わりの非干渉の符号捕捉システムの代表的なブロック図を示している。PN符号でエンコードされたパイロットまたはビーコン信号を含む入力信号250は、入力信号150を直交ベースバンドまたは中間周波数状態に変換するために、少なくとも1つの混合器、1または複数の任意選択可能な増幅器及び1または複数の任意選択可能なフィルターを含む直交混合器/フィルター/増幅器252に送られる。このようなアナログのフロントエンドのダウンコンバート処理は当業者に良く知られており、また、本発明の教示は、直交ダウンコンバータを行うフロントエンドの詳細によって限定されない。ローカルの直交発振器253は、名目上は位相が90度異なっている2つの基準信号を直交混合器/フィルター/増幅器252に供給する。混合器/フィルター/増幅器252の出力は、ADC255及び256によってデジタル化され、その後、前述した157と同様の機能を有する大きさ算出器(振幅算出器)257に送られる。ADC255と256は、前述したように、周波数と位相の種々のサーチを介して進行するために用いられるプログラマブル発振器254によって駆動される。大きさ算出器257の出力は、先ず、[2−1]個のサンプルを取り、そして、それらをFWTベースのMシーケンス相関に対する準備のために再配列する並べ替え再配列258に送られる。FWT259は並べ替えられたサンプルに対して実行され、出力はピーク検出器(ピーク検波器)260に送られる。ピーク検出器の出力は、検出されたピークのPN符号位相262を与える逆並べ替え機能261に送られる。
PN符号位相262は、検出された信号と概略位相が一致している受信したPN符号のローカルバージョンを発生するためのPN発生器263を初期化するために使用可能である。1つの実施例では、発振器254は、検出されたピーク周波数と位相セットにプログラムされ、[2−1]個の新しいサンプルは、集められて並べ替えられ、FWTが算出され、そして、ピーク検出器260と逆並べ替え機能261は、PN発生器263を初期化するために用いられる現時点のPN符号位相を発生するために用いられる。このピーク検出処理は、数回繰り返し可能である。この時、任意選択可能に、発振器周波数及び/または位相に対して少し変化を加えることができる。このステップの目的は、PN相関器264及び267に、現時点のPN符号位相の現時点の最善の評価を与えることである。ローカルPN発生器263は、概略位相が一致している、入力信号内で使用される同じPN符号を発生する。1つの実施例では、PN発生器263は、発振器254によってロックされる。263によって発生されるPN符号は、アーリー/レイト相関器(early/late correlator)ブロック264に送られる。アーリー/レイト相関器ブロック264は、先ず、ループフィルター265内で濾波され、その後、アーリー/レイト信号に応答して発振器254の周波数を調整するために発振器254に送られる信号を提供する位相検出器として動作する、少なくとも2つの相関器を含んでいる。発振器254、ADC255と256、大きさ算出器257、アーリー/レイト相関器264、PN発生器263及びループフィルター265は、入力PN符号ビット周波数と位相を追尾する位相ロックループ(“PLL”)を形成する。初期PN符号位相によるPN発生器263の初期化によって、アーリー/レイト相関器264が矯正信号を与えるために整列するように、ループは、正しい周波数と位相またはその近傍でスタートする。FWTサーチ処理の間の周波数及び位相ステップは、PLLを実行する構成要素が、初期値からロックすることができるように十分に細かくなければならない。
他の実施例では、PN符号でエンコードされた第2のデータ信号が、送信機から送信され、PLLに対して用いられる第1のPN符号に重ねられる。第2のPN発生器266は、PNデータ符号と同じ符号を発生可能である。このPNデータ符号により、第1のPN符号と同期化されると、1または複数の相関器267が、大きさ算出器257の出力を逆拡散データストリーム268に変換することができる。更なる実施例では、ロック機構に対して用いられる第1のPN符号は、Mシーケンス符号である。さらに他の実施例では、第2のデータPN符号は、ロックに対して用いられる第1のPN符号と等しいまたは短い長さのMシーケンス符号である。代わりの実施例では、データを拡散するために用いられる第2のPN符号の長さは、PLLに対して用いられる第1のPN符号の長さの倍数であり、データPN発生器266は、相関器267の出力が最大化されるまで、開始位相の数を通して循環する必要がある。
代わりに、第2のPN符号は第1のPN符号の倍数ではなく、代わりのデータ同期化方法が用いられる。例えば、[2−1]の長さの第1のPN符号の繰り返しのビーコンシーケンスは、時折、フレーム時間境界を示す長さと同じまたは異なる長さの代わりのPNシーケンスと置き換え可能である。第2の相関器(図示されていない)は、この第2のPNシーケンスの存在に対する復調ビーコン信号を監視する。第2のPNシーケンスが検出されると、送受信機は、第1のPNシーケンスを受信する毎にインクリメントするフレームカウンタ(図示されていない)を再スタートさせる。第2のPN符号を運ぶデータが第1のPNビーコン符号より長い場合には、第2の符号位相は、フレーム時間境界に対して決定論的に確立可能である。この方法では、第1のPNシーケンスより長い時間シーケンスの概念が、より長い第2のPN符号のデータ送信への使用を容易にするベース及び遠隔の送受信機の間で同期化可能である。当業者に理解されるように、多くの同様のフレーム同期化方法が代わりに用いることができ、また、本発明の教示の範囲内である。
図9は、PN符号位相捕捉、PLLを用いたPN符号ロック及びマルチパスフィルターに対する、代わりの非干渉のブロック図を示している。1つの実施例では、図9に示されているシステムの動作は、図13に見られるように、4つのメインステップにより構成されている。第1のステップでは、PN符号位相とPN符号ビットレートを捕捉する(290)。すなわち、ほぼ正しいサンプルレートを決定する。第2のステップでは、FWTデータからのマルチパスフィルター係数を獲得する(292)。第3のステップでは、PN発生器を初期化する(294)。第4のステップでは、PLLをロックし、また、受信したデータを逆拡散する(296)。これらのステップが完了すると、符号位相が捕捉される。また、放送されている信号がロックされ、これによって、ベースの送受信機と遠隔の送受信機がデータを交換することができる。
PN符号位相とPN符号ビットレートの捕捉(290)は、前述した方法、すなわち、ビーコン信号を有する入力信号170が、先ず検出され、そして、包絡線検波器/増幅器172またはその同等物によってベースバンド信号に変換される方法とほぼ同じ方法で達成される。代わりの実施例では、包絡線検波器/増幅器172は、前述したものと同じである、混合器/フィルター/増幅器及びダウンコンバート用ローカル発振器(図示されていない)と置き換えられる。その後、信号は、プログラマブル発振器174によって設定されるレートとサブPNビット位相で、ADC173によってデジタル化される。発振器は、[2−1]個のサンプルのそれぞれにおいて取られ、175によって並べ替えられる、図6に示されているようなサブPNビット位相/サンプルレート空間内の一連のサーチ点に連続的にプログラムされる。FWT176は、並べ替えられたデータベクトルのそれぞれで実行され、検出器177は、結果を採点するために用いられる。サーチ位相の終わりでは(ステップ290)、最善のサンプル周波数とサブサンプル位相が知られる。
図5のサンプリング図に示されている1つの実施例では、複数のサンプルが、サブPNビット位相13のそれぞれに対して取られる。複数のPNビット位相ベクトルは、例えば、FWTエンジン176に送られる、調査したサブPNビット位相のそれぞれに対して1つである、図5の12のように集められる。例えば、ADC173は、100ns(100×オーバーサンプリング)のPNビット期間に対して1ns(10サンプル/s)の期間でサンプリングする。同様に、[2−1]の長さのサンプルベクトルのセットは、100個のサブPNビット位相のそれぞれに対して集められる。FWTエンジンとピーク検出器(ピーク検波器)177を用いるピーク決定は、100個のサンプルベクトルの全てにわたって実行される。100個のFWT動作全ての全体のピークが決定されると、ピークの近傍の残っているFWT出力は、マルチパスチャンネル105、116、126の時間領域モデルを生成するために再生可能である。このマルチパスモデルの概略は、マルチパスフィルター181をプログラムするために使用可能である。
FWTデータからマルチパスフィルター係数を獲得するために、ステップ292の成功周波数、例えば、図6の2次元結果ブロック19に対する結果が、タップ重みとしてマルチパス調和フィルター181にプログラムされる。FWTのサブPNビット位相出力は、ソースPN符号信号の入力信号中におけるマルチパス反射に比例する。1つの実施例では、全てのサーチ点のFWT結果は、メモリ(図示していない)に蓄積され、また、マルチパス調和フィルター181のタップ(図9)は、ピークサンプルレートが知られた時にこのメモリの外にプログラムされる。FWT結果は、このマルチパス調和フィルター181にプログラムされる前に、逆に並べ替えられる(180)。代わりの実施例では、ピークサンプルレートが知られると、プログラマブル発振器174は、この最善の周波数に設定され、また、複数の位相が、FWT結果を再発生し、マルチパス調和フィルター181係数を獲得するために検査される。代わりの実施例では、マルチパスフィルター係数が一時的な値に設定され、後に、PLLの固定及び受信データの逆拡散の後に取り除かれ、そして、PLLは、入力信号にロックされる。
PN発生器を初期化する(294)ために、PN発生器182は、FWT/逆並べ替え機能(例えば、図9のブロック178)からのPN符号位相データ179で初期化される。1つの実施例では、最善のADCサンプルレートに対するサーチの後に、プログラマブル発振器174は、最善のサンプルレートに設定される。追加の並べ替え/FWT/逆並べ替えが、PN発生器182を初期化するために順に用いられる現時点のPN符号位相179を見つけるために実行される。
入力信号170は、ここでエンコードされる。典型的には、入力データ170は、信号に重ねられる長いPN符号を用いて同時にエンコードされる複数のメッセージを有している。PLLをロックし、また、受信データを逆拡散する(ステップ296)ために、相関器183は、PLLを形成するために発振器174を駆動する追尾フィルター(トラッキングフィルター)159に矯正信号を供給する。PLLは、発振器174、ADC173、マルチパスフィルター181、相関器183及び追尾フィルター159を有している。その上に、相関器183は、PLLで用いられているものより1または複数の異なるPN符号で可能な限りエンコードされている逆拡散データを抽出する。加えて、PLLがロックされると、一連のFWTまたは相関が、マルチパス調和フィルター181係数を設定、取り除きまたは追尾するために実行可能である。
図9に関連するステップ、290、292、294及び296の夫々は、独立にまたは前述と異なる順序で実行してもよい。本発明の教示は、これらの挙げられたステップの順序、組み合わせまたはこれらの挙げられた順序を他の公知のまたは開示されているステップで代用することに関して限定されない。
図10は、PN符号期間20と2値を有するベースバンドの入力信号波形21を示している。代わりの実施例では、ADC173の出力は、図10に見られるように、パルス信号24であってもよい。1つの実施例では、ADC138、155、156、256及び/または257は、図9にサンプリング点23としてグラフ表示されているサブPNビット位相サンプルの全てを得るための信号をオーバーサンプリングするために、入力PN符号ビットレートよりも高いレートでクロックされる。その後、並べ替え/再配列ブロック(140、158、175、258)は、FWTブロック(141、159、176、259)のための並べ替えられた入力ベクトルを形成するために、k番目毎のサンプル23を取る。ここで、[k]は、[0]から[P−1]の範囲の値であり、[P]は、サブPNビット位相の数である、例えば、100nsのPNビット期間を有する入力信号は、1GHzのADCクロックを用いて、100×によってオーバーサンプリング可能である。この実施例では、100個のサブPNビット位相が存在し、それぞれは、処理のために100個のFWT動作を必要とするFWT処理に対して、[2−1]個のサンプルの長さのベクトルを発生する。
図11は、可干渉の信号位相捕捉ブロック図を示している。入力信号185は、I及びQのベースバンド信号を発生する前に、直交混合器/フィルター/増幅器187に送られる。これらの信号は、ADC190と191によってデジタル化される。直交混合器/フィルター/増幅器187は、入力信号をダウンコンバートするための混合器に90度位相が異なる2つの基準信号を供給するローカルの直交発振器188によって駆動される。ADCは、例えば、分周回路189を用いて、直交発振器周波数から生成されるクロックによって駆動される。1つの実施例では、ADC190、191のクロックと直交発振器188の間の位相関係は、可干渉検出を可能とするために相対的に固定され、また、安定している。
ADC(ADC190と191)それぞれの出力は、信号対雑音比(S/N比)性能が増加するように、別々に保持されるのが好ましい。直交成分のそれぞれは、ブロック192と193に見られるように、並べ替え再配列される。その後、並べ替え再配列された直交成分のそれぞれは、処理のためにFWT194、195に送られる。FWT194と195の出力は、ブロック196において、複素相関の大きさ(振幅)を見つけるために結合される。逆拡散の後に大きさ/ピーク検出を実行することによって、信号対雑音比が増加する。ピーク検出器(ピーク検波器)196は、FWT結果のピークを決定する。ピークは、その後、出力PN符号位相198を発生するために、逆並べ替え機能197によって再マップ(再貼り付け)される。可干渉検出の利点は、雑音を除去する優れた能力と、非干渉検出と比べてより高い処理ゲインを含んでいることである。しかしながら、可干渉検出が適切に動作するために、直交発振器188とブロック189によって発生されるADCサンプルレートは、固定位相関係を持たなければならない。分周器、位相ロックループ(PLL)及び遅延ロックループ(“DLL”)を含む、2つの発振器の間の位相関係を固定するための、当業者に知られている多くの方法がある。本発明の教示は、ADCサンプルレートと直交発振器188の間の固定された位相関係を維持する方法に関しては限定されない。可干渉検出を実行するシステムは、発振器188とADC190、191との間の位相関係を固定する必要があるため、非干渉検出を実行するシステムより高価であることに注意する。
図12は、図11の可干渉のPN符号捕捉システムをベースとする、可干渉のPN符号位相捕捉、複素マルチフィルター及びデータ逆拡散システムのブロック図を示している。1つの実施例では、図12のシステムは、図14に示されている以下の方法を実行する。可干渉のPN符号位相捕捉方法は、PN符号位相とPN符号ビットレートを必要とする(300)。第2のステップでは、複素マルチフィルター係数は、FWTデータ310の共役複素数でプログラムされる(310)。第3のステップでは、PN発生器は初期化される(320)。第4のステップでは、PLLがロックされ、受信データが逆拡散される(330)。これらのステップが完了すると、符号位相が得られる。また、放送されている信号がロックされ、これにより、ベースの送受信機と遠隔の送受信機は、データを交換することができる。
これらのステップの全てまたはいくつかに対して、入力信号200は、前述したものと同様である直交混合器/フィルター/増幅器202に送られる。直交混合器/フィルター/増幅器202は、当業者によく知られている、ダウンコンバート処理のための名目上は90度位相が異なっている2つの基準信号を供給する、プログラマブル直交発振器203によって駆動される。ダウンコンバートされた直交信号IとQは、ブロック206によって設定されるサンプルレートでIとQ信号をデジタル化する、2つのADC204及び205に送られる。ブロック206は、直交発振器203に対して固定された位相関係を有するサンプルクロックを供給する。1つの実施例では、ブロック206は、より低速のクロックを生成するために、直交発振器クロックを固定数で除算する。他の位相、周波数または遅延ロックループが、同じ機能の実行に対して当業者によく知られており、ブロック206あるいは203と代用可能である。
可干渉のPN符号位相捕捉方法の第1のステップでは、PN符号位相とPN符号ビットレート(300)、直交発振器とI及びQのサンプル信号の捕捉は、[2−1]の長さ(入力PNのMシーケンスと同じ長さ)のベクトルに集められ、並べ替え機能207と208によって再配列され、その後、IとQそれぞれに対して1つである、2つのFWTブロック209と210を介して送られる。FWTブロック209と210の出力は、逐次ベース上の(すなわち、得られた大きさベクトルの[2−1]個の点)のFWTのIとQベクトルのRMSまたは他の大きさ類似の関数を計算する大きさピーク検出器211に送られる。その後、大きさピーク検出器211は、最大大きさ点のサンプルレートとピーク位相を見つけて記録する。ステップ300でPN符号位相とPN符号ビットレートを得ると、ADC204と205のプログラマブルサンプルレートと位相及び直交発振器203の周波数が、試行動作点の領域にわたって掃引される。1つの実施例では、直交発振器203と分周器206は、個別に変更される。他の実施例では、ブロック206内の分周比Mは、可干渉検出に対して要求されるように、直交発振器とADCサンプルレートとの間の決定論的な位相関係を維持するために変更される。PLLまたはDLLは、PLLまたはDLLを206に代えることによって、同様の独立したまたは位相ロックされたサーチに使用可能である。
サーチ範囲におけるピークの大きさは、PN符号位相219を再生するために並べ替え機能214に指標を送る大きさピーク検出ブロック211によって決定される。PN符号位相219は、1または複数のPN発生器221を初期化するために用いられる。このPN発生器211は、後で、PLLロック機能及びデータ再生を設定するためにPN発生器を初期化する時(ステッテ320)に用いられる。
サーチ中、FWTブロック(209と210)の出力は、ランダムアクセスメモリ(“RAM”)212と213内に捕獲される。ピークが知られると、決定されたピークサンプルにおける3DのFWTサーチ結果の一部(19)は、選択器(セレクター)215を用いて、RAM212と213から読み出される。選択器は、ピークPN符号位相の近傍のIとQのFWT結果、埋まっているシンボルマルチパス及び内部シンボルマルチパスの影響の双方をカバーするためのPN符号位相とサブPNビット位相の双方を戻す。例えば、設計者が、100nsのPN符号ビット期間及び1GHzのADCサンプルレートを有する、300nsのマルチパス濾波を要求する場合には、選択器は、ステップ相関結果(複素数)当たり1nsの300nsを与える300個のポイント(3つのPN符号位相によって乗算される100個のサブPNビット点)を戻す。FWT結果の2Dの一部(19)は、単一のPNビット期間より任意選択可能に長くすることができる1Dのマルチパスモデルを再生するために、ピークFWT大きさの近傍に連続化される。再生された1Dのマルチパスモデルの夫々の点は、高分解能サブPNビットマルチパスモデルを与えるサブPNビット位相ステップ相関偏移に対応する。選択器215の出力は、サブPNビット位相分解能を有するチャンネルの複素マルチパスモデルである。
マルチパスモデルのQ成分は、複素調和マルチパスフィルター220にロードされる、選択されたFWT結果の共役複素数を形成するためにインバーター218によって反転される。そして、複素マルチパスフィルター220は、ADC204及び205からの入力信号データとの複素相関を実行する。代わりの実施例では、複素マルチパスフィルターは、複素RAKEフィルターである。さらなる実施例では、RAKEタップ係数は、ピーク検出器211によって決定されるFWTピークの近傍における、M個の最大の大きさの値の共役複素数に設定される。
第3ステップ320では、第1ステップで捕捉したPN符号位相219は、1または複数の発生されたPN符号を2つまたはそれ以上の相関器222及び223内に順に送る、1または複数のPN発生器221の符号位相を初期化するために用いられる。複素マルチパスフィルター220は、追尾フィルター225に送られる1または複数の信号を発生するために相関器222及び223内で相関される、複素I及びQの濾波信号を供給する。1つの実施例では、相関器222及び223はアーリー/レイト相関を実行し、増速/減速信号または信号を追尾フィルター225に送信する。
1つの実施例では、追尾フィルター225は、直交発振器203に相関信号を供給し、また、直交発振器203とADCサンプルクロック分周器/DLL/PLL206との間の固定された関係によって、ADCサンプルレートも修正する。他の実施例では、直交発振器230は、独立して自由に動作する発振器である。
また、相関器222及び223は、入力されるマルチパス濾波されたデータストリームと、データストリームをエンコードするために入力信号200のトップに重ねられる他のPN符号とを相関することができる。このような代りのデータPN符号は、位相捕捉符号と同じ長さまたは異なる長さであってもよい。1つの実施例では、捕捉PN符号長さは、データPN符号位相内の不明確さを防止し、また、フィルター係数内の雑音に依存するエラーの大きさを低減するために、データ送信に対して用いられるPN符号長さより長い。他の実施例では、捕捉の長さとデータPN符号は、FWTと相関器の間の位相ハンドオフ(手渡し)の複雑性を低減するために、倍数である。
捕捉されたPN符号とデータPN符号の符号長さは、長さにおける簡単な倍数関係を維持するために、1ビット延ばしてもよい(すなわち、[2―1]に代えて[2]の長さ]。例えば、PN捕捉符号が2048ビットの長さであり、データPN符号が4の因数によって関係付けられる512ビットの長さであってもよい。代わりに、捕捉PN符号がデータPN符号より長い場合には、連続するデータPN符号のグループは、捕捉PN符号の長さと等しい追加のビットだけ延長可能である。相関器222及び223とPN発生器221は、データ抽出位相を適切に維持するために、データPN符号を適切に進みまたは遅らせることができる。例えば、捕捉PN符号の長さが2047(=211−1)であり、データPN符号の長さが511(=2−1)である場合には、4つのデータ符号が、捕捉PN符号の長さ(例えば、512+512+512+511=2047)を調和させるために、それらのうちの3つが1つの余分のビットだけ延長された状態で集めることができる。
当業者は、本明細書に開示されている種々の実施例が、種々の修正及び代わりの形式を受け入れることができ、その特別な実施例が、図面中に例示の方法で示され、また、詳細に説明されていることを認識する。
図面が縮小して示されていないこと、同じ構造または機能の要素は、通常、図面を通して、説明の目的のために同様の参照数字によって表されていることに注意する。また、図面は、本発明の好ましい実施例の説明を容易にすることのみを意図していることに注意する。図面は、本発明の全てのアスペクトを開示してなく、また、本発明の範囲を限定していない。
変調器の前で加えられる擬似雑音(“PN”)拡散を有する代表的なスペクトラム拡散通信モデルを示している。 変調器の後で加えられるPN拡散を有する代表的なスペクトラム拡散通信モデルを示している。 変調のために用いられる多重PN符号発生器を有する代表的なスペクトラム拡散通信モデルを示している。 非干渉の信号捕捉に適用される本発明の教示の代表的な機能ブロック図を示している。 多重サブPNビット位相サンプリングインスタントを有する代表的な信号図を示している。 本発明の捕捉アルゴリズムの3次元サーチ空間の代表的な図を示している。 非干渉の信号捕捉に適用される本発明の教示の代替の機能ブロック図を示している。 非干渉の信号捕捉、ループフィルターロック及びデータ逆拡散に適用される、本発明の教示の機能ブロック図を示している。 非干渉のマルチパスフィルターを使用する、非干渉の信号捕捉、ループフィルターロック及びデータ逆拡散に適用される本発明の教示の機能ブロック図を示している。 サブPNビット位相サンプルを得るためにオーバーサンプリングを使用する代表的な信号図を示している。 非干渉の信号捕捉に適用される本発明の教示の代表的な機能ブロック図を示している。 可干渉のRAKEマルチパスフィルターを使用する、可干渉の信号捕捉、符号ロック及びデータ逆拡散に適用される本発明の教示の代表的な機能ブロック図を示している。 一実施例に対応する、非干渉のPN符号位相捕捉のための方法を示すフローチャートである。 一実施例に対応する、可干渉のPN符号捕捉のための方法を示すフローチャートである。

Claims (13)

  1. 符号位相を捕捉するための装置であって、
    発振器と、
    ベースバンド信号を受信し、前記発振器によって制御されるレートで前記ベースバンド信号をサンプリングするアナログ/デジタル変換器と、
    前記アナログ/デジタル変換器の並べ替えられた出力を受信し、出力ベクトルを出力する高速ウォルシュ変換エンジンと、
    前記出力ベクトル内のピークを検出するピーク検波器を備えている。
  2. 請求項1の装置であって、前記ベースバンド信号は、包絡線検波器によって生成される。
  3. 請求項1の装置であって、前記ピーク検波器は、複数の相関器を有している。
  4. 請求項1の装置であって、前記ピーク検波器からの前記出力ベクトルは、ピーク位置が符号位相内に配置されるように、それに加えられる逆並べ替え関数を有している。
  5. 請求項1の装置であって、前記アナログ/デジタル変換器の出力は、(2−1)個の連続するサンプルのベクトルにより構成され、それによって、(2−1)個のサンプルの長さを有するMシーケンスを生成する。
  6. 請求項5の装置であって、前記出力ベクトルは、前記Mシーケンスの主要な擬似雑音符号位相において前記ピークを有している。
  7. 請求項1の装置であって、発振器は、プログラマブル発振器である。
  8. 請求項1の装置であって、発振器は、可変発振器である。
  9. 擬似雑音符号位相及び擬似雑音符号ビットレートを有する信号を放送する、遠隔の無線周波数送受信機からの無線周波数信号を捕捉するための方法であって、
    無線周波数信号の擬似雑音符号位相及び擬似雑音符号ビットレートを捕捉するために、デジタル化された無線周波数信号に対して高速ウォルシュ変換を実行し、
    高速ウォルシュ変換の結果からマルチパスフィルタ係数を決定し、
    高速ウォルシュ変換ステップの間に捕捉された擬似雑音符号位相で、擬似雑音発生器を初期化し、
    無線周波数信号との通信を維持するために、擬似雑音符号位相と擬似雑音符号ビットレートを追尾する。
  10. MシーケンスのPN符号パルス信号のサブPNビット位相を捕捉するための方法であって、
    デジタル化され及び並べ替えられたMシーケンスのPN符号パルス信号から、連続するサンプルのベクトルを発生し、
    前記ベクトルに対して高速ウォルシュ変換を実行し、
    高速ウォルシュ変換のピーク出力を検出し、
    捕捉される信号を指示するビーコン信号に対応するピーク出力を符号位相内に配置する。
  11. サンプルレート及びサブサンプル位相を有し、また、予め定められた符号シーケンスでエンコードされたパルス無線周波数信号を捕捉するための方法であって、
    関心がある時間領域をカバーする全てのサンプルレート及びサブサンプル位相を走査し、
    各サンプルレート及びサブサンプル位相においてサンプルを蓄積し、
    前記サンプルの高速ウォルシュ変換を実行し、
    各サンプルレート及びサブサンプル位相に対して、前記サンプル内の予め定められた符号シーケンスに対応する相関であり、その最大が、捕捉される予め定められた符号シーケンスの位相に対応する相関を決定する。
  12. 請求項11の方法であって、予め定められた符号シーケンスは、擬似雑音符号である。
  13. 遠隔の無線周波数送受信機から放送され、擬似雑音符号位相を有するビーコン信号を捕捉するための方法であって、
    デジタル化されたパルス無線周波数信号に対して高速ウォルシュ変換を実行し、それによって、出力ベクトルを生成し、
    出力ベクトル内のピークを検出し、
    擬似雑音符号位相を見つけるためにピークを逆に並べ替え、
    ビーコン信号との通信を維持するために、擬似雑音符号位相を追尾し、
    無線周波数信号内のデータを再生するために、雑音符号位相と擬似雑音符号ビットレートを逆拡散する。
JP2007516764A 2004-06-17 2005-06-16 擬似雑音符号化通信システム Pending JP2008503938A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US58067804P 2004-06-17 2004-06-17
US58288804P 2004-06-25 2004-06-25
US60556804P 2004-08-30 2004-08-30
PCT/US2005/021409 WO2006009821A1 (en) 2004-06-17 2005-06-16 Pseudo noise coded communication systems

Publications (1)

Publication Number Publication Date
JP2008503938A true JP2008503938A (ja) 2008-02-07

Family

ID=34972872

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007516794A Pending JP2008503939A (ja) 2004-06-17 2005-06-16 低電力無線通信システム及びプロトコル
JP2007516764A Pending JP2008503938A (ja) 2004-06-17 2005-06-16 擬似雑音符号化通信システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007516794A Pending JP2008503939A (ja) 2004-06-17 2005-06-16 低電力無線通信システム及びプロトコル

Country Status (4)

Country Link
US (3) US20050281320A1 (ja)
EP (2) EP1763926A1 (ja)
JP (2) JP2008503939A (ja)
WO (2) WO2006009871A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008547301A (ja) * 2005-06-23 2008-12-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 複雑さの少ない送信機を用い雑音排除性を向上した誘導式通信システム
JP2011024211A (ja) * 2009-07-17 2011-02-03 Astrium Gmbh 信号の受信方法及び受信装置

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9020854B2 (en) 2004-03-08 2015-04-28 Proxense, Llc Linked account system using personal digital key (PDK-LAS)
GB2412027B (en) * 2004-03-08 2007-04-11 Raytheon Systems Ltd Secondary radar message decoding
US7639766B2 (en) * 2004-09-27 2009-12-29 Via Telecom Co., Ltd. Combined automatic frequency correction and time track system to minimize sample timing errors
AU2005319019A1 (en) 2004-12-20 2006-06-29 Proxense, Llc Biometric personal data key (PDK) authentication
US7477913B2 (en) * 2005-04-04 2009-01-13 Research In Motion Limited Determining a target transmit power of a wireless transmission according to security requirements
WO2007013973A2 (en) * 2005-07-20 2007-02-01 Shattil, Steve Systems and method for high data rate ultra wideband communication
KR20070016507A (ko) * 2005-08-04 2007-02-08 삼성전자주식회사 광대역 무선접속 통신시스템을 사용하는 센서네트워크 장치및 방법
JP4895254B2 (ja) * 2005-09-16 2012-03-14 三星電子株式会社 無線送信機および無線受信機
SG132516A1 (en) * 2005-11-10 2007-06-28 Oki Techno Ct Singapore Pte A system and method for performing ls equalization on a signal in an ofdm system
US8433919B2 (en) 2005-11-30 2013-04-30 Proxense, Llc Two-level authentication for secure transactions
US8036152B2 (en) 2006-01-06 2011-10-11 Proxense, Llc Integrated power management of a client device via system time slot assignment
US11206664B2 (en) 2006-01-06 2021-12-21 Proxense, Llc Wireless network synchronization of cells and client devices on a network
EP2288196B1 (en) 2006-01-11 2018-02-21 Qualcomm Incorporated Wireless communication methods and apparatus supporting synchronization
US8811369B2 (en) 2006-01-11 2014-08-19 Qualcomm Incorporated Methods and apparatus for supporting multiple communications modes of operation
US7746274B2 (en) * 2006-06-20 2010-06-29 Atheros Communications, Inc. Global positioning receiver with PN code output
US7724833B2 (en) * 2006-07-25 2010-05-25 Legend Silicon Corporation Receiver for an LDPC based TDS-OFDM communication system
US20080045158A1 (en) * 2006-08-15 2008-02-21 Samsung Electronics Co., Ltd. Method And System For Transmitting A Beacon Signal In A Wireless Network
US7719373B2 (en) * 2006-10-27 2010-05-18 Imec Device and method for generating a signal with predefined transcient at start-up
US9269221B2 (en) 2006-11-13 2016-02-23 John J. Gobbi Configuration of interfaces for a location detection system and application
US7899110B1 (en) 2006-12-27 2011-03-01 Marvell International Ltd. Bit sync for receiver with multiple antennas
JP2008168057A (ja) * 2007-01-15 2008-07-24 Ishida Co Ltd 電子棚札及び電子棚札システム
US8176340B2 (en) 2007-02-06 2012-05-08 Freescale Semiconductor, Inc. Method and system for initializing an interface between two circuits of a communication device while a processor of the first circuit is inactive and waking up the processor thereafter
JP4424378B2 (ja) * 2007-06-13 2010-03-03 ソニー株式会社 フレーム同期装置及びその制御方法
US7903720B2 (en) * 2007-06-13 2011-03-08 Simmonds Precision Products, Inc. Alternative direct sequence spread spectrum symbol to chip mappings and methods for generating the same
WO2009062194A1 (en) 2007-11-09 2009-05-14 Proxense, Llc Proximity-sensor supporting multiple application services
US8171528B1 (en) 2007-12-06 2012-05-01 Proxense, Llc Hybrid device having a personal digital key and receiver-decoder circuit and methods of use
WO2009079666A1 (en) 2007-12-19 2009-06-25 Proxense, Llc Security system and method for controlling access to computing resources
WO2009102979A2 (en) 2008-02-14 2009-08-20 Proxense, Llc Proximity-based healthcare management system with automatic access to private information
WO2009126732A2 (en) 2008-04-08 2009-10-15 Proxense, Llc Automated service-based order processing
US8595501B2 (en) 2008-05-09 2013-11-26 Qualcomm Incorporated Network helper for authentication between a token and verifiers
GB0812770D0 (en) * 2008-07-11 2008-08-20 Zbd Displays Ltd A display system
CN102177497B (zh) * 2008-07-15 2016-05-04 Opto电子有限公司 用于电子货架标签等的电力管理系统
US8059693B2 (en) * 2008-07-18 2011-11-15 Harris Corporation System and method for communicating data using constant radius orthogonal walsh modulation
US8098708B2 (en) * 2008-07-18 2012-01-17 Harris Corporation System and method for communicating data using constant envelope orthogonal Walsh modulation with channelization
GB2463074B (en) * 2008-09-02 2010-12-22 Ip Access Ltd Communication unit and method for selective frequency synchronisation in a cellular communication network
US8917209B2 (en) 2009-09-10 2014-12-23 Nextnav, Llc Coding in a wide area positioning system (WAPS)
GB2469859B (en) * 2009-04-30 2012-07-25 Samsung Electronics Co Ltd Processing code-modulated signals
US8531288B1 (en) 2009-11-09 2013-09-10 Carnegie Mellon University System and method for collaborative resource tracking
US9418205B2 (en) 2010-03-15 2016-08-16 Proxense, Llc Proximity-based system for automatic application or data access and item tracking
FI124289B (fi) * 2010-04-08 2014-06-13 Marisense Oy Sähköinen hintalappujärjestelmä
US9322974B1 (en) 2010-07-15 2016-04-26 Proxense, Llc. Proximity-based system for object tracking
US8520564B1 (en) * 2010-09-02 2013-08-27 Viasat, Inc. Integrated RF transceiver
US9265450B1 (en) 2011-02-21 2016-02-23 Proxense, Llc Proximity-based system for object tracking and automatic application initialization
US8723720B2 (en) 2011-05-03 2014-05-13 Harris Corporation Wireless location detection and/or tracking device and associated methods
US9645249B2 (en) 2011-06-28 2017-05-09 Nextnav, Llc Systems and methods for pseudo-random coding
US9313738B2 (en) * 2012-06-11 2016-04-12 Broadcom Corporation Methods for efficient power management in 60 GHz devices
US9405898B2 (en) 2013-05-10 2016-08-02 Proxense, Llc Secure element as a digital pocket
US20140353368A1 (en) * 2013-05-28 2014-12-04 Symbol Technologies, Inc. Multi-band reconfigurable electronic shelf label system
WO2014198050A1 (en) * 2013-06-14 2014-12-18 Microsoft Corporation Framework and applications for proximity-based social interaction
KR101467234B1 (ko) * 2013-11-19 2014-12-02 성균관대학교산학협력단 부분상관함수들의 단계적 조합에 기초한 cboc(6,1,1/11) 신호를 위한 비모호 상관함수 생성 방법, cboc 신호 추적 장치 및 이를 이용한 위성 항법 신호 수신 시스템
KR102206829B1 (ko) * 2014-02-12 2021-01-25 한국전자통신연구원 동기 획득을 위한 무선 통신 시스템 및 그의 제어 방법
US10491261B1 (en) * 2014-11-06 2019-11-26 Abdullah A. Al-Eidan Multi carrier frequency modulation spread spectrum communication system
US9729193B2 (en) * 2014-11-11 2017-08-08 Ut-Battelle, Llc Wireless sensor platform
US9961705B2 (en) 2014-12-02 2018-05-01 Ossia Inc. Techniques for encoding beacon signals in wireless power delivery environments
US9197283B1 (en) * 2014-12-18 2015-11-24 Raytheon Company Reconfigurable wideband channelized receiver
WO2017040174A1 (en) 2015-09-04 2017-03-09 Ut-Battelle, Llc Direct write sensors
US9985671B2 (en) * 2016-01-15 2018-05-29 Avago Technologies General Ip (Singapore) Pte. Ltd. System, device, and method for improving radio performance
US10148322B2 (en) * 2016-04-01 2018-12-04 Intel IP Corporation Demodulator of a wireless communication reader
US10447338B2 (en) * 2016-09-23 2019-10-15 Microsoft Technology Licensing, Llc Orthogonal spreading sequence creation using radio frequency parameters
CN106452500B (zh) * 2016-11-16 2018-09-11 深圳芯珑电子技术有限公司 一种多进制直接序列扩频通信方法
EP3499421A1 (fr) * 2017-12-15 2019-06-19 The Swatch Group Research and Development Ltd Module à transpondeur rfid pour une communication d'informations à un dispositif de lecture
US10742257B1 (en) 2018-09-26 2020-08-11 Novatel Inc. System and method for demodulating code shift keying data from a satellite signal utilizing a binary search
US10742258B1 (en) * 2018-09-26 2020-08-11 Novatel Inc. System and method for demodulating code shift keying data utilizing correlations with combinational PRN codes generated for different bit positions
US10728851B1 (en) * 2019-01-07 2020-07-28 Innophase Inc. System and method for low-power wireless beacon monitor
US10841033B2 (en) * 2019-03-01 2020-11-17 Huawei Technologies Co., Ltd. Under-sampling based receiver architecture for wireless communications systems
US10949021B2 (en) * 2019-03-08 2021-03-16 Chargepoint, Inc. Electric field touchscreen
DE112020002384T5 (de) 2019-05-14 2022-01-20 Space Exploration Technologies Corp. Kalibrierung eines antennensystems über die luft
CN110290087B (zh) * 2019-07-05 2021-10-15 电子科技大学 一种gfdm信号的调制、解调方法及装置
US11133698B2 (en) 2019-09-01 2021-09-28 Wen Cai Wireless charging systems and methods for controlling the same
US11489252B2 (en) 2020-07-05 2022-11-01 Space Exploration Technologies Corp. System and method for over-the-air antenna calibration
CA3208465A1 (en) 2021-03-03 2022-09-09 Guardian Glass, LLC Systems and/or methods for creating and detecting changes in electrical fields

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572653A (en) * 1989-05-16 1996-11-05 Rest Manufacturing, Inc. Remote electronic information display system for retail facility
US5103459B1 (en) * 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
US6177880B1 (en) * 1992-01-16 2001-01-23 Klever-Kart, Inc. Automated shopping cart handle
JPH06315020A (ja) * 1993-01-06 1994-11-08 Ricoh Co Ltd スペクトル拡散通信方式
MY120873A (en) * 1994-09-30 2005-12-30 Qualcomm Inc Multipath search processor for a spread spectrum multiple access communication system
US5608722A (en) * 1995-04-03 1997-03-04 Qualcomm Incorporated Multi-user communication system architecture with distributed receivers
US5629639A (en) * 1995-06-07 1997-05-13 Omnipoint Corporation Correlation peak detector
JP3358170B2 (ja) * 1996-07-24 2002-12-16 株式会社エヌ・ティ・ティ・ドコモ Cdma無線通信の受信方法
US6236335B1 (en) * 1996-09-17 2001-05-22 Ncr Corporation System and method of tracking short range transmitters
EP0932840A1 (en) * 1996-10-17 1999-08-04 Pinpoint Corporation Article tracking system
GB9700854D0 (en) * 1997-01-16 1997-03-05 Scient Generics Ltd Sub-audible acoustic data transmission mechanism
IL120555A (en) * 1997-03-30 2000-06-01 D S P C Israel Ltd Code synchronization unit and method
KR100229042B1 (ko) * 1997-04-26 1999-11-01 윤종용 하드웨어소모 감소 및 탐색성능이 향상된 레이크 수신기
EP1021884A2 (en) * 1997-07-31 2000-07-26 Stanford Syncom Inc. Means and method for a synchronous network communications system
US6012244A (en) * 1998-05-05 2000-01-11 Klever-Marketing, Inc. Trigger unit for shopping cart display
US6076071A (en) * 1998-07-06 2000-06-13 Automated Business Companies Automated synchronous product pricing and advertising system
JP2000091939A (ja) * 1998-07-13 2000-03-31 Kobe Steel Ltd 周波数変換装置及びそれを用いた無線通信システム
US6177082B1 (en) * 1998-08-13 2001-01-23 The University Of Pittsburgh-Of The Commonwealth System Of Higher Education Cold-adapted equine influenza viruses
US6513015B2 (en) * 1998-09-25 2003-01-28 Fujitsu Limited System and method for customer recognition using wireless identification and visual data transmission
US6317082B1 (en) * 1999-02-12 2001-11-13 Wherenet Corp Wireless call tag based material replenishment system
KR100450789B1 (ko) * 1999-05-25 2004-10-01 삼성전자주식회사 유사 잡음 코드 획득 장치 및 이를 구비한 직접 시퀀스 코드분할 다중 접속 수신기
US6539393B1 (en) * 1999-09-30 2003-03-25 Hill-Rom Services, Inc. Portable locator system
US7411921B2 (en) * 1999-10-21 2008-08-12 Rf Technologies, Inc. Method and apparatus for integrating wireless communication and asset location
EP1109326A1 (en) * 1999-12-15 2001-06-20 Lucent Technologies Inc. Peamble detector for a CDMA receiver
US6577275B2 (en) * 2000-03-07 2003-06-10 Wherenet Corp Transactions and business processes executed through wireless geolocation system infrastructure
US6859485B2 (en) * 2000-03-07 2005-02-22 Wherenet Corporation Geolocation system with controllable tags enabled by wireless communications to the tags
JP3792098B2 (ja) * 2000-03-17 2006-06-28 三菱電機株式会社 タイミング再生装置、これを用いた復調装置およびタイミング再生方法
US6693954B1 (en) * 2000-04-17 2004-02-17 Rf Micro Devices, Inc. Apparatus and method of early-late symbol tracking for a complementary code keying receiver
US6462679B1 (en) * 2000-07-19 2002-10-08 Vdv Media Technologies, Inc. Method and apparatus for modulating a signal
US6975600B1 (en) * 2000-09-18 2005-12-13 The Directv Group, Inc. Multimode transmission system using TDMA
US6750814B1 (en) * 2000-09-18 2004-06-15 Cellguide Ltd. Efficient algorithm for processing GPS signals
US6317062B1 (en) * 2000-09-29 2001-11-13 Philsar Semiconductor, Inc. Method and apparatus for dynamically generating multiple level decision thresholds of an M-ary coded signal
US6590537B2 (en) * 2001-07-09 2003-07-08 Fm Bay Local wireless digital tracking network
CN1572079A (zh) * 2001-10-17 2005-01-26 摩托罗拉公司 用于在多用户系统中数据通信的方法和装置
US6837427B2 (en) * 2001-11-21 2005-01-04 Goliath Solutions, Llc. Advertising compliance monitoring system
GB2382662B (en) * 2001-11-29 2003-12-10 Univ Cardiff High frequency circuit analyzer
SE0201298D0 (sv) * 2002-04-30 2002-04-30 Vilmos Toeroek High-speed synchronous motor
US7308019B2 (en) * 2002-05-20 2007-12-11 Telefonaktiebolaget Lm Ericsson (Publ) System and method for Fast Walsh Transform processing in a multi-coded signal environment
US6736316B2 (en) * 2002-08-23 2004-05-18 Yoram Neumark Inventory control and indentification method
JP2004112501A (ja) * 2002-09-19 2004-04-08 Toshiba Corp Cdm伝送システムとそのパイロットチャネル構成方法及びcdm受信端末装置
US20040081117A1 (en) * 2002-10-29 2004-04-29 Malek Charles John Method for a synchronized hand off from a cellular network to a wireless network and apparatus thereof
US7221696B1 (en) * 2003-03-03 2007-05-22 Itt Manufacturing Enterprises, Inc. Communication system and method for acquiring pseudonoise codes or carrier signals under conditions of relatively large chip rate uncertainty
US6744404B1 (en) * 2003-07-09 2004-06-01 Csi Wireless Inc. Unbiased code phase estimator for mitigating multipath in GPS
US7233991B2 (en) * 2003-08-22 2007-06-19 Clearmesh Networks, Inc. Self-healing tree network
US7003412B2 (en) * 2003-09-17 2006-02-21 Rockwell Automation Technologies, Inc. Method and system for verifying voltage in an electrical system
US6931332B2 (en) * 2003-10-01 2005-08-16 General Electric Company Method and system for testing battery connectivity
EP1695264A4 (en) * 2003-12-18 2010-08-25 Altierre Corp SYSTEMS AND METHODS FOR LOW-POWER WIRELESS DISPLAY LABEL
US8061600B2 (en) * 2003-12-18 2011-11-22 Altierre Corporation Wireless display tag
EP1698093A4 (en) * 2003-12-18 2009-09-02 Altierre Corp TRANSMISSION IN R.F. RADIO BROADCASTING DC POWER CONSUMPTION
WO2005060698A2 (en) * 2003-12-18 2005-07-07 Altierre Corporation Multi-user wireless display tag infrastructure methods
US7389180B2 (en) * 2004-02-06 2008-06-17 Kent Pearce Electronic tracking and ranging system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008547301A (ja) * 2005-06-23 2008-12-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 複雑さの少ない送信機を用い雑音排除性を向上した誘導式通信システム
JP2011024211A (ja) * 2009-07-17 2011-02-03 Astrium Gmbh 信号の受信方法及び受信装置

Also Published As

Publication number Publication date
EP1774664A1 (en) 2007-04-18
WO2006009871A1 (en) 2006-01-26
WO2006009821A1 (en) 2006-01-26
EP1763926A1 (en) 2007-03-21
US20090290660A1 (en) 2009-11-26
US20050281318A1 (en) 2005-12-22
US20050281320A1 (en) 2005-12-22
JP2008503939A (ja) 2008-02-07

Similar Documents

Publication Publication Date Title
JP2008503938A (ja) 擬似雑音符号化通信システム
US6442193B1 (en) Combining sub-chip resolution samples in arms of a spread-spectrum rake receiver
EP0892528B1 (en) Carrier recovery for DSSS signals
JP2689890B2 (ja) スペクトラム拡散受信機
CN101777933B (zh) 机群链路的加密跳码扩频信号生成与捕获系统
EP1173933B1 (en) System and method for achieving time slot synchronization in a wideband cdma system in the presence of large initial frequency errors
EP1112622B1 (en) User terminal parallel searcher
JPH06296171A (ja) 広帯域伝送システム
JP2007520954A (ja) 超広帯域(uwb)同期検索
JP2003169000A (ja) 遅延ホッピング連続雑音送信参照方式を用いた超広帯域通信システム及び方法
CN101015132A (zh) 伪噪声编码通信系统
US9887730B2 (en) Timing estimation in communication systems
US8593938B2 (en) Ultra-wideband radio reception using variable sampling rates over a spreading sequence cycle
EP1528690B1 (en) Spread spectrum system communication unit and its method for establishing high speed synchronization
US20090041096A1 (en) Efficient synchronization of a spread spectrum signal in the presence of delay and frequency uncertainty
US20090225812A1 (en) Method and System for Detecting Code Sequences in Ultra-Wideband Systems
US6985509B2 (en) Low cost DSSS communication system
US7298776B2 (en) Acquisition of a gated pilot signal with coherent and noncoherent integration
US7167504B1 (en) System and method for fast data rate discovery from PN codes
JP4406326B2 (ja) 受信装置及びそれを用いた通信装置
US7586837B2 (en) Acquisition of a gated pilot signal
Lami et al. GCSR: A GPS acquisition technique using compressive sensing enhanced implementation
CN1206255A (zh) 具有载波频偏信号的伪随机噪声检波器
CN116633788A (zh) 一种适用于宽带信令突发扩频的快速解调装置
Todorović et al. An application of direct sequence spread spectrum to unmanned aerial vehicle PPM control signal protection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228