JP2008311257A - Photoresist removing method - Google Patents

Photoresist removing method Download PDF

Info

Publication number
JP2008311257A
JP2008311257A JP2007154758A JP2007154758A JP2008311257A JP 2008311257 A JP2008311257 A JP 2008311257A JP 2007154758 A JP2007154758 A JP 2007154758A JP 2007154758 A JP2007154758 A JP 2007154758A JP 2008311257 A JP2008311257 A JP 2008311257A
Authority
JP
Japan
Prior art keywords
photoresist
ozone water
concentration
substrate
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007154758A
Other languages
Japanese (ja)
Other versions
JP5006112B2 (en
Inventor
Yutaka Abe
豊 阿部
Ken Fujimori
憲 藤森
Masatoshi Ike
昌俊 池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC filed Critical University of Tsukuba NUC
Priority to JP2007154758A priority Critical patent/JP5006112B2/en
Publication of JP2008311257A publication Critical patent/JP2008311257A/en
Application granted granted Critical
Publication of JP5006112B2 publication Critical patent/JP5006112B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To effectively peel resist made of phenol resin remaining sticking on a substrate top surface at a fast peeling speed without damaging the substrate itself. <P>SOLUTION: High-density ozone water is applied over the top surface of the substrate where novolak-resin based photoresist remains and sticks and irradiated with ultraviolet light (for example, excimer laser light), which produces an OH radical from part of ozone of the high-density ozone water. Then the produced OH radical makes the photoresist polyphenolic and the remaining ozone of the high-density ozone water reacts on the photoresist having been made polyphenolic to fragmentate and peel the photoresist off the substrate surface. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高濃度オゾン水を注水しながら、紫外光を照射することで、ベンゼン環を有する有機化合物等を除去する除去方法に関し、特に、半導体製造工程において半導体基板表面に残存付着しているフォトレジストを、高濃度オゾン水と紫外光を使用して基板表面から剥離し除去するためフォトレジスト除去方法に関する。   The present invention relates to a removal method for removing an organic compound or the like having a benzene ring by irradiating ultraviolet light while pouring high-concentration ozone water, and in particular, remains on a semiconductor substrate surface in a semiconductor manufacturing process. The present invention relates to a photoresist removal method for removing and removing a photoresist from a substrate surface using high-concentration ozone water and ultraviolet light.

より詳しくは、本発明は、半導体製造工程において、ドライエッチング処理や高電流イオン注入処理が施された基板表面に残存付着しているフォトレジストを、高効率にかつ均一に除去することができるフォトレジスト除去方法に関する。   More specifically, the present invention provides a photo resist that can efficiently and uniformly remove photoresist remaining on the surface of a substrate that has been subjected to dry etching or high current ion implantation in a semiconductor manufacturing process. The present invention relates to a resist removal method.

従来、半導体製造工程において、シリコン基板(仕掛中のシリコンウェハ)等の表面に残存付着する不要となったフォトレジストを除去するレジスト除去工程では、酸素を含むプラズマによってフォトレジストをアッシャー(灰化手段)とする手段(特許文献1参照)や、濃硫酸等の溶剤や薬品等を用いてレジストを溶解させる方法等が用いられていた。   Conventionally, in a semiconductor manufacturing process, in a resist removing process for removing unnecessary photoresist remaining on the surface of a silicon substrate (in-process silicon wafer) or the like, the photoresist is removed by plasma containing oxygen (ashing means). ) (See Patent Document 1), a method of dissolving a resist using a solvent such as concentrated sulfuric acid, a chemical, or the like.

また、不要なフォトレジストが残存するシリコン基板の表面にオゾン水を供給してフォトレジストを除去する方法も公知である(特許文献2参照)。特に、シリコン基板の表面中心に対向して注水口を設けた円筒管から、オゾン水シリコン基板にオゾン水を注水する方法も知られている。   A method of removing ozone by supplying ozone water to the surface of a silicon substrate where unnecessary photoresist remains is also known (see Patent Document 2). In particular, a method of pouring ozone water into an ozone water silicon substrate from a cylindrical tube provided with a water inlet facing the surface center of the silicon substrate is also known.

特公平8−021562号公報Japanese Patent Publication No.8-021562 特開2006−295091号公報JP 2006-295091 A

しかしながら、レジストの除去にアッシャーを用いると、プラズマによる半導体基板へのダメージを与える恐れがあることに加え、無機系の不純物を除去することはできない。また、溶剤や薬品を用いてレジスト除去を行う場合は、大量の廃液が生じ、廃液処理の際にもコスト面及び環境面の両面で大きな問題となっている。   However, if an asher is used for removing the resist, the semiconductor substrate may be damaged by plasma, and inorganic impurities cannot be removed. In addition, when resist is removed using a solvent or chemical, a large amount of waste liquid is generated, and this is a major problem both in terms of cost and environment during waste liquid treatment.

そして、基板の表面にオゾン水を供給してフォトレジストを除去する方法は、オゾン水のみによる除去では除去効果において十分ではない。   In the method of removing the photoresist by supplying ozone water to the surface of the substrate, removal with only ozone water is not sufficient in removing effect.

本発明は、基板表面に残存付着するフォトレジスト除去における上記従来の問題を解決することを目的とし、高濃度オゾン水とエキシマー光を使用して、シリコン基板に残存付着したフォトレジストを、基板自体に損傷を与えることなく、単位体積当りのオゾン水のフォトレジストへの反応効率を上げて効果的に剥離し、除去するフォトレジスト除去方法を実現することを課題とする。   An object of the present invention is to solve the above-mentioned conventional problem in removing the photoresist remaining on the substrate surface, and using the high-concentration ozone water and excimer light, the photoresist remaining on the silicon substrate is removed from the substrate itself. It is an object of the present invention to realize a photoresist removal method in which the reaction efficiency of ozone water per unit volume to a photoresist is increased without causing damage, and the resist is effectively removed and removed.

本発明は上記課題を解決するために、フェノール樹脂から成るフォトレジストが残存付着している基板の表面に、高濃度オゾン水を注水するとともに、紫外光を照射することによって、前記紫外光が、高濃度オゾン水のオゾンの一部からOHラジカルを生成し、該生成されたOHラジカルが、前記フォトレジストをポリフェノール化し、該ポリフェノール化されたフォトレジストに高濃度オゾン水の残存オゾンが反応して断片化し、前記基板表面から剥離することを特徴とするフォトレジスト除去方法を提供する。   In order to solve the above-mentioned problems, the present invention injects high-concentration ozone water onto the surface of the substrate on which the photoresist made of phenol resin remains attached, and irradiates the ultraviolet light, whereby the ultraviolet light is OH radicals are generated from a portion of ozone in the high-concentration ozone water, the generated OH radicals polyphenolize the photoresist, and residual ozone in the high-concentration ozone water reacts with the polyphenolated photoresist. Provided is a method for removing a photoresist, which is fragmented and peeled off from the surface of the substrate.

前記紫外光の波長領域は、特に高濃度オゾン水からOHラジカルを最大に生成できる、200nmから300nmが好ましい。   The wavelength region of the ultraviolet light is particularly preferably 200 nm to 300 nm, which can generate OH radicals maximum from high-concentration ozone water.

前記フェノール樹脂から成るフォトレジストは、ノボラック樹脂系フォトレジストであることが好ましい。   The photoresist composed of the phenol resin is preferably a novolac resin-based photoresist.

前記紫外光の光強度と高濃度オゾン水の濃度をそれぞれ変えることにより、前記基板表面から残存付着しているフォトレジストを剥離する速度を変えられることが好ましい。   It is preferable that the speed at which the remaining photoresist is peeled off from the substrate surface can be changed by changing the light intensity of the ultraviolet light and the concentration of high-concentration ozone water.

高濃度オゾン水の濃度とは、オゾン水濃度が80mg/L以上の濃度を特徴とする。   The concentration of high-concentration ozone water is characterized by a concentration of ozone water of 80 mg / L or more.

本発明によれば、従来行われていた濃硫酸による洗浄効果に匹敵する効率を実現出来ることから、濃硫酸による洗浄の代替技術としての、高濃度オゾン水洗浄を実用化できる。   According to the present invention, an efficiency comparable to the cleaning effect of concentrated sulfuric acid which has been conventionally performed can be realized, and thus high-concentration ozone water cleaning as an alternative technique of cleaning with concentrated sulfuric acid can be put into practical use.

本発明に係るフォトレジスト除去方法を実施するための最良の形態を実施例に基づき図面を参照して、以下説明する。   The best mode for carrying out the photoresist removing method according to the present invention will be described below with reference to the drawings based on the embodiments.

半導体の製造工程等では、フォトレジストとして、フェノール樹脂が通常用いられている(例.ノボラック樹脂系フォトレジスト)。本発明に係るフォトレジスト除去方法は、基板に残存している除去すべきフォトレジストに、高濃度オゾン水を注水するとともに、紫外光を照射することにより、フォトレジストを基板から剥離して除去する方法である。なお、紫外光として、本明細書では、エキシマレーザ光(本明細書では「エキシマー光」と言う。)で説明する。   In a semiconductor manufacturing process or the like, a phenol resin is usually used as a photoresist (eg, novolak resin-based photoresist). The photoresist removing method according to the present invention removes the photoresist from the substrate by irradiating the photoresist remaining on the substrate with high-concentration ozone water and irradiating with ultraviolet light. Is the method. Note that as the ultraviolet light, in this specification, excimer laser light (referred to as “excimer light” in this specification) is described.

図1は、従来技術に較べた本発明のフォトレジスト除去方法の概念図を示す。従来、オゾン水により基板に残存付着しているフォトレジスト(以下、ノボラック樹脂系フォトレジストで説明する。)の剥離が起こる事が知られていた。しかし、この剥離速度は遅く、生産現場で十分と言える速度で剥離が起こらない難点があった。   FIG. 1 shows a conceptual diagram of the photoresist removal method of the present invention compared to the prior art. Conventionally, it has been known that the photoresist remaining on the substrate by ozone water (hereinafter, described as a novolak resin-based photoresist) is peeled off. However, this peeling rate is slow, and there is a difficulty that peeling does not occur at a rate that can be said to be sufficient at the production site.

この課題を解決するために、本発明者らは、鋭意研究開発した結果、オゾン水のみで直接、ノボラック樹脂系フォトレジストを基板から剥離するのではなく、ノボラック樹脂系フォトレジストを一旦ポリフェノール化樹脂に変換すると、オゾン水によって高速で基板(リコンウェハ等)に残存付着しているノボラック樹脂系フォトレジストを剥離することが可能となるという、新規な知見を得た。   In order to solve this problem, the present inventors have conducted extensive research and development. As a result, the novolak resin-based photoresist is not directly peeled off from the substrate directly with only ozone water, but once the novolak resin-based photoresist is polyphenolated resin. As a result, a novel finding was obtained that the novolak resin-based photoresist remaining on the substrate (recon wafer, etc.) can be peeled off at a high speed by ozone water.

このように本発明に係るフォトレジスト除去方法は、高濃度オゾン水と紫外光を照射することによる、ノボラック樹脂系フォトレジストの新規な剥離作用機序に基づいてなされた。   As described above, the photoresist removing method according to the present invention was made based on a novel exfoliation mechanism of a novolak resin-based photoresist by irradiating with high-concentration ozone water and ultraviolet light.

図1において、本発明に係るフォトレジスト除去方法では、ノボラック樹脂系フォトレジストが残存付着している基板に高濃度オゾン水を注水するとともに、エキシマー光を照射する。すると、エキシマー光によって、高濃度オゾン水からOHラジカル(OH)が速やかに生成され、このOHラジカルがフォトレジストに作用して、その表層面の分子のポリフェノール化を促進する。 In FIG. 1, in the photoresist removing method according to the present invention, high-concentration ozone water is injected onto a substrate on which a novolak resin-based photoresist remains, and excimer light is irradiated. Then, the excimer light, OH radicals from the high concentration ozone water OH) is quickly generated, the OH radicals acts on the photoresist, to promote the polyphenols of molecules in the surface layer.

ポリフェノール化されたフォトレジストのオゾンに対する反応速度は、元のノボラック樹脂に比して飛躍的に増大する。その結果、ポリフェノール化フォトレジストは、容易に高濃度オゾン水のオゾンとの化学反応を起こして分解されて断片化し、速やかに効率良く、基板表面から剥離されるのである。なお、高濃度オゾン水の濃度とは、オゾン水濃度が80mg/L以上の濃度であることが好ましい。   The reaction rate of the polyphenolized photoresist to ozone is dramatically increased compared to the original novolac resin. As a result, the polyphenolated photoresist is easily decomposed and fragmented by causing a chemical reaction with high-concentration ozone water ozone, and is quickly and efficiently peeled off from the substrate surface. In addition, it is preferable that the density | concentration of high concentration ozone water is a density | concentration of ozone water concentration 80 mg / L or more.

(作用機序)
以下、さらに本発明に係るフォトレジスト除去方法について、その作用機序を図2に示す化学反応で詳細に説明する。ここでのフォトレジストは、ノボラック樹脂系フォトレジストとする。
(Mechanism of action)
Hereinafter, the action mechanism of the photoresist removal method according to the present invention will be described in detail with reference to the chemical reaction shown in FIG. The photoresist here is a novolak resin-based photoresist.

ノボラック樹脂系フォトレジストが付着残存している基板に高濃度オゾン水を注水し、エキシマー光を照射すると、次の化学式1に示すように、紫外光によって、オゾン水の一部を分解してOHラジカルを生成する。   When high-concentration ozone water is injected onto the substrate on which the novolak resin-based photoresist remains adhered and irradiated with excimer light, as shown in the following chemical formula 1, a part of the ozone water is decomposed by ultraviolet light to generate OH. Generate radicals.

Figure 2008311257
Figure 2008311257

OHラジカルは、フォトレジストの表面に接すると、寿命が短くフォトレジストの深層部まで達し難いが、表層部のフェノールのポリフェノール化反応(ベンゼン環の水酸化反応)を効率よくおこす。   When OH radicals come into contact with the surface of the photoresist, the lifetime is short and it is difficult to reach the deep layer portion of the photoresist. However, the phenol polyphenolation reaction (hydroxylation reaction of the benzene ring) of the surface layer portion is efficiently performed.

フェノールがポリフェノール化することで、オゾンに対する反応性が飛躍的に増大する。フェノールとオゾンの二次反応速度定数は、1.3×10mol−1−1であるのに対して、フェノールにOH基が1個増したレゾルシノールは、3×105mol−1−1 以上の値を持つ。 By reacting phenol with polyphenol, the reactivity to ozone is dramatically increased. The secondary reaction rate constant of phenol and ozone is 1.3 × 10 3 mol −1 s −1 , whereas resorcinol in which one OH group is added to phenol is 3 × 10 5 mol −1 s −1. It has the above value.

このように、フェノールに1個のOH基が導入されることで300倍以上も反応性が高まるのであるから、さらに多くのOH基が導入されてできるポリフェノールはオゾンと拡散律速で反応する事になる。   In this way, the introduction of one OH group into phenol increases the reactivity by 300 times or more, so that the polyphenol formed by introducing more OH groups reacts with ozone at a diffusion-controlled rate. Become.

このようにして、オゾンの光分解で生じたOHラジカルがフェノールをポリフェノールに変えると、ポリフェノールは、急速に未分解で残存するオゾンと反応してポリマー主鎖のC−C結合を切断する。これが、オゾン水とエキシマー光を併用することにより、フォトレジストの深部まで酸化していないのに、速い速度でフォトレジストを分解して、剥離をおこすメカニズムと考えられる。   In this way, when OH radicals generated by the photolysis of ozone change phenol to polyphenol, polyphenol rapidly reacts with undecomposed ozone and breaks the C—C bond of the polymer main chain. This is considered to be a mechanism in which ozone water and excimer light are used in combination, but the photoresist is decomposed at a high speed, but is not oxidized to the deep portion of the photoresist, thereby causing peeling.

ところで、エキシマー光が強すぎると、フォトレジストに注水されるオゾン水の全てのオゾンが光分解されてレジストのポリフェノール水酸化反応しか起こらない。そこで、オゾン濃度とエキシマー光の光強度の関係を巧くバランスさせることで、剥離速度をより最適化することができる。   By the way, if excimer light is too strong, all the ozone water injected into the photoresist is photodegraded and only the polyphenol hydroxylation reaction of the resist occurs. Therefore, the peeling speed can be further optimized by skillfully balancing the relationship between the ozone concentration and the light intensity of the excimer light.

(最適化)
このような最適化について、以下さらに説明する。剥離速度に影響を与えるものとして、オゾン濃度、オゾン水注流速度、エキシマー光強度、ウェハ(基板)回転数、反応温度、の5つが考えられる。これらのパラメーターを適宜、調整することにより最大剥離速度を求めることが可能となる。
(optimisation)
Such optimization is further described below. There are five possible factors affecting the peeling speed: ozone concentration, ozone water pouring speed, excimer light intensity, wafer (substrate) rotation speed, and reaction temperature. The maximum peeling rate can be obtained by adjusting these parameters as appropriate.

上記のとおり、ノボラック樹脂系レジストのポリフェノール化には、エキシマー光の光分解によって、高濃度オゾン水のオゾンからOHラジカルの生成が必要である。 しかし、高濃度オゾン水のオゾンを全てOHラジカルにしてしまうと、ポリフェノール化フォトレジストは、ポリフェノール樹脂のままで剥離には至らない。ポリフェノールに反応してC−C結合を破壊するだけのオゾン量が確保されていなければならない。   As described above, polyphenolation of a novolak resin-based resist requires generation of OH radicals from ozone of high-concentration ozone water by photolysis of excimer light. However, if all the ozone in the high-concentration ozone water is converted to OH radicals, the polyphenolic photoresist remains as a polyphenol resin and does not come off. An amount of ozone sufficient to react with the polyphenol and break the C—C bond must be secured.

これに与えるオゾン濃度とエキシマー光強度の関係を検討する。図3(a)に示すように、エキシマー光強度を一定にして、オゾン濃度を上げてもOHラジカル濃度が直線的に増加しない。その理由の一つは、オゾン量に対して光子濃度が足りなくなってくることである。   We examine the relationship between ozone concentration and excimer light intensity. As shown in FIG. 3A, even if the excimer light intensity is kept constant and the ozone concentration is increased, the OH radical concentration does not increase linearly. One of the reasons is that the photon concentration becomes insufficient with respect to the ozone amount.

しかしながら、エキシマー光強度が十分あったとしてもOHラジカル濃度はオゾン濃度に正比例して直線的に増加しない。その理由は、オゾン分解反応は濃度の2乗に比例して増大して進むために、供給オゾン濃度を増しても無駄に分解消費が増すことになるためであり、結局は、図3(a)に示すような曲線となる。   However, even if the excimer light intensity is sufficient, the OH radical concentration does not increase linearly in direct proportion to the ozone concentration. The reason for this is that the ozone decomposition reaction proceeds in proportion to the square of the concentration, and therefore, even if the supply ozone concentration is increased, the decomposition consumption is unnecessarily increased. ).

一方、図3(b)に示すように、一定の濃度オゾン水を供給しながら、エキシマー光強度を上げた時、OHラジカル濃度はあるところまでしか大きくならない。エキシマー光が強まるとオゾンはスキーム2と3の機構で分解する為、急激に減少するからである。   On the other hand, as shown in FIG. 3B, when the excimer light intensity is raised while supplying a constant concentration of ozone water, the OH radical concentration increases only to a certain extent. This is because when the excimer light is strengthened, ozone is decomposed by the mechanism of Schemes 2 and 3, and thus decreases rapidly.

OHラジカルはノボラック樹脂をポリフェノール化するのに不可欠であり、 オゾンはポリフェノールを分解するのに不可欠である。従って、図3(b)において、オゾンの量とOHラジカル濃度を、どのような量に調整するかによって、最大剥離速度が得られる。   OH radicals are essential to polyphenolate novolac resins, and ozone is essential to decompose polyphenols. Therefore, in FIG. 3 (b), the maximum peeling rate can be obtained depending on the amount of ozone and OH radical concentration to be adjusted.

なお、回転速度はある程度速い方が剥離速度の大きい事が経験的にわかっている。また、反応温度は化学反応速度のみを考えると高い方が有利であるが、温度上昇と比例して増大するオゾン自己分解と空気中への飛散速度との兼ね合いも考慮する必要がある。以上のとおり、上記5つのパラメーターを適宜選択することで、最大剥離速度が求められる。   It has been empirically known that the higher the rotational speed, the higher the peeling speed. In addition, it is advantageous that the reaction temperature is high considering only the chemical reaction rate, but it is also necessary to consider the balance between ozone self-decomposition, which increases in proportion to the temperature rise, and the scattering rate into the air. As described above, the maximum peeling rate is obtained by appropriately selecting the above five parameters.

(フォトレジスト除去装置)
本発明に係るフォトレジスト除去方法は、さらに、図4に示すようなフォトレジスト除去装置1を使用することで、フォトレジストが残存付着した基板9上に高濃度オゾン水の薄液膜を形成可能とし、同時にエキシマー光照射することで、基板に残存付着したフォトレジストを、より均一にかつ効果的に除去可能とする。
(Photoresist removal device)
The photoresist removal method according to the present invention can further form a thin liquid film of high-concentration ozone water on the substrate 9 on which the photoresist remains adhered by using the photoresist removal apparatus 1 as shown in FIG. By simultaneously irradiating excimer light, the photoresist remaining on the substrate can be removed more uniformly and effectively.

このフォトレジスト除去装置1は、モータ2で駆動され水平面内を回転する回転支持台3と、高濃度オゾン水供給装置4、支持アーム5にネジ6で上下方向調整可能に装着された洗浄ノズル7と、エキシマー光照射源8とを備えている。   This photoresist removal apparatus 1 is driven by a motor 2 to rotate in a horizontal plane, a high-concentration ozone water supply apparatus 4, and a cleaning arm 7 that is mounted on a support arm 5 so as to be adjustable in the vertical direction with screws 6. And an excimer light irradiation source 8.

洗浄ノズル7は、円筒管11と、この円筒管11の下端に取り付けられた透明円盤13とを備えている。円筒管11の下端の注水口12は、透明円盤13の中心から下方に開口している。   The cleaning nozzle 7 includes a cylindrical tube 11 and a transparent disk 13 attached to the lower end of the cylindrical tube 11. The water inlet 12 at the lower end of the cylindrical tube 11 opens downward from the center of the transparent disk 13.

このような構成のフォトレジスト除去装置1において、高濃度オゾン水は洗浄ノズルの下端の注水口12から、透明円盤13と基板9との間の間隔寸法dが1〜3mm程度の狭隘な隙間(細隙)14内に流入し、回転支持台3が回転することにより生じる遠心力によって、基板9上で放射方向に均一な薄液膜15の流れを形成すると同時に、エキシマー光を照射することが可能となる。この結果、洗浄効率を飛躍的に向上させることができる。   In the photoresist removing apparatus 1 having such a configuration, the high-concentration ozone water is supplied from the water inlet 12 at the lower end of the cleaning nozzle to a narrow gap having a gap d between the transparent disk 13 and the substrate 9 of about 1 to 3 mm ( The flow of the thin liquid film 15 in the radial direction is formed on the substrate 9 by the centrifugal force generated by flowing into the slit 14 and rotating the rotary support 3, and at the same time, excimer light can be irradiated. It becomes possible. As a result, the cleaning efficiency can be dramatically improved.

(実験例)
本発明者らが、本発明に係るフォトレジスト除去装置1を使用し、フォトレジストの除去の実験を行った。この実験例について以下説明する。この実験例では、回転支持台3上に基板9としてシリコンウェハを載置し、フォトレジストが残存付着したシリコンウェハ上に高濃度オゾン水を注水するとともに、エキシマー光を照射し、シリコンウェハ上のフォトレジストを除去し、残存フォトレジストの厚さ(膜厚)を測定して除去効果を評価した。
(Experimental example)
The present inventors conducted an experiment for removing a photoresist using the photoresist removing apparatus 1 according to the present invention. This experimental example will be described below. In this experimental example, a silicon wafer is placed as a substrate 9 on the rotary support 3, high-concentration ozone water is injected onto the silicon wafer on which the photoresist remains and adhering, and excimer light is applied to the silicon wafer. The removal effect was evaluated by removing the photoresist and measuring the thickness (film thickness) of the remaining photoresist.

エキシマー光照射源8として、波長222nmのエキシマー光を照射する出力は24mWのエキシマランプを用いた。高濃度オゾン水の濃度は、は104mg/lであり、オゾン水の注水時間は40sである。また、オゾン水は、洗浄ノズル7によって、シリコンウェハの中心に供給する。シリコンウェハ上のフォトレジストは、初期膜厚が10000(Å)のIP−3300−HP(東京応化工業製)を用いた。   As the excimer light irradiation source 8, an excimer lamp having an output of irradiating excimer light having a wavelength of 222 nm was used. The concentration of the high-concentration ozone water is 104 mg / l, and the ozone water injection time is 40 s. Ozone water is supplied to the center of the silicon wafer by the cleaning nozzle 7. As the photoresist on the silicon wafer, IP-3300-HP (manufactured by Tokyo Ohka Kogyo Co., Ltd.) having an initial film thickness of 10,000 (Å) was used.

このような実験条件下で、シリコンウェハを回転数300rpmと600rpmで回転した場合のそれぞれについて、
(1)オゾン水の注水とエキシマー光の照射を同時並行的に行う場合(実験結果を示す図5中、◇…300rpm+Parallel、◆…600rpm+Parallel)と、
(2)エキシマー光を照射後、オゾン水を注水する場合(図5中、□…300rpm+Separate、灰色□…600rpm+Separate)について、それぞれ測定及び評価を行った。
さらに、
(3)シリコンウェハの回転数を600rpmとして、エキシマー光を照射しない場合(図5中、*…600rpm)について測定及び評価を行った。
Under such experimental conditions, for each of the cases where the silicon wafer was rotated at 300 rpm and 600 rpm,
(1) When ozone water injection and excimer light irradiation are performed simultaneously (in FIG. 5 showing the experimental results, ◇… 300 rpm + Parallel, ◆… 600 rpm + Parallel),
(2) After irradiation with excimer light, measurement and evaluation were performed for the case of pouring ozone water (in FIG. 5, □ ... 300 rpm + Separate, gray □ ... 600 rpm + Separate).
further,
(3) Measurement and evaluation were performed for a case where the rotation number of the silicon wafer was 600 rpm and no excimer light was irradiated (* in FIG. 5, 600 rpm).

これらの実験結果を図5に示す。上記(2)のオゾン水とエキシマー光を別々に施した場合にはその効果をほとんど確認できないが、シリコンウェハの外縁部分でやや除去量が改善されている。このときの除去量の分布はエキシマー光を照射しない場合とほぼ等しい。   The results of these experiments are shown in FIG. When ozone water and excimer light of (2) above are separately applied, the effect can hardly be confirmed, but the removal amount is slightly improved at the outer edge portion of the silicon wafer. The distribution of the removal amount at this time is almost the same as the case where no excimer light is irradiated.

一方で、上記(1)のオゾン水とエキシマー光を同時に照射し、シリコンウェハの回転数が300rpmの場合には、水噴流のよどみ点にあたるシリコンウェハの中心での除去量が急激に増加する。さらに、回転数が増加するにしたがってシリコンウェハの除去速度も改善されることが明瞭に確認できる。   On the other hand, when the ozone water and the excimer light of (1) are simultaneously irradiated and the rotation speed of the silicon wafer is 300 rpm, the removal amount at the center of the silicon wafer corresponding to the stagnation point of the water jet increases rapidly. Furthermore, it can be clearly confirmed that the removal speed of the silicon wafer is improved as the rotational speed is increased.

この実験例から、高濃度オゾン水によるフォトレジストの除去量は注入部近傍のシリコンウェハの中心付近で最も大きくなることが示された。一方、シリコンウェハの外縁部分でのレジスト除去速度はこれに比べ低くなった。またレジストの除去量は、エキシマー光を照射することによって改善されることが示され、さらに、シリコンウェハを回転させることでシリコンウェハ外縁部での除去量が改善されることが示された。   From this experimental example, it was shown that the removal amount of the photoresist by the high-concentration ozone water becomes the largest in the vicinity of the center of the silicon wafer near the implanted portion. On the other hand, the resist removal rate at the outer edge portion of the silicon wafer was lower than this. It was also shown that the resist removal amount was improved by irradiating excimer light, and that the removal amount at the outer edge of the silicon wafer was improved by rotating the silicon wafer.

以上、本発明に係るフォトレジスト除去方法を実施するための最良の形態を実施例に基づいて説明したが、本発明はこのような実施例に限定されるものではなく、特許請求の範囲に記載された技術的事項の範囲内でいろいろな実施例があることは言うまでもない。   The best mode for carrying out the photoresist removing method according to the present invention has been described based on the embodiments. However, the present invention is not limited to such embodiments, and is described in the claims. It goes without saying that there are various embodiments within the scope of the technical matters stated.

本発明に係るフォトレジスト除去方法は、上記のような構成であり、半導体製造工程におけるドライエッチング処理及び高電流イオン注入処理が施されたフォトレジストを除去するために用いられる。特に現在用いられている濃硫酸の除去工程の代替となりうることで、環境負荷の低減化が実現する。   The photoresist removal method according to the present invention is configured as described above, and is used to remove a photoresist that has been subjected to dry etching treatment and high current ion implantation treatment in a semiconductor manufacturing process. In particular, the environmental load can be reduced by replacing the concentrated sulfuric acid removal process currently used.

従来技術に較べた本発明のフォトレジスト除去方法の概念図である。It is a conceptual diagram of the photoresist removal method of this invention compared with a prior art. 本発明のフォトレジスト除去方法の作用機序を説明するための化学反応プロセスを説明する図である。It is a figure explaining the chemical reaction process for demonstrating the action mechanism of the photoresist removal method of this invention. 剥離速度の最適化を説明するための図であり、(a)はエキシマー光強度を一定にした場合の、オゾン濃度とHラジカル濃度の関係を説明する図であり、(b)は高濃度オゾン水の供給量を一定とした場合の、エキシマー光強度とOHラジカル濃度との関係を説明する図である。It is a figure for demonstrating the optimization of peeling speed, (a) is a figure explaining the relationship between ozone concentration and H radical concentration when excimer light intensity is made constant, (b) is high concentration ozone. It is a figure explaining the relationship between excimer light intensity and OH radical density | concentration when supply_amount | feed_rate of water is made constant. フォトレジスト除去装置の概略を説明する図である。It is a figure explaining the outline of a photoresist removal apparatus. 本発明の実験例の実験結果を示すグラフである。It is a graph which shows the experimental result of the experiment example of this invention.

符号の説明Explanation of symbols

1 フォトレジスト除去装置
2 モータ
3 回転支持台
4 高濃度オゾン水供給装置
5 支持アーム
6 ネジ
7 洗浄ノズル
8 エキシマー光照射源
9 基板
11 円筒管
12 注水口
13 透明円盤
13 透明円盤
14 隙間(細隙)
15 薄液膜
d 隙間の間隔寸法
1 Photoresist removal device
2 Motor
3 rotation support stand
4 High concentration ozone water supply device
5 Support arm
6 Screw
7 Cleaning nozzle
8 Excimer light irradiation source
9 Board
11 Cylindrical tube
12 Water inlet
13 Transparent disk
13 Transparent disk
14 Clearance (slit)
15 Thin liquid film d Dimension of gap

Claims (5)

フェノール樹脂から成るフォトレジストが残存付着している基板の表面に、高濃度オゾン水を注水するとともに、紫外光を照射することによって、
前記紫外光が、高濃度オゾン水のオゾンの一部からOHラジカルを生成し、
該生成されたOHラジカルが、前記フォトレジストをポリフェノール化し、
該ポリフェノール化されたフォトレジストを高濃度オゾン水の残存オゾンが反応して断片化し、前記基板表面から剥離することを特徴とするフォトレジスト除去方法。
By pouring high-concentration ozone water and irradiating ultraviolet light onto the surface of the substrate on which the photoresist made of phenol resin remains attached,
The ultraviolet light generates OH radicals from a part of ozone of high-concentration ozone water,
The generated OH radicals polyphenolize the photoresist,
A method for removing a photoresist, characterized in that the residual phenol of high-concentration ozone water reacts to fragment the polyphenolated photoresist and peels it from the substrate surface.
前記紫外光は、エキシマー光であることを特徴とする請求項1記載のフォトレジスト除去方法。   The photoresist removal method according to claim 1, wherein the ultraviolet light is excimer light. 前記フェノール樹脂から成るフォトレジストは、ノボラック樹脂系フォトレジストであることを特徴とする請求項1又は2記載のフォトレジスト除去方法。   3. The method of removing a photoresist according to claim 1, wherein the photoresist made of phenol resin is a novolak resin-based photoresist. 前記エキシマー光の光強度と高濃度オゾン水の濃度をそれぞれ変えることにより、前記基板表面から残存付着しているフォトレジストを剥離する速度を変えられることを特徴とする請求項1、2又は3記載のフォトレジスト除去方法。   4. The speed at which the remaining attached photoresist is peeled off from the substrate surface can be changed by changing the light intensity of the excimer light and the concentration of high-concentration ozone water, respectively. Photoresist removal method. 高濃度オゾン水の濃度とは、オゾン水濃度が80mg/L以上の濃度を特徴とする請求項1、2又は3記載のフォトレジスト除去方法。   The photoresist removal method according to claim 1, 2 or 3, wherein the high-concentration ozone water concentration is a concentration of ozone water concentration of 80 mg / L or more.
JP2007154758A 2007-06-12 2007-06-12 Photoresist removal method Expired - Fee Related JP5006112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007154758A JP5006112B2 (en) 2007-06-12 2007-06-12 Photoresist removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007154758A JP5006112B2 (en) 2007-06-12 2007-06-12 Photoresist removal method

Publications (2)

Publication Number Publication Date
JP2008311257A true JP2008311257A (en) 2008-12-25
JP5006112B2 JP5006112B2 (en) 2012-08-22

Family

ID=40238644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007154758A Expired - Fee Related JP5006112B2 (en) 2007-06-12 2007-06-12 Photoresist removal method

Country Status (1)

Country Link
JP (1) JP5006112B2 (en)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479324A (en) * 1990-07-23 1992-03-12 Dainippon Screen Mfg Co Ltd Method and equipment for surface treatment of substrate
JPH10116809A (en) * 1996-10-11 1998-05-06 Tadahiro Omi Method and system for washing
JP2000195835A (en) * 1998-12-24 2000-07-14 Toshiba Corp Manufacture of semiconductor device and manufacturing apparatus of the device
JP2002231696A (en) * 2001-01-31 2002-08-16 Mitsubishi Electric Corp Method and apparatus for removing resist
JP2003077885A (en) * 2001-09-06 2003-03-14 Dainippon Screen Mfg Co Ltd Substrate treatment device
JP2003282425A (en) * 2002-03-27 2003-10-03 Mitsui Eng & Shipbuild Co Ltd Resist separation device
JP2003282517A (en) * 2002-03-27 2003-10-03 Mitsui Eng & Shipbuild Co Ltd Resist-exfoliating method
JP2003309098A (en) * 2002-04-16 2003-10-31 Uct Kk Resist removing device and method therefor
JP2003337432A (en) * 2002-05-20 2003-11-28 Tsukuba Semi Technology:Kk Method for removing resist using functional water and apparatus therefor
JP2004071966A (en) * 2002-08-08 2004-03-04 Mitsui Eng & Shipbuild Co Ltd Resist peeling method
JP2004193455A (en) * 2002-12-13 2004-07-08 Sharp Corp Processing apparatus and processing method
WO2004093172A1 (en) * 2003-04-16 2004-10-28 Sekisui Chemical Co. Ltd. Resist stripping method and device
JP2004356487A (en) * 2003-05-30 2004-12-16 Seiko Epson Corp Removal method of organic substance layer
JP2005072308A (en) * 2003-08-26 2005-03-17 Sony Corp Method for removing resist, and method for manufacturing semiconductor device
JP2005340668A (en) * 2004-05-28 2005-12-08 Purex:Kk Method and apparatus for removing organic substance
JP2006093355A (en) * 2004-09-22 2006-04-06 Sekisui Chem Co Ltd Forming method of circuit pattern
JP2006148071A (en) * 2004-10-19 2006-06-08 Purex:Kk Removing method of fouling on substrate surface, removing treatment liquid and removing device
JP2006164996A (en) * 2003-12-08 2006-06-22 Sekisui Chem Co Ltd Resist removing apparatus for mask substrate
JP2006229002A (en) * 2005-02-18 2006-08-31 Renesas Technology Corp Manufacturing method of semiconductor device, and semiconductor manufacturing device
JP2006229198A (en) * 2004-12-16 2006-08-31 Asahi Glass Co Ltd Method and apparatus for cleaning tool with ultraviolet provided internally

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479324A (en) * 1990-07-23 1992-03-12 Dainippon Screen Mfg Co Ltd Method and equipment for surface treatment of substrate
JPH10116809A (en) * 1996-10-11 1998-05-06 Tadahiro Omi Method and system for washing
JP2000195835A (en) * 1998-12-24 2000-07-14 Toshiba Corp Manufacture of semiconductor device and manufacturing apparatus of the device
JP2002231696A (en) * 2001-01-31 2002-08-16 Mitsubishi Electric Corp Method and apparatus for removing resist
JP2003077885A (en) * 2001-09-06 2003-03-14 Dainippon Screen Mfg Co Ltd Substrate treatment device
JP2003282425A (en) * 2002-03-27 2003-10-03 Mitsui Eng & Shipbuild Co Ltd Resist separation device
JP2003282517A (en) * 2002-03-27 2003-10-03 Mitsui Eng & Shipbuild Co Ltd Resist-exfoliating method
JP2003309098A (en) * 2002-04-16 2003-10-31 Uct Kk Resist removing device and method therefor
JP2003337432A (en) * 2002-05-20 2003-11-28 Tsukuba Semi Technology:Kk Method for removing resist using functional water and apparatus therefor
JP2004071966A (en) * 2002-08-08 2004-03-04 Mitsui Eng & Shipbuild Co Ltd Resist peeling method
JP2004193455A (en) * 2002-12-13 2004-07-08 Sharp Corp Processing apparatus and processing method
WO2004093172A1 (en) * 2003-04-16 2004-10-28 Sekisui Chemical Co. Ltd. Resist stripping method and device
JP2004356487A (en) * 2003-05-30 2004-12-16 Seiko Epson Corp Removal method of organic substance layer
JP2005072308A (en) * 2003-08-26 2005-03-17 Sony Corp Method for removing resist, and method for manufacturing semiconductor device
JP2006164996A (en) * 2003-12-08 2006-06-22 Sekisui Chem Co Ltd Resist removing apparatus for mask substrate
JP2005340668A (en) * 2004-05-28 2005-12-08 Purex:Kk Method and apparatus for removing organic substance
JP2006093355A (en) * 2004-09-22 2006-04-06 Sekisui Chem Co Ltd Forming method of circuit pattern
JP2006148071A (en) * 2004-10-19 2006-06-08 Purex:Kk Removing method of fouling on substrate surface, removing treatment liquid and removing device
JP2006229198A (en) * 2004-12-16 2006-08-31 Asahi Glass Co Ltd Method and apparatus for cleaning tool with ultraviolet provided internally
JP2006229002A (en) * 2005-02-18 2006-08-31 Renesas Technology Corp Manufacturing method of semiconductor device, and semiconductor manufacturing device

Also Published As

Publication number Publication date
JP5006112B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP3869566B2 (en) Photoresist film removal method and apparatus
JP3914842B2 (en) Method and apparatus for removing organic coating
CN1291347A (en) Photoresist film removing method and device therefor
TWI526257B (en) Controlling cleaning of a layer on a substrate using nozzles
JP5006111B2 (en) Photoresist removal device
JP4861609B2 (en) Method and apparatus for removing organic substances
US20100304554A1 (en) Production method for semiconductor device
CN1653596A (en) Resist removing apparatus and method of removing resist
JP2007273598A (en) Substrate processor and substrate processing method
JP6266680B2 (en) Cleaning method and cleaning liquid
JP5006112B2 (en) Photoresist removal method
JP2002231696A (en) Method and apparatus for removing resist
JP2007149972A (en) Electronic device cleaning device and electronic device cleaning method
JP2018534608A (en) Method of treating a substrate with an aqueous liquid medium exposed to ultraviolet light
JP4320982B2 (en) Substrate processing equipment
JP2008311591A (en) Substrate treatment method and substrate treatment equipment
JP4883975B2 (en) Method for removing deposits on substrate surface, treatment liquid for removal and removal apparatus
WO2004093172A1 (en) Resist stripping method and device
JP2012204381A (en) Resin removal method and resin removal device
JP2001290287A (en) Method for removing photoresist
JP2009088228A (en) Processing apparatus and processing method for substrate
JP2005150165A (en) Ozone-water injection nozzle
JP2006116542A (en) Method and apparatus for treating substrate
TWI789815B (en) Substrate processing method and substrate processing device
Nakao et al. Imprint-Mold-Cleaning by Vacuum Ultraviolet Light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5006112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees