JP6266680B2 - Cleaning method and cleaning liquid - Google Patents

Cleaning method and cleaning liquid Download PDF

Info

Publication number
JP6266680B2
JP6266680B2 JP2016064488A JP2016064488A JP6266680B2 JP 6266680 B2 JP6266680 B2 JP 6266680B2 JP 2016064488 A JP2016064488 A JP 2016064488A JP 2016064488 A JP2016064488 A JP 2016064488A JP 6266680 B2 JP6266680 B2 JP 6266680B2
Authority
JP
Japan
Prior art keywords
cleaning
ultraviolet light
cleaned
light source
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016064488A
Other languages
Japanese (ja)
Other versions
JP2017183358A (en
Inventor
新吾 松井
新吾 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2016064488A priority Critical patent/JP6266680B2/en
Priority to PCT/JP2017/012732 priority patent/WO2017170595A1/en
Priority to TW106110356A priority patent/TW201738005A/en
Publication of JP2017183358A publication Critical patent/JP2017183358A/en
Application granted granted Critical
Publication of JP6266680B2 publication Critical patent/JP6266680B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、物品の洗浄方法および該方法に用いる洗浄液に関する。   The present invention relates to a method for cleaning an article and a cleaning liquid used in the method.

半導体用シリコンウエハ板などの電子材料の表面洗浄においてオゾン水を使用し、紫外線を照射することによってオゾンを分解させながら洗浄を行う方法が知られている(特許文献1〜4参照)。このような方法では、オゾンが分解するときに発生するヒドロキシルラジカル(OHラジカルともいう。)の有する強い酸化力により、たとえば電子材料表面に形成されたレジスト膜を剥離することができる。   In the surface cleaning of electronic materials such as semiconductor wafer plates for semiconductors, there is known a method of cleaning while decomposing ozone by irradiating ultraviolet rays using ozone water (see Patent Documents 1 to 4). In such a method, for example, a resist film formed on the surface of an electronic material can be peeled off by strong oxidizing power of hydroxyl radicals (also referred to as OH radicals) generated when ozone is decomposed.

また、紫外線照射を行わずにOHラジカルを発生させて電子材料の表面洗浄を行う方法としてマイクロバブルを用いた方法が知られている(非特許文献1及び非特許文献2参照)。該方法では水中でオゾンや空気のマイクロバブルを発生させ、これが消滅するときに多量のOHラジカルが生成することを利用して、高い洗浄効果を得ている。これらの方法によれば、オゾンマイクロバブルや5%水酸化テトラメチルアンモニウム(以下、TMAHと表記することもある。)と空気マイクロバブルとの組み合わせによって、非常に除去が困難であることが知られている「高濃度のイオンインプラント処理によって一部が非晶質炭素に変質したレジスト(当該レジストの非晶質炭素部は、クレストと呼ばれることもある。以下、当該レジストを表面クレスト化レジストともいう。)」を除去することも可能である。   In addition, a method using microbubbles is known as a method for cleaning the surface of an electronic material by generating OH radicals without performing ultraviolet irradiation (see Non-Patent Document 1 and Non-Patent Document 2). In the method, ozone or air microbubbles are generated in water, and a large amount of OH radicals are generated when the bubbles disappear, thereby obtaining a high cleaning effect. According to these methods, it is known that removal is very difficult by a combination of ozone microbubbles, 5% tetramethylammonium hydroxide (hereinafter sometimes referred to as TMAH) and air microbubbles. “A resist partially transformed into amorphous carbon by high-concentration ion implantation treatment (the amorphous carbon portion of the resist is sometimes referred to as crest. Hereinafter, the resist is also referred to as a surface crested resist. .) ”Can also be removed.

更に、超純水中のTOC分解除去やウエハ等の固体表面に付着した有機化合物を分解・除去するために、ユースポイントから離れた場所で発生させたOHラジカルの濃度を数分程度維持してユースポイントに供給して洗浄を行う方法も知られている(特許文献5参照)。特許文献5には、オゾンと、過酸化水素と、水溶性有機物、無機酸、前記無機酸の塩、及びヒドラジンからなる群より選択される少なくとも1種以上の添加物質と、を純水に溶解させてヒドロキシルラジカル含有水を生成する生成工程と、生成したヒドロキシルラジカル含有水をユースポイントに移送する移送工程と、移送後のヒドロキシルラジカル含有水をユースポイントで供給する供給工程とを含むことを特徴とするヒドロキシルラジカル含有水供給方法が開示されている。   Furthermore, in order to decompose and remove organic compounds adhering to solid surfaces such as wafers and TOC decomposition in ultrapure water, maintain the concentration of OH radicals generated at locations away from the point of use for several minutes. There is also known a method of supplying cleaning to a use point (see Patent Document 5). In Patent Document 5, ozone, hydrogen peroxide, and at least one additive selected from the group consisting of a water-soluble organic substance, an inorganic acid, a salt of the inorganic acid, and hydrazine are dissolved in pure water. And generating a hydroxyl radical-containing water, a transfer step of transferring the generated hydroxyl radical-containing water to a point of use, and a supplying step of supplying the hydroxyl radical-containing water after transfer at the point of use. A method for supplying hydroxyl radical-containing water is disclosed.

しかし、オゾン水を使用する場合には、人体のオゾンへの暴露を抑制する措置が必要となる。また、通常のオゾン発生装置では安定した濃度のオゾン水を供給することが難しく、さらに、OHラジカルの寿命は極めて短いため、ユースポイントにおける溶存オゾン濃度の制御が困難である。更にマイクロバブルを発生させるためにはマイクロバブル発生装置が必要で、洗浄装置が大型化するばかりでなく、これら装置の制御やメンテナンスが煩雑となる。   However, in the case of using ozone water, measures for suppressing exposure of the human body to ozone are required. In addition, it is difficult to supply a stable concentration of ozone water with a normal ozone generator, and furthermore, since the lifetime of OH radicals is extremely short, it is difficult to control the dissolved ozone concentration at the point of use. Further, in order to generate microbubbles, a microbubble generator is required, and not only the cleaning apparatus is increased in size, but also the control and maintenance of these apparatuses becomes complicated.

オゾンやマイクロバブルを使用せずにOHラジカルを発生させる方法としては、過酸化水素、硝酸又は亜硝酸に紫外線を照射する方法が知られている。過酸化水素は290nm以下の波長の紫外線を吸収しOHラジカルを発生する。また、硝酸イオンは240nm以下の波長を有する紫外線照射によって直接OHラジカルを生成する(非特許文献3及び4参照)。上記硝酸イオンからのOHラジカルの生成は、硝酸イオンから亜硝酸イオンへの還元を経由すると考えられており、結合エネルギーの観点からは、硝酸イオンから直接OHラジカルを生成するより亜硝酸イオンからOHラジカルを生成する方が有利である。そして、亜硝酸イオンに対する紫外線照射によるOHラジカル生成では、より長波長の紫外線によってもOHラジカルを発生させることができる。   As a method of generating OH radicals without using ozone or microbubbles, a method of irradiating hydrogen peroxide, nitric acid or nitrous acid with ultraviolet rays is known. Hydrogen peroxide absorbs ultraviolet rays having a wavelength of 290 nm or less and generates OH radicals. In addition, nitrate ions directly generate OH radicals when irradiated with ultraviolet rays having a wavelength of 240 nm or less (see Non-Patent Documents 3 and 4). The generation of OH radicals from nitrate ions is considered to go through reduction from nitrate ions to nitrite ions, and from the viewpoint of binding energy, OH radicals from nitrite ions are generated more than OH radicals directly from nitrate ions. It is advantageous to generate radicals. In the generation of OH radicals by irradiating nitrite ions with ultraviolet rays, OH radicals can be generated even with longer wavelength ultraviolet rays.

オゾンを含有しない、過酸化水素の水溶液に紫外線を照射して電子材料の表面洗浄を行った例としては、過酸化水素水と、揮発性を有するアンモニア溶液等のアルカリ性溶液と純水とを混合して洗浄液とし、この洗浄液に紫外線を照射して照射洗浄液とし、紫外線照射を終えた直後に前記照射洗浄液で基板を洗浄する方法が知られている(特許文献6参照)。   An example of cleaning the surface of an electronic material by irradiating an aqueous solution of hydrogen peroxide that does not contain ozone with ultraviolet rays is a mixture of hydrogen peroxide water, alkaline solution such as volatile ammonia solution, and pure water. A method is known in which a cleaning liquid is used to irradiate the cleaning liquid with ultraviolet rays to form an irradiation cleaning liquid, and the substrate is cleaned with the irradiation cleaning liquid immediately after the ultraviolet irradiation is completed (see Patent Document 6).

一方、過酸化水素の有する酸化力を利用した洗浄方法も知られており、たとえばキレート剤を添加した過酸化水素水と、アンモニアやTMAHなどの塩基性薬液と、水と、を混合した洗浄液を用いて、高密度プラズマを用いたBOSCHプロセスで高アスペクト比のトレンチの洗浄を行う方法が知られている(特許文献7参照)。該方法では、過酸化水素の酸化力で基板表面を酸化し、形成された酸化物層を塩基性薬液で溶かすというリフトオフ機構で洗浄を行っている。洗浄液はオゾンを含まず、また紫外線照射も行っていないことから、OHラジカルの寄与は殆どないと考えられる。   On the other hand, a cleaning method using the oxidizing power of hydrogen peroxide is also known. For example, a cleaning solution obtained by mixing a hydrogen peroxide solution added with a chelating agent, a basic chemical solution such as ammonia or TMAH, and water. A method of cleaning a trench having a high aspect ratio by a BOSCH process using high-density plasma is known (see Patent Document 7). In this method, cleaning is performed by a lift-off mechanism in which the substrate surface is oxidized by the oxidizing power of hydrogen peroxide and the formed oxide layer is dissolved with a basic chemical solution. Since the cleaning liquid does not contain ozone and is not irradiated with ultraviolet rays, it is considered that there is almost no contribution of OH radicals.

特許第3016301号公報Japanese Patent No. 3016301 特許第4513122号公報Japanese Patent No. 4513122 特開2008−166404号公報JP 2008-166404 A 特許第3034720号公報Japanese Patent No. 3034720 国際公開第2010/140581号パンフレットInternational Publication No. 2010/140581 Pamphlet 特許第3125753号公報Japanese Patent No. 3125753 特許第5278492号公報Japanese Patent No. 5278492 特許第5591305号公報Japanese Patent No. 5591305

M. Takahashi, H. Ishikawa, T. Asano, and H. Horibe, Effect of Microbubbles on Ozonized Water for Photoresist Removal, Journal of Physical Chemistry C 116,12578-12583,(2012)M. Takahashi, H. Ishikawa, T. Asano, and H. Horibe, Effect of Microbubbles on Ozonized Water for Photoresist Removal, Journal of Physical Chemistry C 116,12578-12583, (2012) 平成22年度戦略的基板技術高度化支援事業「マイクロナノバブルによる環境対応型半導体ウエハ洗浄装置の開発」研究成果報告書、平成25年3月、委託者 関東経済産業局、委託先 株式会社ひたちなかテクノセンターFY2010 Strategic Substrate Technology Advancement Support Project “Development of Environmentally Friendly Semiconductor Wafer Cleaning Equipment Using Micro-Nano Bubbles” Research Results Report, March 2013, Contractor Kanto Bureau of Economy, Trade and Industry, Contractor Hitachinaka Techno Center Co., Ltd. Bull. Korean Chem. Soc. 2011, Vol. 32, No. 8, 3039-3044.Bull. Korean Chem. Soc. 2011, Vol. 32, No. 8, 3039-3044. Techneau, D2.4.1.1, 1-27.Techneau, D2.4.1.1, 1-27. https://dspace.wul.waseda.ac.jp/dspace/handle/2065/5349、中川創太「促進酸化法による排水中の微量有機物質分解プロセス」p10,Table 1.5https://dspace.wul.waseda.ac.jp/dspace/handle/2065/5349, Sota Nakagawa “Process for Decomposing Trace Organic Substances in Wastewater by Enhanced Oxidation” p10, Table 1.5

特許文献5に記載された方法によれば、比較的低濃度の薬液で有機物汚染、粒子汚染および金属汚染を除去することができると主張されている。
しかしながら、OHラジカルの寿命は極めて短いため、たとえ洗浄液に紫外線を照射した直後に基板の洗浄を行ったとしてもOHラジカル濃度は急激に低下してしまう。したがって、高濃度のイオンインプラント処理によって表面が高度にクレスト化したレジスト(表面クレスト化レジスト)のような非常に除去が難しい汚染物質に対する洗浄力については疑問が残る。OHラジカルの寿命を延ばすために特許文献5に記載された方法を採用したとしても、程度の差はあるものの経時的なOHラジカル濃度低下は避けられず、またオゾンや金属汚染源となる無機酸の塩などを使用する必要も生じてしまう。
According to the method described in Patent Document 5, it is claimed that organic contamination, particle contamination, and metal contamination can be removed with a relatively low concentration chemical solution.
However, since the lifetime of the OH radical is extremely short, even if the substrate is cleaned immediately after the cleaning liquid is irradiated with ultraviolet rays, the OH radical concentration is drastically lowered. Therefore, there remains a question about the detergency of contaminants that are very difficult to remove, such as resists whose surfaces are highly crested by high concentration ion implantation (surface crested resist). Even if the method described in Patent Document 5 is used to extend the lifetime of OH radicals, the OH radical concentration over time is unavoidably reduced although there is a difference in degree. The need to use salt and the like also arises.

そこで本発明は、オゾンやマイクロバブルを使用しない洗浄液を用い、表面クレスト化レジストの除去も可能な高いOHラジカル濃度で洗浄を行うことのできる洗浄方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a cleaning method that can perform cleaning with a high OH radical concentration that can remove a surface crested resist using a cleaning liquid that does not use ozone or microbubbles.

本発明者らは、オゾンや金属イオンを含まない洗浄液であって、紫外線照射によりOHラジカルを発生する洗浄液を被洗浄体の洗浄面の表面に保持した状態で、紫外線を高強度で照射しながら所定時間洗浄を行うことを着想すると共に、照射する紫外線のエネルギーが高いほど(紫外線の波長が短いほど)OHラジカルの生成効率が高くなるという知見を得て、本発明を完成するに至った。   The inventors of the present invention are cleaning liquids that do not contain ozone or metal ions, while irradiating ultraviolet rays with high intensity in a state where a cleaning liquid that generates OH radicals by ultraviolet irradiation is held on the surface of the surface to be cleaned. The inventors have conceived that the cleaning is performed for a predetermined time, and obtained the knowledge that the higher the energy of ultraviolet rays to be irradiated (the shorter the wavelength of ultraviolet rays), the higher the generation efficiency of OH radicals, and the present invention has been completed.

第一の本発明は、(a)過酸化水素、第四級アンモニウム水酸化物、及び水を含んでなり、オゾン及び金属イオンを含まない洗浄剤を被洗浄体の被洗浄面の表面に付着および保持させる工程と、(b)前記被洗浄面の表面に付着および保持された前記洗浄液に紫外線光源から200nm以上250nm以下の波長を有する紫外線を照射する工程と、を含んでなり、工程(b)において、紫外線の照射時間:t(単位:秒)及び/又は前記紫外線光源の発光出力:P(単位:mW)を制御して、前記照射時間内に前記被洗浄面の表面に保持される前記洗浄液に対して照射される紫外線の積算照射量I(単位:mJ/cm)が予め定めた所定の積算照射量I以上となるようにすることを特徴とする、被洗浄体の洗浄方法である。 The first aspect of the present invention is: (a) a cleaning agent comprising hydrogen peroxide, quaternary ammonium hydroxide, and water and not containing ozone and metal ions is attached to the surface of the surface to be cleaned. And (b) irradiating the cleaning liquid adhered and held on the surface of the surface to be cleaned with an ultraviolet ray having a wavelength of 200 nm or more and 250 nm or less from an ultraviolet light source. ), The ultraviolet light irradiation time: t (unit: second) and / or the light emission output of the ultraviolet light source: P (unit: mW) is controlled to be held on the surface of the surface to be cleaned within the irradiation time. Cleaning of an object to be cleaned, characterized in that an integrated dose I (unit: mJ / cm 2 ) of ultraviolet rays irradiated to the cleaning liquid is not less than a predetermined integrated dose I 0 set in advance. Is the method.

第一の本発明の方法においては、前記紫外線光源として200nm以上250nm以下の波長領域にピークを有する紫外線を出射する紫外線発光ダイオード(以下において「UV−LED」ということがある。)を有する紫外線光源を用い、該紫外線光源の発光出力Pの制御を、前記紫外線発光ダイオードに流す順方向電流を制御することにより行うことが好ましい。   In the method of the first aspect of the present invention, an ultraviolet light source having an ultraviolet light emitting diode (hereinafter sometimes referred to as “UV-LED”) that emits ultraviolet light having a peak in a wavelength region of 200 nm to 250 nm as the ultraviolet light source. The light emission output P of the ultraviolet light source is preferably controlled by controlling the forward current flowing through the ultraviolet light emitting diode.

また、前記紫外線の照射時における前記被洗浄体の温度又は前記洗浄液の温度を50℃以上80℃以下とすることが好ましい。   Further, it is preferable that the temperature of the object to be cleaned or the temperature of the cleaning liquid at the time of irradiation with the ultraviolet light is 50 ° C. or higher and 80 ° C. or lower.

さらに、第一の本発明の方法においては、被洗浄体の種類と、紫外線照射時における被洗浄体の温度又は洗浄液の温度と、洗浄剤の種類との組み合わせからなる洗浄基礎条件ごとに、紫外線光源の発光強度Pを予め定めた発光強度Pとし、照射時間tを変えて繰り返し工程(a)及び(b)を行い、十分な洗浄効果が得られる最短の照射時間tminを決定し、前記発光強度Pと最短の照射時間tminとの積として算出される積算照射量を、同一の前記洗浄基礎条件で洗浄を行う際の前記所定の積算照射量Iとすることが好ましい。 Furthermore, in the method of the first aspect of the present invention, for each cleaning basic condition comprising a combination of the type of the object to be cleaned, the temperature of the object to be cleaned or the temperature of the cleaning liquid at the time of ultraviolet irradiation, and the type of the cleaning agent, The light emission intensity P of the light source is set to a predetermined light emission intensity P 0 , the irradiation time t is changed, the steps (a) and (b) are repeated, and the shortest irradiation time t min at which a sufficient cleaning effect is obtained is determined. The integrated dose calculated as the product of the light emission intensity P 0 and the shortest irradiation time t min is preferably the predetermined integrated dose I 0 when cleaning is performed under the same cleaning basic conditions.

なお、非特許文献1及び2に示されているように、表面クレスト化レジストに対する洗浄力が、OHラジカル濃度に依存し、またTMAHのような第四級アンモニウム水酸化物の共存により促進されるので、表面クレスト化レジストのような除去困難な物質が付着した被洗浄体に対しても、上記最短の照射時間tminを決定することができる。このとき、十分な洗浄効果が得られたか否かは、被洗浄体表面の電子顕微鏡観察や洗浄液の分析などにより容易に判断することができる。 As shown in Non-Patent Documents 1 and 2, the detergency for the surface crested resist depends on the OH radical concentration and is promoted by the coexistence of a quaternary ammonium hydroxide such as TMAH. Therefore, the shortest irradiation time t min can be determined even for an object to be cleaned to which a substance that is difficult to remove such as a surface crested resist adheres. At this time, whether or not a sufficient cleaning effect has been obtained can be easily determined by observing the surface of the object to be cleaned with an electron microscope or analyzing a cleaning liquid.

更にまた、有効光路長を、前記紫外線光源から照射される紫外線が前記洗浄剤からなる層を透過した時の透過紫外線の放射照度が0.01mW/cmとなる厚さとして定義したときに、前記工程(a)において、前記被洗浄面の全面を前記洗浄剤が覆い、且つ被洗浄面を覆う洗浄剤の層の厚さが、有効光路長以下となるように、前記被洗浄面の表面に前記洗浄剤を付着および保持させ、且つ、前記工程(b)において前記光源と、前記洗浄剤と、を接触させずに紫外線照射を行うことが好ましい。 Furthermore, when the effective optical path length is defined as the thickness at which the irradiance of the transmitted ultraviolet light is 0.01 mW / cm 2 when the ultraviolet light emitted from the ultraviolet light source passes through the layer made of the cleaning agent, In the step (a), the surface of the surface to be cleaned is covered so that the cleaning agent covers the entire surface of the surface to be cleaned, and the thickness of the layer of the cleaning agent covering the surface to be cleaned is equal to or less than the effective optical path length. It is preferable that the cleaning agent is attached to and held on the substrate and that the light source and the cleaning agent are not contacted with each other in the step (b).

第二の本発明は、前記第一の本発明の方法で使用する洗浄剤であって、過酸化水素、第四級アンモニウム水酸化物、及び水を含んでなり、オゾン及び金属イオンを含まないことを特徴とする洗浄剤である。   The second aspect of the present invention is a cleaning agent used in the method of the first aspect of the present invention, which contains hydrogen peroxide, quaternary ammonium hydroxide, and water, and does not contain ozone and metal ions. It is a cleaning agent characterized by this.

第二の本発明の洗浄剤においては、水溶性有機溶媒を更に含んでなるか、又はキレート剤を更に含んでなることが好ましい。   The cleaning agent of the second aspect of the present invention preferably further comprises a water-soluble organic solvent or further comprises a chelating agent.

第三の本発明は、low-k材からなる構造およびイオン注入領域を有する半導体ウエハの製造方法であって、単位面積あたりの原子数として1×1014原子/cm以上1×1017原子/cm以下のイオン注入に暴露されたフォトレジスト層を、第一の本発明の洗浄方法により除去する工程を含んでなることを特徴とする、半導体ウエハの製造方法である。 The third aspect of the present invention is a method for manufacturing a semiconductor wafer having a structure made of a low-k material and an ion implantation region, wherein the number of atoms per unit area is 1 × 10 14 atoms / cm 2 or more and 1 × 10 17 atoms. A method for producing a semiconductor wafer comprising a step of removing a photoresist layer exposed to ion implantation of / cm 2 or less by the cleaning method of the first aspect of the present invention.

本明細書において「low-k材」とは、3.5未満の比誘電率を有する絶縁体材料を意味する。   In this specification, the “low-k material” means an insulator material having a relative dielectric constant of less than 3.5.

第一の本発明の洗浄方法によれば、洗浄の間中、紫外線を照射しているので、OHラジカルの寿命が短くても絶えず新たなOHラジカルが生成するため、高度な洗浄効果を得ることができる。さらに、オゾン発生装置やマイクロバブル発生装置を必要としないため、紫外線光源としてUV−LEDを用いることにより装置のコンパクト化が可能で、操作やメンテナンスも容易となる。   According to the cleaning method of the first aspect of the present invention, since the ultraviolet rays are irradiated throughout the cleaning, new OH radicals are constantly generated even if the lifetime of the OH radicals is short, so that a high cleaning effect can be obtained. Can do. Furthermore, since an ozone generator and a microbubble generator are not required, the apparatus can be made compact by using a UV-LED as an ultraviolet light source, and operation and maintenance are facilitated.

また、たとえば、被洗浄体と紫外線光源との間の距離d(単位:cm)及び/又は紫外線光源の発光出力P(単位:mW)を制御する形態の第一の本発明の洗浄方法によれば、たとえば数分といった短い時間で効果的な洗浄を行うことができ、枚葉式洗浄装置への適用性も高い。   Further, for example, according to the cleaning method of the first aspect of the present invention in which the distance d (unit: cm) between the object to be cleaned and the ultraviolet light source and / or the light emission output P (unit: mW) of the ultraviolet light source is controlled. For example, effective cleaning can be performed in a short time such as several minutes, and the applicability to a single wafer cleaning apparatus is also high.

従来、表面クレスト化レジストはアッシング処理を行った後に溶液系の洗浄剤を用いて除去することが一般的であった。しかし、アッシング処理は、半導体ウエハ製造時において層間絶縁膜として使用されるlow-k材を損傷させることがあるため、高度に微細化されたパターンを有する半導体ウエハの製造には適さない。第一の本発明の洗浄方法によれば、このようなlow-k材の損傷を引き起こすアッシングプロセスを経ることなく湿式の洗浄処理のみよって表面クレスト化レジストを除去することが可能となる。したがって、第一の本発明の洗浄方法は、高度に微細化されたパターンを有する半導体ウエハの製造プロセスの洗浄工程として特に好ましく採用できる。   Conventionally, the surface-crested resist has been generally removed using a solution-based cleaning agent after ashing. However, the ashing process is not suitable for manufacturing a semiconductor wafer having a highly miniaturized pattern because it may damage a low-k material used as an interlayer insulating film in manufacturing the semiconductor wafer. According to the cleaning method of the first aspect of the present invention, the surface crested resist can be removed only by wet cleaning without passing through such an ashing process that causes damage to the low-k material. Therefore, the cleaning method of the first aspect of the present invention can be particularly preferably employed as a cleaning step in a manufacturing process of a semiconductor wafer having a highly miniaturized pattern.

第二の本発明の洗浄液は、第一の本発明の洗浄方法における洗浄液として好ましく用いることができる。   The cleaning liquid of the second aspect of the present invention can be preferably used as the cleaning liquid in the cleaning method of the first aspect of the present invention.

第三の本発明の半導体ウエハの製造方法によれば、高ドーズのイオン注入に暴露されたフォトレジスト層(表面クレスト化レジスト)の除去を、第一の本発明の洗浄方法によって行うので、low-k材の損傷を引き起こすアッシングプロセスが不要となる。したがって第三の本発明の半導体ウエハの製造方法は、高度に微細化されたパターンを有する半導体ウエハの製造に好ましく採用できる。   According to the semiconductor wafer manufacturing method of the third aspect of the present invention, the removal of the photoresist layer (surface crested resist) exposed to high dose ion implantation is performed by the cleaning method of the first aspect of the present invention. -Eliminates ashing process that causes damage to materials. Therefore, the semiconductor wafer manufacturing method of the third aspect of the present invention can be preferably used for manufacturing a semiconductor wafer having a highly miniaturized pattern.

本発明の洗浄方法を好適に行うことのできる洗浄装置100を模式的に説明する縦断面図である。It is a longitudinal cross-sectional view which illustrates typically the washing | cleaning apparatus 100 which can perform suitably the washing | cleaning method of this invention. 洗浄装置100の他の姿勢を模式的に説明する縦断面図である。FIG. 6 is a longitudinal sectional view schematically illustrating another posture of the cleaning device 100. 本発明の洗浄方法を好適に行うことのできる他の洗浄装置100´を模式的に説明する縦断面図である。It is a longitudinal cross-sectional view which illustrates typically other washing | cleaning apparatus 100 'which can perform suitably the washing | cleaning method of this invention. 図3のE−E矢視図である。It is an EE arrow line view of FIG. 図3のF−F矢視図である。It is a FF arrow line view of FIG. 紫外線光源(紫外線発光モジュール)30’における棒状光源110の横断面図及び縦断面図である。It is the cross-sectional view and longitudinal cross-sectional view of the rod-shaped light source 110 in the ultraviolet light source (ultraviolet light emitting module) 30 '. 紫外線光源(紫外線発光モジュール)30’の横断面図である。It is a cross-sectional view of an ultraviolet light source (ultraviolet light emitting module) 30 '. 紫外線光源(紫外線発光モジュール)30’の側面図である。It is a side view of ultraviolet light source (ultraviolet light emitting module) 30 '. 本発明の洗浄方法を好適に行うことのできる更に他の洗浄装置100´´を模式的に説明する縦断面図である。It is a longitudinal cross-sectional view which illustrates typically further another washing | cleaning apparatus 100 '' which can perform suitably the washing | cleaning method of this invention.

第一の本発明の洗浄方法は、(a)過酸化水素、第四級アンモニウム水酸化物、及び水を含んでなり、オゾン及び金属イオンを含まない洗浄剤を被洗浄体の被洗浄面の表面に付着および保持させる工程と、(b)前記被洗浄面の表面に付着および保持された前記洗浄液に波長200nm以上250nm以下の波長を有する紫外線を照射する工程と、を含んでなり、工程(b)において、紫外線の照射時間:t(単位:秒)及び/又は前記紫外線光源の発光出力:P(単位:mW)を制御して、前記照射時間内に被洗浄面の表面に保持される前記洗浄液に対して照射される紫外線の積算照射量I(単位:mJ/cm)が予め定めた所定の積算照射量I以上となるようにすることを特徴とする。 The cleaning method of the first aspect of the present invention comprises (a) a hydrogen peroxide, a quaternary ammonium hydroxide, and water, and a cleaning agent that does not contain ozone and metal ions is applied to the surface to be cleaned. And (b) irradiating the cleaning liquid attached and held on the surface of the surface to be cleaned with ultraviolet light having a wavelength of 200 nm or more and 250 nm or less. In b), the irradiation time of ultraviolet rays: t (unit: second) and / or the light emission output of the ultraviolet light source: P (unit: mW) is controlled to be held on the surface of the surface to be cleaned within the irradiation time. The integrated irradiation dose I (unit: mJ / cm 2 ) of ultraviolet rays applied to the cleaning liquid is set to be equal to or greater than a predetermined integrated irradiation dose I 0 .

ここで、被洗浄体とは、その表面に洗浄により除去したい物質が付着した物品を意味し、たとえば、半導体シリコンウエハ、デバイスパターンが形成されているウエハ、フォトマスク、液晶用ガラス基板等の電子材料を挙げることができる。OHラジカルは、有機物を分解、除去等する効果が高いため、本発明は特にフォトレジスト膜の剥離に有効である。フォトレジスト膜の例としては、半導体製造工程におけるパターン形成用レジスト、パターン転写に用いられるフォトマスクの製造用レジスト、配線基板製造工程におけるパターン形成用レジストやソルダレジスト、印刷版用レジストなどが挙げられる。本発明の方法を採用することのメリットが大きいという理由から、被洗浄体としては、ダマシン法などで用いられる層間絶縁膜構造などのlow-k材からなる構造を有し、且つ単位面積あたりの原子数として1×1014原子/cm以上1×1017原子/cm以下、特に1×1015原子/cm以上1×1017原子/cm以下のイオン注入に暴露されたフォトレジスト層(このようなレジスト層は通常、表面クレスト化レジストからなる。)を表面に有する半導体ウエハ、その中でも特に最小配線ピッチが20nm以上40nm以下の半導体ウエハを使用することが好適である。 Here, the object to be cleaned means an article having a substance to be removed by cleaning on its surface. For example, a semiconductor silicon wafer, a wafer on which a device pattern is formed, a photomask, an electronic substrate such as a liquid crystal glass substrate, etc. Materials can be mentioned. Since OH radicals have a high effect of decomposing and removing organic substances, the present invention is particularly effective for removing a photoresist film. Examples of the photoresist film include a resist for forming a pattern in a semiconductor manufacturing process, a resist for manufacturing a photomask used for pattern transfer, a resist for forming a pattern, a solder resist, and a resist for a printing plate in a manufacturing process of a wiring board. . Because the merit of adopting the method of the present invention is great, the object to be cleaned has a structure made of a low-k material such as an interlayer insulating film structure used in a damascene method and the like, and has a unit per unit area. Photoresist exposed to ion implantation of 1 × 10 14 atoms / cm 2 or more and 1 × 10 17 atoms / cm 2 or less, particularly 1 × 10 15 atoms / cm 2 or more and 1 × 10 17 atoms / cm 2 or less as the number of atoms It is preferable to use a semiconductor wafer having a layer (such a resist layer is usually made of a surface-crested resist) on the surface, particularly a semiconductor wafer having a minimum wiring pitch of 20 nm to 40 nm.

本発明で使用する洗浄剤は、過酸化水素、第四級アンモニウム水酸化物、及び水を含んでなり、オゾン及び金属イオンを含まない。ここで、「オゾン及び金属イオンを含まない」とは、被洗浄体と接触する前及び/又は紫外線照射を行う前の状態において、これらの成分を洗浄剤成分として積極的に添加しないことを意味し、不純物としての不可避的な混入は許容する。不純物として不可避的に混入するこれら成分の濃度は低ければ低いほど良いが、洗浄剤の総質量基準で通常1ppm以下、好ましくは0.1ppm以下、最も好ましくは0.01ppm以下であり、0ppmであってもよい。   The cleaning agent used in the present invention contains hydrogen peroxide, quaternary ammonium hydroxide, and water, and does not contain ozone and metal ions. Here, “does not contain ozone and metal ions” means that these components are not actively added as a cleaning agent component before contacting with the object to be cleaned and / or before performing ultraviolet irradiation. However, inevitable contamination as impurities is allowed. The lower the concentration of these components inevitably mixed as impurities, the better. However, it is usually 1 ppm or less, preferably 0.1 ppm or less, most preferably 0.01 ppm or less, and 0 ppm based on the total mass of the cleaning agent. May be.

また、前記洗浄剤における過酸化水素の濃度は、洗浄剤の総質量基準で10ppm以上4%以下、特に100ppm以上2%以下であることが好ましく、200ppm以上1%以下であることが最も好ましい。   The concentration of hydrogen peroxide in the cleaning agent is preferably 10 ppm to 4%, particularly preferably 100 ppm to 2%, and most preferably 200 ppm to 1%, based on the total mass of the cleaning agent.

第四級アンモニウム水酸化物としては例えば、テトラメチルアンモニウムヒドロキシド(TMAH)、ベンジルテトラメチルアンモニウムヒドロキシド(BTMAH)、テトラブチルアンモニウムヒドロキシド(TBAH)、トリス(2−ヒドロキシエチル)メチルアンモニウムヒドロキシド(THEMAH)およびこれらの混合物を使用することができる。これらの中でもTMAH又はTBAHを使用することが好ましい。第四級アンモニウム水酸化物の濃度は、洗浄剤の総質量基準で1〜20%であることが好ましく、3〜15%であることが特に好ましい。   Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide (TMAH), benzyltetramethylammonium hydroxide (BTMAH), tetrabutylammonium hydroxide (TBAH), and tris (2-hydroxyethyl) methylammonium hydroxide. (THEMAH) and mixtures thereof can be used. Among these, it is preferable to use TMAH or TBAH. The concentration of the quaternary ammonium hydroxide is preferably 1 to 20%, particularly preferably 3 to 15%, based on the total mass of the cleaning agent.

前記洗浄剤に用いられる水としては超純水が好ましい。水の含有割合は、洗浄剤の総質量基準で8.999%以上98.999%以下であることが好ましく、16.99%以上96.99%以下であることが特に好ましく、46.98%以上96.98%以下であることが最も好ましい。   As the water used for the cleaning agent, ultrapure water is preferable. The water content is preferably 8.999% or more and 98.999% or less, particularly preferably 19.99% or more and 99.99% or less, based on the total mass of the cleaning agent, and 46.98%. It is most preferable that it is 96.98% or more.

なお、前記洗浄剤は、エタノールアミンなどの1級アルカノールアミン、エチレンジアミンなどのポリアルキレンポリアミン、N−(2−ヒドロキシエチル)エチレンジアミンなどのポリオキシアルキレンポリアミン等のアミン化合物を、洗浄剤の総質量基準で10%以下含んでいてもよく、イソプロピルアルコールなどのアルコール類、エチレングリコールなどのアルキレングリコール類等の水溶性有機溶媒を洗浄剤の総質量基準で90%以下、好ましくは80%以下、最も好ましくは50%以下含んでいてもよい。   The cleaning agent is a primary alkanolamine such as ethanolamine, a polyalkylenepolyamine such as ethylenediamine, or an amine compound such as polyoxyalkylenepolyamine such as N- (2-hydroxyethyl) ethylenediamine, based on the total mass of the cleaning agent. The water-soluble organic solvent such as alcohols such as isopropyl alcohol and alkylene glycols such as ethylene glycol is 90% or less, preferably 80% or less, most preferably May contain 50% or less.

本発明の洗浄方法における前記(a)工程で洗浄剤を被洗浄体の被洗浄面の表面に付着および保持させる方法は特に限定されず、たとえば被洗浄体がウエハ等の板状体である場合には、その被洗浄面が上を向いた露出水平面となるように被洗浄体を支持台などに固定し、被洗浄面の表面に洗浄液が付着するように供給する方法が好適に採用できる。このとき、確実な洗浄を行うために、被洗浄面の全面を洗浄剤により確実に被覆すると共に、被洗浄体の被洗浄面の表面を被覆する洗浄剤層の厚さを可及的に薄くすることが好ましい。一般に、短波長の紫外線は溶液の層を透過する場合、急激に吸収されて透過しにくいため、洗浄剤の種類や紫外線光源の出力によっては、洗浄剤層の厚さを厚くすると被洗浄面まで紫外線が到達せず、OHラジカルによる洗浄効果が十分に得られないおそれがある。紫外線が被洗浄面に到達するような洗浄剤層の厚さ(たとえば、後述する有効光路長。)を予め把握し、被洗浄面上に存在する洗浄剤層の厚さを当該厚さ以下とすることにより、被洗浄面において確実にOHラジカルによる洗浄効果を得ることができる。   In the cleaning method of the present invention, the method for attaching and holding the cleaning agent on the surface of the surface to be cleaned in step (a) is not particularly limited. For example, the object to be cleaned is a plate-like body such as a wafer. For this, a method of fixing the object to be cleaned to a support stand or the like so that the surface to be cleaned is an exposed horizontal surface facing upward, and supplying the cleaning liquid to the surface of the surface to be cleaned can be suitably employed. At this time, in order to perform reliable cleaning, the entire surface to be cleaned is surely covered with the cleaning agent, and the thickness of the cleaning agent layer covering the surface of the surface to be cleaned is made as thin as possible. It is preferable to do. In general, when short-wave ultraviolet rays pass through a solution layer, they are absorbed rapidly and are not easily transmitted. Depending on the type of cleaning agent and the output of the UV light source, increasing the thickness of the cleaning agent layer increases the surface to be cleaned. There is a possibility that ultraviolet rays do not reach and the cleaning effect by OH radicals cannot be sufficiently obtained. The thickness of the cleaning agent layer (for example, an effective optical path length to be described later) such that the ultraviolet rays reach the surface to be cleaned is grasped in advance, and the thickness of the cleaning agent layer existing on the surface to be cleaned is equal to or less than the thickness. By doing so, the cleaning effect by the OH radicals can be surely obtained on the surface to be cleaned.

本発明の洗浄方法においては、前記被洗浄面の全面を前記洗浄剤が覆い、且つ被洗浄面を覆う洗浄剤層の厚さが、有効光路長以下、好ましくは有効光路長の1/10以下、特に好ましくは有効光路長の1/50以下の厚さとなるようにすることが好ましい。なお、有効光路長とは、前記紫外線光源から照射される紫外線が前記洗浄剤からなる層(洗浄剤層)を透過した時の透過紫外線の放射照度が0.01mW/cmとなる洗浄剤層の厚さとして定義される。 In the cleaning method of the present invention, the cleaning agent covers the entire surface to be cleaned, and the thickness of the cleaning agent layer covering the surface to be cleaned is not more than an effective optical path length, preferably not more than 1/10 of the effective optical path length. It is particularly preferable that the thickness be 1/50 or less of the effective optical path length. The effective optical path length is a cleaning agent layer in which the irradiance of transmitted ultraviolet light is 0.01 mW / cm 2 when the ultraviolet light irradiated from the ultraviolet light source passes through the layer (cleaning agent layer) made of the cleaning agent. Is defined as the thickness of

なお、前記有効光路長を規定する放射照度の値:0.01mW/cm(10μW/cm)は、実用的な処理時間(紫外線照射時間)において、被洗浄面の極近傍において有効濃度のOHラジカルを発生できるという観点から決定された値である。 The irradiance value defining the effective optical path length: 0.01 mW / cm 2 (10 μW / cm 2 ) is an effective concentration in the vicinity of the surface to be cleaned in a practical processing time (ultraviolet irradiation time). This value is determined from the viewpoint that OH radicals can be generated.

有効光路長(以下、Lと略記することもある。)の決定は、例えば次の工程(1)〜(5)(S101〜S105)により行うことができる:
(1)所定の光路長を有する紫外線透過性光学測定用セル(以下において単に「セル」ということがある。)の内部に、洗浄剤を充填する工程S101;
(2)光源とセルとの間の距離を、実際の洗浄時(工程(b))における光源から洗浄剤層の表面までの距離と同一にして、実際の洗浄時(工程(b))における紫外線照射と同一の発光条件で発光させた紫外線を、光源からセル内に向けて照射する工程S102;
(3)セルを通過した透過紫外線の放射照度(単位:mW/cm)を測定する工程S103;
(4)上記工程(1)乃至(3)(S101〜S103)を、異なる光路長を有する複数のセルについて行うことにより、透過紫外線の放射照度と光路長との関係を求める工程S104;および、
(5)上記工程(4)(S104)において求めた、透過紫外線の放射照度と光路長との関係に基づいて、有効光路長Lを決定する工程S105。
Effective optical path length (. Which hereinafter may be abbreviated as L a) of the decision, for example the following step (1) can be carried out by ~ (5) (S101 to S105):
(1) Step S101 of filling a cleaning agent into an ultraviolet light transmitting optical measurement cell having a predetermined optical path length (hereinafter, simply referred to as “cell”);
(2) The distance between the light source and the cell is the same as the distance from the light source to the surface of the cleaning agent layer during actual cleaning (step (b)), and during actual cleaning (step (b)). A step S102 of irradiating the inside of the cell with ultraviolet light emitted under the same light emission conditions as the ultraviolet irradiation;
(3) Step S103 of measuring the irradiance (unit: mW / cm 2 ) of the transmitted ultraviolet light that has passed through the cell;
(4) Step S104 for obtaining the relationship between the irradiance of transmitted ultraviolet light and the optical path length by performing the above steps (1) to (3) (S101 to S103) for a plurality of cells having different optical path lengths; and
(5) steps were determined in the above step (4) (S104), based on the relationship between the irradiance and the optical path length of the transmitted ultraviolet light, it determines the effective optical length L a S105.

なお、上記工程(2)(S102)において、紫外線(UV)を平行光として出射する光源を用いる場合には、空気のUV透過率は極めて高いので上記有効光路長Lは光源から洗浄剤層液面までの距離の影響を受けないため、光源とセルとの距離を実際の洗浄時(工程(b))における光源から洗浄剤層の表面までの距離と一致させる必要は特にない。しかし、UVを放射状に出射する光源を用いる場合には、単位面積当たりの照射量は光源から洗浄剤層液面までの距離の2乗に反比例するので、光源とセルとの間の距離を実際の洗浄時(工程(b))における光源から洗浄剤層の表面までの距離と一致させる必要がある。 Incidentally, in the above step (2) (S102), when using a light source that emits ultraviolet (UV) as collimated light, since UV transmittance of air is very high the effective optical length L a cleaning agent layer from the light source Since it is not affected by the distance to the liquid surface, it is not particularly necessary to match the distance between the light source and the cell with the distance from the light source to the surface of the cleaning agent layer during actual cleaning (step (b)). However, when using a light source that emits UV radiation radially, the irradiation amount per unit area is inversely proportional to the square of the distance from the light source to the liquid surface of the cleaning agent layer. It is necessary to match the distance from the light source to the surface of the cleaning agent layer during the cleaning (step (b)).

上記工程(4)〜(5)(S104〜S105)において、透過紫外線の放射照度と光路長との関係は、Lambert−Beerの法則に従う。すなわち、透過紫外線の放射照度Iは、光路長Lに対して、次の式(1)の関係にある。
log(I/I)=−αL …(1)
式(1)中、Iは媒質に入射する前の波長λの紫外線の放射照度であり、αは洗浄剤と波長λに対応して定まる比例定数(吸光係数)である。一般に、UV−LEDの発光スペクトルのピーク幅は極めて狭いので、光源としてUV−LEDを用いた場合、透過紫外線の放射照度の光路長依存性を議論するにあたっては、UV−LEDの発光ピーク波長λpeakにおける吸光係数α(λpeak)のみを考えれば十分である。式(1)は次の式(2)のように変形できる。
logI=−αL+logI …(2)
したがって主ピーク波長λpeakにおける透過紫外線の放射照度Iの対数と、セルの光路長Lとの組を複数得ることにより、主ピーク波長λpeakにおける透過紫外線の放射照度Iと光路長Lとを関係付ける回帰直線を求めることができる(上記工程(4)(S104))。回帰直線の算出には例えば最小二乗法等の公知の方法を用いることができる。そして紫外線光源の有効光路長Lは、該回帰直線においてI=0.01mW/cm(10μW/cm)を与える光路長Lとして求めることができる(上記工程(5)(S105))。
In the above steps (4) to (5) (S104 to S105), the relationship between the irradiance of transmitted ultraviolet rays and the optical path length follows Lambert-Beer's law. That is, the irradiance I 1 of transmitted ultraviolet rays is in the relationship of the following equation (1) with respect to the optical path length L.
log (I 1 / I 0 ) = − αL (1)
In Expression (1), I 0 is the irradiance of ultraviolet light having a wavelength λ before entering the medium, and α is a proportional constant (absorption coefficient) determined corresponding to the cleaning agent and the wavelength λ. In general, the peak width of the emission spectrum of the UV-LED is extremely narrow. Therefore, when the UV-LED is used as the light source, the emission peak wavelength λ of the UV-LED is discussed in discussing the optical path length dependence of the irradiance of transmitted ultraviolet rays. considering absorption coefficient α only (lambda peak) at peak is sufficient. Equation (1) can be transformed into the following equation (2).
logI 1 = −αL + logI 0 (2)
Therefore, by obtaining a plurality of pairs of the logarithm of the transmitted ultraviolet irradiance I 1 at the main peak wavelength λ peak and the optical path length L of the cell, the transmitted ultraviolet irradiance I 1 and the optical path length L at the main peak wavelength λ peak Can be obtained (step (4) (S104)). For example, a known method such as a least square method can be used to calculate the regression line. And the effective optical path length L a of the ultraviolet light source can be obtained as an optical path length L to provide a I 1 = 0.01mW / cm 2 ( 10μW / cm 2) in the regression line (the step (5) (S105)) .

被洗浄体の被洗浄面の表面を被覆する洗浄剤層の厚さを制御する方法としては、たとえばウエハ等の板状体である被洗浄体を、被洗浄面が上を向いた露出水平面となるように支持台などに固定して洗浄を行う場合には、次のような方法が好適に採用できる。すなわち、被洗浄体の外周の外側に堰を設けた洗浄装置を用い、この堰の内側に洗浄液を供給して洗浄剤の層厚(深さ)を制御する方法(図1〜6参照)や、支持台に固定された被洗浄体を水密に覆うことのできる紫外線透過性の板状の天窓を有するカバーと、カバーで被洗浄体を覆った時の被洗浄体の被洗浄面と上記天窓内面との距離を(水密状態を保ちながら)調節する機構と、を有する洗浄装置を用い、カバーの内部に洗浄剤を封入又は流通させる方法(図9参照)などが好適に採用できる。   As a method for controlling the thickness of the cleaning agent layer that covers the surface of the surface to be cleaned, for example, the object to be cleaned, which is a plate-like body such as a wafer, is exposed to an exposed horizontal surface with the surface to be cleaned facing upward. In the case where cleaning is performed while being fixed to a support stand or the like, the following method can be suitably employed. That is, a method of controlling the layer thickness (depth) of the cleaning agent by supplying a cleaning liquid to the inside of the weir and using a cleaning device provided with a weir on the outer periphery of the object to be cleaned (see FIGS. 1 to 6), A cover having an ultraviolet light-transmissive plate-shaped skylight capable of watertightly covering the object to be cleaned fixed to the support base, the surface to be cleaned of the object to be cleaned when the object to be cleaned is covered with the cover, and the skylight A method of using a cleaning device having a mechanism for adjusting the distance from the inner surface (while maintaining a watertight state) and enclosing or distributing a cleaning agent inside the cover (see FIG. 9) can be suitably employed.

このとき、洗浄時において被洗浄体は静止させていてもよく、回転運動や揺動をさせる等、動かしてもよい。但し、前者の方法(被洗浄体の外周の外側に堰を設けた洗浄装置を用い、この堰の内側に洗浄液を供給して洗浄剤の層厚(深さを)制御する方法(図1〜6参照))を採用した場合には、被洗浄体を動かすと洗浄液の液面が変動するので堰以外の制御手段が必要となる。たとえば、被洗浄体を回転させた場合には、遠心力により回転軸中心部の厚さが薄くなり液が堰からオーバーフローするので、中心部に一定量の洗浄剤を絶えず供給しオーバーフロー分を補う、堰の高さを高くする、あるいはオーバーフロー抑制用のカバーを設けると共に堰に洗浄液抜き出し口を設けるなどして、回転速度に応じて、上記洗浄液の供給速度と抜き出し速度とをバランスさせて液面が定常状態を保つようにすることが好ましい(図3〜5参照)。   At this time, the object to be cleaned may be stationary at the time of cleaning, or may be moved by rotating or swinging. However, the former method (method using a cleaning device provided with a weir outside the outer periphery of the object to be cleaned, supplying a cleaning liquid to the inside of the weir and controlling the layer thickness (depth) of the cleaning agent (FIGS. 1 to 1) In the case of adopting 6))), since the liquid level of the cleaning liquid changes when the object to be cleaned is moved, a control means other than the weir is required. For example, when the object to be cleaned is rotated, the central portion of the rotating shaft is thinned by centrifugal force and the liquid overflows from the weir. Therefore, a constant amount of cleaning agent is continuously supplied to the central portion to compensate for the overflow. The surface of the weir is increased by increasing the height of the weir or by providing a cover for preventing overflow and providing an outlet for the washing liquid in the weir to balance the supply speed of the washing liquid and the extraction speed according to the rotational speed. Is preferably kept in a steady state (see FIGS. 3 to 5).

本発明の洗浄方法の(b)工程では、前記被洗浄面の表面に付着・保持された前記洗浄液に200nm以上250nm以下の波長を有する紫外線を照射する。波長250nm以下という短波長の紫外線を照射することによりOHラジカルの発生効率(量子効率)を高くすることができる(非特許文献5参照)。また、200nm未満の波長の紫外線を用いないため、雰囲気中酸素などの物質に吸収されて強度低下を起こす可能性が低く、高い強度を保ったまま紫外線を洗浄剤に照射することができるばかりでなく、オゾンの発生を抑制できる。オゾン発生防止の観点から、照射する紫外線は200nm未満の波長を有する紫外線を含まないことが好ましい。   In the step (b) of the cleaning method of the present invention, the cleaning liquid adhered to and held on the surface to be cleaned is irradiated with ultraviolet rays having a wavelength of 200 nm or more and 250 nm or less. The generation efficiency (quantum efficiency) of OH radicals can be increased by irradiating ultraviolet rays having a short wavelength of 250 nm or less (see Non-Patent Document 5). In addition, since ultraviolet rays having a wavelength of less than 200 nm are not used, it is unlikely to be absorbed by a substance such as oxygen in the atmosphere and cause a decrease in strength, and the cleaning agent can be irradiated with ultraviolet rays while maintaining high strength. The generation of ozone can be suppressed. From the viewpoint of preventing ozone generation, it is preferable that the ultraviolet rays to be irradiated do not contain ultraviolet rays having a wavelength of less than 200 nm.

紫外線照射を行う際の光源としては、装置をコンパクトにすることができ、メンテナンスが容易であるばかりでなく、順方向電流を制御することにより出力制御を容易に行うことができるという理由から、200nm以上250nm以下の波長領域にピークを有する紫外線を出射する紫外線発光ダイオード(UV−LED)を有する紫外線光源を用いることが好ましく、オゾンを発生させる可能性のある200nm未満の波長の紫外線を実質的に出射しないという理由から220nm以上250nm以下の波長領域にピークを有する紫外線を出射するUV−LEDを有する紫外線光源を用いることが特に好ましい。   As a light source when performing ultraviolet irradiation, the apparatus can be made compact, and not only maintenance is easy, but also output control can be easily performed by controlling the forward current. It is preferable to use an ultraviolet light source having an ultraviolet light emitting diode (UV-LED) that emits ultraviolet light having a peak in a wavelength region of 250 nm or less, and substantially emits ultraviolet light having a wavelength of less than 200 nm that may generate ozone. It is particularly preferable to use an ultraviolet light source having a UV-LED that emits ultraviolet light having a peak in a wavelength region of 220 nm or more and 250 nm or less because it does not emit light.

また、洗浄効率を高めるために、前記紫外線照射時における前記被洗浄体の温度又は前記洗浄液の温度を50℃以上80℃以下とすることが好ましい。更に、紫外線照射と合わせて洗浄剤に超音波照射を行ってもよい。   In order to increase the cleaning efficiency, it is preferable that the temperature of the object to be cleaned or the temperature of the cleaning liquid is 50 ° C. or higher and 80 ° C. or lower during the ultraviolet irradiation. Furthermore, ultrasonic irradiation may be performed on the cleaning agent in combination with ultraviolet irradiation.

本発明の洗浄方法では、前記紫外線照射を、紫外線照射時間:t(単位:秒)及び/又は前記紫外線光源の発光出力:P(単位:mW)を制御して、前記照射時間内に被洗浄面の表面に保持される前記洗浄液に対して照射される紫外線の積算照射量I(単位:mJ/cm)が予め定めた所定の積算照射量I以上となるようにする必要がある。こうすることにより高い歩留まりで確実な洗浄を行うことが可能となる。 In the cleaning method of the present invention, the ultraviolet irradiation is performed within the irradiation time by controlling the ultraviolet irradiation time: t (unit: second) and / or the light emission output of the ultraviolet light source: P (unit: mW). It is necessary to make the cumulative irradiation dose I (unit: mJ / cm 2 ) of the ultraviolet rays irradiated to the cleaning liquid held on the surface of the surface equal to or higher than a predetermined cumulative irradiation dose I 0 . This makes it possible to perform reliable cleaning with a high yield.

本発明の洗浄方法においては、被洗浄体の種類と、紫外線照射時における被洗浄体の温度又は洗浄液の温度と、洗浄剤の種類との組み合わせからなる洗浄基礎条件ごとに、紫外線光源の発光強度Pを予め定めた発光強度Pとし、照射時間tを変えて繰り返し洗浄(工程(a)及び(b))を行い、十分な洗浄効果が得られる最短の照射時間tminを決定し、前記発光強度Pと最短の照射時間tminとの積として算出される積算照射量を、同一の洗浄基礎条件で洗浄を行う際の前記所定の積算照射量Iとすることが好ましい。 In the cleaning method of the present invention, the emission intensity of the ultraviolet light source for each cleaning basic condition comprising a combination of the type of the object to be cleaned, the temperature of the object to be cleaned or the temperature of the cleaning liquid at the time of ultraviolet irradiation, and the type of the cleaning agent. P is set to a predetermined emission intensity P 0 , the irradiation time t is changed, and repeated cleaning (steps (a) and (b)) is performed to determine the shortest irradiation time t min at which a sufficient cleaning effect is obtained, It is preferable that the integrated dose calculated as the product of the emission intensity P 0 and the shortest irradiation time t min is the predetermined integrated dose I 0 when cleaning is performed under the same cleaning basic conditions.

以下、図面を参照しつつ、本発明の実施の形態についてさらに詳細に説明する。ただし、本発明はこれらの形態に限定されるものではない。なお、図面は必ずしも正確な寸法を反映したものではない。また図では、一部の符号を省略することがある。本明細書においては特に断らない限り、数値A及びBについて「A〜B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。また「又は」及び「若しくは」の語は、特に断りのない限り論理和を意味するものとする。   Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to these forms. The drawings do not necessarily reflect accurate dimensions. In the drawing, some symbols may be omitted. Unless otherwise specified in this specification, the notation “A to B” for numerical values A and B means “A or more and B or less”. In this notation, when a unit is attached to only the numerical value B, the unit is also applied to the numerical value A. Further, the terms “or” and “or” mean logical sums unless otherwise specified.

図1及び図2は、本発明の洗浄方法を好適に行うことのできる洗浄装置100を模式的に説明する縦断面図である。図1及び図2において、紙面上下方向が鉛直方向を表す。洗浄装置100は、円盤状のウエハである被洗浄体1を洗浄する装置であり、被洗浄体1が載置される支持台(円盤状ターンテーブル)10と、支持台10を回転可能に支持する支柱11と、支持台10の外周部に接して昇降可能に設けられたリング状の堰用側壁12と、洗浄剤供給ノズル20と、支持台10に対向可能に設けられた紫外線光源30と、リンス液供給ノズル40と、を有する。   1 and 2 are longitudinal sectional views schematically illustrating a cleaning apparatus 100 that can suitably perform the cleaning method of the present invention. 1 and 2, the vertical direction on the paper surface represents the vertical direction. The cleaning device 100 is a device for cleaning the object 1 to be cleaned, which is a disk-shaped wafer, and supports the support base (disk-shaped turntable) 10 on which the object 1 to be cleaned 1 is mounted and the support base 10 so as to be rotatable. A support column 11, a ring-shaped weir side wall 12 provided so as to be movable up and down in contact with the outer periphery of the support base 10, a cleaning agent supply nozzle 20, and an ultraviolet light source 30 provided so as to face the support base 10. And a rinsing liquid supply nozzle 40.

支持台10は、支柱11を介してモータに接続されており、支柱11を中心として回転可能とされている。堰用側壁12と支持台10との接触は水密とされており、支持台10と堰用側壁12とによって画定される凹部13に洗浄液を溜めることができるようになっている。堰用側壁12は昇降手段(不図示)により図中の矢印Aの方向に昇降することが可能とされている。堰用側壁12を図中の矢印Aの方向に昇降させることにより、支持台10から見た堰用側壁12の高さ(すなわち凹部13の深さ)を調節することが可能である。   The support base 10 is connected to a motor via a support column 11 and is rotatable about the support column 11. The contact between the weir side wall 12 and the support base 10 is watertight so that the cleaning liquid can be stored in the recess 13 defined by the support base 10 and the weir side wall 12. The weir side wall 12 can be moved up and down in the direction of arrow A in the figure by lifting means (not shown). By raising and lowering the weir side wall 12 in the direction of arrow A in the figure, it is possible to adjust the height of the weir side wall 12 as viewed from the support base 10 (that is, the depth of the recess 13).

紫外線光源30は、被洗浄体1の被洗浄面1aと略同一の形状を有する円形の基板31と、基板31に配列搭載された複数の紫外線発光ダイオード32、32、…(以下において単に「UV−LED32」ということがある。)と、UV−LED32を封止する紫外線透過性の蓋33と、基板31と熱的に結合されたヒートシンク34と、を有している。UV−LED32は、必要に応じてパッケージ化されていてもよい。紫外線透過性の蓋33は、例えばサファイアや石英等の紫外線透過性材料からなり、蓋33と基板31とによって画定される空間内にUV−LED32を封止している。ヒートシンク34は放熱用フィンを有し、放熱用フィンは、紫外線発光ダイオード冷却用流体流路内に露出し、該流路内を流通する紫外線発光ダイオード冷却用流体によって、UV−LEDで発生した熱を放熱できるようになっている。   The ultraviolet light source 30 includes a circular substrate 31 having substantially the same shape as the surface 1a to be cleaned 1 and a plurality of ultraviolet light emitting diodes 32, 32,. -LED 32 "), and a UV-transmissive lid 33 that seals the UV-LED 32, and a heat sink 34 that is thermally coupled to the substrate 31. The UV-LED 32 may be packaged as necessary. The ultraviolet transmissive lid 33 is made of an ultraviolet transmissive material such as sapphire or quartz, for example, and seals the UV-LED 32 in a space defined by the lid 33 and the substrate 31. The heat sink 34 has heat radiation fins, and the heat radiation fins are exposed in the ultraviolet light emitting diode cooling fluid flow path, and the heat generated in the UV-LED by the ultraviolet light emitting diode cooling fluid flowing in the flow path. Can be dissipated.

洗浄剤供給ノズル20は、不図示の駆動手段によって図1中の矢印Bの方向に移動可能に設けられており、ノズル先端に設けられた吐出口20aから被洗浄体1に洗浄剤を供給する。洗浄剤を供給する必要がない時、洗浄剤供給ノズル20は、吐出口20aが堰用側壁12の外側に来る位置に後退している。   The cleaning agent supply nozzle 20 is provided so as to be movable in the direction of arrow B in FIG. 1 by a driving means (not shown), and supplies the cleaning agent to the object to be cleaned 1 from the discharge port 20a provided at the tip of the nozzle. . When it is not necessary to supply the cleaning agent, the cleaning agent supply nozzle 20 is retracted to a position where the discharge port 20a comes to the outside of the dam sidewall 12.

リンス液供給ノズル40は、不図示の駆動手段によって図2中の矢印Cの方向に移動可能に設けられており、ノズル先端に設けられた吐出口40aから被洗浄体1にリンス液を供給する。リンス液を供給する必要がない時、リンス液供給ノズル40は、吐出口40aが堰用側壁12の外側に来る位置に後退している。   The rinsing liquid supply nozzle 40 is provided so as to be movable in the direction of arrow C in FIG. 2 by a driving means (not shown), and supplies the rinsing liquid to the object 1 to be cleaned from the discharge port 40a provided at the nozzle tip. . When it is not necessary to supply the rinsing liquid, the rinsing liquid supply nozzle 40 is retracted to a position where the discharge port 40a comes to the outside of the dam sidewall 12.

図1及び図2を参照しつつ、洗浄装置100の動作について説明する。
工程(a)の開始前には、被洗浄体1はまだ支持台10に載置されておらず、堰用側壁12の上端部は支持台10の載置面と同じかそれよりも低い位置にある。洗浄剤供給ノズル20aは、吐出口20aが堰用側壁12の外側に来る位置に後退している。また紫外線光源30は支持台10と対向しない位置に配置されている。
The operation of the cleaning apparatus 100 will be described with reference to FIGS. 1 and 2.
Before the start of the step (a), the object to be cleaned 1 is not yet placed on the support base 10, and the upper end portion of the dam side wall 12 is the same as or lower than the placement surface of the support base 10. It is in. The cleaning agent supply nozzle 20 a is retreated to a position where the discharge port 20 a comes outside the dam side wall 12. The ultraviolet light source 30 is disposed at a position not facing the support base 10.

工程(a)は、洗浄剤を被洗浄体1の被洗浄面1aの表面に付着および保持させる工程である。まず、被洗浄体1が支持台10に載置され、堰用側壁12が所定の高さまで上昇される。洗浄剤供給ノズル20が図1に示す位置まで前進し、支持台10と堰用側壁12とによって画定される凹部13へ、洗浄剤供給ノズル20から洗浄剤が供給される。凹部13に貯留された洗浄剤の液面が堰用側壁12の上端部まで達すると、洗浄剤の供給が停止され、洗浄剤供給ノズル20は再び吐出口20aが堰用側壁12の外側に来る位置まで後退する。   Step (a) is a step of attaching and holding the cleaning agent to the surface of the surface to be cleaned 1a of the object to be cleaned 1. First, the object to be cleaned 1 is placed on the support 10 and the dam sidewall 12 is raised to a predetermined height. The cleaning agent supply nozzle 20 advances to the position shown in FIG. 1, and the cleaning agent is supplied from the cleaning agent supply nozzle 20 to the recess 13 defined by the support 10 and the dam sidewall 12. When the liquid level of the cleaning agent stored in the recess 13 reaches the upper end of the dam side wall 12, the supply of the cleaning agent is stopped, and the discharge port 20 a of the cleaning agent supply nozzle 20 comes to the outside of the dam side wall 12 again. Retreat to position.

工程(b)は、被洗浄面1aの表面に付着および保持された洗浄液に、紫外線光源30から200nm以上250nm以下の波長を有する紫外線を照射する工程である。紫外線光源30が支持台10と対向する位置(すなわち被洗浄体1の被洗浄面1aに対向する位置。図1参照。)に移動され、被洗浄面1aの表面に付着および保持された(すなわち凹部13に貯留された)洗浄液に紫外線光源30から紫外線が照射される。上記の通り、工程(b)において、紫外線の照射時間t及び/又は紫外線光源30の発光出力Pは、照射時間内に被洗浄面1aの表面に保持される洗浄液に対して照射される紫外線の積算照射量I(単位:mJ/cm)が所定の積算照射量I以上となるように制御される。紫外線照射が行われている間、支持台10(円盤状ターンテーブル)は回転させず、静止した状態で保持される。 The step (b) is a step of irradiating the cleaning liquid adhered and held on the surface to be cleaned 1a with ultraviolet rays having a wavelength of 200 nm or more and 250 nm or less from the ultraviolet light source 30. The ultraviolet light source 30 is moved to a position facing the support 10 (that is, a position facing the surface to be cleaned 1a of the object to be cleaned 1; see FIG. 1), and adhered and held on the surface of the surface to be cleaned 1a (that is, The cleaning liquid (stored in the recess 13) is irradiated with ultraviolet rays from the ultraviolet light source 30. As described above, in the step (b), the ultraviolet irradiation time t and / or the light emission output P of the ultraviolet light source 30 are the ultraviolet rays irradiated to the cleaning liquid held on the surface to be cleaned 1a within the irradiation time. The integrated dose I (unit: mJ / cm 2 ) is controlled to be equal to or greater than a predetermined integrated dose I 0 . While the ultraviolet irradiation is performed, the support base 10 (disk-shaped turntable) is not rotated and is held stationary.

工程(b)が完了すると、リンス工程が行われる。紫外線光源30が支持台10と対向しない位置に移動され、堰用側壁12が下降されて堰用側壁12の上端部が支持台10の載置面と同じかそれよりも低い高さとされる。支持台10(円盤状ターンテーブル)の回転(図2中の矢印D)が開始され、洗浄剤が廃棄される。リンス液供給ノズル40が図2の位置まで前進し、支持台10の回転は続けたままでリンス液供給ノズル40から被洗浄面1aにリンス液が供給されることにより、リンス工程が行われる。リンス工程におけるリンス液としては、例えば純水やイソプロピルアルコール等を用いることができる。リンス液の供給を停止し、支持台10の回転を停止することにより、リンス工程が終了される。   When step (b) is completed, a rinsing step is performed. The ultraviolet light source 30 is moved to a position not facing the support base 10, the dam side wall 12 is lowered, and the upper end portion of the dam side wall 12 is set to a height equal to or lower than the placement surface of the support base 10. The rotation of the support base 10 (disk-shaped turntable) (arrow D in FIG. 2) is started, and the cleaning agent is discarded. The rinsing liquid supply nozzle 40 advances to the position shown in FIG. 2, and the rinsing process is performed by supplying the rinsing liquid from the rinsing liquid supply nozzle 40 to the surface to be cleaned 1a while the rotation of the support base 10 is continued. As the rinsing liquid in the rinsing step, for example, pure water or isopropyl alcohol can be used. The rinse process is completed by stopping the supply of the rinse liquid and stopping the rotation of the support base 10.

図3は、本発明の洗浄方法を好適に行うことのできる他の洗浄装置100´を模式的に説明する縦断面図である。図3において、紙面上下方向が鉛直方向を表す。図4は、図3のE−E矢視図である。図5は、図3のF−F矢視図である。洗浄装置100´は枚葉式の洗浄装置であり、円盤状ウエハである被洗浄体1を複数載置可能な円盤状の支持台(円盤状ターンテーブル)10’と、支持台10’を回転可能に支持する支柱11’とを有する。支持台10’は、中央部に貫通孔10’aを有している。洗浄装置100’はさらに、支持台10’の外周部に立設されたリング状の外側堰用側壁12’と、支持台10’の内周部(貫通孔10’aの外周部)に立設されたリング状の内側堰用側壁14と、支持台10’の側方および下方を囲むように配設された廃液用トレイ16とを有する。支持台10’の貫通孔10’aの下方には、支柱11’により、貫通孔10’aと連接して支持台オーバーフロー洗浄液排出用凹部15が形成されている。支持台オーバーフロー洗浄液排出用凹部15の底部には排出口17b、17b、…(以下において単に「排出口17b」ということがある。)が設けられており、洗浄液を廃液用トレイ16に向けて排出可能とされている。外側堰用側壁12’の上端部には、オーバーフロー抑制カバー12’aが、支持台10’の内側上方に向けて突出するように設けられており、外側堰用側壁12’の下端部には、排出口17a、17a、…(以下において単に「排出口17a」ということがある。)が設けられている。また廃液用トレイ16の底部には排出口17c、17c、…(以下において単に「排出口17c」ということがある。)が設けられている。   FIG. 3 is a longitudinal sectional view schematically illustrating another cleaning apparatus 100 ′ that can suitably perform the cleaning method of the present invention. In FIG. 3, the vertical direction on the paper surface represents the vertical direction. FIG. 4 is an EE arrow view of FIG. FIG. 5 is a view taken along the line FF in FIG. The cleaning apparatus 100 ′ is a single wafer cleaning apparatus, and rotates a disk-shaped support table (disk-shaped turntable) 10 ′ on which a plurality of objects 1 to be cleaned, which are disk-shaped wafers, can be mounted. And a support column 11 ′ that supports the same. The support base 10 'has a through hole 10'a at the center. The cleaning device 100 ′ further stands on a ring-shaped outer weir side wall 12 ′ erected on the outer peripheral portion of the support base 10 ′ and an inner peripheral portion (the outer peripheral portion of the through hole 10′a) of the support base 10 ′. It has a ring-shaped inner weir side wall 14 provided and a waste liquid tray 16 disposed so as to surround the side and lower side of the support base 10 ′. Below the through hole 10'a of the support base 10 ', a support base overflow cleaning liquid discharge recess 15 is formed by a support column 11' so as to be connected to the through hole 10'a. Discharge ports 17b, 17b,... (Hereinafter sometimes simply referred to as “discharge port 17b”) are provided at the bottom of the support base overflow cleaning liquid discharge recess 15, and the cleaning liquid is discharged toward the waste liquid tray 16. It is possible. An overflow suppression cover 12′a is provided at the upper end of the outer weir side wall 12 ′ so as to protrude toward the upper inside of the support base 10 ′, and at the lower end of the outer weir side wall 12 ′. , Discharge ports 17a, 17a,... (Hereinafter, simply referred to as “discharge port 17a”) are provided. Further, at the bottom of the waste liquid tray 16, there are provided discharge ports 17c, 17c,... (Hereinafter, simply referred to as “discharge port 17c”).

洗浄装置100’はさらに、洗浄剤供給ノズル20’、20’、…(以下において単に「洗浄剤供給ノズル20’」ということがある。)と、紫外線光源30’、30’、…(以下において単に「紫外線光源30’」ということがある。)とを有する。洗浄剤供給ノズル20’及び紫外線光源30’は、支持台10’の上方に、円周方向に交互に配置されている(図5参照)。なお洗浄剤供給ノズル20’は、その吐出口20’aから吐出される洗浄液が内側堰用側壁14の外周側(外側堰用側壁12’側)近傍に落下するように配置されている。   The cleaning apparatus 100 ′ further includes cleaning agent supply nozzles 20 ′, 20 ′,... (Hereinafter, simply referred to as “cleaning agent supply nozzle 20 ′”) and ultraviolet light sources 30 ′, 30 ′,. Simply “ultraviolet light source 30 ′”). The cleaning agent supply nozzle 20 ′ and the ultraviolet light source 30 ′ are alternately arranged in the circumferential direction above the support base 10 ′ (see FIG. 5). The cleaning agent supply nozzle 20 'is arranged so that the cleaning liquid discharged from the discharge port 20'a falls near the outer peripheral side of the inner weir side wall 14 (outer weir side wall 12' side).

図3中の矢印Gは、洗浄剤供給ノズル20’から供給された洗浄剤の流れを示している。洗浄剤供給ノズル20’から、支持台10’と外側堰用側壁12’と内側堰用側壁14とによって画定される凹部13’に供給された洗浄液は、被洗浄体1の被洗浄面1aの表面を流れた後、外側堰用側壁12’の下端に設けられた排出口17aから流出し、廃液用トレイ16に受け容れられる。また、凹部13’から内側堰用側壁14を超えて溢れた洗浄液は、支持台10’の貫通孔10’を通って支持台オーバーフロー洗浄液排出用凹部15に受け容れられた後、排出口17bから流出して廃液用トレイ16に受け容れられる。廃液用トレイ16に受け容れられた洗浄液は、廃液用トレイ16の底部に設けられた排出口17cから排出される。   An arrow G in FIG. 3 indicates the flow of the cleaning agent supplied from the cleaning agent supply nozzle 20 '. The cleaning liquid supplied from the cleaning agent supply nozzle 20 ′ to the recess 13 ′ defined by the support 10 ′, the outer dam side wall 12 ′, and the inner dam side wall 14 is applied to the surface 1 a to be cleaned of the body 1 to be cleaned. After flowing through the surface, it flows out from the discharge port 17a provided at the lower end of the outer weir side wall 12 'and is received by the waste liquid tray 16. The cleaning liquid overflowing from the recess 13 'beyond the inner dam side wall 14 is received by the support base overflow cleaning liquid discharge recess 15 through the through hole 10' of the support base 10 ', and then discharged from the discharge port 17b. It flows out and is received in the waste liquid tray 16. The cleaning liquid received in the waste liquid tray 16 is discharged from a discharge port 17 c provided at the bottom of the waste liquid tray 16.

紫外線光源(紫外線発光モジュール)30’は、紫外線を出射する棒状光源と、該光源から出射された紫外線を集光する集光装置とを有し、該棒状光源は、円筒状または多角柱状の基体111と、複数の深紫外発光ダイオード112、112、…とを有する棒状光源110であって、該複数の深紫外発光ダイオード112、112、…が、各深紫外発光ダイオード112の光軸115が基体111の中心軸114を通るように基体111の側面に配置されていることにより、該中心軸114に対して放射状に紫外線を出射する形態の紫外線光源である。このような紫外線光源は、特許文献8に記載されており、その内容はここに参照をもって組み入れられる。   The ultraviolet light source (ultraviolet light emitting module) 30 ′ has a rod-shaped light source that emits ultraviolet light and a light collecting device that collects the ultraviolet light emitted from the light source, and the rod-shaped light source is a cylindrical or polygonal column base. 111 and a plurality of deep ultraviolet light emitting diodes 112, 112,..., And the plurality of deep ultraviolet light emitting diodes 112, 112,. The ultraviolet light source is configured to emit ultraviolet light radially with respect to the central axis 114 by being arranged on the side surface of the base 111 so as to pass through the central axis 114 of the magnetic head 111. Such an ultraviolet light source is described in Patent Document 8, the contents of which are incorporated herein by reference.

図6には、棒状光源(棒状紫外線発光モジュール)110の(X−X´面で切断したときの)横断面図および縦断面図を示している。図6に示されるように、棒状光源110は円筒状基体111の表面上に複数の紫外線発光ダイオード112、112、…(以下において「UV−LED112」と略記することがある。)が整列配置されており、該円筒状基体の内部には冷却媒体用流路113が形成されている。また、UV−LED112が搭載された円筒状基体111は、石英などの紫外線透過性材料から形成されるカバー116で覆われている。該カバー116は封止剤やパッキン、O−リング等のシール部材117を用いて気密又は水密に円筒状基体111に装着され、その内部にはUV−LED112の耐久性を高めるために不活性ガスまたは乾燥空気が封入されている。   FIG. 6 shows a transverse sectional view and a longitudinal sectional view of the rod-shaped light source (rod-shaped ultraviolet light emitting module) 110 (when cut along the XX ′ plane). As shown in FIG. 6, the rod-shaped light source 110 has a plurality of ultraviolet light emitting diodes 112, 112,... (Hereinafter sometimes abbreviated as “UV-LED 112”) arranged on the surface of a cylindrical substrate 111. A cooling medium channel 113 is formed inside the cylindrical base body. The cylindrical substrate 111 on which the UV-LED 112 is mounted is covered with a cover 116 formed of an ultraviolet light transmissive material such as quartz. The cover 116 is attached to the cylindrical substrate 111 in an airtight or watertight manner using a sealing member 117 such as a sealant, packing, or O-ring, and an inert gas is provided inside the cover 116 in order to enhance the durability of the UV-LED 112. Or dry air is enclosed.

UV−LED112、112、…は、素子がサブマウントに搭載された状態またはパッケージに収容された状態で配置され、一定方向に向かって紫外線を出射する。なお、図示しないが、サブマウント又はパッケージには、モジュールの外部からUV−LED112に電力を供給するための配線やUV−LED112を正常に作動させるための回路等が形成されており、該配線や回路への電力の供給は円筒状基体111の表面又は内部に形成された配線を介して行われる。   The UV-LEDs 112, 112,... Are arranged in a state where the element is mounted on a submount or accommodated in a package, and emit ultraviolet rays in a certain direction. Although not shown, the submount or package is provided with wiring for supplying power to the UV-LED 112 from the outside of the module, a circuit for operating the UV-LED 112 normally, and the like. Electric power is supplied to the circuit via wiring formed on the surface of or inside the cylindrical substrate 111.

円筒状基体111は、UV−LED112を固定および保持するための支持体として機能するほか、ヒートシンクとしての機能も有し、内部の冷却媒体用流路113に冷却水や冷却用エアーなどの冷却媒体118を流通することによりUV−LED112が発する熱による温度上昇を防止して、素子の安定作動を助け、素子寿命を延ばすことが可能となる。携帯用の本発明の紫外線殺菌装置に用いる場合には、小型ファンを付設し冷却媒体118として冷却用空気を冷却媒体流路113に送風することが好ましい。   The cylindrical substrate 111 functions as a support for fixing and holding the UV-LED 112, and also has a function as a heat sink. The cooling medium such as cooling water or cooling air is provided in the cooling medium flow path 113 inside. By circulating 118, temperature rise due to heat generated by the UV-LED 112 can be prevented, stable operation of the device can be facilitated, and device life can be extended. When used in the portable ultraviolet sterilizer of the present invention, it is preferable to attach a small fan and blow cooling air to the cooling medium flow path 113 as the cooling medium 118.

UV−LED112で発生した熱を効率よく除去するため、円筒状基体111は、主として銅、アルミニウムなどの熱導電性の高い金属やセラミックスなどで構成されていることが好ましく、また、冷却媒体118の熱交換面積を増大させるために冷却媒体用流路113の内壁面には溝加工を施すことが好ましい。さらに、円筒状基体111を金属材料で構成する場合には、筺体の内部もしくは外部に配置されたバッテリー又は外部電源からUV−LED112に電力を供給するための銅線または回路との絶縁を図るための絶縁層が形成されていることが好ましい。   In order to efficiently remove the heat generated in the UV-LED 112, the cylindrical substrate 111 is preferably mainly composed of a metal having high thermal conductivity such as copper or aluminum, ceramics, or the like. In order to increase the heat exchange area, it is preferable to groove the inner wall surface of the cooling medium flow passage 113. Further, when the cylindrical base 111 is made of a metal material, in order to insulate from a battery disposed inside or outside the housing or a copper wire or a circuit for supplying power to the UV-LED 112 from an external power source. It is preferable that an insulating layer is formed.

円筒状基体111の側面には、その周方向に沿って、複数のUV−LED112、112、…が、各深紫外LED112の光軸115が該基体111の中心軸114を通るように配置されている。その結果、UV−LED112から出射される紫外線は、該中心軸114に対して放射状に出射されることになる。なお、UV−LED112の光軸115とは、UV−LED112から出射される光芒の中心軸を意味し、該光芒の進行方向とほぼ同義である。また、ここで、「光軸115が該基体111の中心軸114を通るように配置する」とは、なるべくこのような状態を実現するように配置するという意味であり、その状態から僅かに傾いていても問題はない。   On the side surface of the cylindrical substrate 111, a plurality of UV-LEDs 112, 112,... Are arranged along the circumferential direction so that the optical axis 115 of each deep ultraviolet LED 112 passes through the central axis 114 of the substrate 111. Yes. As a result, the ultraviolet rays emitted from the UV-LED 112 are emitted radially with respect to the central axis 114. The optical axis 115 of the UV-LED 112 means the central axis of the light beam emitted from the UV-LED 112, and is almost synonymous with the traveling direction of the light beam. In addition, here, “arranging so that the optical axis 115 passes through the central axis 114 of the substrate 111” means that the optical axis 115 is arranged to realize such a state as much as possible, and is slightly inclined from the state. There is no problem.

図6には、基体111の周方向に4個のUV−LEDを配置した例を示しているが、当該形態に限定されるものではなく、深紫外LED112の配置数は円筒状基体111の外径に応じて適宜変更できる。周方向に配置する深紫外LED112の数は、通常3〜20個、好ましくは4〜12個の範囲であるが、周方向に配置する深紫外LED112の数が多いほど紫外線光源30’から出射される紫外線の強度(光量子束密度)は高くなるので、より高強度の紫外線が必要な場合には、円筒状基体111の径を大きくし、周方向に配置する紫外線発光素子の数を、上記範囲を超えて多くすることができる。   FIG. 6 shows an example in which four UV-LEDs are arranged in the circumferential direction of the base 111, but the present invention is not limited to this form, and the number of deep ultraviolet LEDs 112 arranged is outside the cylindrical base 111. It can be appropriately changed according to the diameter. The number of deep ultraviolet LEDs 112 arranged in the circumferential direction is usually in the range of 3 to 20, preferably 4 to 12. However, the larger the number of deep ultraviolet LEDs 112 arranged in the circumferential direction, the more emitted from the ultraviolet light source 30 ′. Since the intensity of the ultraviolet rays (photon flux density) increases, when higher intensity ultraviolet rays are required, the diameter of the cylindrical substrate 111 is increased and the number of ultraviolet light emitting elements arranged in the circumferential direction is within the above range. Can be more than.

UV−LED112、112、…は、図6の縦断面図に示すように円筒状基体111の長手方向に列を形成するように配置することが好ましい。このとき、深紫外LED112、112、…は、紫外線照射領域における強度が均一になるように、円筒状基体111側面に密に規則正しく配列するように配置することが好ましい。   The UV-LEDs 112, 112,... Are preferably arranged so as to form a row in the longitudinal direction of the cylindrical substrate 111 as shown in the longitudinal sectional view of FIG. At this time, it is preferable that the deep ultraviolet LEDs 112, 112,... Be arranged so as to be densely and regularly arranged on the side surface of the cylindrical substrate 111 so that the intensity in the ultraviolet irradiation region is uniform.

図7及び図8には、棒状光源110を有する紫外線光源30’の横断面図及び側面図を示した。紫外線光源30’は、内面が長楕円反射ミラーからなる出射側反射ミラー120となっている出射側筐体125と、内面が長楕円反射ミラーからなる集光側反射ミラー123となっていると共に紫外線出射用開口部130が形成されている集光側筐体126と、紫外線出射用開口部130に配置されたコリメート光学系140からなる本体150を有し、該本体150の内部に棒状光源110が配置されている。本体150において出射側筐体125と集光側筐体筐体126とは互いに着脱可能に又はヒンジ等を用いて開閉可能とされていることが好ましい。また、本体150の図7及び図8における上下両端開口部には、紫外線が外部に漏れ出ることを防止するためのカバー(不図示)が設けられている。   7 and 8 show a cross-sectional view and a side view of an ultraviolet light source 30 ′ having a rod-shaped light source 110. The ultraviolet light source 30 ′ includes an emission-side housing 125 whose inner surface is an emission-side reflection mirror 120 made of an ellipsoidal reflection mirror, and a condensing-side reflection mirror 123 whose inner surface is made of an ellipse reflection mirror, and ultraviolet rays. A condensing side housing 126 in which an exit opening 130 is formed, and a main body 150 including a collimating optical system 140 disposed in the ultraviolet exit opening 130, and the rod-shaped light source 110 is inside the main body 150. Has been placed. In the main body 150, it is preferable that the emission side casing 125 and the condensing side casing casing 126 are detachable from each other or can be opened and closed using a hinge or the like. 7 and 8 of the main body 150 are provided with covers (not shown) for preventing ultraviolet rays from leaking to the outside.

図7及び図8に示す態様では、出射側反射ミラー120と集光側反射ミラー123とは実質的に同形状の長楕円反射ミラーであるので、本体150において、出射側筐体125と集光側筐体126とが結合されて形成される内部空間の形状は、出射側反射ミラーの焦点軸121及び出射側反射ミラーの集光軸122の2軸をそれぞれ焦点軸とする楕円形の断面(ただし、開口部130に相当する部分が欠損している。)を有する柱状体となる。出射側反射ミラー120および集光側反射ミラー123の表面は、紫外線に対する反射率が大きい材質、たとえばRu、Rh、Pd、Os、Ir、Pt等の白金族金属、Al、Ag、Ti、これらの金属の少なくとも一種を含む合金、又は酸化マグネシウムで構成されることが好ましく、反射率が特に高いという理由から、Al、白金族金属又は白金族金属を含む合金、又は酸化マグネシウムで形成されていることが特に好ましい。   7 and 8, the exit-side reflecting mirror 120 and the condensing side reflecting mirror 123 are substantially elliptical reflecting mirrors having substantially the same shape. The shape of the internal space formed by coupling with the side housing 126 is an elliptical cross-section with two axes of the focal axis 121 of the exit-side reflecting mirror and the condensing axis 122 of the exit-side reflecting mirror, respectively. However, a portion corresponding to the opening 130 is missing.) The surfaces of the exit-side reflecting mirror 120 and the condensing-side reflecting mirror 123 are made of materials having high reflectivity with respect to ultraviolet rays, such as platinum group metals such as Ru, Rh, Pd, Os, Ir, and Pt, Al, Ag, Ti, and the like. It is preferably made of an alloy containing at least one kind of metal or magnesium oxide, and is made of Al, an alloy containing a platinum group metal or a platinum group metal, or magnesium oxide because of its particularly high reflectance. Is particularly preferred.

集光側反射ミラー123及び集光側筐体126には、スリット状に紫外線出射用開口部130が設けられ、該開口部130には、集光された紫外線を平行若しくは略平行な光束に変換するコリメート光学系140が配置されている。コリメート光学系140は合成又は天然石英、サファイア、紫外線透過性樹脂等の紫外線透過性の高い材質で構成されることが好ましい。該コリメート光学系140は紫外線出射用開口部130に脱着可能に取り付けられていることが好ましい。   The condensing-side reflecting mirror 123 and the condensing-side housing 126 are provided with an ultraviolet emitting opening 130 in a slit shape, and the condensed ultraviolet is converted into a parallel or substantially parallel light flux in the opening 130. A collimating optical system 140 is disposed. The collimating optical system 140 is preferably made of a material having high ultraviolet transparency such as synthetic or natural quartz, sapphire, or ultraviolet transmissive resin. The collimating optical system 140 is preferably detachably attached to the ultraviolet light emitting opening 130.

紫外線光源30’において、棒状光源110は、その中心軸114が出射側反射ミラーの焦点軸121と一致するように配置される。このような位置に棒状光源110が配置されるので、該棒状光源110から放射状に出射される紫外線は出射側反射ミラー120および集光側反射ミラー123で反射されて集光側反射ミラーの焦点軸124(すなわち出射側反射ミラーの集光軸122)上に収斂するように集光され、集光された紫外線は紫外線出射窓13からミラー14に向けて出射される。   In the ultraviolet light source 30 ′, the rod-shaped light source 110 is arranged so that the central axis 114 thereof coincides with the focal axis 121 of the exit side reflection mirror. Since the rod-shaped light source 110 is arranged at such a position, the ultraviolet rays emitted radially from the rod-shaped light source 110 are reflected by the emitting-side reflecting mirror 120 and the collecting-side reflecting mirror 123 to be the focal axis of the collecting-side reflecting mirror. The condensed ultraviolet rays are converged so as to converge on 124 (that is, the condensing axis 122 of the emission-side reflecting mirror), and the collected ultraviolet rays are emitted from the ultraviolet emission window 13 toward the mirror 14.

このように、紫外線光源30’では、原理的には、棒状光源110から放射状に出射される紫外線の全てを集光側反射ミラー123の焦点軸124上に集光でき、紫外線出射用開口部130方向に向かわない方向(たとえば反対方向や横方法)に出射された紫外線をも有効に利用することができる。すなわち、棒状光源110において、光軸115が紫外線出射用開口部130方向に向かうようにUV−LED112、112、…の全てを同一平面上に配置する必要はなく、横方向や反対方向に向けて配置することも可能となる。したがって、棒状光源110では、単位空間当たりに配置する紫外線発光素子の数を大幅に増やすことができ、紫外線光源30’では、より強い強度の紫外線を出射することができる。また、紫外線光源30’では大口径のフィールドレンズを使用する必要もない。更に紫外線光源30’では、照射領域は狭いスポット状ではなく長辺が長い長方形領域に均一な強度の紫外線を照射することができるので、被殺菌体の表面を紫外線により均一に殺菌することが可能である。さらにまた、紫外線をコリメートされた平行な光束として出射することができるので、紫外線光源30’から洗浄液面までの光路長が長い場合であっても、紫外線の強度が低下しにくい。   Thus, in principle, the ultraviolet light source 30 ′ can condense all of the ultraviolet light emitted radially from the rod-shaped light source 110 onto the focal axis 124 of the condensing side reflection mirror 123, and the ultraviolet light emitting opening 130. Ultraviolet rays emitted in a direction that does not face the direction (for example, the opposite direction or the lateral method) can also be used effectively. That is, in the rod-shaped light source 110, it is not necessary to arrange all of the UV-LEDs 112, 112,... On the same plane so that the optical axis 115 is directed toward the ultraviolet ray emitting opening 130, and is directed in the lateral direction or the opposite direction. It can also be arranged. Therefore, in the rod-shaped light source 110, the number of ultraviolet light-emitting elements arranged per unit space can be greatly increased, and the ultraviolet light source 30 'can emit ultraviolet rays with stronger intensity. Further, it is not necessary to use a large-diameter field lens in the ultraviolet light source 30 '. Furthermore, in the ultraviolet light source 30 ′, the irradiation area is not a narrow spot shape but can irradiate the rectangular area with a long long side with a uniform intensity of ultraviolet light, so that the surface of the object to be sterilized can be uniformly sterilized with the ultraviolet light. It is. Furthermore, since the ultraviolet rays can be emitted as collimated parallel light beams, the intensity of the ultraviolet rays is not easily lowered even when the optical path length from the ultraviolet light source 30 'to the cleaning liquid surface is long.

洗浄装置100’においては、工程(a)を行いながら工程(b)が行われる。すなわち、支持台10’に被洗浄体1、1、…が載置された後、支持台10’の回転(図3中の矢印H)が開始される。そして洗浄液供給ノズル20’から凹部13’の内側堰用側壁14近傍への洗浄液の供給が開始される。凹部13’の内側堰用側壁14近傍に供給された洗浄液は、支持台10’の回転運動に由来する遠心力により支持台10’の外周部に向けて流れる。このとき洗浄液は被洗浄体1の被洗浄面1aの表面を流れることになる。外側堰用側壁12に達した洗浄液は、排出口17aから流出して廃液用トレイ16に受け容れられる。このとき、洗浄液供給ノズル20’からの洗浄液の供給速度および排出口17aの形状は、洗浄液供給ノズル20’からの洗浄液の供給速度と排出口17aからの洗浄液の排出速度とがバランスして、凹部13における洗浄液面が定常状態を保つように調整されている。   In the cleaning apparatus 100 ′, the step (b) is performed while performing the step (a). That is, after the objects to be cleaned 1, 1,... Are placed on the support base 10 ', rotation of the support base 10' (arrow H in FIG. 3) is started. Then, the supply of the cleaning liquid from the cleaning liquid supply nozzle 20 ′ to the vicinity of the inner dam side wall 14 of the recess 13 ′ is started. The cleaning liquid supplied to the vicinity of the inner dam side wall 14 of the recess 13 ′ flows toward the outer peripheral portion of the support base 10 ′ by centrifugal force derived from the rotational movement of the support base 10 ′. At this time, the cleaning liquid flows on the surface 1a to be cleaned of the body 1 to be cleaned. The cleaning liquid that has reached the outer weir sidewall 12 flows out of the discharge port 17 a and is received by the waste liquid tray 16. At this time, the supply speed of the cleaning liquid from the cleaning liquid supply nozzle 20 ′ and the shape of the discharge port 17a are balanced by the supply speed of the cleaning liquid from the cleaning liquid supply nozzle 20 ′ and the discharge speed of the cleaning liquid from the discharge port 17a. The cleaning liquid level at 13 is adjusted so as to maintain a steady state.

洗浄液の供給とともに、被洗浄面1aの表面に付着および保持された洗浄液に紫外線光源30’から波長200〜250nmの紫外線が照射される(工程(b))。上記したように、紫外線の照射時間:t(単位:秒)及び/又は紫外線光源の発光出力:P(単位:mW)は、照射時間内に被洗浄面1aの表面に保持される洗浄液に対して照射される紫外線の積算照射量I(単位:mJ/cm)が予め定めた所定の積算照射量I以上となるように制御される。 Along with the supply of the cleaning liquid, the ultraviolet light having a wavelength of 200 to 250 nm is irradiated from the ultraviolet light source 30 ′ to the cleaning liquid attached and held on the surface of the surface to be cleaned 1 a (step (b)). As described above, the ultraviolet irradiation time: t (unit: second) and / or the light emission output of the ultraviolet light source: P (unit: mW) is relative to the cleaning liquid held on the surface to be cleaned 1a within the irradiation time. The integrated irradiation dose I (unit: mJ / cm 2 ) of the ultraviolet rays irradiated is controlled so as to be equal to or greater than a predetermined integrated irradiation dose I 0 .

洗浄剤供給ノズル20’からの洗浄剤の供給、および、紫外線光源30’からの紫外線の照射が停止されることにより、工程(a)及び(b)が終了される。   Steps (a) and (b) are completed by stopping the supply of the cleaning agent from the cleaning agent supply nozzle 20 'and the irradiation of the ultraviolet light from the ultraviolet light source 30'.

本発明の洗浄方法を実施するための洗浄装置に関する上記説明では、被洗浄体の外周の外側に堰(12、12’)を設け、この堰の内側に洗浄液を供給して洗浄剤の層厚(深さ)を制御する形態の洗浄装置100、100’を例示したが、本発明の洗浄方法を実施するための洗浄装置はこれらの形態に限定されるものではない。例えば、支持台に固定された被洗浄体を水密に覆うことのできる紫外線透過性の板状の天窓を有するカバーと、カバーで被洗浄体を覆った時の被洗浄体の被洗浄面と上記天窓内面との距離を(水密状態を保ちながら)調節する機構と、を有し、カバーの内部に洗浄剤を封入又は流通させることにより、被洗浄面の表面に形成される洗浄剤層の厚さを制御する形態の洗浄装置を用いることも可能である。図9は、そのような他の洗浄装置100''を模式的に説明する縦断面図である。図9の紙面上下方向が鉛直方向を表す。図9において、図1〜8に既に表れた要素と同一の要素には図1〜8における符号と同一の符号を付し、説明を省略する。   In the above description regarding the cleaning apparatus for carrying out the cleaning method of the present invention, weirs (12, 12 ') are provided outside the outer periphery of the object to be cleaned, and the cleaning liquid is supplied to the inside of the weir to provide a layer thickness of the cleaning agent. Although the cleaning apparatuses 100 and 100 ′ in the form of controlling (depth) are illustrated, the cleaning apparatus for carrying out the cleaning method of the present invention is not limited to these forms. For example, a cover having an ultraviolet light-transmitting plate-shaped skylight capable of watertightly covering the object to be cleaned fixed to the support base, the surface to be cleaned when the object to be cleaned is covered with the cover, and the above The thickness of the cleaning agent layer formed on the surface of the surface to be cleaned by sealing or circulating the cleaning agent inside the cover. It is also possible to use a cleaning device that controls the thickness. FIG. 9 is a longitudinal sectional view schematically illustrating such another cleaning apparatus 100 ″. The vertical direction on the paper surface of FIG. 9 represents the vertical direction. 9, the same elements as those already shown in FIGS. 1 to 8 are denoted by the same reference numerals as those in FIGS. 1 to 8, and description thereof is omitted.

洗浄装置100''は、被洗浄体1が載置される支持台(円盤状ターンテーブル)10と、支持台10を回転可能かつ昇降(図9中の矢印I)可能に支持する支柱11’と、支持台10の外周部と水密に摺動可能なリング状の外側堰用側壁12''と、外側堰用隔壁12''の上端部に水密に固定された紫外線透過性の板状の天窓18と、外側堰用側壁12''を貫通して設けられた洗浄剤供給管50及び洗浄剤排出管51と、天窓18を介して支持台10と対向するように設けられた紫外線光源30と、を有する。外側堰用側壁12''と天窓18とによりカバーが形成されている。すなわち、支持台10の外周部が外側堰用側壁12''の内周面と接触しているとき、支持台10と、外側堰用側壁12''と、天窓18とによって空間19が画定される。洗浄剤供給管40及び洗浄剤排出管41は、該空間19内部に洗浄剤を封入または流通させることができるように配置されている。   The cleaning apparatus 100 ″ includes a support base (disk-shaped turntable) 10 on which the object to be cleaned 1 is placed, and a support 11 ′ that supports the support base 10 so that the support base 10 can rotate and move up and down (arrow I in FIG. 9). A ring-shaped outer weir side wall 12 '' that can slide in a water-tight manner on the outer periphery of the support base 10, and a UV-transmitting plate-like plate that is water-tightly fixed to the upper end of the outer weir partition wall 12 ''. A cleaning agent supply pipe 50 and a cleaning agent discharge pipe 51 provided through the skylight 18, the outer weir sidewall 12 ″, and an ultraviolet light source 30 provided so as to face the support base 10 through the skylight 18. And having. A cover is formed by the outer weir side wall 12 ″ and the skylight 18. That is, when the outer periphery of the support base 10 is in contact with the inner peripheral surface of the outer weir side wall 12 ″, the space 19 is defined by the support base 10, the outer weir side wall 12 ″, and the skylight 18. The The cleaning agent supply pipe 40 and the cleaning agent discharge pipe 41 are arranged so that the cleaning agent can be sealed or circulated inside the space 19.

支持台10に被洗浄体1を載置する前には、支持台10を下降させ、支持台10の外周部と外側堰用側壁12''の内周面とが接触していない状態とする。支持台10に被洗浄体1を載置した後、支持台10を上昇させて支持台10の外周部と外側堰用側壁12''の内周面とが接触した状態とし、且つ、空間19の厚みを、被洗浄体1の被洗浄面1aから天窓18までの距離が所望の値となるように調整する。洗浄剤供給管50から空間19に洗浄剤を供給し、空間19を洗浄剤で満たす(工程(a))とともに、空間19内の洗浄剤(すなわち被洗浄面1aの表面に付着および保持された洗浄剤)に紫外線光源30から波長200〜250nmの紫外線を照射する(工程(b))。この際、洗浄剤排出管51を閉じて、洗浄剤を空間19内に封入した状態としてもよく、洗浄剤排出管51を閉じることなく洗浄剤供給管50から継続的に洗浄剤を供給することにより、洗浄剤が空間19内を流通するようにしてもよい。上記同様に、紫外線の照射時間:t(単位:秒)及び/又は紫外線光源の発光出力:P(単位:mW)は、照射時間内に被洗浄面1aの表面に保持される洗浄液に対して照射される紫外線の積算照射量I(単位:mJ/cm)が予め定めた所定の積算照射量I以上となるように制御される。 Before placing the object to be cleaned 1 on the support base 10, the support base 10 is lowered so that the outer peripheral portion of the support base 10 and the inner peripheral surface of the outer weir side wall 12 ″ are not in contact with each other. . After the object to be cleaned 1 is placed on the support base 10, the support base 10 is raised to bring the outer peripheral portion of the support base 10 into contact with the inner peripheral surface of the outer weir side wall 12 ″ and the space 19. Is adjusted so that the distance from the surface 1a to be cleaned to the skylight 18 becomes a desired value. The cleaning agent is supplied from the cleaning agent supply pipe 50 to the space 19 to fill the space 19 with the cleaning agent (step (a)), and is attached and held on the cleaning agent in the space 19 (that is, the surface of the surface to be cleaned 1a). The cleaning agent is irradiated with ultraviolet light having a wavelength of 200 to 250 nm from the ultraviolet light source 30 (step (b)). At this time, the cleaning agent discharge pipe 51 may be closed so that the cleaning agent is sealed in the space 19, and the cleaning agent is continuously supplied from the cleaning agent supply pipe 50 without closing the cleaning agent discharge pipe 51. Accordingly, the cleaning agent may be circulated in the space 19. Similarly to the above, the ultraviolet irradiation time: t (unit: second) and / or the light emission output of the ultraviolet light source: P (unit: mW) are applied to the cleaning liquid held on the surface of the surface to be cleaned 1a within the irradiation time. Control is performed so that the cumulative dose I (unit: mJ / cm 2 ) of the irradiated ultraviolet rays is equal to or greater than a predetermined cumulative dose I 0 set in advance.

洗浄剤供給管40からの洗浄剤の供給および紫外線光源30からの紫外線の照射が停止されることにより、工程(a)及び(b)が終了される。工程(a)及び(b)の終了後は、支持台10を下降させて支持台10と外側堰用側壁12''とが完全に分離した状態とし、支持台10を回転させて洗浄剤を廃棄する。その後は図2に示すように、支持台10を回転させながら、リンス液供給ノズル40から被洗浄面1aにリンス液を供給し、リンス工程を行うことができる。   Steps (a) and (b) are completed by stopping the supply of the cleaning agent from the cleaning agent supply pipe 40 and the irradiation of the ultraviolet light from the ultraviolet light source 30. After completion of the steps (a) and (b), the support 10 is lowered so that the support 10 and the outer weir side wall 12 '' are completely separated, and the support 10 is rotated to remove the cleaning agent. Discard. Thereafter, as shown in FIG. 2, the rinsing process can be performed by supplying the rinsing liquid from the rinsing liquid supply nozzle 40 to the surface to be cleaned 1 a while rotating the support base 10.

第三の本発明の半導体ウエハの製造方法は、low-k材からなる構造およびイオン注入領域を有する半導体ウエハの製造方法であって、単位面積あたりの原子数として1×1014原子/cm以上1×1017原子/cm以下のイオン注入に暴露されたフォトレジスト層を、上記第一の本発明の洗浄方法により除去する工程を含む。本発明の半導体ウエハの製造方法は、low-k材からなる構造を有する半導体ウエハの表面にフォトレジスト層を形成する工程、及び、該フォトレジスト層を形成した半導体ウエハを、単位面積あたりの原子数として1×1014原子/cm以上1×1017原子/cm以下のイオン注入に暴露する工程、をさらに含み得る。フォトレジスト層の形成にあたっては、公知のフォトレジスト形成方法を特に制限なく用いることができる。また、イオン注入にあたっては、公知のイオン注入方法を特に制限なく用いることができる。 A method for manufacturing a semiconductor wafer according to a third aspect of the present invention is a method for manufacturing a semiconductor wafer having a structure made of a low-k material and an ion implantation region, and the number of atoms per unit area is 1 × 10 14 atoms / cm 2. The method includes the step of removing the photoresist layer exposed to the ion implantation of 1 × 10 17 atoms / cm 2 or less by the cleaning method of the first aspect of the present invention. The method for producing a semiconductor wafer according to the present invention includes a step of forming a photoresist layer on the surface of a semiconductor wafer having a structure made of a low-k material, and a semiconductor wafer on which the photoresist layer is formed. The method may further include exposing to an ion implantation of 1 × 10 14 atoms / cm 2 or more and 1 × 10 17 atoms / cm 2 or less as a number. In forming the photoresist layer, a known photoresist forming method can be used without particular limitation. For ion implantation, a known ion implantation method can be used without particular limitation.

1 被洗浄体
1a 被洗浄面
10、10’ 支持台
11、11’、11'' 支柱
12、12’、12'' 外側堰用側壁
12’a オーバーフロー抑制カバー
13、13’ 凹部
14 内側堰用側壁
15 支持台オーバーフロー洗浄液排出用凹部
16 廃液用トレイ
17a、17b、17c 排出口
18 天窓
19 空間
20、20’ 洗浄剤供給ノズル
20a、20’a (洗浄剤)吐出口
30、30’ 紫外線光源
31 基板
32 紫外線発光ダイオード(UV−LED)
33 蓋
34 ヒートシンク
40 リンス液供給ノズル
40a (リンス液)吐出口
50 洗浄剤供給管
51 洗浄剤排出管
100、100’、100'' 洗浄装置
110 棒状光源
111 (円筒状または多角柱状の)基体
112 紫外線発光ダイオード(UV−LED)
120 出射側反射ミラー
121 出射側反射ミラーの焦点軸
122 出射側反射ミラーの集光軸
125 出射側筐体
123 集光側反射ミラー
124 集光側反射ミラーの焦点軸
126 集光側筐体
130 深紫外光出射用開口部
140 コリメート光学系
150 本体
DESCRIPTION OF SYMBOLS 1 To-be-cleaned surface 1a To-be-cleaned surface 10, 10 'Support stand 11, 11', 11 '' Support | pillar 12, 12 ', 12''Outer weir side wall 12'a Overflow suppression cover 13, 13' Recessed part 14 Inner weir Side wall 15 Supporting stand overflow cleaning liquid discharge recess 16 Waste liquid tray 17a, 17b, 17c Discharge port 18 Skylight 19 Space 20, 20 'Cleaning agent supply nozzles 20a, 20'a (cleaning agent) discharge ports 30, 30' UV light source 31 Substrate 32 Ultraviolet light emitting diode (UV-LED)
33 Lid 34 Heat Sink 40 Rinse Solution Supply Nozzle 40a (Rinse Solution) Discharge Port 50 Cleaning Agent Supply Tube 51 Cleaning Agent Discharge Tube 100, 100 ′, 100 ″ Cleaning Device 110 Rod Light Source 111 (Cylindrical or Polygonal Column) Base 112 Ultraviolet light emitting diode (UV-LED)
120 Output-side Reflective Mirror 121 Output-side Reflective Mirror Focal Axis 122 Output-side Reflective Mirror Concentration Axis 125 Output-side Enclosure 123 Condenser-side Reflective Mirror 124 Concentration-side Reflective Mirror Focal Axis 126 Condenser-side Enclosure 130 Depth Ultraviolet light emitting aperture 140 Collimating optical system 150 Main body

Claims (4)

low-k材からなる構造およびイオン注入領域を有する半導体ウエハの製造方法であって、
low-k材からなる構造を有し、且つ単位面積あたりの原子数として1×10 14 原子/cm 以上1×10 17 原子/cm 以下のイオン注入に暴露されたフォトレジスト層を表面に有する半導体ウエハである被洗浄体から、前記フォトレジスト層を除去する、フォトレジスト層除去工程
を含んでなり、
前記フォトレジスト層除去工程は、
(a)過酸化水素、第四級アンモニウム水酸化物、水、及び水溶性有機溶媒を含んでなり、オゾン及び金属イオンを含まない洗浄剤を、前記被洗浄体の被洗浄面の表面に付着および保持させる工程と、
(b)前記被洗浄面の表面に付着および保持された前記洗浄剤に紫外線光源から200nm以上250nm以下の波長を有する紫外線を照射する工程と、を含んでなり、
前記工程(b)において、前記紫外線の照射時間:t(単位:秒)及び/又は前記紫外線光源の発光出力:P(単位:mW)を制御して、前記照射時間内に前記被洗浄面の表面に保持される前記洗浄剤に対して照射される紫外線の積算照射量I(単位:mJ/cm )が予め定めた所定の積算照射量I 以上となるようにすることを特徴とする、半導体ウエハの製造方法。
A method of manufacturing a semiconductor wafer having a structure made of a low-k material and an ion implantation region,
A photoresist layer having a structure made of a low-k material and exposed to ion implantation of 1 × 10 14 atoms / cm 2 or more and 1 × 10 17 atoms / cm 2 or less as the number of atoms per unit area on the surface from the cleaning object, which is a semiconductor wafer having, removing the photoresist layer, Ri Na comprise photoresist layer removing step,
The photoresist layer removal step includes
(A) A cleaning agent that contains hydrogen peroxide, quaternary ammonium hydroxide, water, and a water-soluble organic solvent, and that does not contain ozone and metal ions is attached to the surface of the surface to be cleaned. And a holding step;
(B) irradiating the cleaning agent adhered and held on the surface of the surface to be cleaned with an ultraviolet ray having a wavelength of 200 nm or more and 250 nm or less from an ultraviolet light source,
In the step (b), the ultraviolet irradiation time: t (unit: second) and / or the light emission output of the ultraviolet light source: P (unit: mW) are controlled, and the surface to be cleaned is within the irradiation time. integrated irradiation dose I (unit: mJ / cm 2) of the ultraviolet ray irradiated to the cleaning agent held on the surface and characterized to Rukoto such that a predetermined total irradiation amount I 0 or a predetermined A method for manufacturing a semiconductor wafer.
前記紫外線光源として、200nm以上250nm以下の波長領域にピークを有する紫外線を出射する紫外線発光ダイオードを有する紫外線光源を用い、
該紫外線光源の発光出力Pの制御を、前記紫外線発光ダイオードに流す順方向電流を制御することにより行うことを特徴とする、
請求項1に記載の方法。
As the ultraviolet light source, an ultraviolet light source having an ultraviolet light emitting diode that emits ultraviolet light having a peak in a wavelength region of 200 nm or more and 250 nm or less,
The light emission output P of the ultraviolet light source is controlled by controlling a forward current flowing through the ultraviolet light emitting diode.
The method of claim 1.
前記紫外線の照射時における前記被洗浄体の温度又は前記洗浄の温度を50℃以上80℃以下とすることを特徴とする、請求項1又は2に記載の方法。 3. The method according to claim 1, wherein the temperature of the object to be cleaned or the temperature of the cleaning agent is set to 50 ° C. or more and 80 ° C. or less when the ultraviolet rays are irradiated. 被洗浄体の種類と、紫外線照射時における被洗浄体の温度又は洗浄の温度と、洗浄剤の種類との組み合わせからなる洗浄基礎条件ごとに、前記紫外線光源の発光強度Pを予め定めた発光強度Pとし、前記照射時間tを変えて繰り返し前記工程(a)及び(b)を行い、十分な洗浄効果が得られる最短の照射時間tminを決定し、
前記発光強度Pと前記最短の照射時間tminとの積として算出される積算照射量を、同一の前記洗浄基礎条件で洗浄を行う際の前記所定の積算照射量Iとすることを特徴とする、
請求項1乃至3の何れかに記載の方法。
And type of the cleaning object, and the temperature of the temperature or detergent cleaning object during UV irradiation, each wash basic conditions, which consist of a combination of the type of detergent, the predetermined luminous emission intensity P of the ultraviolet light source The intensity P 0 is set, the irradiation time t is changed, the steps (a) and (b) are repeated, and the shortest irradiation time t min at which a sufficient cleaning effect is obtained is determined.
The integrated dose calculated as the product of the emission intensity P 0 and the shortest irradiation time t min is set as the predetermined integrated dose I 0 when cleaning is performed under the same basic cleaning conditions. And
The method according to claim 1.
JP2016064488A 2016-03-28 2016-03-28 Cleaning method and cleaning liquid Expired - Fee Related JP6266680B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016064488A JP6266680B2 (en) 2016-03-28 2016-03-28 Cleaning method and cleaning liquid
PCT/JP2017/012732 WO2017170595A1 (en) 2016-03-28 2017-03-28 Cleaning method, cleaning liquid, and cleaning device
TW106110356A TW201738005A (en) 2016-03-28 2017-03-28 Washing method and apparatus therefor, and washing liquid therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016064488A JP6266680B2 (en) 2016-03-28 2016-03-28 Cleaning method and cleaning liquid

Publications (2)

Publication Number Publication Date
JP2017183358A JP2017183358A (en) 2017-10-05
JP6266680B2 true JP6266680B2 (en) 2018-01-24

Family

ID=60008534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016064488A Expired - Fee Related JP6266680B2 (en) 2016-03-28 2016-03-28 Cleaning method and cleaning liquid

Country Status (1)

Country Link
JP (1) JP6266680B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11648594B2 (en) 2019-09-03 2023-05-16 Samsung Electronics Co., Ltd. Wafer cleaning apparatus and wafer cleaning method using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547146B1 (en) * 2018-05-11 2019-07-24 東邦エンジニアリング株式会社 Processing device
JP6620291B2 (en) * 2019-04-23 2019-12-18 東邦エンジニアリング株式会社 Processing equipment
KR102650608B1 (en) * 2020-12-18 2024-03-25 세메스 주식회사 Light processing member, substrate processing apparatus including the same and substrate processing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300455A (en) * 2000-02-15 2001-10-30 Mejiro Precision:Kk Method for cleaning material to be cleaned and device therefor
JP2003337432A (en) * 2002-05-20 2003-11-28 Tsukuba Semi Technology:Kk Method for removing resist using functional water and apparatus therefor
JP5354643B2 (en) * 2008-05-20 2013-11-27 サムコ株式会社 Dry cleaning apparatus and dry cleaning method
KR101046335B1 (en) * 2008-07-29 2011-07-05 피에스케이 주식회사 Hollow cathode plasma generation method and large area substrate processing method using hollow cathode plasma
JP2010129837A (en) * 2008-11-28 2010-06-10 Espec Corp Method for removing resist
KR102399752B1 (en) * 2013-09-04 2022-05-20 도쿄엘렉트론가부시키가이샤 Uv-assisted stripping of hardened photoresist to create chemical templates for directed self-assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11648594B2 (en) 2019-09-03 2023-05-16 Samsung Electronics Co., Ltd. Wafer cleaning apparatus and wafer cleaning method using the same

Also Published As

Publication number Publication date
JP2017183358A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6266680B2 (en) Cleaning method and cleaning liquid
KR102166974B1 (en) Method and hardware for enhanced removal of post etch polymer and hardmask removal
WO2017170595A1 (en) Cleaning method, cleaning liquid, and cleaning device
US9735026B2 (en) Controlling cleaning of a layer on a substrate using nozzles
JP6738414B2 (en) Method of treating a substrate with an aqueous liquid medium exposed to ultraviolet light
KR101774122B1 (en) Process gas generation for cleaning of substrates
US20150136183A1 (en) System of controlling treatment liquid dispense for spinning substrates
JP6241384B2 (en) Self-assembled monolayer patterning device, light irradiation device, and self-assembled monolayer patterning method
JP2011522697A (en) Photochemical reaction apparatus and photochemical process system
JP6316887B2 (en) Cleaning device
US20170278695A1 (en) Polymer removal using chromophores and light exposure
CN101006571A (en) System and method of cleaning and etching a substrate
JP2010010283A (en) Surface treatment method utilizing ozone gas and its device
JPH06210287A (en) Treatment using dielectric barrier-electric discharge lamp
JP2005313174A (en) Treatment method using dielectric barrier discharge lamp
JP2004152842A (en) Processing method by ultraviolet irradiation and ultraviolet irradiation device
JP2007128661A (en) Excimer lamp unit
JP2001300455A (en) Method for cleaning material to be cleaned and device therefor
WO2007055124A1 (en) Method of polishing work and apparatus therefor
JP2004351255A (en) Method and apparatus for cleaning substrate
KR20240016973A (en) Light-enhanced ozone wafer processing system and method of use
JP5006112B2 (en) Photoresist removal method
JP4082419B2 (en) Processing method using dielectric barrier discharge lamp
JP2005123434A (en) Treatment apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

R150 Certificate of patent or registration of utility model

Ref document number: 6266680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees