JP2008306847A - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP2008306847A
JP2008306847A JP2007151673A JP2007151673A JP2008306847A JP 2008306847 A JP2008306847 A JP 2008306847A JP 2007151673 A JP2007151673 A JP 2007151673A JP 2007151673 A JP2007151673 A JP 2007151673A JP 2008306847 A JP2008306847 A JP 2008306847A
Authority
JP
Japan
Prior art keywords
phase
motor
rotor
locked state
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007151673A
Other languages
English (en)
Other versions
JP4971040B2 (ja
Inventor
Naoki Fujishiro
直樹 藤代
Hiroyuki Isekawa
浩行 伊勢川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007151673A priority Critical patent/JP4971040B2/ja
Publication of JP2008306847A publication Critical patent/JP2008306847A/ja
Application granted granted Critical
Publication of JP4971040B2 publication Critical patent/JP4971040B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

【課題】位相位置がロック状態となる異常が発生した場合であっても、モータの出力を適切に制御する。
【解決手段】モータ制御装置100aを、互いの相対位相を変更可能な外周側回転子および内周側回転子を備えるモータ1と、相対位相に対する変更要求に応じて流体圧を制御する回動機構11および油圧制御装置13によって相対位相を作動流体の流体圧により変更する位相変更手段と、回動機構11および油圧制御装置13のロック状態を検知した場合にロック状態に対応した位相位置に応じた電流制御を実行するモータ制御部40と、回動機構11および油圧制御装置13のロック状態においてロック状態に対応した位相位置を保持する流体圧制御を実行する位相ロックフェール制御部66とを備えて構成した。
【選択図】図1

Description

本発明は、モータ制御装置に関する。
従来、例えば電動機の回転軸の周囲に同心円状に設けた第1および第2回転子を備え、電動機の回転速度に応じて、あるいは、固定子に発生する回転磁界の速度に応じて第1および第2回転子の周方向の相対位置つまり位相差を制御する永久磁石回転電動機が知られている(例えば、特許文献1参照)。
また、従来、例えばサーボ圧により互いの位相位置を変更可能な第1永久磁極片および第2永久磁極片を具備し、界磁磁束量を変更可能なモータが知られている(例えば、特許文献2参照)。
特開2002−204541号公報 特開昭55−153300号公報
ところで、上記従来技術に係るモータにおいて、例えば機械要素での噛み込み等によって、相対位相に対する変更要求に拘らずに相対位相に係る位相位置がロック状態となる異常が発生した場合に、相対位相を変更する位相制御を継続して実行すると、このロック状態が適宜のタイミングで解除された際に急激な位相変化が生じ、モータの挙動が急激に変動してしまう虞がある。
これに対して、例えば位相制御の実行を禁止してしまうと、位相位置を把握することができず、位相位置に応じたモータの出力可能範囲を把握することができず、制御可能な出力可能範囲が過剰に減少してしまい、所望の出力を確保することができなくなるという問題が生じる。
本発明は上記事情に鑑みてなされたもので、位相位置がロック状態となる異常が発生した場合であっても、モータの出力を適切に制御することが可能なモータ制御装置を提供することを目的とする。
上記課題を解決して係る目的を達成するために、本発明の第1態様に係るモータ制御装置は、互いの相対位相を変更可能な複数のロータ(例えば、実施の形態での外周側回転子5と内周側回転子6)を備えるモータと、前記相対位相を作動流体の流体圧により変更する位相変更手段(例えば、実施の形態での位相変更手段12)とを備えるモータ制御装置であって、前記位相変更手段は、前記相対位相に対する変更要求に応じて前記流体圧を制御するアクチュエータ(例えば、実施の形態での回動機構11、油圧制御装置13)を備え、前記アクチュエータのロック状態を検知するロック状態検知手段(例えば、実施の形態でのステップS01〜ステップS08)と、前記アクチュエータのロック状態において前記ロック状態に対応した位相位置に応じた電流制御を実行する電流制御手段(例えば、実施の形態でのモータ制御部40)と、前記アクチュエータのロック状態において前記ロック状態に対応した位相位置を保持する流体圧制御を実行する流体圧制御手段(例えば、実施の形態での位相ロックフェール制御部66)とを備える。
さらに、本発明の第2態様に係るモータ制御装置では、前記ロック状態検知手段は、前記相対位相に係る位相指令値と実位相値との偏差が所定値以上である場合に前記アクチュエータのロック状態であると検知する。
また、本発明の第3態様に係るモータ制御装置は、前記アクチュエータのロック状態において、前記モータの停止時に前記アクチュエータを往復動作させるロック解除制御手段(例えば、実施の形態でのステップS21〜ステップS34)を備える。
第1態様に係るモータ制御装置によれば、アクチュエータのロック状態においてロック状態に対応した位相位置に応じた電流制御を実行することにより、モータの挙動が急激に変動してしまうことを防止することができる。しかも、アクチュエータのロック状態においてロック状態に対応した位相位置を保持する流体圧制御を実行することにより、このロック状態が適宜のタイミングで解除された際に急激な位相変化が生じることを防止することができる。
さらに、第2態様に係るモータ制御装置によれば、相対位相に係る位相指令値と実位相値(例えば、位相位置に対する検出値または推定値)との偏差が所定値以上である場合、つまり位相指令値に対して所定値以上の偏差を有する実位相値がロック状態となる場合にアクチュエータのロック状態であると検知することにより、適切な対応を実行することができる。
さらに、第3態様に係るモータ制御装置によれば、モータの停止時にアクチュエータを往復動作させることにより、モータの挙動が変動することを防止しつつ、ロック状態を解除させることが可能となる。
以下、本発明のモータ制御装置の実施の形態について添付図面を参照しながら説明する。
この実施の形態によるモータ制御装置は、例えば走行駆動源としてモータを備えるハイブリッド車や電動車両等の車両に制御装置として搭載されている。具体的には、図1に示すように、モータ制御装置100a(以下、単に、制御装置100aと呼ぶ)を搭載する車両100は、モータ1および内燃機関Eを駆動源として備えるパラレルハイブリッド車両であり、モータ1と、内燃機関Eと、トランスミッションT/Mとは直列に直結され、少なくともモータ1または内燃機関Eの駆動力は、クラッチCおよびトランスミッションT/Mを介して車両100の駆動輪Wに伝達されるようになっている。
そして、この車両100の減速時に駆動輪W側からモータ1に駆動力が伝達されると、モータ1は発電機として機能して、いわゆる回生制動力を発生し、車体の運動エネルギーを電気エネルギー(回生エネルギー)として回収する。また、内燃機関Eの出力がモータ1に伝達された場合にもモータ1は発電機として機能して発電エネルギーを発生する。
ここで、制御装置100aが設けられた車両100には、例えばアクセルペダル開度センサ(図示略)、ブレーキペダルスイッチセンサ(図示略)、車輪速センサNW、液温センサTo等の各種センサが設けられており、制御装置100aはこれら各種センサの検出結果に基づいて、内燃機関E、モータ1、クラッチC、トランスミッションT/Mのそれぞれの制御系に対して制御指令を出力する。
モータ1は、例えば図2〜図5に示すように、円環状の固定子2の内周側に回転子ユニット3が配置されたインナロータ型のブラシレスモータとされている。
固定子2は複数相の固定子巻線2aを有し、回転子ユニット3は軸芯部に回転軸4を有している。モータ1の回転力はクラッチCおよびトランスミッションT/Mを介して駆動輪Wに伝達される。
回転子ユニット3は、例えば円環状の外周側回転子5と、この外周側回転子5の内側に同軸に配置される円環状の内周側回転子6を備え、外周側回転子5と内周側回転子6とが所定の設定角度の範囲で相対的に回動可能とされている。
外周側回転子5と内周側回転子6は、各回転子本体である円環状のロータ鉄心7,8が例えば焼結金属によって形成され、その各ロータ鉄心7,8の外周側に偏寄した位置に、複数の磁石装着スロット7a,8aが円周方向等間隔に形成されている。各磁石装着スロット7a,8aには、厚み方向に磁化された2つの平板状の永久磁石9,9が並列に並んで装着されている。同じ磁石装着スロット7a,8a内に装着される2つの永久磁石9,9は同方向に磁化され、各隣接する磁石装着スロット7a,7a、及び、8a,8aに装着される永久磁石9の対同士は磁極の向きが逆向きになるように設定されている。即ち、各回転子5,6においては、外周側がN極とされた永久磁石9の対と、S極とされた永久磁石9の対が円周方向に交互に並んで配置されている。なお、各回転子5,6の外周面の隣接する磁石装着スロット7a,7a、及び、8a,8aの各間には、永久磁石9の磁束の流れを制御(例えば、磁路短絡の抑制等)するための切欠き部10が回転子5,6の軸方向に沿って形成されている。
外周側回転子5と内周側回転子6の磁石装着スロット7a,8aは夫々同数設けられ、両回転子5,6の永久磁石9,…,9が夫々1対1で対応するようになっている。したがって、外周側回転子5と内周側回転子6の各磁石装着スロット7a,8a内の永久磁石9の対を互いに同極同士で対向させる(異極配置にする)ことにより、回転子ユニット3全体の界磁が最も弱められる弱め界磁の状態(例えば、図5,図6(b)参照)を得ることができるとともに、外周側回転子5と内周側回転子6の各磁石装着スロット7a,8a内の永久磁石9の対を互いに異極同士で対向させる(同極配置にする)ことにより、回転子ユニット3全体の界磁が最も強められる強め界磁の状態(例えば、図3,図6(a)参照)を得ることができる。
また、回転子ユニット3は、外周側回転子5と内周側回転子6を相対回動させるための回動機構11を備えている。この回動機構11は、両回転子5,6の相対位相を任意に変更するための位相変更手段12の一部を構成するものであり、非圧縮性の作動流体である作動液(例えば、トランスミッションT/M用の潤滑油、エンジンオイル等でもよい)の圧力によって操作されるようになっている。
位相変更手段12は、例えば図7に示すように、回動機構11と、この回動機構11に供給する作動液の圧力を制御する油圧制御装置13とを主要な要素として備えて構成されている。
回動機構11は、例えば図2〜図5に示すように、回転軸4の外周に一体回転可能にスプライン嵌合されるベーンロータ14と、ベーンロータ14の外周側に相対回動可能に配置される環状ハウジング15とを備え、この環状ハウジング15が内周側回転子6の内周面に一体に嵌合固定されるとともに、ベーンロータ14が、環状ハウジング15と内周側回転子6の両側の側端部を跨ぐ円板状の一対のドライブプレート16,16を介して外周側回転子5に一体に結合されている。したがって、ベーンロータ14は回転軸4と外周側回転子5に一体化され、環状ハウジング15は内周側回転子6に一体化されている。
ベーンロータ14は、回転軸4にスプライン嵌合される円筒状のボス部17の外周に、径方向外側に突出する複数の羽根部18が円周方向等間隔に設けられている。一方、環状ハウジング15は、内周面に円周方向等間隔に複数の凹部19が設けられ、この各凹部19にベーンロータ14の対応する羽根部18が収容配置されるようになっている。各凹部19は、羽根部18の先端部の回転軌道にほぼ合致する円弧面を有する底壁20と、隣接する凹部19,19同士を隔成する略三角形状の断面形状を有する突出部21によって構成され、ベーンロータ14と環状ハウジング15の相対回動時に、羽根部18が隣り合う一方の突出部21と他方の突出部21の間を変位し得るようになっている。
この実施の形態においては、突出部21は羽根部18と当接することにより、ベーンロータ14と環状ハウジング15の相対回動を規制する規制部材としても機能する。なお、各羽根部18の先端部と突出部21の先端部には、軸方向に沿うようにシール部材22が設けられ、これらのシール部材22によって羽根部18と凹部19の底壁20、突出部21とボス部17の外周面の各間が液密にシールされている。
また、内周側回転子6に固定される環状ハウジング15のベース部15aは一定厚みの円筒状に形成されるとともに、例えば図2に示すように、内周側回転子6や突出部21に対して軸方向外側に突出している。このベース部15aの外側に突出した各端部は、ドライブプレート16に形成された環状のガイド溝16aに摺動自在に保持され、環状ハウジング15と内周側回転子6が、外周側回転子5や回転軸4にフローティング状態で支持されるようになっている。
外周側回転子5とベーンロータ14を連結する両側のドライブプレート16,16は、環状ハウジング15の両側面(軸方向の両端面)に摺動自在に密接し、環状ハウジング15の各凹部19の側方を夫々閉塞する。したがって、各凹部19は、ベーンロータ14のボス部17と両側のドライブプレート16,16によって夫々独立した空間部を形成し、この空間部は、作動液が導入される導入空間23となっている。各導入空間23内は、ベーンロータ14の対応する各羽根部18によって夫々2室に隔成され、一方の部屋が進角側作動室24、他方の部屋が遅角側作動室25とされている。
進角側作動室24は、内部に導入された作動液の圧力によって内周側回転子6を外周側回転子5に対して進角方向に相対回動させ、遅角側作動室25は、内部に導入された作動液の圧力によって内周側回転子6を外周側回転子5に対して遅角方向に相対回動させる。この場合、「進角」とは、内周側回転子6を外周側回転子5に対して、図3,図5中の矢印Rで示すモータ1の回転方向に進めることを言い、「遅角」とは、内周側回転子6を外周側回転子5に対して、モータ1の回転方向Rと逆側に進めることを言うものとする。
また、各進角側作動室24と遅角側作動室25に対する作動液の給排は回転軸4を通して行われるようになっている。具体的には、進角側作動室24は、例えば図7に示す油圧制御装置13の進角側給排通路26に接続され、遅角側作動室25は同油圧制御装置13の遅角側給排通路27に接続されている。さらに、進角側給排通路26と遅角側給排通路27の一部は、例えば図2に示すように、夫々回転軸4に軸方向に沿って形成させた通路孔26a,27aによって構成されている。そして、各通路孔26a,27aの端部は、回転軸4の外周面の軸方向にオフセットした2位置に形成された環状溝26bと環状溝27bに夫々接続され、その各環状溝26b,27bは、ベーンロータ14のボス部17に略半径方向に沿って形成された複数の導通孔26c,…,26c,27c,…,27cに接続されている。進角側給排通路26の各導通孔26cは環状溝26bと各進角側作動室24とを接続し、遅角側給排通路27の各導通孔27cは環状溝27bと各遅角側作動室25とを接続している。
この実施の形態のモータ1において、内周側回転子6が外周側回転子5に対して最遅角位置にあるときに、外周側回転子5と内周側回転子6の永久磁石9が異極同士で対向して強め界磁の状態(例えば、図3,図6(a)参照)になり、内周側回転子6が外周側回転子5に対して最進角位置にあるときに、外周側回転子5と内周側回転子6の永久磁石9が同極同士で対向して弱め界磁の状態(例えば、図5,図6(b)参照)になるように設定されている。
なお、このモータ1は、進角側作動室24と遅角側作動室25に対する作動液の給排制御によって、強め界磁の状態と弱め界磁の状態を任意に変更し得るものであるが、このように磁界の強さが変更されると、これに伴って誘起電圧定数Keが変化し、この結果、モータ1の特性が変更される。即ち、強め界磁によって誘起電圧定数Keが大きくなると、モータ1として運転可能な許容回転速度は低下するものの、出力可能な最大トルクは増大し、逆に、弱め界磁によって誘起電圧定数Keが小さくなると、モータ1の出力可能な最大トルクは減少するものの、運転可能な許容回転速度は上昇する。
油圧制御装置13は、例えば図7に示すように、オイルタンク(図示略)から作動液を吸い上げて通路に吐出する電動のオイルポンプ(EOP)32と、このオイルポンプ32から吐出された作動液の油圧を調整して高圧のライン通路33に導入し、余剰分の作動液を各種機器の潤滑や冷却のための低圧通路34に流出させるレギュレータバルブ35と、ライン通路33に導入された作動液を進角側給排通路26と遅角側給排通路27に振り分けるとともに、進角側給排通路26と遅角側給排通路27で不要な作動液をドレン通路36に排出する流路切換弁37とを備えている。
レギュレータバルブ35は、ライン通路33の圧力を制御圧として受け、反力スプリング38とのバランスによって作動液の振り分けを行う。
また、流路切換弁37は、制御スプール37aを進退操作する電磁ソレノイド37bを有し、この電磁ソレノイド37bが制御装置100aによって制御されるようになっている。
制御装置100aは、例えば図1に示すように、モータ制御部40と、PDU(パワードライブユニット)41と、バッテリ42とを備えて構成されている。
PDU41は、例えばトランジスタのスイッチング素子がブリッジ接続されたブリッジ回路を用いてパルス幅変調(PWM)を行うPWMインバータを備え、モータ1と電気エネルギーの授受を行う高圧系のバッテリ42に接続されている。
そして、PWMインバータは、例えばモータ1の駆動時等において、モータ制御部40から入力されるスイッチング指令であるゲート信号(つまり、パルス幅変調信号)に基づき、PWMインバータにおいて各相毎に対を成す各トランジスタのオン(導通)/オフ(遮断)状態を切り換えることによって、バッテリ42から供給される直流電力を3相交流電力に変換し、モータ1の固定子巻線2aへの通電を順次転流させることによって、各相の固定子巻線2aに交流のU相電流Iu、V相電流IvおよびW相電流Iwを通電する。
モータ制御部40は、例えば図1に示すように、回転直交座標をなすdq座標上で電流のフィードバック制御を行うものであり、例えば運転者のアクセル操作に係るアクセル開度を検出するアクセルペダル開度センサの検出結果に基づいて算出されるトルク指令値Tqに基づきd軸目標電流Idc及びq軸目標電流Iqcを演算し、d軸目標電流Idc及びq軸目標電流Iqcに基づいて各相出力電圧Vu,Vv,Vwを算出し、各相出力電圧Vu,Vv,Vwに応じてPDU41へゲート信号であるPWM信号を入力すると共に、実際にPDU41からモータ1に供給される各相電流Iu,Iv,Iwの何れか2つの相電流をdq座標上の電流に変換して得たd軸電流Id及びq軸電流Iqと、d軸目標電流Idc及びq軸目標電流Iqcとの各偏差がゼロとなるように制御を行う。
このモータ制御部40は、例えば、目標電流設定部51と、電流偏差算出部52と、界磁制御部53と、電力制御部54と、電流制御部55と、dq−3相変換部56と、PWM信号生成部57と、フィルタ処理部58と、3相−dq変換部59と、回転数演算部60と、誘起電圧定数算出部62と、誘起電圧定数指令出力部63と、誘起電圧定数差分算出部64と、位相制御部65と、位相ロックフェール制御部66とを備えて構成されている。
そして、このモータ制御部40には、PDU41からモータ1に出力される3相の各相電流Iu,Iv,Iwのうち、2相のU相電流IuおよびW相電流Iwを検出する各電流センサ81,81から出力される各検出信号Ius,Iwsと、バッテリ42の端子電圧(電源電圧)VBを検出する電圧センサ82から出力される検出信号と、モータ1のロータの回転角θM(つまり、所定の基準回転位置からの回転子ユニット3の磁極の回転角度であって、例えばレゾルバ等により検出される回転軸4と一体回転する外周側回転子5の回転角度)を検出する回転センサ83から出力される検出信号と、内周側回転子6と外周側回転子5との相対位相に係る位相位置θ(例えば、レゾルバ等により検出される内周側回転子6の回転角度に基づき算出される外周側回転子5に対する内周側回転子6の相対位相等)を検出する位相位置センサ84から出力される検出信号と、車両100の各車輪の回転速度(車輪速)を検出する複数の車輪速センサNWから出力される検出信号と、回動機構11の作動液の温度(例えば、油温)を検出する液温センサToから出力される検出信号等とが入力されている。
目標電流設定部51は、例えば外部の制御装置(図示略)から入力されるトルク指令Tq(例えば、運転者によるアクセルペダルAPの踏み込み操作量を検出するアクセルペダル開度センサの出力に応じて必要とされるトルクをモータ1に発生させるための指令値)と、回転数演算部60から入力されるモータ1の回転数NMとに基づき、PDU41からモータ1に供給される各相電流Iu,Iv,Iwを指定するための電流指令を演算しており、この電流指令は、回転する直交座標上でのd軸目標電流Idc及びq軸目標電流Iqcとして電流偏差算出部52へ出力されている。
この回転直交座標をなすdq座標は、例えば回転子ユニット3の外周側回転子5の永久磁石9による界磁極の磁束方向をd軸(界磁軸)とし、このd軸と直交する方向をq軸(トルク軸)としており、モータ1の回転子ユニット3の回転位相に同期して回転している。これにより、PDU41からモータ1の各相に供給される交流信号に対する電流指令として、直流的な信号であるd軸目標電流Idcおよびq軸目標電流Iqcを与えるようになっている。
電流偏差算出部52は、界磁制御部53から入力されるd軸補正電流が加算されたd軸目標電流Idcと、d軸電流Idとの偏差ΔIdを算出するd軸電流偏差算出部52aと、電力制御部54から入力されるq軸補正電流が加算されたq軸目標電流Iqcと、q軸電流Iqとの偏差ΔIqを算出するq軸電流偏差算出部52bとを備えて構成されている。
なお、界磁制御部53は、例えばモータ1の回転数NMの増大に伴う逆起電圧の増大を抑制するために回転子ユニット3の界磁量を等価的に弱めるようにして電流位相を制御する弱め界磁制御の弱め界磁電流に対する目標値をd軸補正電流としてd軸電流偏差算出部52aへ出力する。
また、電力制御部54は、例えばバッテリ42の残容量等に応じた適宜の電力制御に応じてq軸目標電流Iqcを補正するためのq軸補正電流をq軸電流偏差算出部52bへ出力する。
電流制御部55は、例えばモータ1の回転数NMに応じたPI(比例積分)動作により、偏差ΔIdを制御増幅してd軸電圧指令値Vdを算出し、偏差ΔIqを制御増幅してq軸電圧指令値Vqを算出する。
dq−3相変換部56は、回転数演算部60から入力される回転子ユニット3の回転角θMを用いて、dq座標上でのd軸電圧指令値Vdおよびq軸電圧指令値Vqを、静止座標である3相交流座標上での電圧指令値であるU相出力電圧VuおよびV相出力電圧VvおよびW相出力電圧Vwに変換する。
PWM信号生成部57は、例えば、正弦波状の各相出力電圧Vu,Vv,Vwと、三角波からなるキャリア信号と、スイッチング周波数とに基づくパルス幅変調により、PDU41のPWMインバータの各スイッチング素子をオン/オフ駆動させる各パルスからなるスイッチング指令であるゲート信号(つまり、PWM信号)を生成する。
フィルタ処理部58は、各電流センサ81,81により検出された各相電流に対する検出信号Ius,Iwsに対して、高周波成分の除去等のフィルタ処理を行い、物理量としての各相電流Iu,Iwを抽出する。
3相−dq変換部59は、フィルタ処理部58により抽出された各相電流Iu,Iwと、回転数演算部60から入力される回転子ユニット3の回転角θMとにより、モータ1の回転位相による回転座標すなわちdq座標上でのd軸電流Idおよびq軸電流Iqを算出する。
回転数演算部60は、回転センサ83から出力される検出信号からモータ1の回転子ユニット3の回転角θMを抽出すると共に、この回転角θMに基づき、モータ1の回転数NMを算出する。
誘起電圧定数算出部62は、位相位置センサ84から出力される位相位置θに基づき、内周側回転子6と外周側回転子5との相対位相に応じた誘起電圧定数Keを算出する。
誘起電圧定数指令出力部63は、例えばトルク指令Tqと、モータ1の回転数NMと、電源電圧VBとに基づき、モータ1の誘起電圧定数Keに対する指令値(誘起電圧定数指令)Kecを出力する。
誘起電圧定数差分算出部64は、誘起電圧定数指令出力部63から出力される誘起電圧定数指令値Kecから、誘起電圧定数算出部62から出力される誘起電圧定数Keを減算して得た誘起電圧定数差分ΔKeを出力する。
位相制御部65は、例えば、誘起電圧定数差分算出部64から出力される誘起電圧定数差分ΔKeに応じて、この誘起電圧定数差分ΔKeをゼロとするようにして相対位相を制御するための制御指令θcを出力する。
さらに、位相制御部65は、後述する位相ロックフェール制御部66からロックフェール時制御指令が入力された場合には、誘起電圧定数差分ΔKeに応じた制御指令θcの出力を停止すると共に、この時点での位相位置θを保持するための位相指令として、進角側のADV位相指令および遅角側のRTD位相指令、例えば油圧制御装置13の進角側作動室24と遅角側作動室25に対する作動液の給排制御に対するADV油圧指令およびRTD油圧指令等を出力する。
また、位相制御部65は、後述する位相ロックフェール制御部66からロックフェール解除試行指令が入力された場合には、進角側のADV位相指令(例えば、油圧制御装置13に対するADV油圧指令等)と、遅角側のRTD位相指令(例えば、油圧制御装置13に対するRTD油圧指令等)とを交互に出力して、回動機構11を往復動作させる。
位相ロックフェール制御部66は、例えば誘起電圧定数差分算出部64から出力される誘起電圧定数差分ΔKeに基づき、相対位相に対する変更要求に拘らずに位相位置θがロック状態となる位相ロックフェールの有無を判定する。そして、位相ロックフェールの発生時には、この時点での位相位置θを保持することを指示するロックフェール時制御指令を出力する。また、位相ロックフェールの発生時には、例えば車両100の速度に基づき、ロック状態の解除制御の実行を指示するロックフェール解除試行制御指令を出力する。
この実施の形態によるモータ制御装置(つまり、制御装置100a)は上記構成を備えており、次に、この制御装置100aの動作、特に、位相ロックフェールの発生時における制御処理について説明する。
以下に、位相ロック判断の処理について説明する。
先ず、例えば図8に示すステップS01においては、誘起電圧定数差分算出部64から出力される誘起電圧定数差分ΔKeが所定の判定閾値αよりも大きいか否かを判定する。
この判定結果が「YES」の場合には、後述するステップS04に進む。
一方、この判定結果が「NO」の場合、つまり誘起電圧定数差分ΔKeが位相位置θの変動に応じて所定の判定閾値α以下に変動する場合には、ステップS02に進む。
そして、ステップS02においては、タイマ作動フラグTFFのフラグ値に「0」を設定する。
そして、ステップS03においては、相対位相に対する変更要求に拘らずに位相位置θがロック状態となることを示すロックフェールフラグのフラグ値に「0」を設定して、一連の処理を終了する。
また、ステップS04においては、タイマ作動フラグTFFのフラグ値が「1」であるか否かを判定する。
この判定結果が「YES」の場合には、後述するステップS07に進む。
一方、この判定結果が「NO」の場合には、ステップS05に進む。
そして、ステップS05においては、減算タイマである判断タイマTFのタイマ値に所定値(例えば、10秒等)を設定する。
そして、ステップS06においては、タイマ作動フラグTFFのフラグ値に「1」を設定して、一連の処理を終了する。
また、ステップS07においては、判断タイマTFのタイマ値がゼロであるか否かを判定する。
この判定結果が「NO」の場合には、一連の処理を終了する。
一方、この判定結果が「YES」の場合には、ステップS08に進み、このステップS08において、ロックフェールフラグのフラグ値に「1」を設定して、一連の処理を終了する。
以下に、位相位置θがロック状態である場合の位相ロックフェール時制御の処理について説明する。
先ず、例えば図9に示すステップS11においては、ロックフェールフラグのフラグ値が「1」であるか否かを判定する。
この判定結果が「NO」の場合には、一連の処理を終了する。
一方、この判定結果が「YES」の場合には、ステップS12に進む。
次に、ステップS12においては、この時点での位相位置θを現在位相NPに設定する。
そして、ステップS13においては、例えば図10に示すように、現在位相NPと油圧制御装置13の進角側作動室24に対するADVつりあい油圧PADVとの所定の対応関係を示す所定マップに対するマップ検索によりADVつりあい油圧PADVを算出する。
そして、ステップS14においては、例えば図10に示すように、現在位相NPと油圧制御装置13の遅角側作動室25に対するRTDつりあい油圧PRTDとの所定の対応関係を示す所定マップに対するマップ検索によりRTDつりあい油圧PRTDを算出する。
なお、例えば図10に示す所定マップでは、現在位相NPの変化に伴い外周側回転子5と内周側回転子6との相対トルクが変化することに対応して、現在位相NPが所定値に向かい変動することに伴い、各つりあい油圧は増大傾向に変化し、現在位相NPが所定値から離れるように変動することに伴い、つりあい油圧は減少傾向に変化するように設定されている。また、モータ1の回転トルクに起因して、現在位相NPに応じたADVつりあい油圧PADVはRTDつりあい油圧PRTDよりも大きな値とされている。
そして、ステップS15においては、現在位相NPを保持するための位相指令として、進角側のADV位相指令、例えば油圧制御装置13に対するADV油圧指令にADVつりあい油圧PADVを設定する。
そして、ステップS16においては、現在位相NPを保持するための位相指令として、遅角側のRTD位相指令、例えば油圧制御装置13に対するRTD油圧指令にRTDにつりあい油圧PRTDを設定し、一連の処理を終了する。
これにより、位相位置θのロック状態では、このロック状態に対応した位相位置θを保持するADV油圧指令およびRTD油圧指令が出力されることから、このロック状態に対応した位相位置θに応じた誘起電圧定数Keが誘起電圧定数算出部62から目標電流設定部51に入力される。そして、このロック状態に対応した位相位置θに応じた電流制御が実行されることになる。
以下に、ロックフェール解除試行制御の処理について説明する。
先ず、例えば図11に示すステップS21においては、ロックフェールフラグのフラグ値が「1」であるか否かを判定する。
この判定結果が「NO」の場合には、一連の処理を終了する。
一方、この判定結果が「YES」の場合には、ステップS22に進む。
そして、ステップS22においては、この時点での車両の速度(車速)VNを取得する。
そして、ステップS23においては、車速VPがゼロよりも大きいか否かを判定する。
この判定結果が「YES」の場合には、ステップS24に進み、このステップS24においては、上述したロックフェール時制御の処理を実行し、一連の処理を終了する。
一方、この判定結果が「NO」、すなわちモータ1が停止あるいは車速VPがゼロの場合には、ステップS25に進む。
また、ステップS25においては、減算タイマである解除試行モードタイマKMTのタイマ値に所定値γ0(例えば、6秒等)を設定する。
そして、ステップS26においては、回動機構11を往復動作させることでロック状態の解除を試みることを指示する解除試行モードフラグのフラグ値に「1」を設定する。
そして、ステップS27においては、解除試行モードタイマKMTのタイマ値がゼロであるか否かを判定する。
この判定結果が「NO」の場合には、後述するステップS29に進む。
一方、この判定結果が「YES」の場合には、ステップS28に進む。
そして、ステップS28においては、解除試行モードフラグのフラグ値に「0」を設定し、一連の処理を終了する。
また、ステップS29においては、解除試行モードタイマKMTのタイマ値が所定値γ0よりも小さい所定値γ1(例えば、2秒等)以下であるか否かを判定する。
この判定結果が「NO」の場合には、後述するステップS31に進む。
一方、この判定結果が「YES」の場合には、ステップS30に進む。
そして、ステップS30においては、相対位相を制御するための制御指令θc(例えば、圧力指令)に最進角状態に対応する最進角圧力指令ADVmax(つまり、進角側の最大圧)を設定し、後述するステップS34に進む。
また、ステップS31においては、解除試行モードタイマKMTのタイマ値が所定値γ0よりも小さくかつ所定値γ1より大きい所定値γ2(例えば、4秒等)以下であるか否かを判定する。
この判定結果が「NO」の場合には、後述するステップS33に進む。
一方、この判定結果が「YES」の場合には、ステップS32に進む。
そして、ステップS32においては、相対位相を制御するための制御指令θc(例えば、圧力指令)に最遅角状態に対応する最遅角圧力指令RTDmax(つまり、遅角側の最大圧)を設定し、後述するステップS34に進む。
また、ステップS33においては、相対位相を制御するための制御指令θc(例えば、圧力指令)に最進角状態に対応する最進角圧力指令ADVmaxを設定し、ステップS34に進む。
そして、ステップS34においては、この時点での解除試行モードタイマKMTのタイマ値KMTから1を減算して得た値(KMT−1)を、新たに解除試行モードタイマKMTのタイマ値として設定し、上述したステップS27に戻る。
これにより、油圧制御装置13の進角側作動室24および遅角側作動室25に対して交互に最大油圧を印加することで、位相位置θのロック状態を解除可能とすることができる。
上述したように、この実施の形態によるモータ制御装置によれば、例えば回動機構11での機械的な噛み込み等によって、相対位相に対する変更要求に拘らずに位相位置θがロック状態となる異常が発生した場合であっても、このロック状態に対応した位相位置θを保持するADV油圧指令およびRTD油圧指令が出力されることにより、このロック状態が適宜のタイミングで解除された際に急激な位相変化が生じることを防止することができる。
しかも、位相位置θのロック状態では、このロック状態に対応した位相位置θに応じた電流制御が実行されることから、モータ1の挙動が急激に変動してしまうことを防止することができる。
また、位相位置θのロック状態では、モータ1の停止時に回動機構11を往復動作させることにより、車両の走行挙動が変動することを防止しつつロック状態を解除させることが可能となる。
なお、この発明は上述した実施の形態に限られるものではなく、例えば、ハイブリッド車両以外に電気自動車等に適用してもよいし、車両に適用する場合に限らず、適宜の装置に搭載されるモータに適用してもよい。
本発明の実施の形態に係る車両の概略構成図である。 本発明の実施の形態に係るモータの要部断面図である。 本発明の実施の形態に係るモータの最遅角位置に制御されている回転子ユニットの一部部品を省略した側面図である。 本発明の実施の形態に係るモータの回転子ユニットの分解斜視図である。 本発明の実施の形態に係るモータの最進角位置に制御されている回転子ユニットの一部部品を省略した側面図である。 本発明の実施の形態に係るモータの内周側回転子の永久磁石と外周側回転子の永久磁石とが同極配置された強め界磁状態を模式的に示す図(a)と、内周側回転子の永久磁石と外周側回転子の永久磁石とが異極配置された弱め界磁状態を模式的に示す図(b)を併せて記載した図である。 本発明の実施の形態に係る油圧制御装置の構成図である。 本発明の実施の形態に係る相対ロック判断の処理を示すフローチャートである。 本発明の実施の形態に係る位相ロックフェール時制御の処理を示すフローチャートである。 本発明の実施の形態に係る現在位相NPとつりあい油圧との対応関係の一例を示すグラフ図である。 本発明の実施の形態に係るロックフェール解除試行制御の処理を示すフローチャートである。
符号の説明
1 モータ
5 外周側回転子(ロータ)
6 内周側回転子(ロータ)
11 回動機構(アクチュエータ)
12 位相変更手段
13 油圧制御装置(アクチュエータ)
40 モータ制御部(電流制御手段)
ステップS01〜ステップS08 ロック状態検知手段
ステップS21〜ステップS34 ロック解除制御手段

Claims (3)

  1. 互いの相対位相を変更可能な複数のロータを備えるモータと、
    前記相対位相を作動流体の流体圧により変更する位相変更手段とを備えるモータ制御装置であって、
    前記位相変更手段は、前記相対位相に対する変更要求に応じて前記流体圧を制御するアクチュエータを備え、
    前記アクチュエータのロック状態を検知するロック状態検知手段と、
    前記アクチュエータのロック状態において前記ロック状態に対応した位相位置に応じた電流制御を実行する電流制御手段と、
    前記アクチュエータのロック状態において前記ロック状態に対応した位相位置を保持する流体圧制御を実行する流体圧制御手段とを備えることを特徴とするモータ制御装置。
  2. 前記ロック状態検知手段は、前記相対位相に係る位相指令値と実位相値との偏差が所定値以上である場合に前記アクチュエータのロック状態であると検知することを特徴とする請求項1に記載のモータ制御装置。
  3. 前記アクチュエータのロック状態において、前記モータの停止時に前記アクチュエータを往復動作させるロック解除制御手段を備えることを特徴とする請求項1または請求項2に記載のモータ制御装置。
JP2007151673A 2007-06-07 2007-06-07 モータ制御装置 Expired - Fee Related JP4971040B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007151673A JP4971040B2 (ja) 2007-06-07 2007-06-07 モータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007151673A JP4971040B2 (ja) 2007-06-07 2007-06-07 モータ制御装置

Publications (2)

Publication Number Publication Date
JP2008306847A true JP2008306847A (ja) 2008-12-18
JP4971040B2 JP4971040B2 (ja) 2012-07-11

Family

ID=40235052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007151673A Expired - Fee Related JP4971040B2 (ja) 2007-06-07 2007-06-07 モータ制御装置

Country Status (1)

Country Link
JP (1) JP4971040B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088265A1 (ja) * 2014-12-05 2016-06-09 株式会社安川電機 車両のモータ診断システム、車両、モータ、モータ診断方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152888A (ja) * 1999-11-25 2001-06-05 Denso Corp 内燃機関の可変バルブタイミング制御装置
JP2002332874A (ja) * 2001-05-08 2002-11-22 Mitsubishi Electric Corp 内燃機関のバルブタイミング制御装置
JP2003227361A (ja) * 2002-02-04 2003-08-15 Hitachi Unisia Automotive Ltd 可変バルブタイミング機構の制御装置
JP2003244874A (ja) * 2002-12-16 2003-08-29 Hitachi Ltd ハイブリッド車及び回転電機
JP2004072978A (ja) * 2002-08-09 2004-03-04 Equos Research Co Ltd 電動機
JP2006262600A (ja) * 2005-03-16 2006-09-28 Yaskawa Electric Corp 回転子およびこれを備えた回転電機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152888A (ja) * 1999-11-25 2001-06-05 Denso Corp 内燃機関の可変バルブタイミング制御装置
JP2002332874A (ja) * 2001-05-08 2002-11-22 Mitsubishi Electric Corp 内燃機関のバルブタイミング制御装置
JP2003227361A (ja) * 2002-02-04 2003-08-15 Hitachi Unisia Automotive Ltd 可変バルブタイミング機構の制御装置
JP2004072978A (ja) * 2002-08-09 2004-03-04 Equos Research Co Ltd 電動機
JP2003244874A (ja) * 2002-12-16 2003-08-29 Hitachi Ltd ハイブリッド車及び回転電機
JP2006262600A (ja) * 2005-03-16 2006-09-28 Yaskawa Electric Corp 回転子およびこれを備えた回転電機

Also Published As

Publication number Publication date
JP4971040B2 (ja) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4421603B2 (ja) モータ制御方法およびモータ制御装置
JP4515439B2 (ja) ハイブリッド車両の制御装置
JP4452735B2 (ja) 昇圧コンバータの制御装置および制御方法
JP4971039B2 (ja) モータ制御装置
JP4372775B2 (ja) モータ制御装置
JP2010273521A (ja) 電動機の制御装置
JP4163226B2 (ja) モータの制御装置
JP4777192B2 (ja) モータの制御装置
JP2008062688A (ja) モータの制御装置
JP4971040B2 (ja) モータ制御装置
JP4805128B2 (ja) モータ制御装置
JP4732273B2 (ja) 車両用モータの制御装置
JP2009060697A (ja) モータ制御装置
JP4372770B2 (ja) モータを備える車両の制御装置
JP4869825B2 (ja) モータの制御装置
JP4757722B2 (ja) モータの制御装置
JP4805129B2 (ja) モータ制御装置
JP2009005452A (ja) モータ制御装置
JP4754433B2 (ja) モータの制御装置
JP2008306845A (ja) モータ制御装置
JP2008067499A (ja) 回転電機を具備する車両
JP2009050124A (ja) モータ制御装置
JP2009166652A (ja) ハイブリッド車両の制御装置
JP2009005453A (ja) モータ駆動車両の制御装置
JP4864686B2 (ja) モータの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees