JP2008296154A - 高分子凝集剤 - Google Patents

高分子凝集剤 Download PDF

Info

Publication number
JP2008296154A
JP2008296154A JP2007146049A JP2007146049A JP2008296154A JP 2008296154 A JP2008296154 A JP 2008296154A JP 2007146049 A JP2007146049 A JP 2007146049A JP 2007146049 A JP2007146049 A JP 2007146049A JP 2008296154 A JP2008296154 A JP 2008296154A
Authority
JP
Japan
Prior art keywords
acid
meth
polymer flocculant
polymer
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007146049A
Other languages
English (en)
Other versions
JP5528660B2 (ja
Inventor
Hajime Fukushima
元 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2007146049A priority Critical patent/JP5528660B2/ja
Publication of JP2008296154A publication Critical patent/JP2008296154A/ja
Application granted granted Critical
Publication of JP5528660B2 publication Critical patent/JP5528660B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】 従来の高分子凝集剤では生成するフロック粒径が小さく濾水性が悪い、固液分離されたケーキの含水率が高い、およびベルトプレス脱水機またはフィルタープレス脱水機を用いた場合の濾布と汚泥の剥離性が悪い等、充分な脱水効果を得ることは困難であった。
【解決手段】 1〜40dl/gの固有粘度を有し、固有粘度から換算される重量平均分子量(Mw)とメンブラン式浸透圧測定法による数平均分子量(Mn)との比(Mw/Mn)が1〜50である、水溶性不飽和モノマーを構成単位とする(共)重合体(A)からなることを特徴とする高分子凝集剤。
【選択図】 なし

Description

本発明は高分子凝集剤に関する。さらに詳しくは、下水汚泥の脱水用、産業廃水の凝集沈澱用、製紙工程での濾水歩留向上または紙力増強用、石油の3次回収用等に有用な高分子凝集剤に関する。
従来、下水またはし尿(以下、下水汚泥と略記)処理、一般産業廃水(以下、廃水と略記)処理、あるいは土木現場での泥水処理、浚渫埋め立て時の泥水の沈降分離促進用、さらには製紙用濾水歩留向上剤や紙力増強剤などとして水溶性高分子、例えば汚泥や廃水などの有機性汚泥の脱水に対しては、ポリ(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライド、アクリルアミド―アクリロイルオキシエチルトリメチルアンモニウムクロライドコポリマーおよびポリビニルアミジン等のカチオン性高分子凝集剤(例えば、特許文献1参照)、アクリルアミド―アクリル酸―(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライドコポリマー等の両性高分子凝集剤が広く使用されている(例えば、特許文献2参照)。
また、廃水処理、あるいは建設や浚渫埋め立てなどの土木分野での使用を目的として、水溶性高分子にさらに水溶性モノマーをグラフト重合させ、凝集密度を高めることを特徴としたアニオン性高分子凝集剤も知られている(例えば、特許文献3、4参照)。
特開昭63−274409号公報 特開平3−189000号公報 特開平6−254305号公報 特開平6−254306号公報
しかしながらこれらの高分子凝集剤では生成するフロック粒径が小さく濾水性が悪い、固液分離されたケーキの含水率が高い、およびベルトプレス脱水機またはフィルタープレス脱水機を用いた場合の濾布と汚泥の剥離性が悪い等、充分な脱水効果を得ることは困難であった。
本発明者は、これらの課題を解決すべく鋭意検討した結果本発明に到達した。すなわち、本発明は、1〜40dl/gの固有粘度を有し、固有粘度から換算される重量平均分子量(Mw)とメンブラン式浸透圧測定による数平均分子量(Mn)との比(Mw/Mn)が1〜50である、水溶性不飽和モノマーを構成単位とする(共)重合体(A)からなることを特徴とする高分子凝集剤;並びに、高分子凝集剤の製造方法において、水溶性不飽和モノマーからなる重合性モノマーを疎水性分散媒の沸点未満で逆相懸濁重合させることを特徴とする、1〜40dl/gの固有粘度を有し、固有粘度から換算される重量平均分子量(Mw)とメンブラン式浸透圧測定法による数平均分子量(Mn)との比(Mw/Mn)が1〜50である(共)重合体(A)からなる高分子凝集剤の製造方法である。
(1)汚泥や廃水の処理において強固な粗大フロックを形成する。
(2)形成されたフロックは破壊、再分散されにくいため凝集処理の安定性や処理速度を著しく高めることができる。
(3)脱水工程後のケーキ含水率が低く廃棄物量および焼却処理コストを低減できる。
(4)本発明の(共)重合体からなる水溶液は、経時安定性および耐熱性に優れる。
本発明における(A)は、水溶性不飽和モノマー(a)を構成単位とする水溶性(共)重合体であり、(a)には、下記のノニオン性モノマー(a1)、カチオン性モノマー(a2)、アニオン性モノマー(a3)およびこれらのうちの2種またはそれ以上の混合物が含まれる。
(A)を構成するモノマーとしては、本発明の効果を阻害しない範囲で(a)の他に必要により水不溶性不飽和モノマー(x)および架橋性モノマー(y)を併用してもよい。 ここにおいて水溶性不飽和モノマーもしくは水溶性(共)重合体とは、水に対する溶解度(20℃)が1g/水100g以上である不飽和モノマーもしくは(共)重合体を意味し、水不溶性不飽和モノマーとは、水に対する溶解度(20℃)が1g/水100g未満である不飽和モノマーを意味する。
(a1)ノニオン性モノマー
下記のもの、およびこれらの混合物が挙げられる。
(a11)(メタ)アクリレート
炭素数(以下、Cと略記)4以上かつ数平均分子量[測定はゲルパーミエイションクロマトグラフィー(GPC)法による。以下GMnと略記。]5,000以下、例えば水酸基含有(メタ)アクリレート[例えばヒドロキシエチル−、ジエチレングリコールモノ−、ポリエチレングリコール(重合度3〜50)モノ−およびポリグリセロール(重合度1〜10)モノ(メタ)アクリレート]およびアクリル酸アルキル(アルキル基はC1〜2)エステル(C4〜5、例えばアクリル酸メチル、アクリル酸エチル);
(a12)(メタ)アクリルアミドおよびその誘導体
C3〜30、例えば(メタ)アクリルアミド、N−アルキル(C1〜3)(メタ)アクリルアミド[N−メチルおよび−イソプロピル(メタ)アクリルアミド等]、N−アルキ
ロール(メタ)アクリルアミド[N−メチロール(メタ)アクリルアミド等];
(a13) 上記以外の窒素原子含有エチレン性不飽和化合物
C3〜30、例えばアクリロニトリル、N−ビニルホルムアミド、N−ビニル−2−ピロリドン、N−ビニルイミダゾール、N−ビニルスクシンイミド、N−ビニルカルバゾールおよび2−シアノエチル(メタ)アクリレート。
(a2)カチオン性モノマー
下記のもの、これらの塩[例えば無機酸(塩酸、硫酸、リン酸および硝酸等)塩、メチルクロライド塩、ジメチル硫酸塩およびベンジルクロライド塩等]、およびこれらの混合物が挙げられる。
(a21) 窒素原子含有(メタ)アクリレート
C5〜30、例えばアミノアルキル(C2〜3)(メタ)アクリレート、N,N−ジアルキル(C1〜2)アミノアルキル(C2〜3)(メタ)アクリレート[N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノプロピル(メタ)アクリレート等]、複素環含有(メタ)アクリレート[N−モルホリノエチル(メタ)アクリレート等];
(a22) 窒素原子含有(メタ)アクリルアミド誘導体
C5〜30、例えばN,N−ジアルキル(C1〜2)アミノアルキル(C2〜3)(メタ)アクリルアミド[N,N−ジメチルアミノエチル(メタ)アクリルアミド等];
(a23) アミノ基を有するエチレン性不飽和化合物
C5〜30、例えばビニルアミン、ビニルアニリン、(メタ)アリルアミン、p−アミノスチレン等];
(a24) アミンイミド基を有する化合物
C5〜30、例えば1,1,1−トリメチルアミン(メタ)アクリルイミド、1,1−ジメチル−1−エチルアミン(メタ)アクリルイミド、1,1−ジメチル−1−(2’−フェニル−2’−ヒドロキシエチル)アミン(メタ)アクリルイミド等;
(a25) 上記以外の窒素原子含有ビニルモノマー
C5〜30、例えば2−ビニルピリジン、3−ビニルピペリジン、ビニルピラジン、ビニルモルホリン。
(a3)アニオン性モノマー
下記の酸、これらの塩[アルカリ金属(リチウム、ナトリウム、カリウム等、以下同じ。)塩、アルカリ土類金属(マグネシウム、カルシウム等、以下同じ。)塩、アンモニウム塩およびアミン(C1〜20)塩等]、およびこれらの混合物が挙げられる。
(a31) 不飽和カルボン酸
C3〜30、例えば(メタ)アクリル酸、(無水)マレイン酸、フマル酸、(無水)イタコン酸、ビニル安息香酸、アリル酢酸;
(a32) 不飽和スルホン酸
C2〜20の脂肪族不飽和スルホン酸(ビニルスルホン酸等)、C6〜20の芳香族不飽和スルホン酸(スチレンスルホン酸等)、スルホン酸基含有(メタ)アクリレート[スルホアルキル(C2〜20)(メタ)アクリレート[2−(メタ)アクリロイルオキシエタンスルホン酸、2−(メタ)アクリロイルオキシプロパンスルホン酸、3−(メタ)アクリロイルオキシプロパンスルホン酸、2−(メタ)アクリロイルオキシブタンスルホン酸、4−(メタ)アクリロイルオキシブタンスルホン酸、2−(メタ)アクリロイルオキシ−2,2−ジメチルエタンスルホン酸、p−(メタ)アクリロイルオキシメチルベンゼンスルホン酸等]、スルホン酸基含有(メタ)アクリルアミド[2−(メタ)アクリロイルアミノエタンスルホン酸、2−および3−(メタ)アクリロイルアミノプロパンスルホン酸、2−および4−(メタ)アクリロイルアミノブタンスルホン酸、2−(メタ)アクリロイルアミノ−2,2−ジメチルエタンスルホン酸、p−(メタ)アクリロイルアミノ
メチルベンゼンスルホン酸等]、アルキル(C1〜20)(メタ)アリルスルホコハク酸エステル[メチル(メタ)アリルスルホコハク酸エステル等]等;
(a33) (メタ)アクリロイルポリオキシアルキレン(C1〜6)硫酸エステル
(メタ)アクリロイルポリオキシエチレン(重合度2〜50)硫酸エステル等。
(a)のうち高分子量化の観点から好ましいのは、(a1)、(a21)、(a22)、(a31)、(a32)、さらに好ましいのは(a12)、(a13)、(a21)、(a22)、(a31)、および(a32)のうちのスルホン酸基含有(メタ)アクリレート、スルホン酸基含有(メタ)アクリルアミド、特に好ましいのは(a12)、(a13)、(a21)、(a31)、および(a32)のうちのスルホン酸基含有(メタ)アクリレート、スルホン酸基含有(メタ)アクリルアミド、最も好ましいのは(a12)のうちの(メタ)アクリルアミド、(a13)のうちのアクリロニトリル、N−ビニルホルムアミド、(a21)のうちのN,N−ジメチルアミノエチル(メタ)アクリレートおよびこれらの塩(上記のもの)、(a31)のうちの(メタ)アクリル酸、(無水)マレイン酸、(無水)イタコン酸およびこれらのアルカリ金属塩、(a32)のうちの2−(メタ)アクリロイルオキシエタンスルホン酸、2−および3−(メタ)アクリロイルオキシプロパンスルホン酸、2−(メタ)アクリロイルアミノ−2,2−ジメチルエタンスルホン酸およびこれらのアルカリ金属塩である。また、これらの(a)は、任意に混合して共重合させることができる。
(a)の使用量(モル%)は、(A)を構成するモノマーの全モル数に基づいて、凝集性能(高フロック強度、フロックの粗大化、脱水ケーキの低含水率化等。以下同じ。)の観点から好ましくは50〜100%、さらに好ましくは80〜100%である。
必要により(a)と併用してもよい水不溶性不飽和モノマー(x)としては、以下の(x1)〜(x5)、およびこれらの混合物が挙げられる。
(x1) C6〜23の(メタ)アクリレート
脂肪族または脂環式アルコール(C3〜20)の(メタ)アクリレート[プロピル−、ブチル−、ラウリル−、オクタデシル−およびシクロヘキシル(メタ)アクリレート等]およびエポキシ基(C4〜20)含有(メタ)アクリレート[グリシジル(メタ)アクリレート等];
(x2) [モノアルコキシ(C1〜20)−、モノシクロアルコキシ(C3〜12)−もしくはモノフェノキシ]ポリプロピレングリコール(以下、PPGと略記)(重合度2〜50)の不飽和カルボン酸モノエステル
モノオール(C1〜20)もしくは1価フェノール(C6〜20)のプロピレンオキシド(以下POと略記)付加物の(メタ)アクリル酸エステル[ω−メトキシPPGモノ(メタ)アクリレート、ω−エトキシPPGモノ(メタ)アクリレート、ω−プロポキシPPGモノ(メタ)アクリレート、ω−ブトキシPPGモノ(メタ)アクリレート、ω−シクロヘキシルPPGモノ(メタ)アクリレート、ω−フェノキシPPGモノ(メタ)アクリレート等]およびジオール(C2〜20)もしくは2価フェノール(C6〜20)のPO付加物の(メタ)アクリル酸エステル[ω−ヒドロキシエチル(ポリ)オキシプロピレンモノ(メタ)アクリレート等]等;
(x3) C2〜30の不飽和炭化水素
エチレン、ノネン、スチレン、1−メチルスチレン等;
(x4) 不飽和アルコール[C2〜4、例えばビニルアルコール、(メタ)アリルアルコール]のカルボン酸(C2〜30)エステル(酢酸ビニル等);
(x5) ハロゲン含有モノマー(C2〜30、例えば塩化ビニル)。
また、架橋性モノマー(y)としては、以下の(y1)〜(y5)、これらの塩[例えば、塩基性モノマーについては、無機酸(塩酸、臭化水素酸、ヨウ化水素酸、硫酸、亜硫酸、リン酸、硝酸等)塩、メチルクロライド塩、ジメチル硫酸塩およびベンジルクロライド塩等、酸性モノマーについては、アルカリ金属塩、アルカリ土類金属塩、アミン(C1〜20、例えばメチルアミン、エチルアミン、シクロヘキシルアミン)塩]、およびこれらの混合物が挙げられる。
(y1) ビスポリ(2〜4またはそれ以上)(メタ)アクリルアミド
C5〜30、例えばN,N’−メチレンビスアクリルアミド;
(y2) ポリ(2〜4またはそれ以上)(メタ)アクリレート
C8〜30、例えばエチレングリコールジ(メタ)アクリレート、ペンタエリスリトール[ポリ(2〜4)](メタ)アクリレート;
(y3) ビニル基(2〜20個またはそれ以上)含有モノマー
C4以上かつGMn6,000以下、例えばジビニルアミン、多価(2〜5またはそれ以上)アミン[C2以上かつGMn3,000以下、例えばエチレンジアミン、ポリエチレンイミン(C4以上かつGMn3,000以下)]のポリ(2〜20)ビニルアミン、ジビニルエーテル、多価アルコール〔C2以上かつGMn3,000以下、例えばアルキレン(C2〜6またはそれ以上)グリコール[エチレングリコール、プロピレングリコール、1,6−ヘキサンジオール(以下、それぞれEG、PG、HDと略記)等]、ポリオキシアルキレン[GMn2,000〜3000、例えばポリエチレングリコール(以下、PEGと略記)(分子量106以上かつGMn3,000以下)、PPG(分子量134以上かつGMn3,000以下)、ポリオキシエチレン(分子量106以上かつGMn3,000以下)/ポリオキシプロピレン(分子量134以上かつGMn3,000以下)ブロックコポリマー]、トリメチロールエタン、トリメチロールプロパン、(ポリ)(2〜50)グリセリン、ペンタエリスリトール、ソルビトール(以下、それぞれTME、TMP、GR、PE、SOと略記)、デンプン〕のポリ(2〜20)ビニルエーテル等;
(y4) アリル基(2〜20個またはそれ以上)含有モノマー
C6以上かつGMn3,000以下、例えばジ(メタ)アリルアミン、N−アルキル(C1〜20)ジ(メタ)アリルアミン、多価アミン(上記のもの)のポリ(2〜20)(メタ)アリルアミン、ジ(メタ)アリルエーテル、多価アルコール(上記のもの)のポリ(2〜20)(メタ)アリルエーテル、ポリ(2〜20)(メタ)アリロキシアルカン(C1〜20)(テトラアリロキシエタン等);
(y5) エポキシ基含有モノマー
C8以上かつGMn6,000以下、例えばEGジグリシジルエーテル、PEGジグリシジルエーテル、GRトリグリシジルエーテル。
(x)の使用量(モル%)は、(A)を構成するモノマーの全モル数に基づいて、通常40以下、凝集性能発現および高分子凝集剤の水への溶解性の観点から好ましくは0.1〜20、さらに好ましくは0.5〜10である。
また、(y)の使用量(モル%)は、使用する架橋性モノマー(y)の重合性または反応性にもよるが、(A)を構成するモノマーの全モル数に基づいて通常5以下、凝集性能発現および高分子凝集剤の水への溶解性の観点から好ましくは0.001〜1、さらに好ましくは0.01〜0.5である。
本発明における(A)の製造方法としては、水溶液重合法、逆相乳化重合法、逆相懸濁重合法等が挙げられる。
水溶液重合法としては、公知の方法、例えば、上記モノマーの水溶液を外部からの熱の出入りがない容器中に入れ断熱重合させる方法(特公昭59−40843号公報等)、該モノマーの水溶液を外部から温度調整可能な容器中で定温重合させる方法(特開平3−189000号公報等)が適用できる。
逆相乳化重合法としては、公知の方法、例えば、上記モノマーの水溶液を界面活性剤を用いて、油中水型エマルションを形成し重合させる方法(特許第2676483号公報、特開平9−208802号公報等)等が適用できる。
これらの重合法のうち、後述する本発明における比(Mw/Mn)制御の観点から好ましいのは逆相懸濁重合法である。
該逆相懸濁重合法としては、例えば次の方法が挙げられる。すなわち、疎水性分散媒(b)および分散剤(c)を重合槽に仕込み、必要に応じて加熱しながら所定の重合温度(通常20〜100℃、好ましくは30〜80℃)に調整した後、槽内を不活性ガス(例えば窒素)で十分置換する。一方、水溶性不飽和モノマー(a)、ラジカル重合開始剤(d)、および必要により水不溶性不飽和モノマー(x)および/または架橋性モノマー(y)を加えたモノマー水溶液を調製し、不活性ガスで十分置換した後、撹拌下で重合槽内に投入し、懸濁させながら重合させる。水溶液の投入方法としては、一括投入または滴下のいずれでもよい。また、その際モノマー水溶液としては、(a)、(d)および必要により加える(x)および/または(y)の均一水溶液としてもよいし、別々の水溶液とした上で、滴下直前で混合してもよいし、別々に同時滴下してもよい。モノマー水溶液等を不活性ガスで置換する方法としては、モノマー水溶液等に不活性ガスをバブリング供給する方法、滴下ライン中でスタティックミキサー等によりブレンドする方法などが挙げられ、重合の均一性の観点からスタティックミキサーでブレンドする方法が好ましい。
本発明における疎水性分散媒(b)は、水に対する溶解度(20℃)が1g/水100g未満である分散媒を意味する。
(b)としては、炭化水素[脂肪族(C5〜12、例えばn−ヘキサン、n−ヘプタン、n−オクタン、n−ノナン、n−デカン)、脂環含有(C5〜12、例えばシクロペンタン、シクロヘキサン、シクロヘプタン、メチルシクロヘキサン、シクロオクタン、デカリン)および芳香環含有(C6〜12、例えばベンゼン、トルエン、キシレン、エチルベンゼン)等]、ケトン[脂肪族(C3〜10、例えばメチル−n−プロピルケトン、ジエチルケトン、メチルイソブチルケトン)、脂環含有(C5〜10、例えばシクロペンタノン、シクロヘキサノン)および芳香環含有(C8〜13、例えばアセトフェノン、ベンゾフェノン)等]、エーテル[脂肪族(C4〜8、例えばジ−n−プロピルエーテル、ジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル)、環状エーテル(C4〜18、例えばテトラヒドロピリン)および芳香環含有エーテル(C7〜12、例えばアニソール)等]、エステル[脂肪族エステル(C3〜10、例えば酢酸n−ブチル)、脂環含有エステル(C7〜12、例えば酢酸シクロヘキシル、シクロヘキサンカルボン酸メチル)、芳香環含有エステル(C8〜13、例えば安息香酸メチル、安息香酸エチル、安息香酸n−ブチル、酢酸ベンジル、ジメチルフタレート、ジエチルフタレート、ジ−n−ブチルフタレート)等]、およびこれらの混合物が挙げられる。
これらのうち、製造時の取り扱い、および重合時の温度制御の観点から、好ましいのは脂肪族および脂環含有炭化水素、さらに好ましいのはn−ヘキサン、n−ヘプタン、n−オクタン、n−ノナン、n−デカン、シクロヘキサンおよびメチルシクロヘキサンである。
本発明における分散剤(c)としては、分散粒子の粒子径制御を目的とする、種々の油溶性高分子物質が挙げられる。
(c)としては、アルケンとα,β−不飽和多価カルボン酸(無水物)との共重合体またはその誘導体[例えば1−オレフィン(C11〜100)/(無水)マレイン酸共重合体]、長鎖アルキル基含有(メタ)アクリレート(共)重合物、変性(アミノ、カルボキシ、エポキシ、ヒドロキシおよびメルカプト変性等)シリコーン、セルロースエーテル(例えばエチルセルロース、エチルヒドロキシエチルセルロース)、ショ糖脂肪酸エステル(C22〜120、例えばショ糖ジステアレート、ショ糖トリステアレート)、ソルビタン脂肪酸エステル(C16〜120、例えばソルビタンモノステアレート、ソルビタンモノオレート)、(ポリ)グリセリン脂肪酸エステル(C12〜120、例えばグリセリンモノステアレート)等が挙げられる。
これらのうち、製造時における装置への重合粒子付着防止の観点から好ましいのはショ糖脂肪酸エステル、ソルビタン脂肪酸エステルである。
(c)の使用量は、疎水性分散媒(b)の重量に基づいて、通常20%以下、(A)の分散粒子の安定性および粒子径制御の観点から好ましくは0.01〜10%、さらに好ましくは0.05〜5%である。
ラジカル重合開始剤(d)としては、種々のもの、例えばアゾ化合物〔水溶性のもの[アゾビスアミジノプロパン(塩)、アゾビスシアノバレリン酸(塩)等]および油溶性のもの[アゾビスシアノバレロニトリル、アゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル等]〕および過酸化物〔水溶性のもの[過酢酸、t−ブチルパーオキサイド、過酸化水素、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等]および油溶性のもの[ベンゾイルパーオキシド、クメンヒドロキシパーオキシド等]〕が挙げられる。なお、上記アゾ化合物における塩としては、無機酸(塩酸、硫酸、リン酸、硝酸等)塩およびアルカリ金属(リチウム、ナトリウム、カリウム等)塩、アンモニウム塩等が挙げられる。
上記過酸化物は還元剤と組み合わせてレドックス開始剤として用いてもよく、還元剤としては重亜硫酸塩(重亜硫酸ナトリウム、重亜硫酸カリウム、重亜硫酸アンモニウム等)
、還元性金属塩[硫酸鉄(II)等]、遷移金属塩のアミン錯体[塩化コバルト(III)のペンタメチレンヘキサミン錯体、塩化銅(II)のジエチレントリアミン錯体等]、有機性還元剤〔アスコルビン酸、3級アミン[ジメチルアミノ安息香酸(塩)、ジメチルアミノエタノール等]等〕が挙げられる。
また、アゾ化合物、過酸化物およびレドックス開始剤はそれぞれ単独で用いてもよいし、2種以上を併用してもいずれでもよい。
(d)は、通常上記分散相(水溶液)に存在させるが、分散相(水溶液)および/または連続相(疎水性分散媒)のいずれに存在させてもよい。
(d)の使用量は、最適な分子量を得るとの観点から、(A)を構成するモノマーの全重量に基づいて、好ましい下限は0.001%、さらに好ましくは0.005%、とくに好ましくは0.01%、最も好ましくは0.02%、好ましい上限は1%、さらに好ましくは0.5%、とくに好ましくは0.1%、最も好ましくは0.05%である。
本発明における分散相中のモノマーの合計濃度(以下、分散相濃度という場合がある。)は、分散相の重量に基づいて、生産性の観点から好ましくは20%以上、さらに好ましくは25%以上、とくに好ましくは30%以上、装置への重合粒子付着防止の観点から好ましくは90%以下、さらに好ましくは85%以下、とくに好ましくは80%以下である。
また、必要によりラジカル重合用連鎖移動剤(f)を使用してもよい。(f)としては、特に限定なく種々のもの、例えば、分子内に1個また2個以上のOH基を有する化合物[1価アルコール(C1〜60、例えばメタノール、エタノール、n−およびi−プロパノール)、多価(2〜3またはそれ以上)アルコール(C2〜60、例えばEG、PG)、高分子ポリオール(GMn200〜10,000、例えばPEG、オキシエチレン/オキシプロピレンのブロックおよび/またはランダム共重合体]、分子内に1個または2個以上のアミノ基を有する化合物[C0〜60、例えばアンモニア、メチルアミン、ジメチルアミン、トリエチルアミン、n−およびi−プロパノールアミン]、次亜リン酸塩(次亜リン酸ナトリウム等)、分子内に1個または2個以上のチオール基を有する化合物(後述)等が挙げられる。
これらのうち、分子量制御の観点から好ましいのは分子内に1個または2個以上のチオール基を有する化合物である。
分子内に1個または2個以上のチオール基を有する化合物としては、以下のもの、これらの塩[アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン(C1〜20、例えばメチルアミン、エタノールアミン)塩、無機酸(塩酸、硫酸、リン酸、硝酸等)塩等]、およびこれらの混合物が挙げられる。
(1)1価チオール
脂肪族チオール(C1〜20、例えばメタンチオール、エタンチオール、プロパンチオール、n−オクタンチオール、n−ドデカンチオール、ヘキサデカンチオール、n−オクタデカンチオール、2−メルカプトエタノール、メルカプト酢酸、3−メルカプトプロピオン酸、1−チオグリセロール、チオグリコール酸モノエタノールアミン、チオマレイン酸、メルカプトコハク酸、システイン、システアミン)、脂環含有チオール(C5〜20、例えばシクロペンタンチオール、シクロヘキサンチオール)、芳香環含有チオール(C6〜12、例えばベンゼンチオール、チオサリチル酸、チオクレゾール、チオキシレノール、チオナフトール)および芳香脂肪族チオール(C7〜20、例えばα−トルエンチオール)が挙げられる。
(2)多価チオール
ジチオール[脂肪族ジチオール(C2〜40、例えばエタンジチオール、ジエチレンジチオール、トリエチレンジチオール、n−、i−およびsec−プロパンジチオール、1,3−および1,4−ブタンジチオール、1,6−ヘキサンジチオール、ネオペンタンジチオール)、脂環式ジチオール(C5〜20、例えばシクロペンタンジチオール、シクロヘキサンジチオール)、芳香族ジチオール(C6〜16、例えばベンゼンジチオール、ビフェニルジチオール)および芳香脂肪族ジチオール(C8〜20、例えばキシレンジチオール)が挙げられる。
(f)の使用量は、本発明の高分子凝集剤の最適な分子量を得るとの観点から、(a)、(x)および(y)の合計重量に基づいて、好ましい下限は0.0001%、さらに好ましくは0.001%、とくに好ましくは0.01%、最も好ましくは0.05%、好ましい上限は10%、さらに好ましくは5%、とくに好ましくは3%、最も好ましくは1%である。
本発明におけるモノマー水溶液のpHは、特に限定されないが、高分子量化の観点から、好ましい下限は2、さらに好ましくは2.5、とくに好ましくは3、加水分解防止の観点から好ましい上限は8、さらに好ましくは7、とくに好ましくは6.5である。pH調整のために用いられるpH調整剤としては特に限定はなく、モノマー水溶液がアルカリ性の場合は無機酸(硫酸、塩酸、リン酸、硝酸等)、無機固体酸性物質(酸性リン酸ソーダ、酸性ぼう硝、塩化アンモン、硫安、重硫安、スルファミン酸等)および有機酸(C2〜20、例えばシュウ酸、こはく酸、リンゴ酸)が挙げられ、モノマー水溶液が酸性の場合は無機アルカリ性物質(水酸化ナトリウム、水酸化カリウム、アンモニア等)および有機アルカリ性物質(グアニジン等)が挙げられる。
なお、ここにおけるpHは、モノマー水溶液の原液をpHメーター[例えば、商品名「LABpHメーターM−12」、(株)堀場製作所製]を用いて室温(20℃)で測定される値である。
逆相懸濁重合の重合温度(℃)は、重合中でのモノマー濃度の変化防止の観点から、疎水性分散媒の沸点未満にすることが好ましい。分散媒の沸点以上になると、分散媒濃度が変化するので均一な粒度にすることが困難になる。また、水が共沸する場合は、系中のモノマー濃度が変化してMw/Mnが大きくなるので好ましくない。重合温度としては、重合速度の観点から、好ましい下限は10、さらに好ましくは30、とくに好ましくは40、最も好ましくは50、分子量および分散粒子安定性の観点から好ましい上限は95、さらに好ましくは80、とくに好ましくは70、最も好ましくは60である。また、重合中は所定重合温度を一定(例えば、所定重合温度±5℃)に保つように、適宜加熱、冷却して調節することが好ましい。
重合温度を一定に保つために、予め所定重合温度に温調した分散媒に撹拌下でモノマーを随時滴下してもよい。その際の滴下時間は、モノマー濃度、および重合反応発熱量により異なるが、通常0.5〜20時間、好ましくは1〜10時間である。
重合反応の終了は、重合による発熱がなくなった点で確認できるが、重合時間は、通常発熱により重合開始を確認した時点から1〜24時間、重合を完結し、残存モノマーを減少させるとの観点から好ましい下限は2時間、さらに好ましくは3時間、工業上の観点か
ら好ましい上限は12時間、さらに好ましくは10時間である。モノマーを随時滴下する場合は滴下終了後から上記時間重合することが好ましい。
上記のモノマー濃度、重合温度、重合時間は、モノマー組成、重合法、開始剤種類などによって適宜調整することができる。
重合時の圧力[kPa(絶対圧力)、以下数値のみを示す。]は、特に限定されないが、通常大気圧下で行う。重合時のモノマー濃度が変化しない観点から、好ましくは重合温度で疎水性分散媒(b)が沸騰しない圧力および(b)と水とが共沸しない圧力が好ましく、特に低沸点溶媒を使用する際には、圧力を高くして沸点未満にすることが好ましい。 圧力の好ましい下限は50、さらに好ましくは70、とくに好ましくは90、好ましい上限は1,000、さらに好ましくは500、とくに好ましくは300である。
また、本発明における(共)重合体(A)は、さらに変性反応させてもよい。ポリマー変性方法としては、例えば、水溶性不飽和モノマー(a)として加水分解性官能基を分子内に有するアクリルアミドを使用した場合、重合時または重合後に苛性アルカリ(水酸化ナトリウム、水酸化カリウム等)または炭酸アルカリ(炭酸ナトリウム、炭酸カリウム等)を添加して、(a)のアミド基を部分的に加水分解してカルボキシル基を導入する方法(特開昭56−16505号公報等);ホルムアルデヒド、ジアルキルアミン(C1〜12)およびハロゲン(塩素、臭素、ヨウ素等)化アルキル(C1〜12)(メチルクロライド、エチルクロライド等)を加え、マンニッヒ反応によって部分的にカチオン性基を導入する方法;アクリロニトリル等のニトリル基と、ビニルホルムアミドなどの加水分解により得られるアミノ基との閉環反応により分子内にアミジン環を形成させる方法(特開平5−192513号公報等);および重合後に前記の架橋性モノマー(y)を添加して架橋反応させる方法(特許3305688号公報等)等が挙げられる。
本発明における(A)の固有粘度[η](1N−NaNO3水溶液中30℃での測定値、単位はdl/g。以下同じ。)は1〜40、好ましくは4〜30、さらに好ましくは6〜25、とくに好ましくは8〜20、最も好ましくは9.5〜18である。固有粘度が1未満では凝集性能が悪くなり、40を超えると凝集速度が低下する。
本発明における(A)の重量平均分子量(Mw)は、固有粘度から換算して求められるもので、ポリアクリルアミド系高分子の粘度式:[η]=3.73×10-4Mw0.66[ラジカル重合ハンドブック、(株)エヌ・ティー・エス刊、558頁(1999)]からMwを求めることができる。該式によれば(A)が非イオン性のポリアクリルアミドだけでなく、カチオン性、アニオン性、両性高分子についてもMwを求めることができる。
(A)の数平均分子量(Mn)は、メンブラン式浸透圧測定法により求められるもので、理想溶液の場合、ファントホッフの式:πV=wRT/M(π:浸透圧、V:体積、w:質量、R:気体定数、T:絶対温度、M:数平均分子量)より、Cm(体積モル濃度)=w/(MV)と置き換えると、π=CmRTとなる。ここで、本発明のような高分子量のものを測定する場合、補正する必要があり、補正式π=CmRT+αCm 2より、π/Cm=RT+αCm となる。(α:濃度に依存しない定数)
ここで、濃度Cを容量当たりのg数で表すとき、Cm=C/Mを代入すればよいので、上式はπ/C=RT/M+(α/M2)Cとなる。
濃度を変えて浸透圧を測定することにより、グラフにCとπ/CをそれぞれX軸、Y軸としてプロットした場合にその延長線がY軸(π/C)を横切る点を求めれば、その高さがRT/Mに相当するため、そこから無限希釈溶液における(A)のM、すなわち本発明におけるMnを求めることができる。通常測定温度は37℃、気体定数Rは8.31Pa・m3/mol・Kを使用する。
本発明における(A)の分子量分布を表すMw/Mnは、1〜50、好ましくは5〜45、さらに好ましくは10〜40、とくに好ましくは12〜35である。Mw/Mnが1未満には原理上なり得ず、50を超えると凝集性能が悪くなる。
本発明におけるMw/Mnは、重合温度、乾燥温度のコントロール、重合時のモノマー濃度を適正な濃度で一定に保つこと、具体的には重合温度および圧力を調整して沸点未満の疎水性分散媒の存在下で逆相懸濁重合させることにより低減することができ、これにより上記範囲のMw/Mnとすることができる。
本発明の高分子凝集剤は、製造直後は含水ゲル粒子の状態で得られるが、さらに脱水することによって固形粒子状の高分子凝集剤を得ることができる。
脱水方法としては、特に限定されないが、重合後、熱風乾燥、赤外線乾燥、間接加熱乾燥(真空乾燥、撹拌型の乾燥機、ドラムドライヤー)等の乾燥方法により脱水する方法、疎水性分散媒中で共沸させて減圧脱水させる方法等が考えられる。またこれらの方法は任意に併用することができる。局部加熱による架橋防止の観点から真空乾燥および疎水性分散媒中で共沸させ減圧脱水させる方法が好ましい。乾燥温度(℃)としては、通常20〜200、乾燥速度の観点から好ましい下限は30、さらに好ましくは40、架橋防止の観点から好ましい上限は150、さらに好ましくは120である。
本発明の高分子凝集剤粒子の重量平均粒径(μm)は、使用時における発塵防止の観点から、好ましい下限は150、さらに好ましくは200、とくに好ましくは250、最も好ましくは300、水への溶解性の観点から好ましい上限は2,000、さらに好ましくは1,700、とくに好ましくは1,400、最も好ましくは1,000である。
該重量平均粒径(μm)は、ロータップ試験篩振とう機およびJIS Z8801−2000に規定された標準篩を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンパニー刊、1984、21頁)に記載の方法で求めることができる。
即ち、適当な目開きの上記標準篩、例えば目開きが2、1.7、1.4、1.18、11.0mm、850、710、500、425、355、300、250、180および150μmの標準篩上にそれぞれ該高分子凝集剤粒子50.0gをとり、ロータップ試験篩振とう機[例えば、(株)飯田製作所製]で1分間振とうし、各篩上に残った試料を計量する。結果を対数確率紙にプロットし、重量が50%の時の粒径(メジアン径)を重量平均粒径とする。
下水汚泥においては、懸濁粒子の大きさが比較的大きく、また水中における懸濁粒子表面がマイナス荷電を有していることから、脱水用高分子凝集剤としてはカチオン性または両性高分子凝集剤、およびこれらの混合物が好ましい。
廃水においては、溶解性有機物などを処理するために無機凝集剤を添加することが多く、その場合、懸濁粒子表面は無機凝集剤で覆われているためプラス荷電を有していることから、凝集沈殿処理用高分子凝集剤としては、アニオン性またはノニオン性、およびこれらの混合物が好ましい。
石油の3次回収用としては、比較的大きな分子量を有するものが使用され、アニオン性またはノニオン性、およびこれらの混合物が好ましい。
製紙工程での濾水歩留向上用または紙力増強用としては、カチオン性または両性高分子凝集剤、およびこれらの混合物が好ましい。
ここで、カチオン性高分子凝集剤とは、分子内にカチオン性基を有する高分子凝集剤、すなわち水に溶解した際にカチオン性を示す高分子凝集剤であり、また両性高分子凝集剤とは、分子内にカチオン性基およびアニオン性基を有する高分子凝集剤、すなわち水に溶解した際にカチオン性およびアニオン性を示す高分子凝集剤である。これらの高分子凝集剤の水中におけるカチオン性またはアニオン性の評価方法については、コロイド当量値(meq/g)として求めることができる。すなわち、カチオン性凝集剤中のカチオン性基当量値はカチオンコロイド当量値として求めることができ、両性凝集剤中のカチオン性基当量値およびアニオン性基当量値は、それぞれカチオンコロイド当量値、アニオンコロイド当量値として求めることができる。
本発明の高分子凝集剤がカチオン性高分子凝集剤の場合、該凝集剤中のカチオンコロイド当量値(meq/g)は、凝集性能の観点から好ましい下限は0.1、より好ましくは0.5、さらに好ましくは1.0、とくに好ましくは1.5、最も好ましくは2.0、凝集性能の観点から好ましい上限は7.0、より好ましくは6.0、さらに好ましくは5.5、とくに好ましくは5.2、最も好ましくは5.0である。
また本発明の高分子凝集剤が両性高分子凝集剤の場合、該凝集剤中のカチオンコロイド当量値(meq/g)は、凝集性能の観点から好ましい下限は0.1、より好ましくは0.5、さらに好ましくは1.0、とくに好ましくは1.5、最も好ましくは2.0、凝集
性能の観点から好ましい上限は7.0、より好ましくは6.0、さらに好ましくは5.5、とくに好ましくは5.2、最も好ましくは5.0であり;アニオンコロイド当量値(meq/g)は、凝集性能の観点から好ましい下限は−13.0、より好ましくは−10.0、さらに好ましくは−8.0、とくに好ましくは−5.0、最も好ましくは−3.0、凝集性能の観点から好ましい上限は−0.05、より好ましくは−0.1、さらに好ましくは−0.3、とくに好ましくは−0.5、最も好ましくは−1.0である。
コロイド当量値は以下に示すコロイド滴定法により求めることができる。なお、以降の測定は室温(約20℃)下で行う。
(1)測定試料(高分子凝集剤の50ppm水溶液)の調製
試料0.2g(固形分含量換算したもの)を精秤し、200mlの三角フラスコにとり、全体の重量(試料とイオン交換水の合計重量)が100gとなるようにイオン交換水を加えた後、マグネチックスターラー(長さ40mm、直径5mmの円筒状マグネット、回転数1,000rpm)で、3時間撹拌して完全に溶解させ、0.2重量%の高分子凝集剤溶液を調製する。500mlのビーカーに該調製溶液10mlをとり、全体の重量(溶液10mlとイオン交換水の合計重量)が400gとなるようにイオン交換水を加え、再度マグネチックスターラー(1,000〜1,200rpm)で、30分間撹拌して、均一な測定試料とする。
なお、高分子凝集剤の固形分含量は、試料約1.0gをシャーレ(直径100mm、深さ10mm)に秤量(W1)して、循風乾燥機中、105±5℃で90分間乾燥させた後の残存重量を(W2)として、次式から算出した値である。

固形分含量(重量%)=(W2)×100/(W1)

(2)カチオンコロイド当量値の測定
測定試料100gを200mlのコニカルビーカーにとり、マグネチックスターラー(500rpm)で撹拌しながら徐々に0.5重量%硫酸水溶液を加え、pH3に調整する。次にトルイジンブルー指示薬(TB指示薬)を2〜3滴加え、N/400ポリビニル硫酸カリウム(N/400PVSK)試薬で滴定する。滴定速度は2ml/分とし、測定試料が青から赤紫色に変色し、赤紫色が30秒間保持される時点を終点とする。
(3)アニオンコロイド当量値の測定
測定試料100gを200mlのコニカルビーカーにとり、マグネチックスターラー(500rpm)で撹拌しながら、N/10水酸化ナトリウム水溶液0.5mlを加え、さらにN/200メチルグリコールキトサン水溶液5mlを加えた後、5分間撹拌する(その時のpH約10.5)。TB指示薬を2〜3滴加え、上記(2)と同様にして滴定する。
(4)空試験
測定試料の代わりにイオン交換水100gを用いる以外は(2)および(3)と同様の操作を行う。
(5)計算方法

カチオンまたはアニオンコロイド当量値(meq/g)=(1/2)×(試料の滴定量
−空試験の滴定量)×(N/400PVSKの力価)
本発明の高分子凝集剤は必要に応じ、本発明の効果を阻害しない範囲で、消泡剤(B1)、キレート化剤(B2)、pH調整剤(B3)、界面活性剤(B4)、ブロッキング防止剤(B5)、酸化防止剤(B6)、紫外線吸収剤(B7)および防腐剤(B8)からなる群から選ばれる添加剤(B)を併用することができる。
消泡剤(B1)としては、シリコーン化合物[GMn100〜100,000、例えばジメチルポリシロキサン]、鉱物油(スピンドル油、ケロシン等)、金属石ケン(C12〜22、例えばステアリン酸カルシウム)等;
キレート化剤(B2)としては、アミノカルボン酸(C6〜24、例えばエチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸、ヒドロキシエチルエチレンジアミントリ酢酸、ニトリロトリ酢酸およびトリエチレンテトラミンヘキサ酢酸)、多価カルボン酸[C4以上かつGMn10,000以下、例えばマレイン酸、ポリアクリル酸(GMn1,000〜10,000)およびイソアミレン/マレイン酸共重合体(GMn1,000〜10,000)]、ヒドロキシカルボン酸(C3〜10、例えばクエン酸、グルコン酸、乳酸およびリンゴ酸)、縮合リン酸(トリポリリン酸、トリメタリン酸等)およびこれらの塩[アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アルキルアミン(C1〜20、例えばメチルアミン、エチルアミン、オクチルアミン等)塩およびアルカノールアミン(C2〜12、例えばモノ−、ジ−およびトリエタノールアミン等)塩]等;
pH調整剤(B3)としては、苛性アルカリ(苛性ソーダ、苛性カリ等)、アミン(C1〜20、例えばメチルアミン、エチルアミン、モノ−、ジ−およびトリエタノールアミン)、無機酸(塩)〔無機酸(塩酸、硫酸、硝酸、リン酸、スルファミン酸、炭酸等)、およびこれらの金属[アルカリ金属、アルカリ土類金属等]塩(炭酸ナトリウム、炭酸カリウム、硫酸ナトリウム、硫酸水素ナトリウム、リン酸1ナトリウム等)およびアンモニウム塩(炭酸アンモン、硫酸アンモン等)等〕、有機酸(塩)〔有機酸[カルボン酸(C2〜15、例えば酢酸、クエン酸)、スルホン酸(C1〜15、例えばメタンスルホン酸、エタンスルホン酸、p−トルエンスルホン酸)およびフェノール]、およびこれらの金属(上記に同じ)塩(酢酸ソーダおよび乳酸ソーダ)およびアンモニウム塩(酢酸アンモニウム、乳酸アンモニウム等)等〕等;
界面活性剤(B4)としては、米国特許第4331447号明細書記載の界面活性剤、例えばポリオキシエチレンノニルフェニルエーテルおよびジオクチルスルホコハク酸ソーダ;ブロッキング防止剤(B5)としては、ポリエーテル変性シリコーンオイル(GMn100〜3,000)、例えばポリオキシエチレン変性シリコーンおよびポリオキシエチレン/ポリオキシプロピレン変性シリコーン];
酸化防止剤(B6)としては、フェノール化合物[ハイドロキノン、メトキシハイドロキノン、カテコール、2,6−ジ−t−ブチル−p−クレゾール(BHT)および2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)等]、含硫化合物〔チオ尿素、テトラメチルチウラムジサルファイド、ジメチルジチオカルバミン酸およびその塩[例えば金属(上記に同じ)塩およびアンモニウム塩等]、亜硫酸ナトリウム、チオ硫酸ナトリウム、2−メルカプトベンゾチアゾールおよびその塩(上記に同じ)、ジラウリル3,3’−チオジプロピオネート(DLTDP)およびジステアリル3,3’−チオジプロピオネート(DSTDP)等〕、含リン化合物[トリフェニルホスファイト、トリエチルホスファイト、亜リン酸ナトリウム、次亜リン酸ナトリウム、トリフェニルホスファイト(TPP)およびトリイソデシルホスファイト(TDP)等]および含窒素化合物[アミン(オクチル化ジフェニルアミン、N−n−ブチル−p−アミノフェノールおよびN,N−ジイソプロピル−p−フェニレンジアミン等)、尿素、グアニジンおよびグアニジンの無機酸(上記に同じ)塩]等;
紫外線吸収剤(B7)としては、ベンゾフェノン化合物(2−ヒドロキシベンゾフェノン、2,4−ジヒドロキシベンゾフェノン等)、サリチレート化合物(フェニルサリチレート、2,4−ジ−t−ブチルフェニル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート等)、ベンゾトリアゾール化合物[(2’−ヒドロキシフェニル)ベンゾトリアゾール、(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール等]およびア
クレート[エチル−2−シアノ−3,3−ジフェニルアクリレート、メチル−2−カルボメトキシ−3−(パラメトキシベンジル)アクリレート等]等;
防腐剤(B8)としては、安息香酸、パラオキシ安息香酸エステルおよびソルビン酸等が挙げられる。
上記(B)は、重合前のモノマー水溶液中に予め添加しても、製造後のポリマー中に添加してもよい。(B)全体の使用量は、モノマーまたはポリマー重量に基づいて、通常30%以下、凝集性能の観点から好ましくは0〜10%である。
(B1)〜(B8)の各添加剤の使用量は、上記と同様の重量に基づいて、(B1)は通常5%以下、好ましくは1〜3%、(B2)は通常20%以下、好ましくは2〜10%、(B3)は通常10%以下、好ましくは1〜5%、(B4)および(B5)はそれぞれ通常5%以下、好ましくは1〜3%、(B6)、(B7)および(B8)はそれぞれ通常5%以下、好ましくは0.1〜2%である。
本発明の高分子凝集剤を下水汚泥、廃水等(以下、下水汚泥等と略記)に添加する方法としては、特に限定はなく、例えば特許第1311340号公報または特許第2038341号公報等に記載の方法が挙げられる。
本発明の高分子凝集剤の使用量は、下水汚泥等の種類、懸濁粒子の含有量、高分子凝集剤の分子量等により異なるが、特に限定はなく、下水汚泥等中の蒸発残留物重量(以下、TSと略記)に基づいて、通常0.01〜10%、凝集性能の観点から好ましい下限は0.1%、さらに好ましくは0.5%、とくに好ましくは1%、処理費用の観点から好ましい上限は5%、さらに好ましくは3%、とくに好ましくは2%である。
本発明の高分子凝集剤の使用方法としては、十分な凝集性能の観点から水溶液にした後に下水汚泥等に添加するのが好ましいが、高分子凝集剤を固体の状態で直接下水汚泥等に添加することもできる。高分子凝集剤を水溶液として用いる場合の濃度は、取り扱い上および溶解速度の観点から好ましくは0.05〜1重量%である。
高分子凝集剤の溶解方法としては、特に限定されることはなく、例えば予め秤り取った水をジャーテスターなどの撹拌装置を用いて撹拌しながら所定量の高分子凝集剤を徐々に加え、数時間(約2〜4時間程度)かけて溶解させる方法等が採用できる。粉末状の高分子凝集剤を水に溶解させる際に、所定量の高分子凝集剤を一気に加える方法はままこを生じ、完全に水に溶解させることが困難となることから好ましくない。
本発明の高分子凝集剤を石油の3次回収用として使用する際には、通常水溶液として使用される。該ポリマー水溶液の濃度(重量%)は、通常0.001〜3%、増粘効果および送液可能な粘度の観点から好ましくは0.005〜1%、さらに好ましくは0.01〜0.5%である。
本発明の高分子凝集剤を下水汚泥等に適用する際、下水汚泥等が有機性の汚泥や嫌気性菌処理汚泥である場合は、汚泥粒子の荷電中和の観点から無機および/または有機凝結剤を併用するのが好ましい。
無機凝結剤としては、硫酸バンド、ポリ塩化アルミニウム、塩化第二鉄、硫酸第二鉄、ポリ硫酸鉄、消石灰等;有機凝結剤としては、アニリン−ホルムアルデヒド重縮合物塩酸塩、ポリビニルベンジルトリメチルアンモニウムクロライド、ジメチルジ(メタ)アリルアンモニウムクロライド、(メタ)アリルアミンまたはジ(メタ)アリルアミン−マレイン酸共重合体、(メタ)アリルアミンまたはジ(メタ)アリルアミン−シトラコン酸共重合体、(メタ)アリルアミンまたはジ(メタ)アリルアミン−イタコン酸、(メタ)アリルアミンまたはジ(メタ)アリルアミン−フマル酸共重合体等が挙げられる。
無機および/または有機凝結剤を併用する場合は、本発明の高分子凝集剤に予めこれらを添加した混合物で下水汚泥等を処理するか、下水汚泥等に予め無機凝結剤および/または有機凝結剤を添加して一次凝集させた後、本発明の高分子凝集剤を添加して処理するかいずれでもよいが、フロックの強度の観点から好ましいのは後者の方法である。
無機凝結剤および/または有機凝結剤を併用する場合の使用量は、下水汚泥等の種類、懸濁粒子の大きさ、用いる凝結剤の種類などによって異なるが、特に限定はなく、下水汚泥等中のTSに基づいて、無機凝結剤では通常20%以下、凝結性能の観点から好ましい下限は0.5%、さらに好ましくは1%、とくに好ましくは1.5%、凝結性能の観点から好ましい上限は10%、さらに好ましくは5%、とくに好ましくは3%であり、有機凝結剤では通常1%以下、凝結性能の観点から好ましい下限は0.01%、さらに好ましくは0.025%、とくに好ましくは0.05%、凝結性能の観点から好ましい上限は0.5%、さらに好ましくは0.2%、とくに好ましくは0.15%である。
本発明の高分子凝集剤の添加の際には、下水汚泥等のpHを予め調整しておいてもよい。pHの調整範囲は通常3〜8、加水分解防止の観点から好ましい下限は3.5、さらに好ましくは4、とくに好ましくは4.5、溶解性の観点から好ましい上限は7、さらに好ましくは6、とくに好ましくは5.5である。
pHの調整方法としては、特に限定されることはなく、無機酸(硫酸、塩酸、リン酸、硝酸等)等の酸性物質や苛性アルカリ(水酸化ナトリウム、水酸化カリウム等)等のアルカリ性物質を用いる方法が挙げられる。また、前記の無機または有機凝結剤を下水汚泥等に予め加えることで、上記pHに調整することもできる。
また、本発明の高分子凝集剤を下水汚泥等に添加して形成されたフロックの脱水方法(固液分離法)としては、遠心脱水、ベルトプレス脱水、フィルタープレス脱水およびキャピラリー脱水等の種々の脱水法が適用できる。これらのうち、本発明の高分子凝集剤の特異的な凝集性能である高フロック強度の観点から好ましいのは、遠心脱水、ベルトプレス脱水およびフィルタープレス脱水である。
以下実施例をもって本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例中の部は重量部、%は重量%を表す。
高分子凝集剤の固有粘度[η]、固形分含量および重量平均粒径は、前記の方法によって測定し、その他の評価項目は下記のとおりである。
<水不溶解分量(重量%)>
1Lのビーカーに0.1重量%の塩化ナトリウム水溶液500gを入れ、該水溶液中に2.5gの試料を加えて、長さ50mm、幅20mmの撹拌翼を取り付けたモーターにて2時間撹拌し溶解させる。予め秤量した100μmのメッシュで溶解液をろ過する。残渣をメッシュとともにアルミ皿にのせて、120℃の循風乾燥機で2時間乾燥させる。下記の計算式で求めた値を水不溶解分量(重量%)とする。

水不溶解分量= 100×[乾燥後の残渣重量(g)]/[溶解時の試料重量(g)]
なお、下水汚泥等中のTS、浮遊物質(SS)、有機分(強熱減量)は、「下水試験方法」(日本下水道協会、1984年度版)記載の分析方法に準じて行った。また、本実施例中のフロック粒径、ろ液量、ろ布剥離性、ケーキ含水率および凝沈試験は以下の方法に従って性能評価した。
<フロック粒径>
ジャーテスター[宮本理研工業(株)製、形式JMD−6HS−A、以下同じ。]に板状の塩ビ製撹拌羽根(直径5cm、高さ2cm、厚さ0.2cm)2枚を十字になるように上下に連続して撹拌棒に取り付け、汚泥200mlを300mlのビーカーに取り、ジャーテスターにセットする。ジャーテスターの回転数を120rpmにし、徐々に汚泥を撹拌しながら、所定の濃度の高分子凝集剤の水溶液を所定の方法で添加し、30秒間撹拌した後、撹拌を止めフロックの大きさを目視にて観察する[回転数120rpmでのフロック粒径(単位mm)を表2に示す]。
続いて回転数を300rpmにセットし、さらに30秒間撹拌した後、撹拌を止めフロックの大きさを再度目視にて観察する[回転数300rpmでのフロック粒径(単位mm)を表2に示す]。
<ろ液量>
T−1189のナイロン製ろ布[敷島カンバス(株)製、円形状、直径9cm]、ヌッチェ漏斗、300mlが測れるメスシリンダーをセットし、上記フロック粒径試験後の汚泥を一気に投入して濾過し、ストップウォッチを用いて投入直後から60秒後のろ液量を測定する。
<ろ布剥離性>
濾過した汚泥の一部をスパーテルで取り出し、プレスフィルター試験機を用いて脱水試験(2kg/cm2、60秒)を行い、試験後のろ布からの脱水ケーキの剥離性を下記の
基準に従って評価する。

◎:非常に剥がれやすい(ろ布付着物ほとんどなし)
○:剥がれやすい (わずかにろ布付着物あり)
△:多少剥がれにくい (ろ布付着物あり、わずかにろ布内部まで付着)
×:剥がれにくい (ろ布内部まで付着)
<ケーキ含水率>
上記ろ布剥離性試験後の脱水ケーキ約3gをシャーレに秤量(W3)して、循風乾燥機中で完全に水分が蒸発するまで(例えば、105±5℃で8時間)乾燥させた後、シャーレ上に残った乾燥ケーキの重量を(W4)として、次式からケーキ含水率を算出する。

ケーキ含水率(重量%)=[(W3)−(W4)]×100/(W3)

<凝沈試験(沈降速度、濁度、COD)>
廃水300mLを栓付き300mLメスシリンダー(沈降管)に入れ、これに所定の濃度の高分子凝集剤の水溶液を室温にて所定量添加する 。次にこの沈降管を10回転倒させて廃水と高分子凝集剤の水溶液とを混合させ、フロックを形成させた後、沈降管を静置してフロック層の界面の沈降速度(単位cm/s)を測定する。また、そのときの処理水上澄み液の濁度を目視で判定(評価基準は下記)、JIS K−0102(1998年度版)に記載のCODMn分析方法に準じてCODを測定する。
(濁度の評価基準)

○:濁りなし
△:やや濁り大
×:濁り大
実施例1
N,N−ジメチルアミノエチルアクリレートのメチルクロライド塩の70%水溶液839部、アクリルアミド50%水溶液108部、イオン交換水333部、メルカプト酢酸0.33部の混合液を室温(20〜25℃)で調製した。さらに硫酸を用いてモノマー水溶液のpH(20℃)をpHメーターで監視しながら3.0に調整した。得られた混合液を十分に窒素(純度99.999%以上。以下同じ。)で置換(溶存酸素濃度100ppb以下)した後、アゾビスアミジノプロパン塩酸塩の10%水溶液1.94部を加えて均一溶液とし、モノマー水溶液を調製した。
別に還流脱水配管、滴下漏斗、窒素導入管および撹拌翼(マックスブレンド翼)を備えた反応槽にn−デカン1,282部を仕込んだ後、これに分散剤として、アルケン(C30以上)と無水マレイン酸の共重合体[商品名「ダイヤカルナ30」、三菱化学(株)製]12.8部を加えて、撹拌翼を340rpmの回転数にて撹拌しながら、反応槽内を窒素置換(気相酸素濃度10ppm以下)した後、57℃まで昇温した。57℃に到達後、常圧条件下(103kPa)で、予め滴下漏斗内に仕込んだ前述のモノマー水溶液を反応槽中に60分間かけて全量投入し、投入完了後180分間57℃で撹拌を継続し逆相懸濁重合させた。
重合後、ポリマーを50℃にて減圧(3kPa)により共沸脱水した後、スラリーを、減圧濾過機に供給し固液分離を行った後、減圧乾燥機中(1.3kPa、40℃×2時間)で乾燥し、共重合体からなる高分子凝集剤(A1)688部を得た(固形分含量93.2%)。
実施例2
実施例1において、N,N−ジメチルアミノエチルアクリレートのメチルクロライド塩の70%水溶液839部の代わりにN,N−ジメチルアミノエチルメタクリレートのメチルクロライド塩の64%水溶液904部を用い、アクリルアミド50%水溶液108部、イオン交換水333部およびメルカプト酢酸0.33部を用いないこと以外は実施例1と同様にして、重合体からなる高分子凝集剤(A2)619部(固形分含量93.5%)を得た。
実施例3
実施例1において、N,N−ジメチルアミノエチルアクリレートのメチルクロライド塩の70%水溶液839部の代わりにN,N−ジメチルアミノエチルメタクリレートのメチルクロライド塩の64%水溶液344部 、アクリルアミドの50%水溶液108部の代わりに同603部、イオン交換水333部の代わりに同357部、メルカプト酢酸0.33部の代わりに同2.60部を用いた以外は実施例1と同様にして、共重合体からなる高分子凝集剤(A3)556部(固形分含量93.8%)を得た。
実施例4
実施例1において、N,N−ジメチルアミノエチルアクリレートのメチルクロライド塩の70%水溶液839部、アクリルアミドの50%水溶液108部、イオン交換水333部の代わりに、N,N−ジメチルアミノエチルアクリレートのメチルクロライド塩の70%水溶液152部 、アクリルアミドの50%水溶液469部、N,N−ジメチルアミノエチルメタクリレートのメチルクロライド塩の64%水溶液268部、アクリル酸59.4部、イオン交換水469.7部を用い、メルカプト酢酸0.33部の代わりに同0.57部を用い、アゾビスアミジノプロパン塩酸塩の10%水溶液1.94部の代わりに同1.7部を用い、さらにリン酸1ナトリウム11.4部を用いた以外は実施例1と同様にして、共重合体からなる高分子凝集剤(A4)633部(固形分含量92.1%)を得た。
実施例5
実施例1において、N,N−ジメチルアミノエチルアクリレートのメチルクロライド塩の70%水溶液839部、アクリルアミドの50%水溶液108部、イオン交換水333部の代わりに、N,N−ジメチルアミノエチルアクリレートのメチルクロライド塩の70%水溶液363部 、アクリルアミドの50%水溶液262部、N,N−ジメチルアミノエチルメタクリレートのメチルクロライド塩の64%水溶液85.3部、アクリル酸132部を用い、メルカプト酢酸0.33部の代わりに同3.22部を用い、さらにリン酸1ナトリウム11.4部を用いた以外は実施例1と同様にして、共重合体からなる高分子凝集剤(A5)622部(固形分含量93.7%)を得た。
実施例6
実施例1において、N,N−ジメチルアミノエチルアクリレートのメチルクロライド塩の70%水溶液839部、アクリルアミドの50%水溶液108部、イオン交換水333部、メルカプト酢酸0.33部の代わりに、アクリルアミドの50%水溶液766部、アクリル酸130部、48%水酸化ナトリウム水溶液152部、イオン交換水222部、メルカプトエチルアミン1.95部、リン酸1ナトリウム11.4部を用い、さらに水酸化ナトリウムを用いてモノマー水溶液のpH(20℃)をpHメーターで監視しながら6.5に調整した以外は実施例1と同様にして、共重合体からなる高分子凝集剤(A6)559部(固形分含量93.7%)を得た。
実施例7
実施例6において、アクリルアミドの50%水溶液766部の代わりに同612部、アクリル酸130部の代わりに同207部、イオン交換水222部の代わりに同299部、メルカプトエチルアミン1.95部の代わりに同1.17部を用いた以外は実施例6と同様にして、共重合体からなる高分子凝集剤(A7)564部(固形分含量92.8%)を得た。
比較例1
N,N−ジメチルアミノエチルアクリレートのメチルクロライド塩の70%水溶液839部、アクリルアミド50%水溶液108部、イオン交換水333部を配合して室温(20〜25℃)でモノマー水溶液を調製した。さらに硫酸を用いてモノマー水溶液のpH(20℃)をpHメーターで監視しながら3.0に調整した。このモノマー水溶液を10℃に調整した後、断熱反応容器に仕込み、重合槽内を十分に窒素置換(気相酸素濃度10ppm以下)した。窒素置換後、アゾビスアミジノプロパン塩酸塩の5%水溶液11.3部、過酸化水素0.1%水溶液0.9部、アスコルビン酸0.1%水溶液0.8部を添加した。約10分後に液温上昇が始まり、反応系は次第に増粘しゲル状の重合物が得られた。発熱が認められなくなった時点でその温度で保持し、7時間後にゲルを細断(1mm角)し、100℃の熱風で5時間乾燥させた後、ミキサーにて粉砕し、粉末状の共重合体(比A1)からなる高分子凝集剤691部(固形分含量92.8%)を得た。
比較例2〜7
比較例1において、モノマー水溶液として実施例2〜7と同じものを使用した以外は比較例1と同様にして、それぞれ共重合体からなる高分子凝集剤(比A2〜比A7)を得た。
実施例1〜7および比較例1〜7について、得られた高分子凝集剤の固有粘度、Mw、π/C、MnおよびMw/Mnの結果を表1に示す。
Figure 2008296154
実施例8、比較例8
(A1)および(比A1)をそれぞれイオン交換水に溶解して固形分含量0.2%の水溶液とした。T処理場から採取した余剰汚泥[pH5.3、TS3.3%、有機分78.3%]200部を300mLのビーカーに採り、(A1)および(比A1)の水溶液32部、35および38部をそれぞれの汚泥に添加し、(この時の固形分添加量はそれぞれ1.0、1.1、1.2%/TS)ハンドミキサーで充分に撹拌、混合処理し、前記の方法によりフロック粒径、ろ液量、ろ布剥離性およびケーキ含水率を測定した。結果を表2に示す。
Figure 2008296154
表2から、実施例8では、比較例8に比べて、大粒径のフロックが形成され、高撹拌下(300rpm)でも一旦形成されたフロックが壊れにくい(フロック強度が大)こと、ろ布剥離性および脱水性(ケーキ含水率)において優れた効果を示すこと、および凝集性能の添加量への依存性が小さいことがわかる。
実施例9、比較例9
(A2)および(比A2)をそれぞれイオン交換水に溶解して固形分含量0.2%の水溶液とした。N処理場から採取した混合生汚泥[pH5.3、TS2.3%、有機分80.2%]200部を300mLのビーカーに採り、(A2)および(比A2)のそれぞれの水溶液12、14、16部をそれぞれの汚泥に添加し、(この時の固形分添加量はそれぞれ0.5、0.6、0.7%/TS)ハンドミキサーで充分に撹拌、混合処理し、前記の方法によりフロック粒径、ろ液量、ろ布剥離性およびケーキ含水率を測定した。結果を表3に示す。
Figure 2008296154
表3から、実施例9では、比較例9に比べて、大粒径のフロックが形成され、高撹拌下(300rpm)でも一旦形成されたフロックが壊れにくい(フロック強度が大)こと、ろ布剥離性および脱水性(ケーキ含水率)において優れた効果を示すこと、および凝集性能の添加量への依存性が小さいことがわかる。
実施例10、比較例10
(A4)および(比A4)をそれぞれイオン交換水に溶解して固形分含量0.2%の水溶液とした。T処理場から採取した混合汚泥[余剰汚泥/消化汚泥=1/1(重量比)、pH5.9、TS2.7%、有機分72.2%]200部を300mLのビーカーに採り、それぞれポリテツ[日鉄鉱業(株)製、以下同じ]0.27部を添加しハンドミキサーで30秒間撹拌混合した後、(A4)および(比A4)のそれぞれの水溶液20、23、26部を添加(この時の固形分添加量はそれぞれ0.7、0.8、0.9%/TS)して、ハンドミキサーで充分に撹拌、混合処理し、前記の方法によりフロック粒径、ろ液量、ろ布剥離性およびケーキ含水率を測定した。結果を表4に示す。
Figure 2008296154
表4から、実施例10では、比較例10に比べて、大粒径のフロックが形成され、高撹拌下(300rpm)でも一旦形成されたフロックが壊れにくい(フロック強度が大)こと、ろ布剥離性および脱水性(ケーキ含水率)において優れた効果を示すこと、および凝集性能の添加量への依存性が小さいことがわかる。
実施例11、比較例11
(A5)および(比A5)をそれぞれイオン交換水に溶解して固形分含量0.2%の水溶液とした。H食品工場から採取した廃水[pH6.8、TS0.8%、有機分72%]200部を300mLのビーカーに採り、それぞれポリテツ0.8部を添加しハンドミキサーで30秒間撹拌混合した後、(A5)および(比A5)のそれぞれの水溶液10、11、12部を添加(この時の固形分添加量はそれぞれ1.25、1.4、1.5%/TS)して、ハンドミキサーで充分に撹拌、混合処理し、前記の方法によりフロック粒径、ろ液量、ろ布剥離性およびケーキ含水率を測定した。結果を表5に示す。
Figure 2008296154
表5から、実施例11では、比較例11に比べて、大粒径のフロックが形成され、高撹拌下(300rpm)でも一旦形成されたフロックが壊れにくい(フロック強度が大)こと、ろ布剥離性および脱水性(ケーキ含水率)において優れた効果を示すこと、および凝集性能の添加量への依存性が小さいことがわかる。
実施例12、比較例12
(A3)および(比A3)をそれぞれイオン交換水に溶解して固形分含量0.2%の水溶液とした。3%濃度の中芯原繊スラリー(30℃、pH4.5)800部に、(A3)および(比A3)のそれぞれの水溶液72部(固形分添加量0.6%/TS)と硫酸バンド0.96部を添加し、抄紙して表6に示す坪量の紙を製造した。また、ブランクとして、高分子凝集剤を加えずに、同様な操作を行った。裂断長およびろ水量の結果を表6に示す。なお、裂断長およびろ水量は、JIS P−8113およびJIS P−8121に従って測定した。
Figure 2008296154
表6から、実施例12では、比較例12に比べて、裂断長およびろ水量が高く、製紙工程用薬剤として優れた効果を示すことがわかる。
実施例13、比較例13
(A6)および(比A6)1部をそれぞれ塩水(NaCl 0.5%、CaCl2 0.1%含有)999部に溶解し0.1%の水溶液を得た。該水溶液をB型粘度計[TV−10M、東機産業(株)製]で下記条件にて粘度測定した(保存前の粘度をV1とする。単位はmPa・s、以下同じ。)。
粘度測定後の水溶液40gを100mLガラスアンプル管に入れて封管し80℃で1週間保存した後、上記と同一条件で粘度測定した。保存後の粘度をV2とする。
下記の式から粘度保持率を求めた結果を表7に示す。

粘度保持率(%)=(V2/V1)×100

<粘度測定条件>ロータ:BLアダプター、回転速度:30rpm、溶液温度:70℃
Figure 2008296154
表7から、実施例13は、比較例13に比べて耐熱経時安定性に優れることがわかる。
実施例14、比較例14
(A7)および(比A7)をそれぞれイオン交換水に溶解して固形分含量0.05%の水溶液とした。製紙工場の廃水(pH7.1、SS60mg/L、COD150mg/L)に硫酸アルミニウムを300mg/L添加したものを懸濁液試料とした。 300mLの沈降管に懸濁液試料を300mL採取し、(A7)および(比A7)の上記水溶液を1mL添加し、前記の方法により凝沈試験を実施し、懸濁粒子の沈降速度、濁度および上澄み液のCODを測定した。結果を表8に示す。
Figure 2008296154
表8から、実施例14は、比較例14に比べて沈降速度が速く、濁度およびCODが大幅に低減することから優れた効果を示すことがわかる。
本発明の高分子凝集剤は、従来にない特異的な凝集性能を示すことから、下水汚泥の脱水用、産業廃水の凝集沈殿処理用、石油の3次回収用または製紙工程での濾水歩留向上用または紙力増強用等の高分子凝集剤として幅広く好適に用いられ、極めて有用である。

Claims (7)

  1. 1〜40dl/gの固有粘度を有し、固有粘度から換算される重量平均分子量(Mw)とメンブラン式浸透圧測定法による数平均分子量(Mn)との比(Mw/Mn)が1〜50である、水溶性不飽和モノマーを構成単位とする(共)重合体(A)からなることを特徴とする高分子凝集剤。
  2. (A)が、水溶性不飽和モノマーからなる重合性モノマーを逆相懸濁重合させてなる(共)重合体である請求項1記載の高分子凝集剤。
  3. 下水汚泥の脱水用である請求項1または2記載の高分子凝集剤。
  4. 産業廃水の凝集沈殿処理用である請求項1または2記載の高分子凝集剤。
  5. 製紙工程での濾水歩留向上用または紙力増強用である請求項1または2記載の高分子凝集剤。
  6. 石油の3次回収用である請求項1または2記載の高分子凝集剤。
  7. 高分子凝集剤の製造方法において、水溶性不飽和モノマーからなる重合性モノマーを疎水性分散媒の沸点未満で逆相懸濁重合させることを特徴とする、1〜40dl/gの固有粘度を有し、固有粘度から換算される重量平均分子量(Mw)とメンブラン式浸透圧測定法による数平均分子量(Mn)との比(Mw/Mn)が1〜50である(共)重合体(A)からなる高分子凝集剤の製造方法。
JP2007146049A 2007-05-31 2007-05-31 高分子凝集剤 Expired - Fee Related JP5528660B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007146049A JP5528660B2 (ja) 2007-05-31 2007-05-31 高分子凝集剤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007146049A JP5528660B2 (ja) 2007-05-31 2007-05-31 高分子凝集剤

Publications (2)

Publication Number Publication Date
JP2008296154A true JP2008296154A (ja) 2008-12-11
JP5528660B2 JP5528660B2 (ja) 2014-06-25

Family

ID=40170185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007146049A Expired - Fee Related JP5528660B2 (ja) 2007-05-31 2007-05-31 高分子凝集剤

Country Status (1)

Country Link
JP (1) JP5528660B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158667A (ja) * 2008-12-10 2010-07-22 Sanyo Chem Ind Ltd 高分子凝集剤
JP2011131166A (ja) * 2009-12-24 2011-07-07 Daiyanitorikkusu Kk 廃水の凝集処理方法
JP2011131164A (ja) * 2009-12-24 2011-07-07 Daiyanitorikkusu Kk 含油廃水の処理方法
JP2011139997A (ja) * 2010-01-07 2011-07-21 Daiyanitorikkusu Kk 廃水の凝集処理方法
JP2012115790A (ja) * 2010-12-02 2012-06-21 Daiyanitorikkusu Kk 廃水処理剤
JP2014158993A (ja) * 2013-02-19 2014-09-04 Mitsubishi Rayon Co Ltd 含油洗浄廃水の凝集処理方法
JP2016528399A (ja) * 2013-07-10 2016-09-15 エコラブ ユーエスエイ インク 大豆粉または大豆タンパク質を用いたシート脱水の促進

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3172299B1 (en) 2014-07-23 2019-09-25 The Procter and Gamble Company Fabric and home care treatment compositions
JP6445128B2 (ja) 2014-07-23 2018-12-26 ザ プロクター アンド ギャンブル カンパニー 処理組成物
WO2016014744A1 (en) 2014-07-23 2016-01-28 The Procter & Gamble Company Fabric and home care treatment compositions
WO2016014734A1 (en) 2014-07-23 2016-01-28 The Procter & Gamble Company Fabric and home care treatment composition
US10519402B2 (en) 2014-07-23 2019-12-31 The Procter & Gamble Company Treatment compositions
WO2016014743A1 (en) 2014-07-23 2016-01-28 The Procter & Gamble Company Fabric and home care treatment compositions
EP3172302B1 (en) 2014-07-23 2019-01-16 The Procter & Gamble Company Fabric and home care treatment compositions
JP2017535453A (ja) 2014-11-06 2017-11-30 ザ プロクター アンド ギャンブル カンパニー 予ひずみ状積層体及びその作製方法
EP3408364A1 (en) 2016-01-25 2018-12-05 The Procter and Gamble Company Treatment compositions
WO2017132100A1 (en) 2016-01-25 2017-08-03 The Procter & Gamble Company Treatment compositions
EP4335420A2 (en) 2017-02-16 2024-03-13 The Procter & Gamble Company Absorbent articles with substrates having repeating patterns of apertures comprising a plurality of repeat units

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770321A (ja) * 1993-09-01 1995-03-14 Showa Denko Kk 反応性ポリメチルシルセスキオキサン
JPH0867715A (ja) * 1993-12-24 1996-03-12 Mitsui Toatsu Chem Inc アクリルアミド系ポリマー、およびその用途
JP2002524585A (ja) * 1998-09-08 2002-08-06 チバ スペシャルティ ケミカルズ ウォーター トリートメント リミテッド 水溶性架橋カチオン性ポリマーの製造方法
JP2004010831A (ja) * 2002-06-10 2004-01-15 Nippon Shokubai Co Ltd (メタ)アクリル酸(塩)系重合体及びその用途
JP2005112898A (ja) * 2003-10-03 2005-04-28 Sanyo Chem Ind Ltd 両性水溶性重合体粒子、その製造方法および処理剤
JP2005535770A (ja) * 2002-08-15 2005-11-24 チバ スペシャルティ ケミカルズ ウォーター トリートメント リミテッド 重合後架橋反応によって得られる高分子量カチオン性ポリマー
JP2006272320A (ja) * 2005-03-04 2006-10-12 Sanyo Chem Ind Ltd 高分子凝集剤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770321A (ja) * 1993-09-01 1995-03-14 Showa Denko Kk 反応性ポリメチルシルセスキオキサン
JPH0867715A (ja) * 1993-12-24 1996-03-12 Mitsui Toatsu Chem Inc アクリルアミド系ポリマー、およびその用途
JP2002524585A (ja) * 1998-09-08 2002-08-06 チバ スペシャルティ ケミカルズ ウォーター トリートメント リミテッド 水溶性架橋カチオン性ポリマーの製造方法
JP2004010831A (ja) * 2002-06-10 2004-01-15 Nippon Shokubai Co Ltd (メタ)アクリル酸(塩)系重合体及びその用途
JP2005535770A (ja) * 2002-08-15 2005-11-24 チバ スペシャルティ ケミカルズ ウォーター トリートメント リミテッド 重合後架橋反応によって得られる高分子量カチオン性ポリマー
JP2005112898A (ja) * 2003-10-03 2005-04-28 Sanyo Chem Ind Ltd 両性水溶性重合体粒子、その製造方法および処理剤
JP2006272320A (ja) * 2005-03-04 2006-10-12 Sanyo Chem Ind Ltd 高分子凝集剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ポリマー凝集剤 使用の手引き, JPN6012062996, March 2002 (2002-03-01), JP, pages 111 - 112, ISSN: 0002789529 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158667A (ja) * 2008-12-10 2010-07-22 Sanyo Chem Ind Ltd 高分子凝集剤
JP2011131166A (ja) * 2009-12-24 2011-07-07 Daiyanitorikkusu Kk 廃水の凝集処理方法
JP2011131164A (ja) * 2009-12-24 2011-07-07 Daiyanitorikkusu Kk 含油廃水の処理方法
JP2011139997A (ja) * 2010-01-07 2011-07-21 Daiyanitorikkusu Kk 廃水の凝集処理方法
JP2012115790A (ja) * 2010-12-02 2012-06-21 Daiyanitorikkusu Kk 廃水処理剤
JP2014158993A (ja) * 2013-02-19 2014-09-04 Mitsubishi Rayon Co Ltd 含油洗浄廃水の凝集処理方法
JP2016528399A (ja) * 2013-07-10 2016-09-15 エコラブ ユーエスエイ インク 大豆粉または大豆タンパク質を用いたシート脱水の促進

Also Published As

Publication number Publication date
JP5528660B2 (ja) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5528660B2 (ja) 高分子凝集剤
JP4021439B2 (ja) 高分子凝集剤
JP4733060B2 (ja) 高分子凝集剤
JP4382760B2 (ja) 高分子凝集剤
JP2005213343A (ja) 有機凝結剤および高分子凝集剤
JP2009178634A (ja) 汚泥脱水処理用両性高分子凝集剤
JP2012170853A (ja) 高分子凝集剤
JP5431890B2 (ja) 高分子凝集剤
JP5461158B2 (ja) 高分子凝集剤
WO2011154991A1 (ja) 高分子凝集剤およびその製造方法
JP5940605B2 (ja) 高分子凝集剤
JP2006167584A (ja) 汚泥または廃水の処理方法
JP5596662B2 (ja) 高分子凝集剤
JP5322879B2 (ja) 高分子凝集剤
JP4199084B2 (ja) 両性水溶性重合体粒子、その製造方法および処理剤
JP2012213769A (ja) 高分子凝集剤
JP2015057275A (ja) 高分子凝集剤
JP2014180648A (ja) 高分子凝集剤
JP2014184406A (ja) 粉末状有機凝結剤
JP2015057272A (ja) 高分子凝集剤
JP2012183530A (ja) 高分子凝集剤
JP2014233654A (ja) 高分子凝集剤
JP4106305B2 (ja) 有機凝結剤及び高分子凝集剤
WO2011154990A1 (ja) 高分子凝集剤およびその製造方法
JP6177737B2 (ja) 高分子凝集剤

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140416

R150 Certificate of patent or registration of utility model

Ref document number: 5528660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees