JP2008290186A - Vibration suppressing apparatus of machine tool - Google Patents

Vibration suppressing apparatus of machine tool Download PDF

Info

Publication number
JP2008290186A
JP2008290186A JP2007138164A JP2007138164A JP2008290186A JP 2008290186 A JP2008290186 A JP 2008290186A JP 2007138164 A JP2007138164 A JP 2007138164A JP 2007138164 A JP2007138164 A JP 2007138164A JP 2008290186 A JP2008290186 A JP 2008290186A
Authority
JP
Japan
Prior art keywords
vibration
value
chatter
rotation speed
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007138164A
Other languages
Japanese (ja)
Other versions
JP4582660B2 (en
Inventor
Norikazu Suzuki
教和 鈴木
Eiji Shamoto
英二 社本
Hiroshi Inagaki
浩 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Okuma Corp
Original Assignee
Nagoya University NUC
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Okuma Corp, Okuma Machinery Works Ltd filed Critical Nagoya University NUC
Priority to JP2007138164A priority Critical patent/JP4582660B2/en
Priority to US12/107,191 priority patent/US8256590B2/en
Priority to IT000871A priority patent/ITMI20080871A1/en
Priority to CN2008101090391A priority patent/CN101310921B/en
Priority to DE200810024773 priority patent/DE102008024773A1/en
Publication of JP2008290186A publication Critical patent/JP2008290186A/en
Application granted granted Critical
Publication of JP4582660B2 publication Critical patent/JP4582660B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0971Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring mechanical vibrations of parts of the machine
    • B23Q17/0976Detection or control of chatter

Abstract

<P>PROBLEM TO BE SOLVED: To effectively suppress chatter vibrations by instantly making rotational speeds optimum for respective cases by clearly distinguishing forced chatter vibrations and regenerative chatter vibrations. <P>SOLUTION: This vibration suppressing apparatus performs the Fourier analysis of vibrational acceleration in S1, and calculates maximum acceleration and its frequency in S2. The maximum acceleration is compared with a preset required threshold value in S3. When the maximum acceleration exceeds the threshold value, a k value and phase information are calculated in S4 from the chatter frequency, the number of the cutting edges of a tool, and the rotational speed of a rotary shaft. The phase information is compared with constants 1, 2 in S5. When the phase information is larger than the constant 1 and is smaller than the constant 2, it is judged that the forced chatter vibration has been generated, and the k1 value is calculated in S6 based on the following changing expression (1): k1 value=k value+constant 3+1. On the other hand, when the phase information is outside the range described above, it is judged that the regenerative chatter vibration has been generated, and the k1 value is calculated in S7 based on the following changing expression (2): k1 value=k value+1. Then, the optimum rotational speed is calculated in S8 from the chatter frequency, the number of the cutting edges of the tool, and the k1 value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、工具又はワークを回転させながら加工を行う工作機械において、加工中に発生する振動を抑制するための振動抑制装置に関するものである。   The present invention relates to a vibration suppressing device for suppressing vibration generated during machining in a machine tool that performs machining while rotating a tool or a workpiece.

従来より、たとえば回転可能な主軸にワークを支持させ、ワークに対して工具を送りながら、ワークに加工を施すといった工作機械がある。該工作機械においては、切削加工における切り込み量を必要以上に大きくすると、加工中に所謂「びびり振動」が発生して、加工面の仕上げ精度を悪化させてしまうという問題がある。このとき、特に問題となるのは、工具とワークとの間に生じる自励振動である「再生型びびり振動」と、工具を備える工作機械が振動源となる「強制びびり振動」である。このうち再生型びびり振動については、特許文献1、2に記載されているように、加工を行うにあたって、工具やワーク等の「びびり振動」が生じる系の固有振動数や加工中におけるびびり振動数を求め、固有振動数又はびびり振動数を60倍して工具刃数及び所定の整数で除した値を回転速度とすればよいことが知られている。一方、強制びびり振動の場合は、回転速度をずらす、送り速度を下げる、加工物への切り込みを小さくする、といった対応が有効であることがわかっている。   2. Description of the Related Art Conventionally, for example, there is a machine tool that supports a workpiece on a rotatable main shaft and processes the workpiece while feeding a tool to the workpiece. In the machine tool, if the depth of cut in the cutting process is increased more than necessary, there is a problem that so-called “chatter vibration” occurs during the process, and the finished accuracy of the processed surface is deteriorated. Particularly problematic at this time are “regenerative chatter vibration” which is self-excited vibration generated between the tool and the workpiece, and “forced chatter vibration” where the machine tool including the tool is a vibration source. Of these, regenerative chatter vibration, as described in Patent Documents 1 and 2, when processing, the natural frequency of the system that generates “chatter vibration” such as tools and workpieces, and chatter frequency during processing It is known that the rotation speed may be obtained by multiplying the natural frequency or chatter frequency by 60 and dividing the number by the number of tool blades and a predetermined integer. On the other hand, in the case of forced chatter vibration, it has been found that countermeasures such as shifting the rotation speed, lowering the feed speed, and reducing the cut into the workpiece are effective.

特開2003−340627号公報JP 2003-340627 A 特表2001−517557号公報JP-T-2001-517557

しかし、強制びびり振動の抑制においては、ずらす回転速度の変化量が不明であるし、送り速度を下げると生産効率の低下に繋がる。また、切り込みを小さくするとしてもその方向を特定する計算方法が複雑になり、強制びびり振動の迅速な抑制には至らない。また、再生型びびり振動との区別も難しいため、強制びびり振動と判断して行った処置が有効に機能せず、びびり振動が抑制されない場合には、改めて再生型びびり振動に対する処置を行うといった試行錯誤の繰り返しとなってしまい、びびり振動の抑制に時間が掛かることもあった。   However, in suppressing forced chatter vibration, the amount of change in rotational speed to be shifted is unknown, and lowering the feed speed leads to a decrease in production efficiency. Even if the cut is made small, the calculation method for specifying the direction becomes complicated, and the forced chatter vibration cannot be quickly suppressed. Also, since it is difficult to distinguish from regenerative chatter vibration, if the action taken as forced chatter vibration does not function effectively and the chatter vibration is not suppressed, a trial to renew the regenerative chatter vibration is performed. Repeated mistakes and sometimes it took time to suppress chatter vibration.

そこで、本発明は、上記問題に鑑みなされたものであって、強制びびり振動と再生型びびり振動とを明確に区別して夫々の場合に最適な回転速度を瞬時に求めることができ、びびり振動を効果的に抑制可能な工作機械の振動抑制装置を提供しようとするものである。   Therefore, the present invention has been made in view of the above problem, and it is possible to determine the optimum rotational speed instantaneously in each case by clearly distinguishing the forced chatter vibration from the regenerative chatter vibration. An object of the present invention is to provide a vibration suppression device for a machine tool that can be effectively suppressed.

上記目的を達成するために、請求項1に記載の発明は、回転中の回転軸の時間領域での振動を検出する検出手段と、検出手段により検出された時間領域の振動に基づいて、びびり振動数及びそのびびり振動数における周波数領域の振動を算出するとともに、算出した周波数領域の振動が所定の閾値を超えた場合、所定のパラメータに基づき、びびり振動を抑制可能な回転軸の最適回転速度を算出する演算手段と、その演算手段により算出された最適回転速度にて回転軸を回転させる回転速度制御手段とを備え、演算手段は、最適回転速度を算出する際に、所定の条件に基づいて発生したびびりの種類を特定し、特定されたびびりの種類に応じて所定のパラメータを変更して夫々最適回転速度を算出することを特徴とするものである。   In order to achieve the above object, the invention according to claim 1 is characterized in that chatter is based on detection means for detecting vibration in the time domain of a rotating rotating shaft, and vibration in the time domain detected by the detection means. Calculates the vibration in the frequency domain at the vibration frequency and its chatter frequency, and when the calculated vibration in the frequency domain exceeds a predetermined threshold, based on a predetermined parameter, the optimum rotation speed of the rotating shaft that can suppress chatter vibration And a rotation speed control means for rotating the rotating shaft at the optimum rotation speed calculated by the calculation means. The calculation means is based on a predetermined condition when calculating the optimum rotation speed. The type of chatter generated is specified, and an optimum rotation speed is calculated by changing predetermined parameters according to the specified type of chatter.

請求項2に記載の発明は、請求項1に記載の発明において、演算手段は、所定のパラメータとなる下記の演算式(1)〜(4)に基づいて最適回転速度の演算を行うものであり、演算式(3)に基づいて算出した位相情報からびびりの種類を特定し、所定の条件に基づいて演算式(4)のk1値を変更するようにしたものである。
k’値=60×びびり振動数/(工具刃数×回転軸回転速度) ・・・(1)
k値=k’値の整数部 ・・・(2)
位相情報=k’値−k値 ・・・(3)
最適回転速度=60×びびり振動数/(工具刃数×k1値)・・・(4)
According to a second aspect of the present invention, in the first aspect of the present invention, the calculating means calculates the optimum rotational speed based on the following calculation formulas (1) to (4) that are predetermined parameters. Yes, the type of chatter is specified from the phase information calculated based on the arithmetic expression (3), and the k1 value of the arithmetic expression (4) is changed based on a predetermined condition.
k ′ value = 60 × chat vibration frequency / (number of tool blades × rotational axis rotation speed) (1)
k value = integer part of k ′ value (2)
Phase information = k ′ value−k value (3)
Optimal rotation speed = 60 x chatter frequency / (number of tool blades x k1 value) (4)

請求項3に記載の発明は、請求項2に記載の発明において、演算手段は、演算式(3)で得られる位相情報が0に近い値であれば強制びびり振動と判断し、0.5或いは−0.5を加算してk1値を求め、演算式(4)から最適回転速度を演算するようにしたものである。
尚、請求項1における「振動」とは、振動加速度、振動による変位、及び振動による音圧等、振動自体は勿論、振動に起因して回転軸に発生し、間接的に振動を検出できる物理的変化を含むものである。
According to a third aspect of the present invention, in the second aspect of the present invention, when the phase information obtained by the arithmetic expression (3) is a value close to 0, the calculation means determines that the chatter vibration is 0.5, Alternatively, -0.5 is added to obtain the k1 value, and the optimum rotational speed is calculated from the calculation formula (4).
The term “vibration” as used in claim 1 refers to a physical that can be detected on a rotating shaft indirectly due to vibration, as well as vibration itself, such as vibration acceleration, displacement due to vibration, and sound pressure due to vibration. Change.

本発明によれば、実際に回転している回転軸に生じるびびり振動に基づいて最適回転速度を算出するため、より正確な最適回転速度を直ちに算出することができると共に、算出した最適回転速度を直ちに回転軸の回転に活かすことができる。特に、演算手段は、所定の条件に基づいて発生したびびりの種類を特定し、その種類に応じて変更したパラメータで夫々最適回転速度を算出するので、強制びびり振動と再生型びびり振動とを明確に区別して夫々の場合に最適な回転速度を瞬時に求めることができ、びびり振動を効果的に抑制可能となる。従って、加工面の仕上げ精度を高品位に保つことができ、工具摩耗の抑制、工具欠損の防止も期待できる。
According to the present invention, since the optimum rotation speed is calculated based on chatter vibration generated in the rotating shaft that is actually rotating, it is possible to immediately calculate a more accurate optimum rotation speed and to calculate the calculated optimum rotation speed. Immediately, it can be used to rotate the rotating shaft. In particular, the calculation means identifies the type of chatter that occurs based on a predetermined condition, and calculates the optimum rotation speed with parameters that are changed according to the type, so it is possible to clarify the forced chatter vibration and regenerative chatter vibration. In each case, the optimum rotation speed can be obtained instantaneously, and chatter vibration can be effectively suppressed. Therefore, the finishing accuracy of the machined surface can be maintained at a high quality, and it can be expected to suppress the tool wear and prevent the tool from being lost.

以下、本発明の一実施形態となる振動抑制装置について、図面をもとに説明する。   Hereinafter, a vibration suppression device according to an embodiment of the present invention will be described with reference to the drawings.

図1は、振動抑制装置10のブロック構成を示した説明図である。図2は、振動抑制の対象となる回転軸ハウジング1を側面から示した説明図であり、図3は、回転軸ハウジング1を軸方向から示した説明図である。
振動抑制装置10は、回転軸ハウジング1にC軸周りで回転可能に備えられた回転軸3に生じる「びびり振動」を抑制するためのものであって、回転中の回転軸3に生じる時間領域の振動加速度を検出するための振動センサ(検出手段)2a〜2cと、該振動センサ2a〜2cによる検出値をもとにして回転軸3の回転速度を制御する制御装置(演算手段、及び回転速度制御手段)5とを備えてなる。
FIG. 1 is an explanatory diagram showing a block configuration of the vibration suppressing device 10. FIG. 2 is an explanatory view showing the rotary shaft housing 1 to be subjected to vibration suppression from the side, and FIG. 3 is an explanatory view showing the rotary shaft housing 1 from the axial direction.
The vibration suppressing device 10 is for suppressing “chatter vibration” generated in the rotating shaft 3 provided in the rotating shaft housing 1 so as to be rotatable around the C axis, and is a time region generated in the rotating rotating shaft 3. Sensor (detection means) 2a to 2c for detecting the vibration acceleration of the motor, and a control device (calculation means and rotation) for controlling the rotational speed of the rotary shaft 3 based on the detection values by the vibration sensors 2a to 2c. Speed control means) 5.

振動センサ2a〜2cは、図2及び3に示す如く回転軸ハウジング1に取り付けられており、一の振動センサは、他の振動センサに対して直角方向への時間領域の振動加速度(時間軸上の振動加速度を意味する)を検出するようになっている(たとえば、振動センサ2a〜2cにて、それぞれ直交するX軸、Y軸、Z軸方向での時間領域の振動加速度を検出するようにする)。   The vibration sensors 2a to 2c are attached to the rotary shaft housing 1 as shown in FIGS. 2 and 3, and one vibration sensor is a time domain vibration acceleration (on the time axis) in a direction perpendicular to the other vibration sensors. (For example, the vibration sensors 2a to 2c detect vibration accelerations in the time domain in the X-axis, Y-axis, and Z-axis directions orthogonal to each other, respectively). To do).

一方、制御装置5は、振動センサ2a〜2cから検出される時間領域の振動加速度をもとにした解析を行うFFT演算装置6と、該FFT演算装置6にて算出された値に基づいて最適回転速度の算出等を行うパラメータ演算装置7と、回転軸ハウジング1における加工を制御するNC装置8とを備えており、FFT演算装置6における後述の如き解析、及び回転軸3の回転速度のモニタリングを行っている。   On the other hand, the control device 5 is optimal based on the FFT calculation device 6 that performs analysis based on vibration acceleration in the time domain detected from the vibration sensors 2a to 2c, and the value calculated by the FFT calculation device 6. A parameter calculation device 7 for calculating the rotation speed and the like and an NC device 8 for controlling machining in the rotary shaft housing 1 are provided. Analysis as described later in the FFT calculation device 6 and monitoring of the rotation speed of the rotary shaft 3 are provided. It is carried out.

以下、制御装置5における「びびり振動」の抑制制御について、図5のフローチャートに基づいて説明する。
まず、FFT演算装置6では、回転中に常時検出される振動センサ2a〜2cにおける時間領域の振動加速度のフーリエ解析を行い(S1)、図4の4に示すような最大加速度とその周波数(びびり振動数)とを算出する(S2)。
次に、パラメータ演算装置7で、上記S2で算出された最大加速度と予め設定された所定の閾値とを比較し(S3)、閾値を超えた場合には、回転軸3に抑制すべき「びびり振動」が生じているとして、S4で、びびり振動数、工具刃数、回転軸3の回転速度から以下の演算式(1)〜(3)により、k値及び位相情報を算出する。
Hereinafter, suppression control of “chatter vibration” in the control device 5 will be described based on the flowchart of FIG. 5.
First, the FFT processing unit 6 performs Fourier analysis of vibration acceleration in the time domain in the vibration sensors 2a to 2c that are constantly detected during rotation (S1), and the maximum acceleration and its frequency (chatter) as shown in 4 of FIG. Frequency) is calculated (S2).
Next, the parameter calculation device 7 compares the maximum acceleration calculated in S2 above with a predetermined threshold value set in advance (S3). Assuming that "vibration" has occurred, in S4, the k value and phase information are calculated from the chatter frequency, the number of tool blades, and the rotational speed of the rotary shaft 3 by the following arithmetic expressions (1) to (3).

k’値=60×びびり振動数/(工具刃数×回転軸回転速度) ・・・(1)
k値=k’値の整数部 ・・・(2)
位相情報=k’値−k値 ・・・(3)
ここで、演算式(1)における「工具刃数」は、予めパラメータ演算装置7に設定されているものとする。また、演算式(1)における回転軸回転速度とは、現在(最適回転速度とする前)の回転速度である。
k ′ value = 60 × chat vibration frequency / (number of tool blades × rotational axis rotation speed) (1)
k value = integer part of k ′ value (2)
Phase information = k ′ value−k value (3)
Here, it is assumed that the “number of tool blades” in the calculation formula (1) is set in the parameter calculation device 7 in advance. Further, the rotation shaft rotation speed in the calculation formula (1) is the current rotation speed (before the optimum rotation speed).

次に、S5において、演算式(3)で得られた位相情報と定数1,2とを比較する。ここで、位相情報が定数1より大きく、且つ定数2よりも小さければ、強制びびり振動が発生しているとして、S6で、変更式(1)に基づいてk1値を算出する。一方、位相情報がこの範囲外であれば、再生型びびり振動が発生しているとして、S7で、変更式(2)に基づいてk1値を算出する。ここでの判別がびびり振動を特定する所定の条件となる。
k1値=k値+定数3+1・・・変更式(1)
k1値=k値+1・・・変更式(2)
なお、定数1は0、定数2は0.1とすれば、強制びびり振動を選別して再生型びびり振動と区別できる。また、定数3は、通常は0.5或いは−0.5を設定すれば強制びびり振動を最も抑制できる。±の選択は回転速度増減の選択に対応している。
Next, in S5, the phase information obtained by the arithmetic expression (3) is compared with the constants 1 and 2. Here, if the phase information is larger than the constant 1 and smaller than the constant 2, the k1 value is calculated based on the change equation (1) in S6, assuming that forced chatter vibration has occurred. On the other hand, if the phase information is outside this range, it is determined that regenerative chatter vibration has occurred, and in step S7, the k1 value is calculated based on the change equation (2). This discrimination is a predetermined condition for specifying chatter vibration.
k1 value = k value + constant 3 + 1... change formula (1)
k1 value = k value + 1... change formula (2)
If constant 1 is 0 and constant 2 is 0.1, forced chatter vibration can be selected and distinguished from regenerative chatter vibration. Further, if the constant 3 is normally set to 0.5 or -0.5, forced chatter vibration can be most suppressed. Selection of ± corresponds to selection of rotation speed increase / decrease.

次に、S8では、びびり振動数、工具刃数、S6,7で得られたk1値から、以下の演算式(4)に基づいて最適回転速度の演算を行う。
最適回転速度=60×びびり振動数/(工具刃数×k1値)・・・(4)
そして、S9で、算出された最適回転速度となるように、NC装置8にて回転軸3の回転速度を変更して、「びびり振動」の増幅の防止、すなわち抑制を行う。
以上のようにして、制御装置5における「びびり振動」の抑制制御は行われる。
Next, in S8, the optimum rotational speed is calculated from the chatter frequency, the number of tool blades, and the k1 value obtained in S6 and 7, based on the following calculation formula (4).
Optimal rotation speed = 60 x chatter frequency / (number of tool blades x k1 value) (4)
Then, in S9, the rotation speed of the rotary shaft 3 is changed by the NC device 8 so that the calculated optimum rotation speed is obtained, so that the “chatter vibration” is prevented from being amplified, that is, suppressed.
As described above, the suppression control of “chatter vibration” in the control device 5 is performed.

このように、上記形態の振動制御装置10によれば、振動センサ2a〜2c、FFT演算装置6、及びパラメータ演算装置7により回転軸3の回転中に生じる「びびり振動」をリアルタイムでモニタリングしており、「びびり振動」の発生が検出されると、上記演算式(1)〜(4)及び変更式(1)(2)により直ちに最適回転速度を算出して、回転軸3の回転速度を該最適回転速度として「びびり振動」の増幅を抑制する。すなわち、実際に回転している回転軸3に生じた「びびり振動」に基づいて最適回転速度を算出するため、より正確な最適回転速度を直ちに算出することができる。特に、パラメータ演算装置7は、発生したびびりの種類を特定し、その種類に応じて変更したパラメータで夫々最適回転速度を算出するので、強制びびり振動と再生型びびり振動とを明確に区別して夫々の場合に最適な回転速度を瞬時に求めることができ、びびり振動を効果的に抑制可能となる。従って、加工面の仕上げ精度を高品位に保つことができ、工具摩耗の抑制、工具欠損の防止も期待できる。   As described above, according to the vibration control device 10 of the above embodiment, the chatter vibration generated during the rotation of the rotary shaft 3 is monitored in real time by the vibration sensors 2a to 2c, the FFT calculation device 6, and the parameter calculation device 7. When the occurrence of “chatter vibration” is detected, the optimum rotational speed is immediately calculated by the arithmetic expressions (1) to (4) and the modified expressions (1) and (2), and the rotational speed of the rotary shaft 3 is calculated. As the optimum rotation speed, amplification of “chatter vibration” is suppressed. That is, since the optimum rotation speed is calculated based on “chatter vibration” generated in the rotating shaft 3 that is actually rotating, a more accurate optimum rotation speed can be immediately calculated. In particular, the parameter calculation device 7 identifies the type of chatter that has occurred, and calculates the optimum rotational speed with parameters that are changed according to the type, so that the forced chatter vibration and the regenerative chatter vibration are clearly distinguished from each other. In this case, the optimum rotation speed can be obtained instantaneously, and chatter vibration can be effectively suppressed. Therefore, the finishing accuracy of the machined surface can be maintained at a high quality, and it can be expected to suppress the tool wear and prevent the tool from being lost.

なお、本発明の振動抑制装置に係る構成は、上記実施の形態に記載した態様に何ら限定されるものではなく、検出手段、制御装置、及び制御装置における振動抑制の制御等に係る構成を、本発明の趣旨を逸脱しない範囲で、必要に応じて適宜変更することができる。   The configuration related to the vibration suppression device of the present invention is not limited to the mode described in the above embodiment, and the configuration related to vibration suppression control in the detection means, the control device, and the control device, The present invention can be changed as appropriate without departing from the spirit of the present invention.

たとえば、演算式(1)〜(4)や変更式(1)(2)に示すような位相情報、k値、定数等やこれらの関係は、工作機械の種類に応じて適宜調査し、決定するようにすることで精度をさらに向上させることができる。
さらに、上記実施形態では、検出手段にて検出される時間領域の振動加速度のフーリエ解析を行った際、周波数領域の振動加速度が最大値を示す波形を使用して、「びびり振動」の抑制に係る制御を行うようにしているが、周波数領域の振動加速度の値が上位の複数(たとえば、3つ)の波形を用いて最適回転速度を算出するようにして、「びびり振動」の抑制効果の更なる向上を図ってもよい。
For example, the phase information, the k value, the constant, etc. as shown in the arithmetic expressions (1) to (4) and the changing expressions (1) and (2) and the relationship thereof are appropriately investigated and determined according to the type of the machine tool. By doing so, the accuracy can be further improved.
Furthermore, in the above embodiment, when Fourier analysis of vibration acceleration in the time domain detected by the detection means is performed, a waveform in which the vibration acceleration in the frequency domain shows the maximum value is used to suppress “chatter vibration”. Although such control is performed, the optimum rotational speed is calculated using a plurality of waveforms (for example, three) having higher values of vibration acceleration in the frequency domain, so that the effect of suppressing “chatter vibration” can be reduced. Further improvements may be made.

さらにまた、上記実施形態では、検出手段により回転軸の振動加速度を検出し、検出された振動加速度に基づいて最適回転速度を算出するといった構成としているが、検出手段によって振動による変位や音圧を検出し、検出された変位や音圧に基づいて最適回転速度を算出するように構成してもよい。
加えて、上記実施形態では、工具を回転させる所謂マシニングセンタ等の工作機械の回転軸における振動を検出する構成としているが、回転しない側(固定側)であるワーク又はその近傍の振動を検出するようにしても良い。更には、旋盤などワークを回転させる工作機械にも適用可能であり、その場合には回転軸であるワークを保持する主軸側の振動を検出したり、固定側である工具の振動を検出したりすることができる。尚、検出手段の設置位置や設置数等を、工作機械の種類、大きさ等に応じて適宜変更してもよいことは言うまでもない。
Furthermore, in the above-described embodiment, the configuration is such that the vibration acceleration of the rotating shaft is detected by the detection means, and the optimum rotation speed is calculated based on the detected vibration acceleration. It may be configured to detect and calculate the optimum rotational speed based on the detected displacement and sound pressure.
In addition, in the above-described embodiment, the vibration is detected in the rotating shaft of a machine tool such as a so-called machining center that rotates the tool. However, the vibration on the non-rotating side (fixed side) or the vicinity thereof is detected. Anyway. Furthermore, it can also be applied to a machine tool that rotates a workpiece such as a lathe. In that case, it detects vibrations on the spindle side that holds the workpiece that is the rotation axis, or detects vibrations on the tool that is on the fixed side. can do. Needless to say, the installation position, the number of installations, and the like of the detection means may be appropriately changed according to the type and size of the machine tool.

振動抑制装置のブロック構成を示した説明図である。It is explanatory drawing which showed the block structure of the vibration suppression apparatus. 振動抑制の対象となる回転軸ハウジングを側面から示した説明図である。It is explanatory drawing which showed the rotating shaft housing used as the object of vibration suppression from the side surface. 回転軸ハウジングを軸方向から示した説明図である。It is explanatory drawing which showed the rotating shaft housing from the axial direction. 時間領域の振動加速度のフーリエ解析結果の一例を示した説明図である。It is explanatory drawing which showed an example of the Fourier-analysis result of the vibration acceleration of a time domain. びびり振動の抑制制御に係るフローチャートである。It is a flowchart which concerns on suppression control of chatter vibration.

符号の説明Explanation of symbols

1・・回転軸ハウジング、2a、2b、2c・・振動センサ、3・・回転軸、5・・制御装置、6・・FFT演算装置、7・・パラメータ演算装置、8・・NC装置、10・・振動抑制装置。   1 ··· Rotating shaft housing, 2a, 2b, 2c ·· Vibration sensor, 3 ··· Rotating shaft, 5 ·· Control device, 6 ·· FFT computing device, 7 ·· Parameter computing device, 8 ·· NC device, 10 ..Vibration suppression devices

Claims (3)

工具又はワークを回転させるための回転軸を備えた工作機械において、前記回転軸を回転させた際に生じるびびり振動を抑制するための振動抑制装置であって、
回転中の前記回転軸の時間領域での振動を検出する検出手段と、検出手段により検出された時間領域の振動に基づいて、びびり振動数及びそのびびり振動数における周波数領域の振動を算出すると共に、算出した前記周波数領域の振動が所定の閾値を超えた場合、所定のパラメータに基づき、びびり振動を抑制可能な前記回転軸の最適回転速度を算出する演算手段と、その演算手段により算出された最適回転速度にて前記回転軸を回転させる回転速度制御手段と、を備え、
前記演算手段は、前記最適回転速度を算出する際に、所定の条件に基づいて発生したびびりの種類を特定し、特定されたびびりの種類に応じて前記所定のパラメータを変更して夫々最適回転速度を算出することを特徴とする工作機械の振動抑制装置。
In a machine tool provided with a rotating shaft for rotating a tool or a workpiece, a vibration suppressing device for suppressing chatter vibration generated when the rotating shaft is rotated,
Based on the detection means for detecting the vibration in the time domain of the rotating shaft during rotation and the vibration in the time domain detected by the detection means, the vibration frequency and the vibration in the frequency domain at the chatter frequency are calculated. When the calculated vibration in the frequency domain exceeds a predetermined threshold, based on a predetermined parameter, calculating means for calculating the optimum rotational speed of the rotating shaft capable of suppressing chatter vibration, and the calculating means Rotation speed control means for rotating the rotation shaft at an optimum rotation speed, and
The calculation means specifies the type of chatter generated based on a predetermined condition when calculating the optimum rotation speed, and changes the predetermined parameter according to the specified type of chatter to change the optimum rotation speed respectively. A vibration suppression device for a machine tool, characterized by calculating a speed.
演算手段は、所定のパラメータとなる下記の演算式(1)〜(4)に基づいて最適回転速度の演算を行うものであり、演算式(3)に基づいて算出した位相情報からびびりの種類を特定し、所定の条件に基づいて演算式(4)のk1値を変更するものである請求項1に記載の工作機械の振動抑制装置。
k’値=60×びびり振動数/(工具刃数×回転軸回転速度) ・・・(1)
k値=k’値の整数部 ・・・(2)
位相情報=k’値−k値 ・・・(3)
最適回転速度=60×びびり振動数/(工具刃数×k1値)・・・(4)
The calculation means calculates the optimum rotation speed based on the following calculation formulas (1) to (4) serving as predetermined parameters, and the type of chatter from the phase information calculated based on the calculation formula (3). The vibration suppression device for a machine tool according to claim 1, wherein the k1 value of the arithmetic expression (4) is changed based on a predetermined condition.
k ′ value = 60 × chat vibration frequency / (number of tool blades × rotational axis rotation speed) (1)
k value = integer part of k ′ value (2)
Phase information = k ′ value−k value (3)
Optimal rotation speed = 60 x chatter frequency / (number of tool blades x k1 value) (4)
演算手段は、演算式(3)で得られる位相情報が0に近い値であれば強制びびり振動と判断し、0.5或いは−0.5を加算してk1値を求め、演算式(4)から最適回転速度を演算するものである請求項2に記載の工作機械の振動抑制装置。   If the phase information obtained by the calculation formula (3) is a value close to 0, the calculation means determines that it is forced chatter vibration, adds 0.5 or -0.5 to obtain the k1 value, and sets the calculation formula (4 The vibration suppression device for a machine tool according to claim 2, wherein an optimum rotational speed is calculated from
JP2007138164A 2007-05-24 2007-05-24 Vibration suppressor for machine tools Expired - Fee Related JP4582660B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007138164A JP4582660B2 (en) 2007-05-24 2007-05-24 Vibration suppressor for machine tools
US12/107,191 US8256590B2 (en) 2007-05-24 2008-04-22 Vibration suppressing device and vibration suppressing method for machine tool
IT000871A ITMI20080871A1 (en) 2007-05-24 2008-05-14 DEVICE AND METHOD OF VIBRATION ELIMINATION FOR MACHINE TOOL
CN2008101090391A CN101310921B (en) 2007-05-24 2008-05-23 Vibration suppressing device and vibration suppressing method for machine tool
DE200810024773 DE102008024773A1 (en) 2007-05-24 2008-05-23 Vibration suppression device and vibration suppression method for a machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007138164A JP4582660B2 (en) 2007-05-24 2007-05-24 Vibration suppressor for machine tools

Publications (2)

Publication Number Publication Date
JP2008290186A true JP2008290186A (en) 2008-12-04
JP4582660B2 JP4582660B2 (en) 2010-11-17

Family

ID=40099846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007138164A Expired - Fee Related JP4582660B2 (en) 2007-05-24 2007-05-24 Vibration suppressor for machine tools

Country Status (2)

Country Link
JP (1) JP4582660B2 (en)
CN (1) CN101310921B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078350A (en) * 2007-09-06 2009-04-16 Okuma Corp Vibration suppressing device for machine tool
US20100104388A1 (en) * 2008-10-28 2010-04-29 Okuma Corporation Vibration suppressing method and vibration suppressing device for machine tool
WO2010116825A1 (en) * 2009-04-10 2010-10-14 エヌティーエンジニアリング株式会社 Method and device for suppressing chattering of work machine
CN102650866A (en) * 2011-02-24 2012-08-29 大隈株式会社 Numerical control apparatus having vibration suppression capabilities
DE102012204968A1 (en) 2011-03-28 2012-10-04 Okuma Corporation Vibration detection method and vibration detection device
JP2012187685A (en) * 2011-03-11 2012-10-04 Okuma Corp Method and device for controlling rotational shaft of machine tool
JP2012196741A (en) * 2011-03-22 2012-10-18 Okuma Corp Rotational speed display device
DE102012210118A1 (en) 2011-06-16 2012-12-20 Okuma Corp. Vibration determination method and vibration determination device
JP2013000850A (en) * 2011-06-20 2013-01-07 Osaka Kiko Co Ltd Controller and control method of machine tool
JP2013007647A (en) * 2011-06-24 2013-01-10 Jtekt Corp Chattering vibration detection method
JP2013036912A (en) * 2011-08-10 2013-02-21 Jtekt Corp Chattering vibration detection device
CN103419076A (en) * 2012-05-17 2013-12-04 大隈株式会社 Machining vibration suppressing method and machining vibration suppressing apparatus for machine tool
JP2014061568A (en) * 2012-09-21 2014-04-10 Jtekt Corp Chattering vibration suppression method and machine tool
WO2014115395A1 (en) * 2013-01-23 2014-07-31 株式会社日立製作所 Cutting-vibration suppression method, computation control device, and machine tool
JP2015229216A (en) * 2014-06-05 2015-12-21 ブラザー工業株式会社 Vibration detection device and machine tool
JP2016000437A (en) * 2014-06-11 2016-01-07 トヨタ自動車株式会社 Working tool support device
WO2018092221A1 (en) * 2016-11-16 2018-05-24 株式会社牧野フライス製作所 Method for controlling machine tool feed shaft and feed shaft-controlling device

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5368232B2 (en) * 2009-09-24 2013-12-18 オークマ株式会社 Vibration suppression device
JP4942839B2 (en) * 2010-09-10 2012-05-30 株式会社牧野フライス製作所 Chatter vibration detection method, chatter vibration avoidance method, and machine tool
JP5608036B2 (en) * 2010-10-13 2014-10-15 オークマ株式会社 Operation history management method and operation history management device
JP5536608B2 (en) * 2010-10-13 2014-07-02 オークマ株式会社 Vibration suppressing method and vibration suppressing device for machine tool
JP5536611B2 (en) 2010-10-15 2014-07-02 オークマ株式会社 Method and apparatus for monitoring machine tool, machine tool
ITMI20111889A1 (en) * 2010-10-20 2012-04-21 Okuma Machinery Works Ltd MONITORING METHOD OF THE FLUCTUATION OF THE ROTATING SPEED OF THE ROTATING SHAFT IN A MACHINE TOOL, MONITORING EQUIPMENT, AND MACHINE TOOL
CN102303282A (en) * 2011-09-14 2012-01-04 无锡机床股份有限公司 Main shaft of machine tool for processing oil nozzle type workpieces
CN102416580A (en) * 2011-12-07 2012-04-18 常州市新特力工具有限公司 Control device for boring machine
CN103372787A (en) * 2012-04-28 2013-10-30 台中精机厂股份有限公司 Intelligent adaptive cutting vibration suppression method and system of tool room machine
CN103116311B (en) * 2012-12-31 2018-10-12 深圳市配天智造装备股份有限公司 A kind of method and device of the acceleration of adjustment digital control system
JP6058497B2 (en) * 2013-07-19 2017-01-11 オークマ株式会社 Machine tool and control method thereof
TWI518469B (en) * 2014-09-22 2016-01-21 財團法人工業技術研究院 Monitoring system and method for machining
JP6538430B2 (en) 2015-05-29 2019-07-03 オークマ株式会社 Vibration information display device for machine tools
JP6700061B2 (en) * 2016-01-20 2020-05-27 中村留精密工業株式会社 Turning method and machine tool using the same
CN105739438A (en) * 2016-04-28 2016-07-06 上海交通大学 Method for intelligently inhibiting machining vibration
CN105700477B (en) * 2016-04-28 2018-05-04 上海交通大学 A kind of processing flutter intelligence suppressing method based on flutter frequency
JP6922405B2 (en) * 2016-07-25 2021-08-18 大同特殊鋼株式会社 Vibration suppression device
CN106363450B (en) * 2016-09-07 2018-10-09 北京理工大学 A kind of online suppressing method of milling parameter
DE102016224749A1 (en) * 2016-12-12 2018-06-14 Robert Bosch Gmbh Machine tool for machining a workpiece
CN110393006A (en) * 2018-02-09 2019-10-29 深圳市大疆创新科技有限公司 Inhibit the method and holder of holder vibration
CN113543912B (en) * 2019-04-11 2023-12-26 西铁城时计株式会社 Machine tool and sensing method
CN109991925A (en) * 2019-04-18 2019-07-09 成都飞机工业(集团)有限责任公司 A kind of cutting-vibration on-line monitoring method and monitoring system
US11541500B2 (en) * 2019-06-25 2023-01-03 Fanuc Corporation Numerical control device, program recording medium, and control method
CN110434676B (en) * 2019-07-29 2020-05-22 北京理工大学 Boring flutter monitoring method based on multi-sensor time-frequency feature fusion
JP7218701B2 (en) * 2019-09-30 2023-02-07 ブラザー工業株式会社 Machine tool, feedback control method and computer program
JP7403282B2 (en) * 2019-11-01 2023-12-22 オークマ株式会社 Monitoring device and method for spindle rotation speed in machine tools, machine tools
CN113523902B (en) * 2021-06-24 2022-09-16 汉涘姆(上海)精密机械有限公司 Five-axis linkage fork type swing head anti-collision control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044852A (en) * 2005-08-12 2007-02-22 Univ Nagoya Machining device, revolution arithmetic unit of machining device, chattering vibration evaluation device of machining device and chattering vibration evaluation method of machining device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07186002A (en) * 1993-12-27 1995-07-25 Seiko Seiki Co Ltd Spindle device
US7341410B2 (en) * 2003-03-10 2008-03-11 Foster-Miller, Inc. Dynamical instrument for machining

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044852A (en) * 2005-08-12 2007-02-22 Univ Nagoya Machining device, revolution arithmetic unit of machining device, chattering vibration evaluation device of machining device and chattering vibration evaluation method of machining device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078350A (en) * 2007-09-06 2009-04-16 Okuma Corp Vibration suppressing device for machine tool
US20100104388A1 (en) * 2008-10-28 2010-04-29 Okuma Corporation Vibration suppressing method and vibration suppressing device for machine tool
US8374717B2 (en) * 2008-10-28 2013-02-12 Okuma Corporation Vibration suppressing method and vibration suppressing device for machine tool
CN102387892A (en) * 2009-04-10 2012-03-21 日本Nt工程技术株式会社 Method and device for suppressing chattering of work machine
WO2010116825A1 (en) * 2009-04-10 2010-10-14 エヌティーエンジニアリング株式会社 Method and device for suppressing chattering of work machine
KR101300301B1 (en) * 2009-04-10 2013-08-28 에누티엔지니아링구 가부시키가이샤 Method and device for suppressing chattering of work machine
JP2010247316A (en) * 2009-04-10 2010-11-04 Nt Engineering Kk Method and device for suppressing chattering of work machine
CN102650866A (en) * 2011-02-24 2012-08-29 大隈株式会社 Numerical control apparatus having vibration suppression capabilities
JP2012187685A (en) * 2011-03-11 2012-10-04 Okuma Corp Method and device for controlling rotational shaft of machine tool
JP2012196741A (en) * 2011-03-22 2012-10-18 Okuma Corp Rotational speed display device
DE102012204968A1 (en) 2011-03-28 2012-10-04 Okuma Corporation Vibration detection method and vibration detection device
JP2012213851A (en) * 2011-03-28 2012-11-08 Okuma Corp Vibration determination method and vibration determination device
US9381608B2 (en) 2011-03-28 2016-07-05 Okuma Corporation Vibration determination method and vibration determination device
DE102012210118A1 (en) 2011-06-16 2012-12-20 Okuma Corp. Vibration determination method and vibration determination device
DE102012210118B4 (en) 2011-06-16 2022-03-31 Okuma Corp. Vibration determination method and vibration determination device
JP2013000837A (en) * 2011-06-16 2013-01-07 Okuma Corp Vibration determination method, and vibration determination device
US9211624B2 (en) 2011-06-16 2015-12-15 Okuma Corporation Vibration determination method and vibration determination device
JP2013000850A (en) * 2011-06-20 2013-01-07 Osaka Kiko Co Ltd Controller and control method of machine tool
JP2013007647A (en) * 2011-06-24 2013-01-10 Jtekt Corp Chattering vibration detection method
JP2013036912A (en) * 2011-08-10 2013-02-21 Jtekt Corp Chattering vibration detection device
CN103419076A (en) * 2012-05-17 2013-12-04 大隈株式会社 Machining vibration suppressing method and machining vibration suppressing apparatus for machine tool
JP2014061568A (en) * 2012-09-21 2014-04-10 Jtekt Corp Chattering vibration suppression method and machine tool
WO2014115395A1 (en) * 2013-01-23 2014-07-31 株式会社日立製作所 Cutting-vibration suppression method, computation control device, and machine tool
JP2015229216A (en) * 2014-06-05 2015-12-21 ブラザー工業株式会社 Vibration detection device and machine tool
JP2016000437A (en) * 2014-06-11 2016-01-07 トヨタ自動車株式会社 Working tool support device
WO2018092221A1 (en) * 2016-11-16 2018-05-24 株式会社牧野フライス製作所 Method for controlling machine tool feed shaft and feed shaft-controlling device
JPWO2018092221A1 (en) * 2016-11-16 2019-07-11 株式会社牧野フライス製作所 Feed axis control method for machine tool and feed axis control device

Also Published As

Publication number Publication date
CN101310921B (en) 2011-07-06
CN101310921A (en) 2008-11-26
JP4582660B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP4582660B2 (en) Vibration suppressor for machine tools
JP4777960B2 (en) Vibration suppression device
JP4433422B2 (en) Vibration suppression device
JP4743646B2 (en) Vibration suppressor for machine tools
JP5160980B2 (en) Vibration suppression method and apparatus
US8014903B2 (en) Method for suppressing vibration and device therefor
JP4891150B2 (en) Vibration suppressor for machine tools
JP4582661B2 (en) Vibration suppressor for machine tools
JP2013000837A (en) Vibration determination method, and vibration determination device
JP5908386B2 (en) Machine Tools
JP5984183B2 (en) Machine Tools
JP5226484B2 (en) Chatter vibration suppression method
JP6302794B2 (en) Rotation speed display method
JP5631779B2 (en) Vibration suppression method and apparatus for machine tool
JP5155090B2 (en) Vibration determination method and vibration suppression device for machine tool
JP2012111020A (en) Vibration suppressing device for machining tool and method thereof
JP5587707B2 (en) Vibration suppression device
JP5385067B2 (en) Rotational speed calculation device
JP5767931B2 (en) Vibration suppression method and vibration suppression device for machine tool
JP2012152835A (en) Vibration determination device
JP5301946B2 (en) Vibration suppression method and apparatus
JP4995115B2 (en) Vibration suppression method and apparatus
JP5631758B2 (en) Vibration suppression device
JP2013007647A (en) Chattering vibration detection method
JP5539794B2 (en) Vibration suppression device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

R150 Certificate of patent or registration of utility model

Ref document number: 4582660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160910

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees