JP5301946B2 - Vibration suppression method and apparatus - Google Patents

Vibration suppression method and apparatus Download PDF

Info

Publication number
JP5301946B2
JP5301946B2 JP2008274611A JP2008274611A JP5301946B2 JP 5301946 B2 JP5301946 B2 JP 5301946B2 JP 2008274611 A JP2008274611 A JP 2008274611A JP 2008274611 A JP2008274611 A JP 2008274611A JP 5301946 B2 JP5301946 B2 JP 5301946B2
Authority
JP
Japan
Prior art keywords
phase
vibration
calculated
rotating shaft
chatter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008274611A
Other languages
Japanese (ja)
Other versions
JP2010099793A5 (en
JP2010099793A (en
Inventor
浩 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2008274611A priority Critical patent/JP5301946B2/en
Priority to US12/493,494 priority patent/US8005574B2/en
Priority to ITMI2009A001175A priority patent/IT1396911B1/en
Priority to DE102009032233A priority patent/DE102009032233A1/en
Priority to CN 200910158478 priority patent/CN101623835B/en
Publication of JP2010099793A publication Critical patent/JP2010099793A/en
Publication of JP2010099793A5 publication Critical patent/JP2010099793A5/ja
Application granted granted Critical
Publication of JP5301946B2 publication Critical patent/JP5301946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for suppressing vibration capable of obtaining more accurate and stable rotational speed when chatter vibration occurs continuously, and surely suppressing the chatter vibration. <P>SOLUTION: Whenever the chatter vibration is detected, a phase &epsi;1 is calculated and the calculated phase &epsi;1 is compared with a phase &epsi;0 calculated last time the chatter vibration is detected. In the case where the phase &epsi;1 calculated this time is smaller than the phase &epsi;0 calculated last time, the phase &epsi;1 calculated this time is renewed and stored as the phase &epsi;0, and the rotational speed of a rotating shaft is changed by the predetermined amount of change. On the other hand, in the case where the phase &epsi;1 calculated this time is equal to the phase &epsi;0 calculated last time or more, the rotational speed of the rotating shaft is changed to the last rotational speed. As a result, machining can be performed with a rotational speed having a minimum phase value, and the quality of the surface to be machined can be improved, and tool wear can be suppressed. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、工具又はワークを回転させながら加工を行う工作機械において、加工中に発生する振動を抑制する方法、及び当該方法を実行可能な振動抑制装置に関するものである。   The present invention relates to a method for suppressing vibration generated during processing in a machine tool that performs processing while rotating a tool or a workpiece, and a vibration suppression device capable of executing the method.

従来、工作機械の振動抑制方法としては、たとえば特許文献1に記載の方法が知られている。この振動抑制方法では、加工面の仕上げ精度悪化の原因となる自励振動としての再生型びびり振動を抑制するため、工具やワーク等といったびびり振動が生じる系の固有振動数を求め、これを60倍すると共に工具刃数及び所定の整数で除して得た値を安定回転速度とする。そして、当該安定回転速度にて加工を行うことにより、加工中に発生するびびり振動を抑制しようとしている。なお、固有振動数は、工具やワークをインパルス加振することにより得ている。   Conventionally, for example, a method described in Patent Document 1 is known as a vibration suppression method for machine tools. In this vibration suppression method, in order to suppress regenerative chatter vibration as self-excited vibration that causes deterioration of the finishing accuracy of the machined surface, a natural frequency of a system in which chatter vibration such as a tool or a work is generated is obtained, The value obtained by multiplying and dividing by the number of tool blades and a predetermined integer is taken as the stable rotation speed. And it is going to suppress the chatter vibration which generate | occur | produces during a process by processing at the said stable rotational speed. The natural frequency is obtained by impulse vibration of a tool or workpiece.

また、特許文献2に記載の振動抑制方法も知られている。この振動抑制方法は、びびり振動が生じる系の加工中のびびり周波数を求め、これを60倍すると共に工具刃数及び所定の整数で除した値を安定回転速度として加工を行うことにより、びびり振動を抑制しようとするものである。なお、加工中のびびり周波数は、工具やワークの近傍に音センサを配置し、回転中に音センサで検出された振動周波数に基づいて得ている。   A vibration suppression method described in Patent Document 2 is also known. In this vibration suppression method, chatter vibration during machining of a system in which chatter vibration occurs is obtained, and this is multiplied by 60 and machining is performed with a value obtained by dividing the number of tool blades and a predetermined integer as a stable rotation speed, thereby causing chatter vibration. It is intended to suppress. The chatter frequency during machining is obtained based on the vibration frequency detected by the sound sensor during rotation by arranging a sound sensor near the tool or workpiece.

特開2003−340627号公報JP 2003-340627 A 特表2001−517557号公報JP-T-2001-517557

しかしながら、特許文献1に記載の振動抑制方法では、高価なインパルス装置が必要となる上、この装置を用いた加振には高度な技術を要し、手間がかかる。しかも、加工前に得た固有振動数と加工中に発生するびびり振動数とは必ずしも一致しないため、正確な安定回転速度を得にくいという問題もある。
一方、特許文献2に記載の振動抑制方法では、回転音等の分析により得られたびびり周波数と実際に発生しているびびり振動数(固有振動数)とが互いにやや異なった値となるため、やはり正確な安定回転速度を得にくい。このため、本件出願人は、回転中の回転軸の時間領域の振動を検出する検出手段と、その時間領域の振動に基づいてびびり振動数等を算出する演算手段とを設置して、より正確なびびり振動数を求め、更に最適な安定回転速度を得ようとした振動抑制装置(たとえば、特願2007−138166)を考案した。しかしながら、当該振動抑制装置では、検出手段の検出誤差に起因して、演算手段が算出したびびり振動数と実際に発生しているびびり振動数との間に計算誤差が生じ、回転軸を安定回転速度としたにも拘わらず、びびり振動が継続してしまう事態が考えられる。
However, the vibration suppression method described in Patent Document 1 requires an expensive impulse device, and the vibration using this device requires a high level of technology and is troublesome. In addition, since the natural frequency obtained before machining does not always match the chatter frequency generated during machining, there is a problem that it is difficult to obtain an accurate stable rotational speed.
On the other hand, in the vibration suppression method described in Patent Document 2, the chatter frequency obtained by analyzing the rotational sound and the chatter frequency actually generated (natural frequency) are slightly different from each other. After all, it is difficult to obtain an accurate stable rotation speed. For this reason, the present applicant installs a detecting means for detecting the vibration in the time domain of the rotating rotating shaft and a calculating means for calculating the chatter frequency based on the vibration in the time domain, and more accurately. A vibration suppression device (for example, Japanese Patent Application No. 2007-138166) was devised to obtain the chatter frequency and to obtain an optimum stable rotation speed. However, in the vibration suppression device, due to the detection error of the detection means, a calculation error occurs between the chatter frequency calculated by the calculation means and the chatter frequency actually generated, and the rotating shaft rotates stably. It is possible that chatter vibration will continue despite the speed.

そこで、本発明は、上記問題に鑑みなされたものであって、びびり振動が継続するような場合に、より正確な安定回転速度を得ることができ、びびり振動を確実に抑制することができる振動抑制方法及び装置を提供しようとするものである。   Therefore, the present invention has been made in view of the above problems, and in the case where chatter vibration continues, a more accurate stable rotational speed can be obtained, and vibration that can reliably suppress chatter vibration. It is an object of the present invention to provide a suppression method and apparatus.

上記目的を達成するために、本発明のうち請求項1に記載の発明は、工具又はワークを回転させるための回転軸を備えた工作機械において、回転中の前記回転軸にびびり振動が生じると、前記回転軸の回転速度を変更し、前記びびり振動を抑制する振動抑制方法であって、回転中の前記回転軸による時間領域の振動を検出する第1ステップと、検出した時間領域の振動にもとづいて、びびり周波数及び該びびり周波数における周波数領域の振動加速度を算出する第2ステップと、算出した周波数領域の振動加速度が所定の閾値を超えた場合に、下記の演算式(1)により位相ε1を算出する第3ステップと、算出した位相ε1と、前回振動加速度が所定の閾値を超えた際に、位相ε1と同様の演算式(1)にて算出し記憶している位相ε0とを比較する第4ステップと、第4ステップにおける比較の結果、算出した位相ε1が前回算出した位相ε0よりも小さい場合には、今回算出した位相ε1を位相ε0として更新記憶するとともに、前記回転軸の回転速度を所定の変更量だけ変更する一方、第4ステップにおける比較の結果、算出した位相ε1が前回算出した位相ε0以上である場合には、前記回転軸の回転速度を、位相ε0算出時の回転速度へ変更する第5ステップとを実行することを特徴とするものである。
演算式(1):位相ε1={60×びびり周波数/(工具刃数×回転速度)}の小数部
尚、請求項1に記載の第1ステップにより検出される「振動」とは、振動加速度、振動による変位、及び振動による音圧等、振動自体は勿論、振動に起因して回転軸に発生し、間接的に振動を検出することができる物理的変化を含むものである。
In order to achieve the above object, according to the first aspect of the present invention, in a machine tool having a rotating shaft for rotating a tool or a workpiece, chatter vibration occurs on the rotating shaft during rotation. A vibration suppressing method for suppressing the chatter vibration by changing the rotation speed of the rotation shaft, the first step of detecting time domain vibration due to the rotating shaft during rotation, and the detected time domain vibration Based on the second step of calculating the chatter frequency and the vibration acceleration in the frequency domain at the chatter frequency, and when the calculated vibration acceleration in the frequency domain exceeds a predetermined threshold, the phase ε1 is calculated by the following equation (1). And the phase ε1 calculated and stored in the same equation (1) as the phase ε1 when the previous vibration acceleration exceeds a predetermined threshold. A fourth step of compare, with comparison of the results in the fourth step, the calculated phase ε1 is smaller than the phase .epsilon.0 previously calculated updates stored phase ε1 calculated this time as a phase .epsilon.0, of the rotary shaft While the rotation speed is changed by a predetermined change amount, if the calculated phase ε1 is equal to or greater than the previously calculated phase ε0 as a result of the comparison in the fourth step, the rotation speed of the rotating shaft is calculated at the time of calculating the phase ε0. The fifth step of changing to the rotation speed is executed.
Arithmetic Formula (1): Decimal Part of Phase ε1 = {60 × Chatter Frequency / (Number of Tool Blades × Rotational Speed)} Note that “vibration” detected by the first step according to claim 1 is vibration acceleration. In addition to vibration itself, such as displacement due to vibration and sound pressure due to vibration, it includes a physical change that occurs on the rotating shaft due to vibration and can indirectly detect vibration.

一方、請求項2に記載の発明は、工具又はワークを回転させるための回転軸を備えた工作機械において、回転中の前記回転軸にびびり振動が生じると、前記回転軸の回転速度を変更し、前記びびり振動を抑制するための振動抑制装置であって、回転中の前記回転軸の時間領域の振動を検出する検出手段と、検出した時間領域の振動にもとづいて、びびり周波数及び該びびり周波数における周波数領域の振動加速度を算出する第1演算手段と、算出した周波数領域の振動加速度が所定の閾値を超えた場合に、下記の演算式(1)により位相ε1を算出する第2演算手段と、前回振動加速度が所定の閾値を超えた際に、前記第2演算手段が位相ε1と同様の演算式(1)にて算出した位相ε0を記憶する記憶手段と、前記第2演算手段が位相ε1を算出すると、算出した位相ε1と前記記憶手段に記憶されている位相ε0とを比較し、算出した位相ε1が前回算出した位相ε0よりも小さい場合には、今回算出した位相ε1を位相ε0として更新記憶するとともに、前記回転軸の回転速度を所定の変更量だけ変更する一方、算出した位相ε1が前回算出した位相ε0以上である場合には、前記回転軸の回転速度を、位相ε0算出時の回転速度へ変更するように指令する制御手段と、前記回転軸の回転速度を制御する回転速度制御手段とを備えたことを特徴とするものである。
演算式(1):位相ε1={60×びびり周波数/(工具刃数×回転速度)}の小数部
尚、請求項2において検出手段が検出する「振動」も、請求項1に記載の「振動」と同様のものである。
On the other hand, according to the second aspect of the present invention, in a machine tool having a rotating shaft for rotating a tool or a workpiece, when chatter vibration occurs on the rotating shaft that is rotating, the rotating speed of the rotating shaft is changed. A vibration suppressing device for suppressing the chatter vibration, the detecting means for detecting the vibration in the time domain of the rotating shaft during rotation, and the chatter frequency and the chatter frequency based on the detected vibration in the time domain A first computing means for calculating the vibration acceleration in the frequency domain in the case, and a second computing means for calculating the phase ε1 by the following formula (1) when the calculated vibration acceleration in the frequency domain exceeds a predetermined threshold value: When the previous vibration acceleration exceeds a predetermined threshold value, the storage means for storing the phase ε0 calculated by the same calculation formula (1) as the phase ε1 by the second calculation means, and the second calculation means are the phase ε1 When output, when the calculated the phase ε1 said comparing the phase ε0 stored in the storage means, the calculated phase ε1 is smaller than the phase ε0 calculated last time, updates the phase ε1 calculated this time as the phase ε0 While storing, the rotational speed of the rotary shaft is changed by a predetermined change amount, and when the calculated phase ε1 is equal to or larger than the previously calculated phase ε0, the rotational speed of the rotary shaft is set at the time of calculating the phase ε0. Control means for instructing to change to the rotation speed and rotation speed control means for controlling the rotation speed of the rotating shaft are provided.
Operational expression (1): Phase ε1 = {60 × chatter frequency / (number of tool blades × rotational speed)} decimal part Note that “vibration” detected by the detection means in claim 2 is also “ This is the same as “vibration”.

本発明によれば、「びびり振動」が生じた際、当該回転速度における位相ε1を算出し、その位相ε1と前回振動加速度が所定の閾値を超えた際の回転速度における位相ε0とを比較し、その結果に応じて回転軸の回転速度を変更し対応するため、状況に応じた対応が可能となり、「再生型びびり振動」の影響を従来以上に抑制することができる。
特に、現在の回転速度における位相ε1と前回の回転速度における位相ε0とを比較し、位相ε1が位相ε0以上になると、回転速度を前回の回転速度(すなわち、位相ε0が算出された際の回転速度)に変更することにより、位相値が最小となる回転速度にて加工することが可能となる。したがって、「再生型びびり振動」の発生をより効果的に抑制することができ、ひいては加工面の品位の向上、工具摩耗の抑制等を図ることができる。
According to the present invention, when “chatter vibration” occurs, the phase ε1 at the rotational speed is calculated, and the phase ε1 is compared with the phase ε0 at the rotational speed when the previous vibration acceleration exceeds a predetermined threshold. Since the rotation speed of the rotating shaft is changed according to the result, it is possible to cope with the situation, and the influence of “regenerative chatter vibration” can be suppressed more than before.
In particular, the phase ε1 at the current rotational speed is compared with the phase ε0 at the previous rotational speed, and when the phase ε1 becomes equal to or greater than the phase ε0, the rotational speed is converted to the previous rotational speed (that is, the rotation at the time when the phase ε0 is calculated). By changing to (speed), it becomes possible to perform processing at a rotational speed at which the phase value is minimized. Therefore, the occurrence of “regenerative chatter vibration” can be more effectively suppressed, and as a result, the quality of the machined surface can be improved, and tool wear can be suppressed.

以下、本発明の一実施形態となる振動抑制方法及び装置について、図面をもとに説明する。
図1は、振動抑制装置10のブロック構成説明図である。図2は、振動抑制の対象となる回転軸ハウジング1を側方から示した説明図であり、図3は、回転軸ハウジング1を軸方向から示した説明図である。
Hereinafter, a vibration suppressing method and apparatus according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram illustrating the vibration suppressing device 10. FIG. 2 is an explanatory view showing the rotary shaft housing 1 to be subjected to vibration suppression from the side, and FIG. 3 is an explanatory view showing the rotary shaft housing 1 from the axial direction.

振動抑制装置10は、回転軸ハウジング1にC軸周りで回転可能に備えられた回転軸3に発生する「びびり振動」を抑制するためのものであって、回転中の回転軸3に生じる時間領域の振動加速度(時間軸上の振動加速度を意味する)を検出するための振動センサ(検出手段)2a〜2cと、振動センサ2a〜2cによる検出値をもとにして回転軸3の回転速度を制御する制御装置5とからなる。   The vibration suppressing device 10 is for suppressing “chatter vibration” generated in the rotating shaft 3 provided in the rotating shaft housing 1 so as to be rotatable around the C axis, and is a time generated in the rotating rotating shaft 3. Vibration sensors (detection means) 2a to 2c for detecting the vibration acceleration of the region (meaning vibration acceleration on the time axis), and the rotation speed of the rotary shaft 3 based on the detection values by the vibration sensors 2a to 2c And a control device 5 for controlling the control.

振動センサ2a〜2cは、図2や図3に示すように、互いに直角となる方向における時間領域の振動加速度を検出すべく、互いに直交するX軸、Y軸、Z軸方向での時間領域の振動加速度を検出可能な状態で、回転軸ハウジング1に取り付けられている。   As shown in FIGS. 2 and 3, the vibration sensors 2 a to 2 c detect time domain vibration accelerations in the X axis, Y axis, and Z axis directions orthogonal to each other in order to detect time domain vibration acceleration in directions perpendicular to each other. It is attached to the rotary shaft housing 1 in a state where vibration acceleration can be detected.

また、制御装置5は、振動センサ2a〜2cにより検出された時間領域の振動加速度をもとにフーリエ解析を行うFFT演算装置11と、FFT演算装置11で算出された値にもとづいて安定回転速度の算出等を行う演算装置12と、回転軸ハウジング1での加工を制御するNC装置(回転速度制御手段)13と、演算装置12にて算出された各種数値を記憶する記憶装置14とを備えている。なお、NC装置13は、回転軸3の回転速度をモニタリングしている。また、記憶装置14には、位相ε0の初期値(ε0=1)が記憶されている。   The control device 5 also includes an FFT operation device 11 that performs Fourier analysis based on vibration acceleration in the time domain detected by the vibration sensors 2a to 2c, and a stable rotation speed based on the value calculated by the FFT operation device 11. Is provided with an arithmetic device 12 that calculates the above, an NC device (rotational speed control means) 13 that controls machining in the rotary shaft housing 1, and a storage device 14 that stores various numerical values calculated by the arithmetic device 12. ing. The NC device 13 monitors the rotational speed of the rotary shaft 3. In addition, the storage device 14 stores an initial value (ε0 = 1) of the phase ε0.

ここで、上述したような振動抑制装置10による「びびり振動」の振動抑制方法について、図7のフローチャートをもとに説明する。
加工開始当初、制御装置5は、図7のフローチャートにもとづいて回転軸3の回転動作を制御する。
まず、FFT演算装置11では、振動センサ2a〜2cによって回転軸3の回転中に常時検出される時間領域の振動加速度についてフーリエ解析を行い(S1)、図4に示すような最大加速度(周波数領域の振動加速度)及びその周波数4(びびり周波数)を常時計算している(S2)。なお、時間領域の振動加速度についてフーリエ解析を行うと、周波数と周波数領域の振動加速度との関係を示す図4のような波形が複数パターン取得されるが、ここでは周波数領域の振動加速度が最大となる波形を用いる。
Here, a vibration suppressing method of “chatter vibration” by the vibration suppressing apparatus 10 as described above will be described based on the flowchart of FIG.
At the beginning of machining, the control device 5 controls the rotation operation of the rotary shaft 3 based on the flowchart of FIG.
First, the FFT arithmetic unit 11 performs Fourier analysis on the vibration acceleration in the time domain that is constantly detected by the vibration sensors 2a to 2c during the rotation of the rotating shaft 3 (S1), and the maximum acceleration (frequency domain) as shown in FIG. Vibration acceleration) and its frequency 4 (chatter frequency) are constantly calculated (S2). When Fourier analysis is performed on the vibration acceleration in the time domain, a plurality of patterns as shown in FIG. 4 showing the relationship between the frequency and the vibration acceleration in the frequency domain are acquired. Here, the vibration acceleration in the frequency domain is maximum. Is used.

次に、演算装置12では、FFT演算装置11において算出された周波数領域の振動加速度と予め設定されている所定の閾値とを比較し(S3)、周波数領域の振動加速度が所定の閾値を超えた場合(例えば、図4における周波数4での周波数領域の振動加速度が検出された場合)には、回転軸3に抑制すべき「びびり振動」が発生しているとして、下記演算式(1)により位相ε1を算出する(S4)。   Next, the arithmetic device 12 compares the vibration acceleration in the frequency domain calculated by the FFT arithmetic device 11 with a predetermined threshold value (S3), and the vibration acceleration in the frequency region exceeds the predetermined threshold value. In the case (for example, when vibration acceleration in the frequency domain at frequency 4 in FIG. 4 is detected), it is assumed that “chatter vibration” to be suppressed occurs on the rotating shaft 3 and is expressed by the following equation (1). The phase ε1 is calculated (S4).

ε1={60×びびり周波数/(工具刃数×回転速度)}の小数部 ・・・(1)
ここで、演算式(1)における「工具刃数」は、予め演算装置12に設定されているものとする。また、演算式(1)における「回転速度」とは、現在の回転速度のことである。さらに、びびり周波数とは、「びびり振動」が発生した場合の周波数4のことである。
ε1 = {60 × chat frequency / (number of tool blades × rotational speed)} decimal part (1)
Here, it is assumed that the “number of tool blades” in the calculation formula (1) is set in the calculation device 12 in advance. The “rotation speed” in the calculation formula (1) is the current rotation speed. Furthermore, the chatter frequency is a frequency 4 when “chatter vibration” occurs.

そして、算出した位相ε1と記憶装置14に記憶されている位相ε0とを比較する(S5)。回転軸3の回転開始後、初めて「びびり振動」が検知された場合、位相ε0は初期値である(すなわちε0=1である)ため、必ずε1<ε0(S5における判断がYES)となる。このように算出した位相ε1が記憶装置14に記憶されている位相ε0よりも小さい場合、記憶装置14では、今回算出した位相ε1の値を位相ε0として更新記憶するとともに、NC装置13では、回転速度を所定の変更量だけ増加させる(S6)。尚、この変更量は予め記憶されており、たとえば、加工開始時に設定する回転速度の数%(たとえば3%)の値とする。 Then, the calculated phase ε1 is compared with the phase ε0 stored in the storage device 14 (S5). When “chat vibration” is detected for the first time after the rotation of the rotating shaft 3, the phase ε0 is an initial value (that is, ε0 = 1), so that ε1 <ε0 (determination in S5 is YES). When the calculated phase ε1 is smaller than the phase ε0 stored in the storage device 14, the storage device 14 updates and stores the value of the phase ε1 calculated this time as the phase ε0, and the NC device 13 rotates. The speed is increased by a predetermined change amount ( S6 ). This change amount is stored in advance, and is, for example, a value of several percent (for example, 3%) of the rotational speed set at the start of machining.

そして、上述したような回転速度の変更後にはS1へ戻り、FFT演算装置11では、変更後の回転速度にて回転中の回転軸3において常時検出される時間領域の振動加速度についてのフーリエ解析及び、最大加速度とその周波数4(びびり周波数)との計算を継続するとともに、演算装置12では、FFT演算装置11において算出された周波数領域の振動加速度と予め設定されている所定の閾値との比較を行う(S3)。ここで、再び所定の閾値を超える振動加速度を検出する(S3においてYESと判断する)と、再度上記演算式(1)により、位相ε1を算出し(S4)、前回更新された位相ε0と今回算出した位相ε1とを比較する(S5)とともに、今回算出した位相ε1が前回更新した位相ε0よりも小さい場合には、記憶装置14における位相ε0の更新(すなわち、今回算出した位相ε1の値への更新)、及びNC装置13における回転速度の増加制御を行う(S6)。そして、このS1〜S6までのステップは、S6における判断がNO、すなわち位相ε1が位相ε0以上となるまで繰り返す。尚、S6において回転速度を増加させた結果、「びびり振動」が検知されなくなった場合(すなわち、S3における判断においてYESとならなくなった場合)、加工終了となるまで、その増加させた回転速度を安定回転速度として維持することになる。   Then, after changing the rotational speed as described above, the process returns to S1, and the FFT arithmetic unit 11 performs a Fourier analysis on the vibration acceleration in the time domain that is always detected in the rotating shaft 3 rotating at the changed rotational speed, and The calculation of the maximum acceleration and its frequency 4 (chatter frequency) is continued, and the calculation device 12 compares the vibration acceleration in the frequency domain calculated by the FFT calculation device 11 with a predetermined threshold value set in advance. Perform (S3). Here, when vibration acceleration exceeding a predetermined threshold is detected again (determined as YES in S3), the phase ε1 is calculated again by the above equation (1) (S4), and the previously updated phase ε0 and this time The calculated phase ε1 is compared (S5), and if the currently calculated phase ε1 is smaller than the previously updated phase ε0, the phase ε0 in the storage device 14 is updated (that is, to the value of the currently calculated phase ε1). Update) and increase control of the rotation speed in the NC device 13 (S6). The steps from S1 to S6 are repeated until the determination in S6 is NO, that is, the phase ε1 is equal to or greater than the phase ε0. As a result of increasing the rotation speed in S6, when “chatter vibration” is not detected (that is, when the determination in S3 does not become YES), the increased rotation speed is increased until the end of machining. It will be maintained as a stable rotation speed.

一方、増加させた回転速度において「びびり振動」が発生し、その際に算出した位相ε1が位相ε0以上となった、すなわちS6における判断がNOとなった場合、NC装置13では、回転速度を前回増加させた変更量だけ減少させる(S7)。つまり、今回算出した位相ε1が記憶装置14に記憶されている位相ε0(すなわち、前回算出した位相ε1)以上であるということは、位相値としては位相ε0が最も小さいということなので、その位相値が最も小さくなる一段階前の回転速度(直前の回転速度)へと回転軸3の回転速度を復帰させる。そして、その減少させた回転速度を安定回転速度として、加工終了となるまで当該回転速度を維持する(S8)。 On the other hand, when the chatter vibration is generated at the increased rotational speed and the phase ε1 calculated at that time becomes equal to or larger than the phase ε0, that is, the determination in S6 is NO, the NC device 13 reduces the rotational speed. Decrease by the amount of change increased last time (S7). That is, the fact that the phase ε1 calculated this time is equal to or larger than the phase ε0 stored in the storage device 14 (that is, the previously calculated phase ε1) means that the phase ε0 is the smallest as the phase value. The rotational speed of the rotating shaft 3 is returned to the rotational speed one stage before the smallest (the rotational speed immediately before). Then, the reduced rotation speed is set as a stable rotation speed, and the rotation speed is maintained until the end of machining ( S8 ).

ここで、上述したように回転軸3の回転速度を増減させる場合と、従来のように一度しか回転速度を変更しない場合との「びびり振動」の抑制結果について、図5及び図6をもとに検討する。
従来のように「びびり振動」を検知したことをうけて、その検知結果(若しくは従前の実験結果)にもとづき、回転軸3の回転速度を、理論値としては理想の回転速度に変更したとしても、振動の検出値の誤差、回転速度の制御誤差等に起因して、びびり周波数(周波数4)における振動加速度7は1割程度しか減少しない(図5)。つまり、回転速度の変更後にも「びびり振動」が断続的に発生する事態が起こり得る。
一方、上述したように「びびり振動」の検知をうけるたびに回転速度を変更し、最終的に位相が最小値となる回転速度を安定回転速度として維持するとした制御を実行した場合、図6に示す如く、びびり周波数における振動加速度7を4割程度も減少させることができることになる。尚、図5及び図6において、6は回転速度の変化を、7はびびり周波数における振動加速度の変化を、8は位相の変化を夫々示している。
Here, the suppression results of “chatter vibration” in the case where the rotational speed of the rotating shaft 3 is increased or decreased as described above and the rotational speed is changed only once as in the past will be described with reference to FIGS. 5 and 6. To consider.
Even if the rotation speed of the rotary shaft 3 is changed to the ideal rotation speed as a theoretical value based on the detection result (or the previous experimental result) after detecting “chatter vibration” as in the past. The vibration acceleration 7 at the chatter frequency (frequency 4) is reduced by only about 10% due to an error in the vibration detection value, a control error in the rotation speed, and the like (FIG. 5). In other words, even after the rotational speed is changed, “chat vibration” may occur intermittently.
On the other hand, when the control is executed to change the rotation speed every time the “chatter vibration” is detected as described above and maintain the rotation speed at which the phase finally becomes the minimum value as the stable rotation speed, FIG. As shown, the vibration acceleration 7 at the chatter frequency can be reduced by about 40%. 5 and 6, 6 indicates a change in rotational speed, 7 indicates a change in vibration acceleration at a chatter frequency, and 8 indicates a change in phase.

上述したような振動抑制装置10及び当該振動抑制装置10による振動抑制方法によれば、「びびり振動」が生じた際、当該回転速度における位相ε1を算出し、その位相ε1と前回の回転速度における位相ε0とを比較し、その結果に応じて回転軸の回転速度を変更し対応するため、状況に応じた対応が可能となり、「再生型びびり振動」の影響を従来以上に抑制することができる。
特に、現在の回転速度における位相ε1と前回の回転速度における位相ε0とを比較し、位相ε1が位相ε0以上になると、回転速度を前回の回転速度(すなわち、位相ε0が算出された際の回転速度)に変更することにより、位相値が最小となる回転速度にて加工することが可能となる。したがって、「再生型びびり振動」の発生をより効果的に抑制することができ、ひいては加工面の品位の向上、工具摩耗の抑制等を図ることができる。
According to the vibration suppressing device 10 and the vibration suppressing method using the vibration suppressing device 10 as described above, when “chatter vibration” occurs, the phase ε1 at the rotational speed is calculated, and the phase ε1 and the previous rotational speed are calculated. The phase ε0 is compared and the rotational speed of the rotary shaft is changed according to the result, so that it is possible to cope with the situation and the influence of “regenerative chatter vibration” can be suppressed more than before. .
In particular, the phase ε1 at the current rotational speed is compared with the phase ε0 at the previous rotational speed, and when the phase ε1 becomes equal to or greater than the phase ε0, the rotational speed is converted to the previous rotational speed (that is, the rotation at the time when the phase ε0 is calculated). By changing to (speed), it becomes possible to perform processing at a rotational speed at which the phase value is minimized. Therefore, the occurrence of “regenerative chatter vibration” can be more effectively suppressed, and as a result, the quality of the machined surface can be improved, and tool wear can be suppressed.

なお、本発明の振動抑制方法及び装置に係る構成は、上記実施形態に記載の態様に何ら限定されるものではなく、びびり周波数の検出や振動抑制の制御に係る構成を、本発明の趣旨を逸脱しない範囲で、必要に応じて適宜変更することができる。   The configuration related to the vibration suppression method and apparatus of the present invention is not limited to the aspect described in the above embodiment, and the configuration related to the detection of chatter frequency and the control of vibration suppression is the gist of the present invention. As long as it does not deviate, it can change suitably as needed.

たとえば、上記実施形態では、算出する位相ε1の値に応じて回転軸3の回転速度を変化させる構成としているが、この際の回転速度の変化率は、予め設定した回転速度の大小や工具刃数、動特性等に応じて変更した方がよい。つまり、回転速度が低速度の場合は、10min−1程度の変化量でも効果がある一方、回転速度が高速になればなるほど、安定/不安定域が広範囲になるため、回転速度の20〜30%程度変化させなければ振動抑制効果を十分に得られないこともあるため、上記条件に応じて適宜変更した方がよい。 For example, in the above embodiment, the rotational speed of the rotary shaft 3 is changed according to the value of the phase ε1 to be calculated. The rate of change of the rotational speed at this time depends on the magnitude of the preset rotational speed or the tool blade. It is better to change it according to the number, dynamic characteristics, etc. That is, when the rotational speed is low, a change amount of about 10 min −1 is effective, but the higher the rotational speed, the wider the stable / unstable region. If it is not changed by about%, the vibration suppression effect may not be sufficiently obtained. Therefore, it is better to change appropriately according to the above conditions.

また、上記実施形態では、算出した位相ε1が位相ε0を超えなかった場合、回転速度を増加させるとしているが、当初設定した回転速度や種々の条件によっては、S6における判断がYESであった場合に、回転速度を所定の変更量だけ減少させるようにしてもよい。この制御に際しては、最終的に位相ε1が位相ε0以上になると、回転速度を所定の変更量だけ増加させて、当該回転速度を安定回転速度として維持することになる。   In the above embodiment, when the calculated phase ε1 does not exceed the phase ε0, the rotational speed is increased. However, depending on the initially set rotational speed and various conditions, the determination in S6 is YES. In addition, the rotational speed may be decreased by a predetermined change amount. In this control, when the phase ε1 finally becomes equal to or greater than the phase ε0, the rotational speed is increased by a predetermined change amount, and the rotational speed is maintained as a stable rotational speed.

さらに、背景技術の文献等にも記載されているように位相が2πであるところが、「再生型びびり振動」の最も小さくなる回転速度となるものの、理論式を導く過程には計算誤差が含まれてしまうため、位相が2πの回転速度を求めたところで、その値が必ずしも安定回転速度にはならない。したがって、演算式(1)の代わりに下記演算式(2)を用い、位相を補正して計算することで、より最適な安定回転速度を求めることも可能となる。
ε1={60×びびり周波数/(工具刃数×回転速度)+A}の小数部 ・・・(2)
ここで、演算式(2)におけるAとは所定の定数であって、0に近い値(たとえば、0.1)を用いる。
Furthermore, although the phase is 2π as described in the background art documents, etc., the rotational speed at which the “regenerative chatter vibration” is minimized is reduced, but the process of deriving the theoretical formula includes a calculation error. Therefore, when the rotational speed having a phase of 2π is obtained, the value does not necessarily become a stable rotational speed. Therefore, it is possible to obtain a more optimal stable rotational speed by using the following arithmetic expression (2) instead of the arithmetic expression (1) and correcting the phase for calculation.
ε1 = {60 × chat frequency / (number of tool blades × rotational speed) + A} decimal part (2)
Here, A in the arithmetic expression (2) is a predetermined constant, and a value close to 0 (for example, 0.1) is used.

さらにまた、上記実施形態では、時間領域の振動加速度のフーリエ解析により複数パターン取得される波形のうち周波数領域の振動加速度が最大となる波形を用いて振動抑制の制御を行うようにしているが、周波数領域の振動加速度の値が上位となる複数(たとえば3つ)の波形を用いて予想安定回転速度を算出するようにして、「びびり振動」の抑制効果の更なる向上を図ってもよい。
また、上記実施形態では、検出手段を振動センサとしているが、これに代えて、振動による回転軸の変位や音圧を検出可能な検出手段を採用することも可能である。さらにまた、振動センサを用いる場合であっても、上記実施形態の如く回転する側(すなわち回転軸)の振動を検出するのではなく、回転しない側の振動を検出して、予想安定回転速度を求めるようにしてもよい。
加えて、本発明に係る振動抑制装置は、工具を回転させて加工するマシニングセンタに限らず、ワークを回転させる旋盤等の工作機械の振動を抑制することも可能であるし、検出手段の設置位置や個数等を、工作機械の種類、大きさに応じて適宜変更可能であることは言うまでもない。
Furthermore, in the above embodiment, vibration suppression control is performed using a waveform in which the vibration acceleration in the frequency domain is the maximum among the waveforms acquired by the Fourier analysis of the vibration acceleration in the time domain. The predicted stable rotational speed may be calculated using a plurality of (for example, three) waveforms having higher vibration acceleration values in the frequency domain, and the effect of suppressing “chatter vibration” may be further improved.
In the above embodiment, the detection means is a vibration sensor, but instead of this, a detection means capable of detecting the displacement of the rotating shaft and the sound pressure due to vibration may be employed. Furthermore, even when a vibration sensor is used, the vibration on the rotating side (that is, the rotating shaft) is not detected as in the above-described embodiment, but the vibration on the non-rotating side is detected, and the expected stable rotational speed is set. You may make it ask.
In addition, the vibration suppressing device according to the present invention is not limited to a machining center that rotates a tool and can also suppress vibrations of a machine tool such as a lathe that rotates a workpiece, and the installation position of the detection means Needless to say, the number and the like can be appropriately changed according to the type and size of the machine tool.

振動抑制装置のブロック構成説明図である。It is block block explanatory drawing of a vibration suppression apparatus. 回転軸ハウジングを側方から示した説明図である。It is explanatory drawing which showed the rotating shaft housing from the side. 回転軸ハウジングを軸方向から示した説明図である。It is explanatory drawing which showed the rotating shaft housing from the axial direction. 時間領域の振動加速度のフーリエ解析結果の一例を示した説明図である。It is explanatory drawing which showed an example of the Fourier-analysis result of the vibration acceleration of a time domain. 従来の振動抑制制御におけるびびり周波数における振動加速度の変化を示した説明図である。It is explanatory drawing which showed the change of the vibration acceleration in the chatter frequency in the conventional vibration suppression control. 本実施例の振動抑制制御におけるびびり周波数における振動加速度の変化を示した説明図である。It is explanatory drawing which showed the change of the vibration acceleration in the chatter frequency in the vibration suppression control of a present Example. 本実施例の振動抑制制御に係るフローチャート図である。It is a flowchart figure which concerns on the vibration suppression control of a present Example.

符号の説明Explanation of symbols

1・・回転軸ハウジング、2a、2b、2c・・振動センサ、3・・回転軸、5・・制御装置、10・・振動抑制装置、11・・FFT演算装置、12・・演算装置、13・・NC装置、14・・記憶装置。   Rotating shaft housing, 2a, 2b, 2c, vibration sensor, 3 rotating shaft, 5 control unit, 10 vibration suppression device, 11 FFT processing device, 12 computing device, 13 ..NC device, 14 ..Storage device.

Claims (2)

工具又はワークを回転させるための回転軸を備えた工作機械において、回転中の前記回転軸にびびり振動が生じると、前記回転軸の回転速度を変更し、前記びびり振動を抑制する振動抑制方法であって、
回転中の前記回転軸による時間領域の振動を検出する第1ステップと、
検出した時間領域の振動にもとづいて、びびり周波数及び該びびり周波数における周波数領域の振動加速度を算出する第2ステップと、
算出した周波数領域の振動加速度が所定の閾値を超えた場合に、下記の演算式(1)により位相ε1を算出する第3ステップと、
算出した位相ε1と、前回振動加速度が所定の閾値を超えた際に、位相ε1と同様の演算式(1)にて算出し記憶している位相ε0とを比較する第4ステップと、
第4ステップにおける比較の結果、算出した位相ε1が前回算出した位相ε0よりも小さい場合には、今回算出した位相ε1を位相ε0として更新記憶するとともに、前記回転軸の回転速度を所定の変更量だけ変更する一方、第4ステップにおける比較の結果、算出した位相ε1が前回算出した位相ε0以上である場合には、前記回転軸の回転速度を、位相ε0算出時の回転速度へ変更する第5ステップと
を実行することを特徴とする振動抑制方法。
演算式(1):位相ε1={60×びびり周波数/(工具刃数×回転速度)}の小数部
In a machine tool provided with a rotating shaft for rotating a tool or a workpiece, when chatter vibration occurs on the rotating shaft that is rotating, a vibration suppression method that changes the rotation speed of the rotating shaft and suppresses chatter vibration. There,
A first step of detecting time domain vibration by the rotating shaft during rotation;
A second step of calculating a chatter frequency and a vibration acceleration in the frequency domain at the chatter frequency based on the detected vibration in the time domain;
A third step of calculating the phase ε1 by the following equation (1) when the calculated vibration acceleration in the frequency domain exceeds a predetermined threshold;
A fourth step of comparing the calculated phase ε1 with the phase ε0 calculated and stored in the same equation (1) as the phase ε1 when the previous vibration acceleration exceeds a predetermined threshold;
If the calculated phase ε1 is smaller than the previously calculated phase ε0 as a result of the comparison in the fourth step, the currently calculated phase ε1 is updated and stored as the phase ε0, and the rotational speed of the rotating shaft is changed by a predetermined change amount. On the other hand, if the calculated phase ε1 is greater than or equal to the previously calculated phase ε0 as a result of the comparison in the fourth step, the rotation speed of the rotating shaft is changed to the rotation speed at the time of calculating the phase ε0 . And a step of executing the vibration.
Arithmetic Formula (1): Phase ε1 = {60 × chatter frequency / (number of tool blades × rotational speed)} decimal part
工具又はワークを回転させるための回転軸を備えた工作機械において、回転中の前記回転軸にびびり振動が生じると、前記回転軸の回転速度を変更し、前記びびり振動を抑制するための振動抑制装置であって、
回転中の前記回転軸の時間領域の振動を検出する検出手段と、
検出した時間領域の振動にもとづいて、びびり周波数及び該びびり周波数における周波数領域の振動加速度を算出する第1演算手段と、
算出した周波数領域の振動加速度が所定の閾値を超えた場合に、下記の演算式(1)により位相ε1を算出する第2演算手段と、
前回振動加速度が所定の閾値を超えた際に、前記第2演算手段が位相ε1と同様の演算式(1)にて算出した位相ε0を記憶する記憶手段と、
前記第2演算手段が位相ε1を算出すると、算出した位相ε1と前記記憶手段に記憶されている位相ε0とを比較し、算出した位相ε1が前回算出した位相ε0よりも小さい場合には、今回算出した位相ε1を位相ε0として更新記憶するとともに、前記回転軸の回転速度を所定の変更量だけ変更する一方、算出した位相ε1が前回算出した位相ε0以上である場合には、前記回転軸の回転速度を、位相ε0算出時の回転速度へ変更するように指令する制御手段と、
前記回転軸の回転速度を制御する回転速度制御手段と
を備えたことを特徴とする振動抑制装置。
演算式(1):位相ε1={60×びびり周波数/(工具刃数×回転速度)}の小数部
In a machine tool having a rotating shaft for rotating a tool or a workpiece, when chatter vibration occurs on the rotating shaft during rotation, vibration suppression is performed to change the rotation speed of the rotating shaft and suppress the chatter vibration. A device,
Detecting means for detecting vibration in the time domain of the rotating shaft during rotation;
First operation means for calculating a chatter frequency and vibration acceleration in the frequency domain at the chatter frequency based on the detected vibration in the time domain;
A second calculation means for calculating the phase ε1 by the following calculation formula (1) when the calculated vibration acceleration in the frequency domain exceeds a predetermined threshold;
Storage means for storing the phase ε0 calculated by the same calculation equation (1) as the phase ε1 when the previous vibration acceleration exceeds a predetermined threshold;
When the second calculation means calculates the phase ε1, the calculated phase ε1 is compared with the phase ε0 stored in the storage means. If the calculated phase ε1 is smaller than the previously calculated phase ε0, this time The calculated phase ε1 is updated and stored as the phase ε0, and the rotational speed of the rotating shaft is changed by a predetermined change amount. On the other hand, when the calculated phase ε1 is equal to or larger than the previously calculated phase ε0, Control means for instructing to change the rotation speed to the rotation speed at the time of phase ε0 calculation ;
A vibration suppression apparatus comprising: a rotation speed control means for controlling the rotation speed of the rotation shaft.
Arithmetic Formula (1): Phase ε1 = {60 × chatter frequency / (number of tool blades × rotational speed)} decimal part
JP2008274611A 2008-07-08 2008-10-24 Vibration suppression method and apparatus Expired - Fee Related JP5301946B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008274611A JP5301946B2 (en) 2008-10-24 2008-10-24 Vibration suppression method and apparatus
US12/493,494 US8005574B2 (en) 2008-07-08 2009-06-29 Vibration suppressing method and device
ITMI2009A001175A IT1396911B1 (en) 2008-07-08 2009-07-02 METHOD AND DEVICE FOR VIBRATION ELIMINATION
DE102009032233A DE102009032233A1 (en) 2008-07-08 2009-07-08 Vibration suppression method and device
CN 200910158478 CN101623835B (en) 2008-07-08 2009-07-08 Vibration suppressing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008274611A JP5301946B2 (en) 2008-10-24 2008-10-24 Vibration suppression method and apparatus

Publications (3)

Publication Number Publication Date
JP2010099793A JP2010099793A (en) 2010-05-06
JP2010099793A5 JP2010099793A5 (en) 2011-08-25
JP5301946B2 true JP5301946B2 (en) 2013-09-25

Family

ID=42290893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008274611A Expired - Fee Related JP5301946B2 (en) 2008-07-08 2008-10-24 Vibration suppression method and apparatus

Country Status (1)

Country Link
JP (1) JP5301946B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5853437B2 (en) * 2011-06-24 2016-02-09 株式会社ジェイテクト Chatter vibration detection method
JP5767931B2 (en) * 2011-09-29 2015-08-26 オークマ株式会社 Vibration suppression method and vibration suppression device for machine tool
JP6803248B2 (en) * 2017-01-27 2020-12-23 オークマ株式会社 Machine tool vibration suppression method and equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085121A (en) * 1997-09-22 2000-07-04 Design & Manufacturing Solutions, Inc. Device and method for recommending dynamically preferred speeds for machining
JP4177028B2 (en) * 2002-05-22 2008-11-05 株式会社神戸製鋼所 Machining method by small diameter end mill and method for determining machining conditions
JP4703315B2 (en) * 2005-08-12 2011-06-15 国立大学法人名古屋大学 Rotational speed calculation device of machining device, chatter vibration evaluation device of machining device, and chatter vibration evaluation method of machining device

Also Published As

Publication number Publication date
JP2010099793A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5160980B2 (en) Vibration suppression method and apparatus
JP4777960B2 (en) Vibration suppression device
JP4582660B2 (en) Vibration suppressor for machine tools
JP4743646B2 (en) Vibration suppressor for machine tools
US8005574B2 (en) Vibration suppressing method and device
JP4433422B2 (en) Vibration suppression device
US20090110499A1 (en) Method for suppressing vibration and device therefor
JP5215064B2 (en) Method and apparatus for suppressing chatter vibration of machine tool
JP6243260B2 (en) Spindle motor control device
JP5908342B2 (en) Machining vibration suppression method and machining vibration suppression device for machine tool
JP4582661B2 (en) Vibration suppressor for machine tools
JP2014121741A (en) Control device for processing apparatus, processing apparatus, control program for processing apparatus, control method for processing apparatus, and processing method
JP5226484B2 (en) Chatter vibration suppression method
JP4891150B2 (en) Vibration suppressor for machine tools
JP5631779B2 (en) Vibration suppression method and apparatus for machine tool
JP2014087887A (en) Machine tool
JP6302794B2 (en) Rotation speed display method
JP5301946B2 (en) Vibration suppression method and apparatus
JP5587707B2 (en) Vibration suppression device
JP2012047707A (en) Vibration detector, vibration suppression device, and vibration information display device
JP5767931B2 (en) Vibration suppression method and vibration suppression device for machine tool
JP5385067B2 (en) Rotational speed calculation device
JP4995115B2 (en) Vibration suppression method and apparatus
JP2012171074A (en) Numerical control apparatus including vibration suppression function
JP5674491B2 (en) Vibration determination device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Ref document number: 5301946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees