JP6700061B2 - Turning method and machine tool using the same - Google Patents

Turning method and machine tool using the same Download PDF

Info

Publication number
JP6700061B2
JP6700061B2 JP2016031216A JP2016031216A JP6700061B2 JP 6700061 B2 JP6700061 B2 JP 6700061B2 JP 2016031216 A JP2016031216 A JP 2016031216A JP 2016031216 A JP2016031216 A JP 2016031216A JP 6700061 B2 JP6700061 B2 JP 6700061B2
Authority
JP
Japan
Prior art keywords
chatter vibration
turning
cutting tool
cutting
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016031216A
Other languages
Japanese (ja)
Other versions
JP2017127960A (en
Inventor
賢一 中西
賢一 中西
康弘 柿沼
康弘 柿沼
鈴木 教和
教和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Tokai National Higher Education and Research System NUC
Original Assignee
Keio University
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, Tokai National Higher Education and Research System NUC filed Critical Keio University
Priority to CN201710043717.8A priority Critical patent/CN106984831B/en
Priority to CN201910747922.1A priority patent/CN110480031B/en
Priority to EP17152330.1A priority patent/EP3196721B1/en
Publication of JP2017127960A publication Critical patent/JP2017127960A/en
Application granted granted Critical
Publication of JP6700061B2 publication Critical patent/JP6700061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0032Arrangements for preventing or isolating vibrations in parts of the machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/34Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Turning (AREA)
  • Numerical Control (AREA)

Description

本発明は、びびり振動の発生を抑えた旋削加工方法及びそれを用いた工作機械に関する。   The present invention relates to a turning method that suppresses chatter vibration and a machine tool using the turning method.

旋盤等の主軸にワークの一端側を保持させ旋削加工する場合に、被旋削物が長尺部材になると半径方向の剛性が低下するために加工精度が低下したり、びびり振動が発生してしまう問題があった。
従来は、びびり振動の発生を抑えるために心押し手段にてワーク先端のセンター部を支持したり、ローラガイド等のサポート手段にてワークの側部を振れ止め支持する方法が採用されていた。
しかし、これらの従来技術はワークの加工形状に制約を与えたり、特別なセンター支持機構や側部のガイド機構を必要とする等の課題があった。
When holding one end side of a work on a spindle such as a lathe for turning, if the work piece is a long member, the rigidity in the radial direction will decrease and the processing accuracy will decrease and chatter vibration will occur. There was a problem.
Conventionally, in order to suppress the occurrence of chatter vibration, a method has been adopted in which the center portion of the work tip is supported by a tailing means, and the side portion of the work is steady-supported by a support means such as a roller guide.
However, these conventional techniques have problems that the machining shape of the work is restricted and that a special center support mechanism and a side guide mechanism are required.

特許文献1には、慣性モーメント等により、回転速度を変動させる際の変動幅及び変動周期を算出し、それに基づいて回転速度の変動を制御することで、びびり振動を抑制する方法を開示する。
したがって、同公報に開示する旋削方法は、ワークの回転速度変化を制御するためのものである。
特許文献2には、粗加工チップと仕上加工チップとを刃先が180°ずれた位置になるように配置し、旋削加工する技術を開示する。
しかし、同公報に開示する加工方法はでは旋削の安定性が低下してしまい、ワークの剛性の低い場合は利用できない問題があった。
Patent Document 1 discloses a method of suppressing chatter vibration by calculating a fluctuation width and a fluctuation cycle when the rotation speed is changed by the moment of inertia and controlling the fluctuation of the rotation speed based on the calculated fluctuation width and fluctuation cycle.
Therefore, the turning method disclosed in the publication is for controlling the change in the rotation speed of the work.
Patent Document 2 discloses a technique of arranging a rough-processed chip and a finish-processed chip so that the blade edges are displaced by 180° and performing a turning process.
However, the machining method disclosed in the publication has a problem in that the stability of turning is reduced, and it cannot be used when the rigidity of the work is low.

特開2014−79867号公報JP, 2014-79867, A 特開2014−195856号公報JP, 2014-195856, A 特開2010−271880号公報JP, 2010-272880, A

本発明は、旋削加工時におけるびびり振動の発生を容易に抑制することができ、生産性の高い旋削加工方法及びそれを用いた工作機械の提供を目的とする。   An object of the present invention is to provide a turning method with high productivity that can easily suppress chatter vibration during turning, and a machine tool using the same.

本発明に係る旋削加工方法は、1つ又は2つの主軸と、2つ以上の刃物台を備えた旋削加工装置を用いたワークの旋削加工方法であって、回転可能な主軸にワークを保持し、第1刃具の刃先と第2刃具の刃先との回転中心軸線まわり配置を、対向180°バランス配置に対して所定のオフセット角φだけオフセットした状態に配置した状態で旋削加工することを特徴とする。
ここで、第1刃具の刃先と第2刃具の刃先との回転中心軸線まわり配置を、対向180°バランス配置に対して相対的にずらすことにより、各刃先(切れ刃)で生じる再生びびり振動をキャンセルすることにより、このびびりの発生を抑えることができると推定される。
回転可能な主軸には、回転数が制御されたものやオープンループ制御されたもの等が含まれ、特に限定はない。
A turning method according to the present invention is a turning method for a workpiece using a turning apparatus equipped with one or two spindles and two or more tool rests, in which a workpiece is held on a rotatable spindle. , The cutting edge of the first cutting tool and the cutting edge of the second cutting tool are arranged around the rotation center axis line while being offset by a predetermined offset angle φ 1 with respect to the opposing 180° balance arrangement And
Here, by making the arrangement around the rotation center axis of the cutting edge of the first cutting tool and the cutting edge of the second cutting tool relatively displaced with respect to the facing 180° balanced arrangement, the reproduction chatter vibration generated at each cutting edge (cutting edge) is generated. It is estimated that this chattering can be suppressed by canceling.
The rotatable main shaft includes those whose rotational speed is controlled and those whose open loop is controlled, and is not particularly limited.

本発明は、1つ又は2つの主軸と、2つ以上の刃物台を備えた旋削加工装置を用いたワークの旋削加工方法であって、回転可能な主軸にワークを保持し、第1刃具のみあるいは第1刃具の刃先と第2刃具の刃先とを回転中心軸線まわりに対向配置し、前記第1刃具と第2刃具との刃先のうち、一方又は両方を前記回転中心軸線まわりにオフセット角φとφとの範囲(揺動角Δφ)にて揺動運動させながら旋削加工してもよい。
また、上記2つの旋削加工方法を組み合せてもよい。
この場合に、刃先のオフセットは刃先の逃げ角が所定の角度を下回らないようにオフセットするものであるのが好ましい。
ここで所定の角度とは、異常な工具損耗や刃先力を生じさせずに、すくい角を大きくとることができるギリギリの角度であって、0〜7°の範囲である。
好ましくは、0〜3°の範囲である。
The present invention is a method for turning a workpiece using a turning apparatus equipped with one or two spindles and two or more tool rests, wherein the workpiece is held on a rotatable spindle and only the first cutting tool is provided. Alternatively, the cutting edge of the first cutting tool and the cutting edge of the second cutting tool are arranged to face each other around the rotation center axis line, and one or both of the cutting edges of the first cutting tool and the second cutting tool are offset around the rotation center axis line. Turning may be performed while oscillating in the range of 2 and φ 3 (oscillation angle Δφ).
Further, the above two turning methods may be combined.
In this case, it is preferable that the cutting edge be offset so that the clearance angle of the cutting edge does not fall below a predetermined angle.
Here, the predetermined angle is a marginal angle at which the rake angle can be made large without causing abnormal tool wear or cutting edge force, and is in the range of 0 to 7°.
It is preferably in the range of 0 to 3°.

また、本発明に係る工作機械は、回転制御された主軸と、前記主軸の回転中心軸線まわりに対向配置した第1刃具をセットする第1セット手段と、第2刃具をセットする第2セット手段とを備え、前記主軸にワークを保持し、旋削加工する際のびびり振動の検出手段と、前記びびり振動の有無を判別する判別手段と、前記判別手段にてびびり振動有りと判別された際にそのびびり振動の周波数を算出する演算手段と、前記演算手段にて得られたびびり振動の周波数に基づいて前記第1刃具の刃先と第2刃具の刃先との回転中心軸線まわり配置を、対向180°バランス配置に対して前記第1セット手段と第2セット手段とのうち、一方又は両方に所定のオフセット角φとなるように移動制御手段を有することを特徴とする。
また、回転制御された主軸と、前記主軸の回転中心軸線まわりに第1刃具をセットする第1セット手段のみあるいは対向配置した第1刃具をセットする第1セット手段と、第2刃具をセットする第2セット手段とを備え、前記主軸にワークを保持し旋削加工する際のびびり振動の検出手段と、前記びびり振動の有無を判別する判別手段と、前記判別手段にてびびり振動有りと判別された際にそのびびり振動の周波数を算出する演算手段と、前記演算手段にて得られたびびり振動の周波数に基づいて前記第1セット手段又は第2セット手段の一方又は両方を回転中心軸線まわりにオフセット角φとφとの範囲に揺動制御する揺動制御手段とを有するようにしてもよい。
さらには、上記移動制御手段と揺動制御手段の両方を備えてもよい。
ここで刃具のセット手段とは、刃先のワークに対する切り込み量、送り方向の送り量及び回転中心軸線まわりに所定の角度範囲移動制御できれば、その構成に制限はない。
例えば、タレット旋盤や多軸制御された刃物台を有する旋削加工装置が例として挙げられる。
対向タレットを用いる場合には、2つのタレットの送り方向の位置を完全に一致させる場合のみならず、送り位置に相対的な差がある場合も本発明に含まれる。
また、刃物台に取り付けた刃具の角度を調整することで、対向する2つの刃先が不等ピッチに配置される場合等も本発明に含まれる。
本発明は、ワークの一端側を主軸で保持し、反対側をテールストックやセンターサポートにて支持されるものも含まれる。
Further, the machine tool according to the present invention includes a rotation-controlled spindle, a first setting means for setting a first cutting tool that is arranged to face each other around a rotation center axis of the spindle, and a second setting means for setting a second cutting tool. And a means for holding chatter vibrations when holding the workpiece on the spindle, a means for detecting chatter vibration during turning, a determining means for determining the presence or absence of chatter vibration, and a case where chatter vibration is determined by the determining means. The calculation means for calculating the frequency of the chatter vibration and the arrangement around the rotation center axis of the cutting edge of the first cutting tool and the cutting edge of the second cutting tool based on the frequency of the chatter vibration obtained by the calculating means are opposed to each other. With respect to the balance arrangement, one or both of the first setting means and the second setting means are provided with movement control means so as to have a predetermined offset angle φ 1 .
Further, a rotation-controlled main shaft, a first setting device for setting only the first cutting device for setting the first cutting device around the rotation center axis of the main shaft, or a first setting device for setting the opposing first cutting device, and a second cutting device are set. A chatter vibration detecting means for holding the workpiece on the spindle and performing a turning process, a determining means for determining the presence or absence of the chatter vibration, and the determining means for determining the chatter vibration. And a calculation means for calculating the frequency of the chatter vibration, and one or both of the first setting means and the second setting means based on the frequency of the chatter vibration obtained by the calculation means around the rotation center axis. A swing control means for controlling swing in a range between the offset angles φ 2 and φ 3 may be provided.
Further, both the movement control means and the swing control means may be provided.
Here, the setting means of the cutting tool is not limited in its configuration as long as it can control the cutting amount of the cutting edge with respect to the work, the feeding amount in the feeding direction, and the movement of a predetermined angular range around the rotation center axis.
For example, a turning device having a turret lathe and a tool post controlled by multiple axes can be given as an example.
When the opposing turret is used, the present invention includes not only the case where the positions of the two turrets in the feed direction are made to coincide completely, but also the case where there is a relative difference in the feed positions.
Further, the present invention also includes a case where two opposing cutting edges are arranged at unequal pitches by adjusting the angle of the cutting tool attached to the tool rest.
The present invention also includes a work in which one end side of the work is held by the spindle and the other side is supported by the tailstock or the center support.

従来、単に2つのバイト等の刃具の刃先を回転中心軸線まわり上下180°ずらして配置したバランスカットでは、上下の刃具にて同時に旋削加工を行うために2倍の加工能率が得られるだけでなく、上下の加工点で生じる旋削力が釣り合うためにワークの静的たわみを抑えることが理論的には可能であるものの、びびり振動に対する安定性が低い問題があった。
これに対して本発明は、対向配置した2つの刃具の刃先を対向180°の等ピッチに対して、一方の刃具の刃先を最適なピッチ角差Δθが得られるように所定のオフセット角φだけずらした位置に配置した状態で旋削加工を行う不等ピッチターニングあるいは刃具の刃先を回転中心軸線まわりに所定の振動角Δφだけ、揺動運動させながら旋削加工を行うスイングターニングを行うことで、容易にびびり振動の発生を抑えることができる。
なお、不等ピッチターニングとスイングターニングとでは、びびり振動を抑える機序が異なるものの、安定した旋削性が得られる点で同様の効果が認められる。
本明細書で用いるピッチ角差及びオフセット角の内容を図11に示す。
Conventionally, in a balance cut in which the cutting edges of the cutting tools such as two cutting tools are arranged 180° apart vertically around the rotation center axis, not only double machining efficiency can be obtained because the upper and lower cutting tools simultaneously perform turning. Although it is theoretically possible to suppress the static deflection of the work because the turning forces generated at the upper and lower machining points are balanced, there is a problem that the stability against chatter vibration is low.
On the other hand, according to the present invention, the blade tips of two blade tools arranged opposite to each other are provided with a predetermined offset angle φ 1 so that an optimal pitch angle difference Δθ can be obtained for the blade edges of one blade tool with respect to an equal pitch of 180° facing each other. By performing unequal pitch turning that performs turning in a state where it is placed at a shifted position, or swing turning that performs turning while swinging the cutting edge of the cutting tool around the rotation center axis by a predetermined vibration angle Δφ, It is possible to easily suppress chatter vibration.
Although the mechanism for suppressing chatter vibration is different between the unequal pitch turning and the swing turning, the same effect is recognized in that stable turning property is obtained.
The contents of the pitch angle difference and the offset angle used in this specification are shown in FIG.

また、このような旋削加工の実施に適した工作機械として本発明は、びびり振動の検出手段と、びびり振動の有無の判別手段と、そのびびり振動の周波数に基づいて最適なピッチ角差Δθの演算手段、あるいは最適な揺動角Δφの演算手段を備えたので、びびり振動の発生を抑えた生産性の高い工作機械が得られる。   Further, the present invention as a machine tool suitable for carrying out such a turning process, a chatter vibration detecting means, a means for determining the presence or absence of chatter vibration, and an optimum pitch angle difference Δθ of the chatter vibration based on the frequency of the chatter vibration. Since the calculation means or the calculation means for the optimum swing angle Δφ is provided, a machine tool with high productivity in which chatter vibration is suppressed can be obtained.

本発明は、旋削加工における被旋削物にびびり振動が発生するのを抑える点で、各種形状の製品の旋削に適用できる。
特にワークの直径D,ワークの長さLとすると、L/D≧6以上の長尺ワークの旋削に好適である。
INDUSTRIAL APPLICABILITY The present invention can be applied to turning of products of various shapes in that chatter vibration is suppressed from occurring in the object to be turned in turning.
Particularly, when the diameter D of the work and the length L of the work are set, it is suitable for turning a long work of L/D≧6 or more.

不等ピッチターニングの模式図を示す。The schematic diagram of unequal pitch turning is shown. (a)はスイングターニングの模式図を示し、(b)はスイングターニングに不等ピッチターニングを組み合せた例、(c)は上下の刃先を揺動させた例を示す。(A) shows a schematic diagram of swing turning, (b) shows an example in which unequal pitch turning is combined with swing turning, and (c) shows an example in which upper and lower blade edges are swung. 本発明に係る工作機械の制御フローチャートの例を示す。The example of the control flowchart of the machine tool which concerns on this invention is shown. 第1の実験条件を示す。The first experimental condition is shown. φ=0°の時の旋削表面の凹凸の計測結果を示す。The measurement result of the unevenness of the turning surface when φ=0° is shown. φ=15°の時の旋削表面の凹凸の計測結果を示す。The measurement result of the unevenness of the turning surface when φ=15° is shown. φ=30°の時の旋削表面の凹凸の計測結果を示す。The measurement result of the unevenness of the turning surface when φ=30° is shown. 第2の実験条件を示す。The second experimental condition is shown. 第2の実験結果(加工結果)を示す。The second experimental result (processing result) is shown. スイングターニングの実験条件を示す。The experimental conditions for swing turning are shown. 本明細書におけるピッチ角差Δθとオフセット角φとの定義を示す。The definitions of the pitch angle difference Δθ and the offset angle φ in this specification will be shown. 切り込みと送りの関係を(a),(b)に示す。The relationship between the cut and the feed is shown in (a) and (b). 不等ピッチターニングの変形例を示す。The modification of unequal pitch turning is shown.

本発明に係る旋削加工方法の例を以下、説明する。
図1は、不等ピッチターニングの模式図を示す。
ワークWの一端側を主軸10側にチャックし、回転制御する。
第1刃具(バイト)11の刃先11aと第2刃具(バイト)12の刃先12aとの配置を対向180°バランス配置に対して回転中心軸線まわりに、オフセット角φだけずらした状態でワークを両側から同時に旋削する。
ここで、最適なオフセット角φは下記の数式(1)で求めたピッチ角差Δθを参考にすることができる。
ここで、nは主軸の回転数,fcはびびり振動の周波数を示し、mは0,1,2,3,・・・・の値をとる。
ここで、mは0が好ましい。
最適なオフセット角φの値は、ワークの剛性や旋削条件にて異なり、φは上記式(1)にて求めたΔθに対して1/4Δθ〜3/4Δθの範囲が好ましい。
図1は、ワークの外周旋削の例を示したが、ワークの端面加工やテーパー加工等、加工方法に制限はない。
An example of the turning method according to the present invention will be described below.
FIG. 1 shows a schematic diagram of unequal pitch turning.
The one end side of the work W is chucked on the spindle 10 side to control the rotation.
The work piece is placed with the cutting edge 11a of the first cutting tool (bite) 11 and the cutting edge 12a of the second cutting tool (bite) 12 displaced by an offset angle φ 1 about the rotation center axis line with respect to the opposing 180° balanced arrangement. Turn from both sides simultaneously.
Here, the optimum offset angle φ 1 can refer to the pitch angle difference Δθ obtained by the following mathematical expression (1).
Here, n is the rotation speed of the main shaft, fc is the frequency of chatter vibration, and m is a value of 0, 1, 2, 3,...
Here, m is preferably 0.
The optimum value of the offset angle φ 1 varies depending on the rigidity of the work and the turning conditions, and φ 1 is preferably in the range of 1/4Δθ to 3/4Δθ with respect to Δθ obtained by the above formula (1).
Although FIG. 1 shows an example of the outer peripheral turning of the work, there is no limitation on the working method such as end face working or tapering of the work.

図2(a)は、スイングターニングの模式図を示す。
ワークWの端側を主軸10側にチャックし、回転制御する。
第1の刃具11の刃先11aを所定のオフセット角φとφとの範囲の揺動角Δφ、所定の周期、例えば20Hz等にて、揺動させながら旋削加工をする。
また、この周期を例えば1Hz以下の極低周波数としてもよい。
オフセット角φは0°も含まれる。
この場合も最適な揺動角Δφは旋削条件によっても異なる。
また、図2(b),(c)はスイングターニングに不等ピッチターニングを組み合せた例である。
(b)は上側の刃先だけを揺動させたが、(c)は下側の刃先も揺動させた例である。
図2もワーク外周加工の例を示したが、ワークの端面加工やテーパー加工等各種加工に適用できる。
FIG. 2A shows a schematic diagram of swing turning.
The end side of the work W is chucked on the main shaft 10 side to control the rotation.
Turning is performed while swinging the cutting edge 11a of the first cutting tool 11 at a swing angle Δφ within a range of predetermined offset angles φ 2 and φ 3 , a predetermined cycle, for example, 20 Hz.
Further, this cycle may be an extremely low frequency of 1 Hz or less.
The offset angle φ 2 also includes 0°.
Also in this case, the optimum swing angle Δφ varies depending on the turning conditions.
In addition, FIGS. 2B and 2C are examples in which unequal pitch turning is combined with swing turning.
(B) is an example in which only the upper cutting edge is swung, while (c) is an example in which the lower cutting edge is also swung.
Although FIG. 2 also shows an example of the work outer periphery processing, it can be applied to various kinds of processing such as end surface processing and taper processing of the work.

図3に、本発明に係る工作機械の制御系のフローチャートの例を示す。
加工開始(ステップS)を出すと、加速度センサ等の外部センサあるいは外乱オブザーバ(オブザーバ)により、振動あるいは切削負荷を監視できる状態で、旋削加工が開始される(ステップS)。
ここで、外乱オブザーバとは支持したワークを回転させる駆動手段もしくは刃物台の駆動手段に入力する電流参照信号と前記駆動手段から出力する角度/位置検出信号とに基づき、前記駆動手段への外乱を推定することをいう。
具体的には、本発明者の一部によって提案された特許文献3の内容を取り込むことができる。
その際に、FFTなどの周波数解析により加速度もしくは切削負荷等の周波数成分を解析し(ステップS)、びびり振動の有無の判別手段として、例えばその周波数成分が所定の閾値を超えると判定された場合(ステップS)には、びびり振動の検出手段にて、その信号を検出し、びびり振動数fc(びびり振動の周波数)を特定する。
例えば、下記の数式(2)にて求めることができる。
ここで、E:ヤング率,I:断面2次モーメント,A:断面積,ρ:密度,λは定数,l:長さである。
びびり振動の周波数が特定できると、他の旋削条件を基に前記数式(1)にて求められるΔθを参考にしてオフセット角φあるいは揺動角Δφを設定することができる。
不等ピッチターニングを実行するには、ステップS〜S7−2へと進み、スイングターニングを実行するには、ステップS〜S10−2へと進み、加工が終了(ステップS11)する。
FIG. 3 shows an example of a flowchart of the control system of the machine tool according to the present invention.
When the processing is started (step S 1 ), the turning processing is started in a state in which vibration or cutting load can be monitored by an external sensor such as an acceleration sensor or a disturbance observer (observer) (step S 2 ).
Here, the disturbance observer refers to a disturbance to the driving means based on a current reference signal input to a driving means for rotating the supported work or a driving means of the tool rest and an angle/position detection signal output from the driving means. Estimate.
Specifically, the contents of Patent Document 3 proposed by a part of the present inventors can be incorporated.
At that time, a frequency component such as acceleration or cutting load is analyzed by frequency analysis such as FFT (step S 3 ), and it is determined that the frequency component exceeds a predetermined threshold as a means for determining the presence or absence of chatter vibration. In this case (step S 4 ), the chatter vibration detection unit detects the signal and specifies the chatter frequency fc (chatter vibration frequency).
For example, it can be calculated by the following mathematical expression (2).
Here, E is Young's modulus, I is the second moment of area, A is the cross-sectional area, ρ is the density, λ is a constant, and l is the length.
When the frequency of chatter vibration can be specified, the offset angle φ 1 or the swing angle Δφ can be set with reference to Δθ obtained by the above mathematical expression (1) based on other turning conditions.
To execute the unequal pitch turning, the process proceeds to steps S 5 to S 7-2 , and to execute the swing turning, the process proceeds to steps S 8 to S 10-2 , and the machining is finished (step S 11 ). To do.

次に実験結果について説明する。
第1の実験は、不等ピッチターニングを行った。
加工ワークとして、直径33mm,長さ200mmのアルミニウム合金の丸棒を用いた。
アッパー側に配置したタレットとロアー側に配置したタレットにそれぞれ超硬チップからなるバイトを取り付け、図4に示すような条件で旋削加工を行った。
2つのチップの対向180°からのオフセット角φを0°,15°,30°の条件で旋削加工し、その後に旋削表面の凹凸を送り方向及び周まわりに測定した結果を図5〜図6に示す。
φ=0°の場合には、びびり振動が大きく発生したが、φ=15°ではびびり振動の発生が認められなかった。
また、φ=30°のときはφ=0°よりも凹凸が減少していた。
なお、びびり振動の周波数は516Hzと計測された。
このことから本発明に係る旋削加工方法は、びびり振動を抑制するのに有効であることから明らかになった。
Next, the experimental results will be described.
The first experiment was unequal pitch turning.
A round bar of aluminum alloy having a diameter of 33 mm and a length of 200 mm was used as the work.
Bits made of cemented carbide chips were attached to the turret arranged on the upper side and the turret arranged on the lower side, respectively, and turning was performed under the conditions shown in FIG.
5 to 6 show the results obtained by turning the two chips with an offset angle φ from 180° facing each other under the conditions of 0°, 15° and 30°, and then measuring the unevenness of the turning surface in the feed direction and the circumference. Shown in.
When φ=0°, large chatter vibration was generated, but when φ=15°, chatter vibration was not observed.
Further, when φ=30°, the unevenness was smaller than that at φ=0°.
The frequency of chatter vibration was measured as 516 Hz.
From this, it is clarified that the turning method according to the present invention is effective in suppressing chatter vibration.

第2の実験条件及び設定パラメータを図8,9に示す。
バイトにはタンガロイ社製のPCLNR2020を用い、チップとしてはCNMMを用いた。
また、その結果を図9の表に示す。
表中、バランスとは180℃対向配置を示す。
この結果から、旋削条件によっても最適なオフセット角φが相異し、本実験条件内では式(1)にて求めた(Δθ=θ)に対して1/4θ付近に最適条件が認められた。
また、ワーク径によっては最適なオフセット角φは1/2θ,3/4θ付近に表れた。
The second experimental conditions and setting parameters are shown in FIGS.
PCLNR2020 manufactured by Tungaloy was used for the bite, and CNMM was used for the chip.
The results are shown in the table of FIG.
In the table, “balance” means a 180° facing arrangement.
From this result, the optimum offset angle φ 1 also differs depending on the turning conditions, and within the experimental conditions, the optimum condition is recognized in the vicinity of ¼θ with respect to (Δθ=θ) obtained by the equation (1) It was
Further, depending on the work diameter, the optimum offset angle φ 1 appeared near 1/2θ and 3/4θ.

次に第3の実験として、スイングターニングを行った。
図10に示した実験条件にて、オフセット角φ及び揺動角Δφを比較検討した。
図中Sは主軸の回転数,Fは送り速度,tは切込み量を示す。
まず始めに、第1の刃具と第2の刃具を180°対向配置し、バランスカットしたところ、ワークの先端から約50mmまでびびり振動が発生した。
それに対して、オフセット角φ=3.3°,周波数20Hzで揺動角Δφ=1.4°揺動させたところ、びびり振動の発生が全くなかった。
Next, as a third experiment, swing turning was performed.
Under the experimental conditions shown in FIG. 10, the offset angle φ 1 and the swing angle Δφ were compared and examined.
In the figure, S indicates the rotational speed of the spindle, F indicates the feed speed, and t indicates the depth of cut.
First, when the first cutting tool and the second cutting tool were arranged to face each other by 180° and balance cutting was performed, chatter vibration was generated up to about 50 mm from the tip of the work.
On the other hand, when the oscillation angle Δφ=1.4° was oscillated at an offset angle φ 1 =3.3° and a frequency of 20 Hz, chatter vibration was not generated at all.

次に本発明の展開例を説明する。
不等ピッチターニングの場合に、図12(a)に示すように第1刃具11と第2刃具12との切り込み方向と送り方向(送り位置)とを同じ条件にする場合の他に、本発明は図12(b)に示すように第1刃具11と第2刃具12とで、ワークWに対する送りの位置を相対的にずらしてもよい。
この場合に、切り込み量を同じにするのみならず、第1刃具11と第2刃具12とで切り込み量に差を設けてもよい。
なお、第1刃具11と第2刃具12とは、刃具の形状が同一である場合のみならず、相互に異なってもよい。
また、不等ピッチターニングにおいて180°対向位置から、例えば第1刃具11の刃先11aを所定の角度だけオフセットさせる場合の他に、図13に示すように刃具の姿勢を変化させることで再生びびり振動を抑えてもよい。
Next, a development example of the present invention will be described.
In the case of unequal pitch turning, in addition to the case where the cutting direction and the feed direction (feed position) of the first cutting tool 11 and the second cutting tool 12 are set to the same condition as shown in FIG. As shown in FIG. 12B, the feed position with respect to the work W may be relatively shifted between the first cutting tool 11 and the second cutting tool 12.
In this case, not only the cutting amount may be the same, but the cutting amount may be different between the first cutting tool 11 and the second cutting tool 12.
The first cutting tool 11 and the second cutting tool 12 may be different from each other not only when the shapes of the cutting tools are the same.
Further, in unequal pitch turning, for example, in addition to offsetting the cutting edge 11a of the first cutting tool 11 by a predetermined angle from the opposite position, the reproduction chatter vibration is generated by changing the attitude of the cutting tool as shown in FIG. May be suppressed.

10 主軸
11 第1刃具
12 第2刃具
10 Spindle 11 First Cutting Tool 12 Second Cutting Tool

Claims (4)

1つ又は2つの主軸と、2つ以上の刃物台を備えた旋削加工装置を用いたワークの旋削加工方法であって、
回転可能な主軸にワークを保持し、第1刃具の刃先と第2刃具の刃先との回転中心軸線まわり配置を、対向180°バランス配置に対して所定のオフセット角φだけオフセットした状態に配置した状態で旋削加工するものであり、前記所定のオフセット角φ はびびり振動の周波数を算出する演算手段にて得られたびびり振動周波数に基づいて決定されたものであることを特徴とする旋削加工方法。
A method for turning a workpiece using a turning apparatus equipped with one or two spindles and two or more tool rests,
The work is held on a rotatable spindle, and the arrangement of the cutting edge of the first cutting tool and the cutting edge of the second cutting tool is arranged with a predetermined offset angle φ 1 offset from the opposing 180° balanced arrangement. And the predetermined offset angle φ 1 is determined on the basis of the chatter vibration frequency obtained by a calculation means for calculating the chatter vibration frequency. Processing method.
1つ又は2つの主軸と、2つ以上の刃物台を備えた旋削加工装置を用いたワークの旋削加工方法であって、
回転可能な主軸にワークを保持し、第1刃具の刃先と第2刃具の刃先とを回転中心軸線まわりに対向配置し、前記第1刃具と第2刃具との刃先のうち、一方又は両方を前記回転中心軸線まわりにオフセット角φとφとの範囲(揺動角Δφ)にて揺動運動させながら旋削するものであり、前記オフセット角φ とφ はびびり振動の周波数を算出する演算手段にて得られたびびり振動周波数に基づいて決定されたものであることを特徴とする旋削加工方法。
A method for turning a workpiece using a turning apparatus equipped with one or two spindles and two or more tool rests,
A workpiece is held on a rotatable main shaft, the cutting edge of the first cutting tool and the cutting edge of the second cutting tool are arranged to face each other around a rotation center axis line, and one or both of the cutting edges of the first cutting tool and the second cutting tool are disposed. Turning is performed while oscillating around the rotation center axis line in the range of the offset angles φ 2 and φ 3 (oscillation angle Δφ) , and the offset angles φ 2 and φ 3 calculate the frequency of chatter vibration. The turning method is characterized by being determined based on the chatter vibration frequency obtained by the computing means .
主軸と、前記主軸の回転中心軸線まわりに対向配置した第1刃具をセットする第1セット手段と、第2刃具をセットする第2セット手段とを備え、
前記主軸にワークを保持し、旋削加工する際のびびり振動の検出手段と、
前記びびり振動の有無を判別する判別手段と、
前記判別手段にてびびり振動有りと判別された際にそのびびり振動の周波数を算出する演算手段と、
前記演算手段にて得られたびびり振動の周波数に基づいて前記第1刃具の刃先と第2刃具の刃先との回転中心軸線まわり配置を、対向180°バランス配置に対して前記第1セット手段と第2セット手段とのうち、一方又は両方に所定のオフセット角φとなるように移動制御手段を有することを特徴とする工作機械。
A main shaft, a first setting means for setting a first cutting tool that is arranged to face each other around a rotation center axis of the main shaft, and a second setting means for setting a second cutting tool,
Holding the workpiece on the spindle, chatter vibration detection means during turning,
Determination means for determining the presence or absence of the chatter vibration,
When it is determined that chatter vibration is present in the determining means, a computing means for calculating the frequency of the chatter vibration,
Based on the frequency of the chatter vibration obtained by the calculation means, the arrangement around the rotation axis of the cutting edge of the first cutting tool and the cutting edge of the second cutting tool is set to the first setting means with respect to the facing 180° balanced arrangement. One or both of the second setting means has a movement control means so that a predetermined offset angle φ 1 is provided, and a machine tool.
主軸と、前記主軸の回転中心軸線まわりに第1刃具をセットする第1セット手段のみあるいは対向配置した第1刃具をセットする第1セット手段と、第2刃具をセットする第2セット手段とを備え、
前記主軸にワークを保持し旋削加工する際のびびり振動の検出手段と、
前記びびり振動の有無を判別する判別手段と、
前記判別手段にてびびり振動有りと判別された際にそのびびり振動の周波数を算出する演算手段と、
前記演算手段にて得られたびびり振動の周波数に基づいて前記第1セット手段又は第2セット手段の一方又は両方を回転中心軸線まわりにオフセット角φとφとの範囲に揺動制御する揺動制御手段とを有することを特徴とする工作機械。
A main spindle, a first setting means for setting only the first cutting means for setting the first cutting tool around the rotation center axis of the main shaft, or a first setting tool for facing the first cutting tool, and a second setting means for setting the second cutting tool. Prepare,
Chatter vibration detection means when holding a workpiece on the spindle and performing a turning process,
Determination means for determining the presence or absence of the chatter vibration,
When it is determined that chatter vibration is present in the determining means, a computing means for calculating the frequency of the chatter vibration,
Based on the frequency of the chatter vibration obtained by the computing means, one or both of the first setting means and the second setting means are rocking controlled within a range of offset angles φ 2 and φ 3 around the rotation center axis. A machine tool having swing control means.
JP2016031216A 2016-01-20 2016-02-22 Turning method and machine tool using the same Active JP6700061B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710043717.8A CN106984831B (en) 2016-01-20 2017-01-19 Turning method and machine tool using same
CN201910747922.1A CN110480031B (en) 2016-01-20 2017-01-19 Turning method and machine tool using same
EP17152330.1A EP3196721B1 (en) 2016-01-20 2017-01-20 Turning method for suppressing chatter vibration and machine tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016009268 2016-01-20
JP2016009268 2016-01-20

Publications (2)

Publication Number Publication Date
JP2017127960A JP2017127960A (en) 2017-07-27
JP6700061B2 true JP6700061B2 (en) 2020-05-27

Family

ID=59395894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016031216A Active JP6700061B2 (en) 2016-01-20 2016-02-22 Turning method and machine tool using the same

Country Status (2)

Country Link
JP (1) JP6700061B2 (en)
CN (2) CN110480031B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7194965B2 (en) * 2018-08-01 2022-12-23 中村留精密工業株式会社 Machine Tools
JP6651677B1 (en) * 2018-09-07 2020-02-19 ヤマザキマザック株式会社 Machine tool, machining method by machine tool, and machining program for machine tool
JP6975192B2 (en) * 2019-03-14 2021-12-01 ファナック株式会社 Numerical control device and machine tool
WO2020209134A1 (en) * 2019-04-11 2020-10-15 シチズン時計株式会社 Machine tool, and detecting method
CN112792361B (en) * 2021-01-11 2022-07-19 中山市中台精密数控车床有限公司 Main shaft movable double-channel turning center with cutting limit function
CN112692591A (en) * 2021-01-12 2021-04-23 广州市艾威航空科技有限公司 Movable material-increasing and material-reducing composite manufacturing numerical control machining equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153686A (en) * 1974-11-05 1976-05-12 Kogyo Gijutsuin Kosakukikainiokeru bibirishindoyokuseihoho
US4417489A (en) * 1979-12-21 1983-11-29 Liu Chunghorng R Method and apparatus for machining a workpiece by varying the tool geometry
SU1219257A1 (en) * 1984-06-29 1986-03-23 Пензенский Политехнический Институт Tool positioning method
SU1422114A1 (en) * 1986-01-14 1988-09-07 Киевский Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции Method of testing materials for machinability by turning
JP2642211B2 (en) * 1990-01-31 1997-08-20 オ−クマ株式会社 Numerical control device with superposition control function
WO2006127709A2 (en) * 2005-05-26 2006-11-30 The University Of Connecticut System and method for chatter stability prediction and control in simultaneous machining applications
JP4582660B2 (en) * 2007-05-24 2010-11-17 オークマ株式会社 Vibration suppressor for machine tools
US8229598B2 (en) * 2007-09-06 2012-07-24 Okuma Corporation Vibration suppressing device for machine tool
JP5234772B2 (en) * 2008-10-28 2013-07-10 オークマ株式会社 Vibration suppression method and apparatus for machine tool
WO2013179366A1 (en) * 2012-05-28 2013-12-05 三菱電機株式会社 Numerical control device

Also Published As

Publication number Publication date
CN106984831B (en) 2020-01-17
CN110480031B (en) 2020-10-30
JP2017127960A (en) 2017-07-27
CN110480031A (en) 2019-11-22
CN106984831A (en) 2017-07-28

Similar Documents

Publication Publication Date Title
JP6700061B2 (en) Turning method and machine tool using the same
JP5258921B2 (en) Machine tool and its processing control device
JP4582660B2 (en) Vibration suppressor for machine tools
JP4433422B2 (en) Vibration suppression device
JP2012213830A5 (en)
JP5984183B2 (en) Machine Tools
JP5908386B2 (en) Machine Tools
JP4582661B2 (en) Vibration suppressor for machine tools
JP2012088968A (en) Monitoring method of main shaft rotational speed in machine tool, monitoring device, and machine tool
JP5683234B2 (en) Vibration suppression apparatus and method for machine tool
JP6617454B2 (en) Cutting apparatus and cutting method
JP5615681B2 (en) Vibration suppression apparatus and method for machine tool
JP6766922B2 (en) Cutting equipment and cutting method
JP2016093851A (en) Grinding device
JP2017056533A (en) Cutting device and control method thereof
EP3196721B1 (en) Turning method for suppressing chatter vibration and machine tool
JP5767931B2 (en) Vibration suppression method and vibration suppression device for machine tool
JP6040665B2 (en) Chatter vibration suppressing method and machine tool
JP6495682B2 (en) Method for controlling feed axis in machine tool and machine tool
JP2021111026A (en) Machine tool machining control method
JP6561596B2 (en) Cutting apparatus and cutting method
JP6277073B2 (en) Workpiece balance measurement method, balance correction processing method, and machine tool using the same
JP5631758B2 (en) Vibration suppression device
JP5964261B2 (en) Machining method of thin plate workpiece with milling tool
JP5339244B2 (en) Cutting equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200430

R150 Certificate of patent or registration of utility model

Ref document number: 6700061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250