JP2008283526A - マルチプレクサ回路 - Google Patents

マルチプレクサ回路 Download PDF

Info

Publication number
JP2008283526A
JP2008283526A JP2007126705A JP2007126705A JP2008283526A JP 2008283526 A JP2008283526 A JP 2008283526A JP 2007126705 A JP2007126705 A JP 2007126705A JP 2007126705 A JP2007126705 A JP 2007126705A JP 2008283526 A JP2008283526 A JP 2008283526A
Authority
JP
Japan
Prior art keywords
multiplexer circuit
circuit
multiplexer
signal
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007126705A
Other languages
English (en)
Other versions
JP4883578B2 (ja
Inventor
Masakazu Hioki
雅和 日置
Yohei Matsumoto
洋平 松本
Hanpei Koike
帆平 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007126705A priority Critical patent/JP4883578B2/ja
Publication of JP2008283526A publication Critical patent/JP2008283526A/ja
Application granted granted Critical
Publication of JP4883578B2 publication Critical patent/JP4883578B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】信号経路に応じて信号伝搬遅延時間を選択できる再構成可能集積回路に用いて好適なマルチプレサ回路を提供する。
【解決手段】マルチプレクサ回路は、第一のマルチプレクサ回路と、第二のマルチプレクサ回路と、第一のマルチプレクサ回路と第二のマルチプレクサ回路のどちらかの出力信号を選択して出力する選択回路を有し、第一のマルチプレクサ回路と第二のマルチプレクサ回路のそれぞれの複数の制御信号のうち、少なくとも一つの制御信号を共有する。再構成可能集積回路のロジックブロックにより回路構成する場合にロジックエレメント回路間において、通常速度の信号と高速な信号の選択的出力を可能にし、面積の小さな再構成可能集積回路とするためのマルチプレクサ回路を提供する。第二のマルチプレクサ回路は、前記第一のマルチプレクサ回路とは信号伝搬遅延時間が異なる。
【選択図】図1

Description

本発明は、多数の機能回路を集積した半導体集積回路に用いるためのマルチプレクサ回路に関するものであり、更に詳細には、信号経路に応じて異なる信号伝搬遅延時間を選択して用いることができ、再構成可能集積回路において回路構成する場合に用いて好適なマルチプレサ回路に関するものである。
FPGA(Filed Programmable Gate Array)に代表される再構成可能集積回路は、デバイスに内蔵したメモリに情報を蓄積することによって、プログラマブル配線における配線の結線状態やロジックブロックにおける論理機能、プログラマブル配線とロジックブロックの相互接続状態を自由かつ柔軟に変更することが可能なデバイスである。ユーザは、デバイス内部のメモリに外部から情報を書き込むことによって、所望の規模、所望の機能を有する論理回路を構成することができる。
前述のような再構成可能集積回路における柔軟な再構成機能のために、再構成可能集積回路は、プログラマブル配線やロジックブロックに回路の選択のための信号線を切り替える多数のマルチプレクサ回路を有する。マルチプレクサ回路は、回路外部からの制御信号によって複数の入力から一つの出力を選択し、入力から出力へ信号を伝播する選択回路である。
再構成可能集積回路におけるマルチプレクサ回路は、通常、複数のNMOS(N型Metal Oxide Semiconductor)トランジスタをパストランジスタとして使用する。NMOSトランジスタの一方の拡散層に信号を入力し、もう一方の拡散層から信号を出力する。制御信号をNMOSトランジスタのゲートへ入力することにより、NMOSトランジスタの導通、非導通状態を制御し、入力された信号を出力するか否かを制御する。このようなパストランジスタの特性を利用することにより、制御信号によって信号経路を決定し、複数の入力信号から一つの信号を出力として選択するマルチプレクサ回路が構成される。
再構成可能集積回路におけるマルチプレクサ回路は、大きく分けて二つの種類が存在する。一つはエンコード型マルチプレクサ回路、もう一つはデコード型マルチプレクサ回路である。
エンコード型マルチプレクサ回路は、二つのトランジスタを並列に接続することにより構成された2入力1出力マルチプレクサ回路を、階段状に連続して複数接続した構成のマルチプレクサ回路である。2入力1出力マルチプレクサ回路を構成する一方のトランジスタのゲートに制御信号の非反転信号を入力し、もう一方のトランジスタのゲートに制御信号の反転信号を入力することにより、二つの入力のどちらかを選択し出力する。2入力1出力マルチプレクサ回路が階段状に接続されているので、各段において二つの信号の選択が行われ、最終的には複数の入力信号のなかの一つだけが選択され出力される。同一段に存在する2入力1出力マルチプレクサにおいて、制御信号は共有することができる。したがって、エンコード型マルチプレクサ回路は、マルチプレクサ回路を構成する2入力1出力マルチプレクサの接続段数と同数の制御信号を必要とする。
デコード型マルチプレクサ回路は、複数の独立したトランジスタを並列に接続した構成の回路である。複数の独立したトランジスタごとに制御信号を用意し、制御信号の非反転信号、もしくは反転信号を各トランジスタのゲートに入力することにより、複数のトランジスタのたった一つだけを導通させ、複数の入力信号のうちのたった一つだけを出力する回路である。複数の入力ごとにトランジスタが必要であり、各トランジスタを制御するために、トランジスタ数と同数の制御信号を必要とする。
この種のマルチプレクサ回路に関係する公知文献としては、プログラマブルロジックデバイスの発明が開示された特許文献1が参照できる。ここに記載のプログラマブルロジックデバイスの発明においては、複数の配線を二つのグループに分け、第一の配線グループにおいて、配線の相互接続状態を決定するために、エンコード型マルチプレクサ回路をスイッチとして使用し、第二の配線グループにおいて、デコード型マルチプレクサ回路をスイッチとして使用する。通常速度の信号は、エンコード型マルチプレクサ回路をスイッチとして用いた配線を伝播させ、高速の信号は、デコード型マルチプレクサ回路をスイッチとして用いた配線を伝播させる。
特表2003−511947号公報
エンコード型マルチプレクサ回路は、制御信号を供給するため、2入力1出力マルチプレクサ回路の接続段数と同数のメモリ回路を必要とする。このため、入力数が増加に対してメモリ回路数の増加は小さく、その結果、集積回路により構成する場合の面積増加は小さいという利点を有する。しかしながら、前述のマルチプレクサ回路において、信号は2入力1出力マルチプレクサ回路の接続段数と同数のトランジスタを通過するために、マルチプレクサ回路を通過する信号の伝達が遅くなるという欠点を有する。
デコード型マルチプレクサ回路において、マルチプレクサ回路を通過する信号は一つのトランジスタのみを通過するために、高速に伝達されるという利点を有する。しかしながら、前述のマルチプレクサ回路は、制御信号を供給するため、入力信号線の数と同数の独立したトランジスタと、入力信号線の数と同数の独立したトランジスタを制御するため、その入力信号線の数と同数のメモリ回路が必要である。このため、入力信号線の数の多いマルチプレクサ回路をデコード型で構成する場合、必要なメモリ回路の数が多くなり、面積が大きくなるという欠点を有する。
ところで、最近の商用の再構成可能集積回路は、クラスタと呼ばれる構成を有する。クラスタ型再構成可能集積回路は、LUT(Look−Up Table)を含むロジックエレメント回路を複数内在する構造となっている。クラスタ型再構成可能集積回路の利点として、以下が挙げられる。
一つは、ロジックブロック数が減少し、その結果、配置・配線性が向上し、デザイン時間の短縮につながる。また、複数の論理機能を一つのロジックブロック内部のロジックエレメント回路に実装することができ、通常のプログラマブル配線における配線よりも高速なロジックブロック内部のプログラマブルローカル配線の使用率が高くなる。このため、再構成可能集積回路としての動作スピードが改善される。更に、複数の論理機能を一つのロジックブロック内部のロジックエレメント回路に実装することができるので、ロジックブロック間の相互接続が減少し、その結果、プログラマブル配線の面積が減少する。
このようなクラスタ型再構成可能集積回路において、前述のマルチプレクサ回路は、具体的には、プログラマブル配線における配線の相互接続状態を決定するためのスイッチ、プログラマブル配線とロジックブロックとの相互接続状態を決定するためのスイッチ、そして、ロジックブロックにおけるプログラマブルローカル配線とロジックブロック内部に複数存在するロジックエレメント回路との相互接続状態を決定するためのスイッチとして使用される。
プログラマブル配線における配線の相互接続状態を決定するためのスイッチとして、エンコード型マルチプレクサ回路を用いた場合、マルチプレクサ回路を通過する信号は、エンコード型マルチプレクサ回路を構成する複数のトランジスタを通過しなければならないため、信号伝播の遅延が大きい。
前述したように、特許文献1においては、複数の配線を二つのグループに分け、第一の配線グループにおいて配線の相互接続状態を決定するため、エンコード型マルチプレクサ回路がスイッチとして使用し、第二の配線グループにおいてデコード型マルチプレクサ回路がスイッチとして使用し、通常の速度の信号は、エンコード型マルチプレクサ回路をスイッチとして用いた配線を伝播させ、高速の信号は、デコード型マルチプレクサ回路をスイッチとして用いた配線を伝播させるようにしている。このため、デコード型マルチプレクサ回路を使用することによって、信号の遅延を低減することができる利点がある一方、エンコード型マルチプレクサ回路のためのメモリとデコード型マルチプレクサ回路のためのメモリをそれぞれ用意しなければならず、メモリ数が増加し、その結果、面積が増加するという欠点を有する。
プログラマブル配線とロジックブロックとの相互接続のためのスイッチとして、例えば前述した特許文献1のスイッチを用いることが可能であるが、同様に、デコード型マルチプレクサ回路を使用することによって、信号の遅延を低減することができる利点がある一方、エンコード型マルチプレクサ回路のためのメモリ回路とデコード型マルチプレクサ回路のためのメモリ回路をそれぞれ用意しなければならず、メモリ回路の数が増加し、その結果、面積が増加するという欠点を有する。
また、ロジックブロック内部のプログラマブルローカル配線と、ロジックブロック内部に複数存在するロジックエレメント回路との相互接続状態を決定するスイッチとして、エンコード型マルチプレクサ回路が使用される。この場合、プログラマブル配線から、ロジックブロックに内在する、あるロジックエレメント回路への信号だけでなく、ロジックブロックに内在する、あるロジックエレメント回路から、同一のロジックブロックに内在する別のロジックエレメント回路への信号も、エンコード型マルチプレクサ回路を構成するために階段状に連続して接続された複数のトランジスタを通過することとなり、大きな信号遅延を生じる。特に、この問題は、再構成可能集積回路の同一ロジックブロックに内在するロジックエレメント回路間における、クラスタ化による信号伝播の高速化性能の低減を招く。
本発明は、上記のような問題を解決するためになされたものであり、本発明の目的は、多数の機能回路を集積した半導体集積回路に用いるためのマルチプレクサ回路を提供することにあり、詳細には、信号経路に応じて信号伝搬遅延時間を選択できる再構成可能集積回路に用いて好適なマルチプレサ回路を提供することにある。
上記のような目的を達成するため、本発明によるマルチプレクサ回路は、基本的な構成として、第一のマルチプレクサ回路と、第二のマルチプレクサ回路と、第一のマルチプレクサ回路と第二のマルチプレクサ回路のどちらかの出力信号を選択して出力する選択回路を有し、第一のマルチプレクサ回路と第二のマルチプレクサ回路のそれぞれの複数の制御信号のうち、少なくとも一つの制御信号を共有する。これにより、再構成可能集積回路のロジックブロックにより回路構成する場合にロジックエレメント回路間において、通常速度の信号と高速な信号の選択的出力を可能にし、面積の小さな再構成可能集積回路とするためのマルチプレクサ回路を提供する。この場合、第二のマルチプレクサ回路は、前記第一のマルチプレクサ回路とは信号伝搬遅延時間が異なる。
本発明によるマルチプレクサ回路は、二つのマルチプレクサ回路のうち、その一方を通常の信号伝播遅延特性を有するマルチプレクサ回路とし、他方を信号伝播遅延の小さい特性を有するマルチプレクサ回路とすることにより、通常の速度の信号と高速な信号のどちらにも対応が可能なような構成とされる。
また、本発明によるマルチプレクサ回路は、通常の信号伝播遅延特性を有するマルチプレクサ回路と信号伝播遅延の小さい特性を有するマルチプレクサ回路のそれぞれの出力を選択できる選択回路を、それぞれのマルチプレクサ回路の出力に設けることで、通常の信号と高速な信号とを選択できるように構成されてもよい。
具体的には、本発明の一つの態様として、本発明によるマルチプレクサ回路は、制御信号によって信号経路を決定し、複数の入力信号から一つの信号を選択して出力するマルチプレクサ回路であって、複数の制御信号入力を有する第一のマルチプレクサ回路と、複数の制御信号入力を有し前記第一のマルチプレクサ回路とは信号伝搬遅延時間が異なる第二のマルチプレクサ回路と、一つないし複数の制御信号入力を有し、第一のマルチプレクサ回路と第二のマルチプレクサ回路の出力を選択して出力する機能を有する選択回路とから構成され、第一のマルチプレクサ回路への複数の制御信号と第二のマルチプレクサ回路への複数の制御信号の少なくとも一つの制御信号を共有することを特徴とするものである。
この場合に、本発明のマルチプレクサ回路において、一つのマルチプレクサ回路が、独立した複数のスイッチング素子を並列に接続したマルチプレクサ回路であり、または、一つのマルチプレクサ回路が、二つのスイッチング素子を並列に接続して構成された2入力1出力マルチプレクサ回路を階段状に連続して複数接続したマルチプレクサ回路であることを特徴とするものとなっている。
また、一つのマルチプレクサ回路が、独立した複数のスイッチング素子を並列に接続したマルチプレクサ回路と、二つのスイッチング素子を並列に接続して構成された2入力1出力マルチプレクサ回路を階段状に連続して複数接続したマルチプレクサ回路を混載したマルチプレクサ回路であるように構成されてもよい。
本発明のマルチプレクサ回路においては、1つの形態として、選択回路が、二つのスイッチング素子を並列に接続することで構成された2入力1出力マルチプレクサ回路を含む選択回路であり、他の形態では、選択回路が、二つの入力のどちらかを選択して出力する機能を有するバッファ回路である。
また、本発明のマルチプレクサ回路において、1つの形態として、少なくとも一つの制御信号が、論理回路からの出力信号であり、または、メモリ回路からの出力信号であり、これらの場合に、少なくとも一つのスイッチング素子が、n型MOSFETで構成されており、または、p型MOSFETで構成される。また、少なくとも一つのスイッチング素子が、n型MOSFETとp型MOSFETが並列接続されたトランスミッションゲートで構成されるようにされても良い。
本発明のマルチプレクサ回路によれば、マルチプレクサ回路の出力を選択できるように構成することによって、第一のマルチプレクサ回路への複数の制御信号と、第二のマルチプレクサ回路への複数の制御信号との少なくとも一つの制御信号を共有することができ、これにより、本発明のマルチプレクサ回路は、再構成可能集積回路のマルチプレクサ回路における相互接続情報を記憶するためのメモリの共有を可能とし、その結果、マルチプレクサ回路を構成する集積回路の面積を縮小することができる。
このように、本発明のマルチプレクサ回路を用いることで、再構成可能集積回路においては、第一のマルチプレクサ回路と第二のマルチプレクサ回路の制御信号線を共有することができ、その結果、マルチプレクサ回路を制御するための回路資源を節約でき、集積回路の面積を縮小することができる。更に、制御信号線を共有した第一のマルチプレクサ回路としてデコード型マルチプレクサ回路を、第二のマルチプレクサ回路としてエンコード型マルチプレクサ回路を用いることにより、マルチプレクサ回路自体のトランジスタ数の減少による面積の縮小効果と選択的な信号伝播特性を同時に実現することが可能となる。
以下、本発明を実施する一形態について図面を参照して説明する。図1は本発明によるマルチプレクサ回路の基本的な構成を説明する図である。このマルチプレクサ回路は、再構成可能集積回路により論理回路を構成する場合の信号伝搬遅延回路として用いられる。マルチプレクサ回路に対する制御信号は、回路構成用の論理回路またはメモリ回路から供給される。
図1において、マルチプレクサ回路112は、主な構成として、第一のマルチプレクサ回路100、第二のマルチプレクサ回路104、選択回路109、および複数の制御信号線から構成されている。これらの回路における信号線について説明すると、101は第一のマルチプレクサ回路100へのデータ入力信号線、102は第一のマルチプレクサ回路100への制御信号線、103は第一のマルチプレクサ回路100から選択回路109へのデータ信号線、105は第二のマルチプレクサ回路104へのデータ入力信号線、106は第二のマルチプレクサ回路104への制御信号線、107は第二のマルチプレクサ回路104から選択回路109へのデータ信号線、110は選択回路109への制御信号線、111は選択回路109からのデータ出力信号線である。108は、制御信号線102および制御信号線106のなかの共有される共有信号線である。ここで第一のマルチプレクサ回路100と第二のマルチプレクサ回路104とは信号伝搬遅延時間が異なる。このため、信号経路として、第一のマルチプレクサ回路100または第二のマルチプレクサ回路104の信号経路が選択されることにより、信号伝搬遅延時間が選択できる。
図2は、第一のマルチプレクサ回路100として用いられるデコード型マルチプレクサ回路の一実施例を説明する図であり、図3は、第二のマルチプレクサ回路104として用いられるデコード型マルチプレクサ回路の一実施例を説明する図である。デコード型マルチプレクサ回路は、独立した複数のスイッチング素子200が並列に接続された構成の回路である。
図2に示すデコード型マルチプレクサ回路の第一のマルチプレクサ回路100は、複数の制御信号線102がスイッチング素子200のゲートに対して接続されており、制御信号線102の一つに適切な信号を入力することで、独立した複数の並列に接続されたスイッチング素子200のただ一つだけが導通状態となり、データ入力信号線101のただ一つの信号がデータ信号線103へ信号が転送される。スイッチング素子200には、例えば、n型MOSFETの他、p型MOSFET、またはn型MOSFETとp型MOSFETを並列に接続した構成の回路であるCMOSトランスミッションゲート、その他のスイッチング素子が用いられる。
図3に示すデコード型マルチプレクサ回路の第二のマルチプレクサ回路104は、同様に、複数の制御信号線106がスイッチング素子200のゲートに対して接続され、制御信号線106の一つに適切な信号が入力されることにより、独立した複数の並列に接続されたスイッチング素子200のただ一つだけが導通状態となり、データ入力信号線105のただ一つの信号がデータ信号線107へ信号が転送される。このスイッチング素子200には、例えば、n型MOSFETの他、p型MOSFET、または、n型MOSFETとp型MOSFETを並列に接続した構成の回路であるCMOSトランスミッションゲート、その他のスイッチング素子が用いられる。
図4は第一のマルチプレクサ回路100として用いられるエンコード型マルチプレクサ回路の一実施例を説明する図であり、図5は第二のマルチプレクサ回路104として用いられるエンコード型マルチプレクサ回路の一実施例を説明する図である。エンコード型マルチプレクサ回路は、二つのスイッチング素子200を並列に接続することで構成された2入力1出力マルチプレクサ回路を階段状に連続して複数接続した構成の回路である。
図4に示すエンコード型マルチプレクサ回路の第一のマルチプレクサ回路100は、複数の制御信号102に適切な信号が入力されることにより、各段における2入力1出力マルチプレクサ回路の入力信号が次段の2入力1出力マルチプレクサ回路へ転送され、その結果、データ入力信号線101のただ一つの信号が、データ信号線103へ転送される。二つのスイッチング素子200としては、例えば、n型MOSFETの他、p型MOSFET、または、n型MOSFETとp型MOSFETを並列に接続した構成の回路であるCMOSトランスミッションゲート、その他のスイッチング素子が用いられる。
図5に示すエンコード型マルチプレクサ回路の第二のマルチプレクサ回路104においても、同様に、複数の制御信号106に適切な信号が入力されることにより、各段における2入力1出力マルチプレクサ回路の入力信号が次段の2入力1出力マルチプレクサ回路へ転送され、その結果、データ入力信号線105のただ一つの信号が、データ信号線107へ転送される。スイッチング素子200としては、例えば、n型MOSFETの他、p型MOSFET、または、n型MOSFETとp型MOSFETを並列に接続した構成の回路であるCMOSトランスミッションゲートやその他のスイッチング素子が用いられる。
図6は第一のマルチプレクサ回路100として用いられるデコード型マルチプレクサ回路とエンコード型マルチプレクサ回路とを組み合わせた複合型マルチプレクサ回路の一実施例を説明する図であり、また、図7は、第二のマルチプレクサ回路104として用いられるデコード型マルチプレクサ回路とエンコード型マルチプレクサ回路とを組み合わせた複合型マルチプレクサ回路の一実施例を説明する図である。
図6に示すように、複合型マルチプレクサ回路の第一のマルチプレクサ回路100は、デコード型マルチプレクサ回路201とエンコード型マルチプレクサ回路202が並列に配置され、それらの出力を選択し出力するための2入力1出力マルチプレクサ回路203が配置された構成のマルチプレクサ回路である。複数の制御信号線102は、デコード型マルチプレクサ回路201とエンコード型マルチプレクサ回路202の制御信号線として共有されて接続されると共に2入力1出力マルチプレクサ回路203に接続される。その結果、データ入力信号線101のただ一つの信号が、データ信号線103へ転送される。ここでのスイッチング素子は、同様に、例えば、n型MOSFETの他、p型MOSFET、または、n型MOSFETとp型MOSFETを並列に接続した構成の回路であるCMOSトランスミッションゲート、その他のスイッチング素子を用いて構成される。
図7に示すように、複合型マルチプレクサ回路の第二のマルチプレクサ回路104は、デコード型マルチプレクサ回路201とエンコード型マルチプレクサ回路202が並列に配置され、それらの出力を選択し出力するための2入力1出力マルチプレクサ回路203が配置された構成の回路である。複数の制御信号線102は、デコード型マルチプレクサ回路201とエンコード型マルチプレクサ回路202の制御信号線として共有されて接続されると共に2入力1出力マルチプレクサ回路203に接続されている。その結果、データ入力信号線105のただ一つの信号が、データ信号線107へ転送される。ここでのスイッチング素子は、同様に、例えば、n型MOSFETの他、p型MOSFET、または、n型MOSFETとp型MOSFETを並列に接続した構成の回路であるCMOSトランスミッションゲート、その他のスイッチング素子を用いて構成される。
図8は、選択回路109の一実施例を説明する図である。スイッチング素子200としてn型MOSFETが並列に接続されており、その出力に2段のCMOSインバータ301が接続されている。スイッチング素子(n型MOSFET)200にハイレベルの信号を通過させた場合、ハイレベルの信号は減衰し、論理振幅は小さくなる。このように小さくなった論理振幅を回復することを目的として、ここでは、二つのCMOSインバータ301とプルアップ回路(p型MOSFET回路)300を設けている。前段の二つのマルチプレクサ回路からの出力であるデータ信号線103およびデータ信号線107からの信号をスイッチング素子200の入力とする。CMOSインバータ301からの出力がデータ出力信号線111から出力される。スイッチング素子200としては、例えば、n型MOSFETの他、p型MOSFET、または、n型MOSFETとp型MOSFETを並列に接続した構成の回路であるCMOSトランスミッションゲート、その他のスイッチング素子が用いられる。
図9は、選択回路109の他の一実施例を説明する図である。CMOSインバータ301と電源との接続を遮断するためのp型MOSFET302と、グランドとの接続を遮断するためのn型MOSFET303を配置したパワーゲーティング機能付きCMOSインバータ304を並列に配置し、前段の二つのマルチプレクサ回路からの出力であるデータ信号線103およびデータ信号線107を入力とする構成の回路である。CMOSインバータ301からの出力がデータ出力信号線111から出力される。前段のマルチプレクサ回路をn型MOSFETのみで構成した場合、ハイレベルの出力信号は減衰し、その結果論理振幅が小さくなる。このように小さくなった論理振幅を回復することを目的としてプルアップ回路(p型MOSFET)300が設けられている。図9に示す選択回路109では、制御信号線110に適切な入力を与えることによって、二つのパワーゲーティング機能付きCMOSインバータ304のうちのどちらか一方を動作可能状態に、残りの一方を動作不可能状態とする。これに連動して、プルアップ回路(p型MOSFET)300からデータ信号線103もしくはデータ信号線107への電流をオンもしくはオフとするため、CMOSトランスミッションゲート305がデータ信号線103およびデータ信号線107にそれぞれ接続されている。
図10は、第一のマルチプレクサ回路100に対する制御方法の一実施例を説明する図である。論理回路400の制御信号により第一のマルチプレクサ回路100を制御するため、論理回路400からの制御信号線が、第一のマルチプレクサ回路100の制御信号線102に接続される。
図11は、第二のマルチプレクサ回路104に対する制御方法の一実施例を説明する図である。論理回路400の制御信号により第二のマルチプレクサ回路104を制御するため、論理回路400からの制御信号線が、第二のマルチプレクサ回路104の制御信号線106に接続される。
図12は、第一のマルチプレクサ回路100に対する制御方法の他の一実施例を説明する図である。メモリ回路401からの制御信号により第一のマルチプレクサ回路100を制御するため、メモリ回路401からの制御信号線が、第一のマルチプレクサ回路100の制御信号線102に接続されている。この場合、メモリ回路401からの信号線を二つに分割し、一方の信号線にCMOSインバータ回路301を接続し、メモリ回路401からの信号を反転し、反転信号と非反転信号を第一のマルチプレクサ回路100への制御信号線102に入力する。
図13は、第二のマルチプレクサ回路104に対する制御方法の他の一実施例を説明する図である。メモリ回路401からの制御信号により第二のマルチプレクサ回路104を制御するため、メモリ回路401からの制御信号線が、メモリ回路401が第二のマルチプレクサ回路104の制御信号線106に接続されている。この場合、メモリ回路401からの信号線を二つに分割し、一方の信号線にCMOSインバータ回路301を接続し、メモリ回路401からの信号を反転し、反転信号と非反転信号を第二のマルチプレクサ回路104へ入力する。
図14(a)は選択回路109に対する制御方法の一実施例を説明する図である。論理回路400の制御信号により選択回路109を制御するため、論理回路400からの制御信号線が、選択回路109の制御信号線110に接続される。
図14(b)は選択回路109に対する制御方法の他の一実施例を説明する図である。メモリ回路401からの制御信号により選択回路109を制御するため、メモリ回路401が選択回路109の制御信号線110に接続される。この場合、メモリ回路401からの信号線を二つに分割し、一方の信号線にCMOSインバータ回路301を接続し、メモリからの信号を反転することで、反転信号と非反転信号を選択回路110へ入力する。
図15は、本発明のマルチプレクサ回路の構成の別の実施例を説明する図である。図15に示すマルチプレクサ回路は、20入力1出力のマルチプレクサ回路である。複数のマルチプレクサ回路が組み合わされて構成されている。4入力1出力のデコード型マルチプレクサ回路100と、16入力1出力のエンコード型マルチプレクサ回路104とが並列に配置され、これに選択回路109と接続されている。第一のマルチプレクサ回路100としてデコード型マルチプレクサ回路が用いられ、第二のマルチプレクサ回路104としてエンコード型マルチプレクサ回路が用いられている、これに選択回路109が接続される。複数の制御信号線はメモリ回路401に接続される。デコード型マルチプレクサ回路の第一のマルチプレクサ回路100とエンコード型マルチプレクサ回路の第二のマルチプレクサ回路104の両者の制御信号線のすべてを共有の制御信号線108として用い、共有される構成としている。制御信号線の共有は、両者の制御信号線の一部でもよい。
例えば、8入力1出力のエンコード型マルチプレクサ回路の第二のマルチプレクサ回路104を介してデータ信号を入力した場合、データ信号は8つのn型MOSFETを通過して、選択回路109の出力へと転送されるのに対して、デコード型マルチプレクサ回路の第一のマルチプレクサ回路100を介してデータ信号を入力した場合、たった2つのn型MOSFETを通過して選択回路109の出力へと転送されるので、データ信号の伝播遅延が小さくなる。その結果として、データ信号のより高速な転送が可能となる。また、20入力1出力のマルチプレクサ回路をデコード型マルチプレクサ回路のみで構成する場合、合計165個のトランジスタが必要となるが、エンコード型マルチプレクサ回路のみで構成する場合には、合計112個のトランジスタが必要となる。一方、本発明によるマルチプレクサ回路の場合、合計82個のトランジスタのみで構成できるため、面積の縮小が可能である。
図16は、本発明のマルチプレクサ回路の構成の更に別の実施例を説明する図である。デコード型マルチプレクサ回路とエンコード型マルチプレクサ回路の複合型マルチプレクサ回路を、第二のマルチプレクサ回路104として用いる構成のマルチプレクサ回路である。この第二のマルチプレクサ回路104では、デコード型マルチプレクサ回路201とエンコード型マルチプレクサ回路202を並列に配置し、それぞれの出力を選択するための2入力1出力マルチプレクサ回路203を配置した回路である。制御信号線の構成は、デコード型マルチプレクサ回路201とエンコード型マルチプレクサ回路202の制御信号線を共有した構成の回路である。
図16に示す実施例のマルチプレクサ回路は、複合型マルチプレクサ回路の第二のマルチプレクサ回路104とデコード型マルチプレクサ回路の第一のマルチプレクサ回路100を並列に配置し、選択回路109を配置し、これらの複合型マルチプレクサ回路(第二のマルチプレクサ回路104)とデコード型マルチプレクサ回路(第一のマルチプレクサ回路100)の制御信号線を共有する構成の回路である。この実施例のようなマルチプレクサ回路において、データ信号は、トランジスタを2つ通過する経路と、3つ通過する経路と、5つ通過する経路の合計3つの経路を選択することが可能となり、データ信号の信号伝搬時間を選択できる。
図17は本発明のマルチプレクサ回路が用いられる典型的なFPGAの構成の概略を説明する図である。FPGAは縦方向配線704と、横方向配線703と、スイッチブロック700と、コネクションブロック701と、ロジックブロック702と、横方向配線703とスイッチブロック700を接続するための配線706と、縦方向配線704とスイッチブロック700を接続するための配線705と、縦方向配線704とコネクションブロック701を接続するための配線707と、コネクションブロック701とロジックブロック702を接続するための配線708を有する構成となっている。この中の信号経路の間に、本発明のマルチプレクサ回路が用いられる。
図18は、本発明のマルチプレクサ回路を一方向配線アーキテクチャを有するFPGAのスイッチブロック700に適用した一実施例を説明する図である。スイッチブロック700は4つのマルチプレクサ回路112を有する構成としているものである。
図19は、本発明のマルチプレクサ回路をコネクションブロック701に適用した一実施例を説明する図である。コネクションブロック701は、その内部にロジックブロック702の入力数と同数のマルチプレクサ回路112を有し、コネクションブロック701とロジックブロック702を接続するための配線708を介してロジックブロック702の入力へ接続される。
図20は本発明のマルチプレクサ回路を、4つの4入力1出力ロジックエレメント800を有するクラスタ型ロジックブロック702へ適用した一実施例を説明する図である。この実施例では、一つのロジックエレメント800の入力に対して4つのマルチプレクサ回路112が配線801を介して接続される。従来のエンコード型マルチプレクサ回路を用いた場合、配線708からの信号も、クラスタ化されたロジックエレメントの出力のフィードバック信号も多段のトランジスタを通過することとなる。これは、ロジックエレメントのクラスタ化によるロジックエレメント間の信号速度の高速化の効果を減少させる結果を招く。しかしながら、コネクションブロックとロジックブロックを接続するための配線708と接続されるロジックブロックローカル配線802をマルチプレクサ回路112のエンコード型マルチプレクサ回路と接続すると同時に、ロジックエレメントの出力からフィードバックさせたロジックブロックローカル配線803をマルチプレクサ回路112のデコード型マルチプレクサ回路に接続することにより、ロジックブロック外部からの信号の伝播速度は従来の信号の伝播速度と同じままで、クラスタ化されたロジックエレメント間の信号伝播速度を高速化することが可能となる。
本発明によるマルチプレクサ回路の基本的な構成を説明する図である。 第一のマルチプレクサ回路として用いられるデコード型マルチプレクサ回路の一実施例を説明する図である。 第二のマルチプレクサ回路として用いられるデコード型マルチプレクサ回路の一実施例を説明する図である。 第一のマルチプレクサ回路として用いられるエンコード型マルチプレクサ回路の一実施例を説明する図である。 第二のマルチプレクサ回路として用いられるエンコード型マルチプレクサ回路の一実施例を説明する図である。 第一のマルチプレクサ回路として用いられる複合型マルチプレクサ回路の一実施例を説明する図である。 第二のマルチプレクサ回路として用いられる複合型マルチプレクサ回路の一実施例を説明する図である。 選択回路の一実施例を説明する図である。 選択回路の他の一実施例を説明する図である。 第一のマルチプレクサ回路に対する制御方法の一実施例を説明する図である。 第二のマルチプレクサ回路に対する制御方法の一実施例を説明する図である。 第一のマルチプレクサ回路に対する制御方法の他の一実施例を説明する図である。 第二のマルチプレクサ回路に対する制御方法の他の一実施例を説明する図である。 選択回路に対する制御方法の一実施例を説明する図である。 本発明のマルチプレクサ回路の構成の別の実施例を説明する図である。 本発明のマルチプレクサ回路の構成の更に別の実施例を説明する図である。 本発明のマルチプレクサ回路が用いられる典型的なFPGAの構成の概略を説明する図である。 本発明のマルチプレクサ回路を一方向配線アーキテクチャを有するFPGAのスイッチブロックに適用した一実施例を説明する図である。 本発明のマルチプレクサ回路をコネクションブロックに適用した一実施例を説明する図である。 本発明のマルチプレクサ回路を4つの4入力1出力ロジックエレメントを有するクラスタ型ロジックブロックへ適用した一実施例を説明する図である。
符号の説明
100 第一のマルチプレクサ回路
101 データ入力信号線
102 制御信号線
103 データ信号線
104 第二のマルチプレクサ回路
105 データ入力信号線
106 制御信号線
107 データ信号線
108 共通の制御信号線
109 選択回路
110 制御信号線
111 データ出力信号線
112 マルチプレクサ回路
200 スイッチング素子
201 デコード型マルチプレクサ回路
202 エンコード型マルチプレクサ回路
203 選択回路
300 プルアップ回路
301 CMOSインバータ回路
302 電源カットオフ用p型MOSFET
303 電源カットオフ用n型MOSFET
304 CMOSインバータ回路
305 CMOSトランスミッションゲート
400 論理回路
401 メモリ回路
700 スイッチブロック
701 コネクションブロック
702 ロジックブロック
703 横方向配線トラック
704 縦方向配線トラック
705 接続用配線
706 接続用配線
707 接続用配線
708 接続用配線

Claims (11)

  1. 制御信号によって信号経路を決定し、複数の入力信号から一つの信号を選択して出力するマルチプレクサ回路であって、
    複数の制御信号入力を有する第一のマルチプレクサ回路と、
    複数の制御信号入力を有し前記第一のマルチプレクサ回路とは信号伝搬遅延時間が異なる第二のマルチプレクサ回路と、
    一つないし複数の制御信号入力を有し、第一のマルチプレクサ回路と第二のマルチプレクサ回路の出力を選択して出力する機能を有する選択回路とから構成され、
    第一のマルチプレクサ回路への複数の制御信号と第二のマルチプレクサ回路への複数の制御信号の少なくとも一つの制御信号を共有する、
    ことを特徴とするマルチプレクサ回路。
  2. 請求項1に記載のマルチプレクサ回路において、
    一つのマルチプレクサ回路が、独立した複数のスイッチング素子を並列に接続したマルチプレクサ回路である
    ことを特徴とするマルチプレクサ回路。
  3. 請求項1に記載のマルチプレクサ回路において、
    一つのマルチプレクサ回路が、二つのスイッチング素子を並列に接続して構成された2入力1出力マルチプレクサ回路を階段状に連続して複数接続したマルチプレクサ回路である
    ことを特徴とするマルチプレクサ回路。
  4. 請求項1に記載のマルチプレクサ回路において、
    一つのマルチプレクサ回路が、独立した複数のスイッチング素子を並列に接続したマルチプレクサ回路と、二つのスイッチング素子を並列に接続して構成された2入力1出力マルチプレクサ回路を階段状に連続して複数接続したマルチプレクサ回路を混載したマルチプレクサ回路である
    ことを特徴とするマルチプレクサ回路。
  5. 請求項1に記載のマルチプレクサ回路において、
    選択回路が、二つのスイッチング素子を並列に接続することで構成された2入力1出力マルチプレクサ回路を含む選択回路である
    ことを特徴とするマルチプレクサ回路。
  6. 請求項1に記載のマルチプレクサ回路において、
    選択回路が、二つの入力のどちらかを選択して出力する機能を有するバッファ回路である
    ことを特徴とするマルチプレクサ回路。
  7. 請求項1に記載のマルチプレクサ回路において、
    少なくとも一つの制御信号が、論理回路からの出力信号である
    ことを特徴とするマルチプレクサ回路。
  8. 請求項1に記載のマルチプレクサ回路において、
    少なくとも一つの制御信号が、メモリ回路からの出力信号である
    ことを特徴とするマルチプレクサ回路。
  9. 請求項2、3、4、5のいずれかに記載のマルチプレクサ回路において、
    少なくとも一つのスイッチング素子が、n型MOSFETで構成される
    ことを特徴とするマルチプレクサ回路。
  10. 請求項2、3、4、5のいずれかに記載のマルチプレクサ回路において、
    少なくとも一つのスイッチング素子が、p型MOSFETで構成される
    ことを特徴とするマルチプレクサ回路。
  11. 請求項2、3、4、5のいずれかに記載のマルチプレクサ回路において、
    少なくとも一つのスイッチング素子が、n型MOSFETとp型MOSFETが並列接続されたトランスミッションゲートで構成される
    ことを特徴とするマルチプレクサ回路。
JP2007126705A 2007-05-11 2007-05-11 マルチプレクサ回路 Expired - Fee Related JP4883578B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007126705A JP4883578B2 (ja) 2007-05-11 2007-05-11 マルチプレクサ回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126705A JP4883578B2 (ja) 2007-05-11 2007-05-11 マルチプレクサ回路

Publications (2)

Publication Number Publication Date
JP2008283526A true JP2008283526A (ja) 2008-11-20
JP4883578B2 JP4883578B2 (ja) 2012-02-22

Family

ID=40143960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126705A Expired - Fee Related JP4883578B2 (ja) 2007-05-11 2007-05-11 マルチプレクサ回路

Country Status (1)

Country Link
JP (1) JP4883578B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257217A (ja) * 2011-05-16 2012-12-27 Semiconductor Energy Lab Co Ltd プログラマブルロジックデバイス
JP2013009318A (ja) * 2011-05-20 2013-01-10 Semiconductor Energy Lab Co Ltd 半導体装置
JP2013207424A (ja) * 2012-03-27 2013-10-07 Toshiba Corp 半導体集積回路
JP2014179975A (ja) * 2013-02-13 2014-09-25 Semiconductor Energy Lab Co Ltd プログラマブルロジックデバイス、及び半導体装置
US8952723B2 (en) 2013-02-13 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device and semiconductor device
JP2016195282A (ja) * 2011-05-31 2016-11-17 株式会社半導体エネルギー研究所 半導体装置
KR20190108415A (ko) * 2018-03-14 2019-09-24 두산중공업 주식회사 입력 신호의 확장을 위한 멀티플렉서 유닛

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543732A (en) * 1995-05-17 1996-08-06 Altera Corporation Programmable logic array devices with interconnect lines of various lengths
JPH09116405A (ja) * 1995-09-27 1997-05-02 Hewlett Packard Co <Hp> マルチプレクサ
US5670895A (en) * 1995-10-19 1997-09-23 Altera Corporation Routing connections for programmable logic array integrated circuits
JP2000500947A (ja) * 1996-04-17 2000-01-25 ジリンクス,インコーポレーテッド 二つのゲートレベルおよび三つのメモリセルを備える六入力マルチプレクサ
US6407576B1 (en) * 1999-03-04 2002-06-18 Altera Corporation Interconnection and input/output resources for programmable logic integrated circuit devices
JP2003511947A (ja) * 1999-10-12 2003-03-25 アルテラ・コーポレイション プログラマブルロジックデバイス用ヘテロ型相互接続アーキテクチャ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543732A (en) * 1995-05-17 1996-08-06 Altera Corporation Programmable logic array devices with interconnect lines of various lengths
JPH09116405A (ja) * 1995-09-27 1997-05-02 Hewlett Packard Co <Hp> マルチプレクサ
US5670895A (en) * 1995-10-19 1997-09-23 Altera Corporation Routing connections for programmable logic array integrated circuits
JP2000500947A (ja) * 1996-04-17 2000-01-25 ジリンクス,インコーポレーテッド 二つのゲートレベルおよび三つのメモリセルを備える六入力マルチプレクサ
US6407576B1 (en) * 1999-03-04 2002-06-18 Altera Corporation Interconnection and input/output resources for programmable logic integrated circuit devices
JP2003511947A (ja) * 1999-10-12 2003-03-25 アルテラ・コーポレイション プログラマブルロジックデバイス用ヘテロ型相互接続アーキテクチャ

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9344090B2 (en) 2011-05-16 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
JP2012257217A (ja) * 2011-05-16 2012-12-27 Semiconductor Energy Lab Co Ltd プログラマブルロジックデバイス
JP2016096573A (ja) * 2011-05-16 2016-05-26 株式会社半導体エネルギー研究所 プログラマブルロジックデバイス
US9762246B2 (en) 2011-05-20 2017-09-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with a storage circuit having an oxide semiconductor
US11750194B2 (en) 2011-05-20 2023-09-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10897258B2 (en) 2011-05-20 2021-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10505547B2 (en) 2011-05-20 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2013009318A (ja) * 2011-05-20 2013-01-10 Semiconductor Energy Lab Co Ltd 半導体装置
JP2016195282A (ja) * 2011-05-31 2016-11-17 株式会社半導体エネルギー研究所 半導体装置
JP2013207424A (ja) * 2012-03-27 2013-10-07 Toshiba Corp 半導体集積回路
US9379711B2 (en) 2013-02-13 2016-06-28 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device and semiconductor device
US8952723B2 (en) 2013-02-13 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device and semiconductor device
JP2014179975A (ja) * 2013-02-13 2014-09-25 Semiconductor Energy Lab Co Ltd プログラマブルロジックデバイス、及び半導体装置
US10230368B2 (en) 2013-02-13 2019-03-12 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device and semiconductor device
US9225336B2 (en) 2013-02-13 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device and semiconductor device
KR20150119857A (ko) 2013-02-13 2015-10-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 프로그램가능한 로직 디바이스 및 반도체 장치
US9048832B2 (en) 2013-02-13 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device and semiconductor device
KR20190108415A (ko) * 2018-03-14 2019-09-24 두산중공업 주식회사 입력 신호의 확장을 위한 멀티플렉서 유닛
KR102068066B1 (ko) 2018-03-14 2020-01-20 두산중공업 주식회사 입력 신호의 확장을 위한 멀티플렉서 유닛

Also Published As

Publication number Publication date
JP4883578B2 (ja) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4883578B2 (ja) マルチプレクサ回路
KR100246903B1 (ko) 프로그램가능 논리셀과 그 배열
US7671626B1 (en) Versatile logic element and logic array block
Lemieux et al. Directional and single-driver wires in FPGA interconnect
US7342415B2 (en) Configurable IC with interconnect circuits that also perform storage operations
US8726213B2 (en) Method and apparatus for decomposing functions in a configurable IC
US6362649B1 (en) Field programmable gate array with mask programmed input and output buffers
US7193437B2 (en) Architecture for a connection block in reconfigurable gate arrays
US6873182B2 (en) Programmable logic devices having enhanced cascade functions to provide increased flexibility
US6466049B1 (en) Clock enable control circuit for flip flops
US9658830B1 (en) Structures for LUT-based arithmetic in PLDs
US6806732B1 (en) FPGA with improved structure for implementing large multiplexers
US8456190B2 (en) Controllable storage elements for an IC
JP2012186863A (ja) プログラマブルロジック集積回路デバイスの相互接続ならびに入力/出力リソース
JP4461242B2 (ja) 再構成可能集積回路
US6016063A (en) Method and apparatus for connecting long lines to form wide logic functions
JP5523988B2 (ja) プログラマブル論理回路装置およびその回路決定方法
US20020053938A1 (en) Digital electronic circuit for use in implementing digital logic functions
US7755388B2 (en) Interconnect structure enabling indirect routing in programmable logic
KR20180116117A (ko) 프로그래밍가능 게이트 어레이에 대한 로직 블록 아키텍처
US7725867B2 (en) Gate-array or field programmable gate array
US5973506A (en) Method and apparatus for connecting long lines to form wide busses
JP3072887B2 (ja) フィールドプログラマブルゲートアレイ
JP3072888B2 (ja) フィールドプログラマブルゲートアレイ
US7605606B1 (en) Area efficient routing architectures for programmable logic devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees