JP2008283240A - Charge transfer section and solid-state imaging apparatus - Google Patents

Charge transfer section and solid-state imaging apparatus Download PDF

Info

Publication number
JP2008283240A
JP2008283240A JP2007123084A JP2007123084A JP2008283240A JP 2008283240 A JP2008283240 A JP 2008283240A JP 2007123084 A JP2007123084 A JP 2007123084A JP 2007123084 A JP2007123084 A JP 2007123084A JP 2008283240 A JP2008283240 A JP 2008283240A
Authority
JP
Japan
Prior art keywords
transfer
region
charge
indicated
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007123084A
Other languages
Japanese (ja)
Inventor
Toshihisa Makihira
俊久 牧平
Masaaki Takayama
政明 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007123084A priority Critical patent/JP2008283240A/en
Publication of JP2008283240A publication Critical patent/JP2008283240A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state imaging apparatus that improves horizontal transfer of signal charges while achieving an increase in the amount of electric charges that a horizontal transfer register handles. <P>SOLUTION: The solid-state imaging apparatus has an imaging section and the horizontal transfer register transferring signal charges transferred by the imaging section, wherein transfer electrodes are divided into three H1a, H1b, and H1c (H2a, H2b, and H2c) and the falling timing of a transfer clock applied to the transfer electrode H1c (H2c) is made earlier than the falling timings of transfer clocks applied to the transfer electrodes H1a and H2b (H2a and H2b). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は電荷転送部及び固体撮像装置に関する。詳しくは、特にCCDエリアセンサの水平転送レジスタやCCDリニアセンサの転送レジスタ、CCD遅延素子の転送レジスタに用いて好適な電荷転送部及びこうした電荷転送部を利用した固体撮像装置に係るものである。   The present invention relates to a charge transfer unit and a solid-state imaging device. Specifically, the present invention relates to a charge transfer unit suitable for use in a horizontal transfer register of a CCD area sensor, a transfer register of a CCD linear sensor, a transfer register of a CCD delay element, and a solid-state imaging device using such a charge transfer unit.

図6は従来のCCD(Charge Coupled Device)固体撮像装置を説明するための模式的な平面図であり、図7(a)は従来のCCD固体撮像装置の水平転送レジスタ(図6中符号A−A'で示す領域)のポテンシャルを説明するための模式図である。   FIG. 6 is a schematic plan view for explaining a conventional CCD (Charge Coupled Device) solid-state imaging device, and FIG. 7A shows a horizontal transfer register (reference A- in FIG. 6) of the conventional CCD solid-state imaging device. It is a schematic diagram for demonstrating the potential of the area | region shown by A '.

従来のCCD固体撮像装置は、シリコン基板内にマトリクス状に配列された複数の受光部101、この受光部に隣接して設けられ、受光部で取り込んだ信号電荷を読み出す読み出しゲート(図示せず)、読み出しゲートに隣接して設けられ、読み出しゲートによって読み出された信号電荷を垂直方向に転送する垂直転送レジスタ103、垂直転送レジスタにより転送された信号電荷を水平方向に転送する水平転送レジスタ104及び受光部の読み出しゲートとは逆側に設けられ、混色を抑制するチャネルストップ領域(図示せず)が形成されている(例えば、特許文献1参照。)。また、水平転送レジスタは受光部から得られた信号電荷を蓄積する複数の電荷蓄積部を有しており、水平転送レジスタ上の転送電極に転送クロックを印加することで電荷蓄積部のポテンシャルを変化させ、電荷蓄積部間で信号電荷を水平転送する様に構成されている。   A conventional CCD solid-state imaging device includes a plurality of light receiving portions 101 arranged in a matrix in a silicon substrate, a read gate (not shown) that is provided adjacent to the light receiving portions and reads signal charges taken in by the light receiving portions. A vertical transfer register 103 which is provided adjacent to the read gate and transfers the signal charge read by the read gate in the vertical direction; a horizontal transfer register 104 which transfers the signal charge transferred by the vertical transfer register in the horizontal direction; A channel stop region (not shown) that is provided on the side opposite to the readout gate of the light receiving portion and suppresses color mixing is formed (for example, see Patent Document 1). In addition, the horizontal transfer register has a plurality of charge storage units that store the signal charges obtained from the light receiving unit, and changes the potential of the charge storage unit by applying a transfer clock to the transfer electrode on the horizontal transfer register. The signal charges are horizontally transferred between the charge storage units.

なお、各電荷蓄積部は、電荷保持を行なうStrage部(St)と電荷転送を行なうTransfer部(Tr)とを有している。
更に、信号電荷の転送改善を実現すべく、不純物イオン注入によってTransfer部にもポテンシャル差を形成している。具体的には、図7(a)中符号Tr1で示すTransfer部(1)と、図7(a)中符号Tr2で示すTransfer部(2)とでは、信号電荷の転送方向側に位置するTransfer部(1)のポテンシャルがTransfer部(2)のポテンシャルよりも深くなるように不純物イオン注入を行なっている。
Each charge storage unit includes a storage unit (St) that performs charge retention and a transfer unit (Tr) that performs charge transfer.
Furthermore, a potential difference is also formed in the transfer portion by impurity ion implantation in order to improve the transfer of signal charges. Specifically, in the transfer part (1) indicated by reference numeral Tr1 in FIG. 7A and the transfer part (2) indicated by reference sign Tr2 in FIG. 7A, the transfer located on the transfer direction side of the signal charge. Impurity ion implantation is performed so that the potential of the portion (1) is deeper than the potential of the transfer portion (2).

ここで、一般に水平転送レジスタの水平転送は2相駆動、即ち、水平転送レジスタ上の転送電極(H1,H2)に転送クロック(φH1,φH2)を印加することで信号電荷が転送される構造を採っている。具体的には、図7(a)中符号H1で示す転送電極に図7(b)中符号φH1で示す転送クロックを印加し、図7(a)中符号H2で示す転送電極に図7(b)中符号φH2で示す転送クロックを印加し(一般にはφH1の振幅/φH2の振幅は3〜5V程度であり、φH1とφH2とは逆位相の転送クロックとなる。)、水平転送レジスタのポテンシャルを上下させることで、出力方向(図7(a)の場合には右方向から左方向)に信号電荷が転送されることとなる。   Here, in general, horizontal transfer of a horizontal transfer register is a two-phase drive, that is, a structure in which signal charges are transferred by applying transfer clocks (φH1, φH2) to transfer electrodes (H1, H2) on the horizontal transfer register. Adopted. Specifically, a transfer clock indicated by reference sign φH1 in FIG. 7B is applied to the transfer electrode indicated by reference sign H1 in FIG. 7A, and the transfer electrode indicated by reference sign H2 in FIG. b) A transfer clock indicated by a middle symbol φH2 is applied (in general, the amplitude of φH1 / φH2 is about 3 to 5 V, and φH1 and φH2 are transfer clocks in opposite phases), and the potential of the horizontal transfer register. The signal charge is transferred in the output direction (in the case of FIG. 7A, from the right direction to the left direction).

ところで、水平転送レジスタの取り扱い電荷量は電荷蓄積部の中のポテンシャルが最も浅い領域のポテンシャルで決定される。
具体的には、図8(a)で示す様に、各電荷蓄積部に蓄積することができる信号電荷量は、φH1とφH2が共にミドルレベル(以下、「Mレベル」と称する。)となった際に各電荷蓄積部に蓄積することができる信号電荷量(図8(a)中符号aで示す信号電荷量)であるために、各電荷蓄積部に蓄積することができる信号電荷量はTransfer部(2)のポテンシャル(電荷蓄積部の中のポテンシャルが最も浅い領域のポテンシャル)によって決定されることとなる。従って、水平転送レジスタの取り扱い電荷量についても、Transfer部(2)のポテンシャル(電荷蓄積部の中のポテンシャルが最も浅い領域のポテンシャル)によって決定されることとなるのである。
従って、水平転送レジスタの取り扱い電荷量を増加させるためには、電荷蓄積部の中のポテンシャルが最も浅い領域のポテンシャルを浅くすることが必要となる。即ち、電荷蓄積部のポテンシャルが最も浅い領域であるTransfer部(2)のポテンシャルを浅くすることで水平転送レジスタの取り扱い電荷量を増加することができる。
Incidentally, the amount of charge handled by the horizontal transfer register is determined by the potential of the shallowest region in the charge storage unit.
Specifically, as shown in FIG. 8A, the amount of signal charge that can be accumulated in each charge accumulating portion is that both φH1 and φH2 are at a middle level (hereinafter referred to as “M level”). The amount of signal charge that can be accumulated in each charge storage unit (the amount of signal charge indicated by symbol a in FIG. 8A) is It is determined by the potential of the transfer portion (2) (the potential in the region where the potential in the charge storage portion is the shallowest). Therefore, the amount of charge handled by the horizontal transfer register is also determined by the potential of the transfer unit (2) (the potential of the region where the potential in the charge storage unit is the shallowest).
Therefore, in order to increase the amount of charge handled by the horizontal transfer register, it is necessary to reduce the potential of the region where the potential in the charge storage portion is the shallowest. That is, the amount of charge handled by the horizontal transfer register can be increased by reducing the potential of the transfer portion (2), which is the shallowest region of the charge storage portion.

一方、H1電極下領域(φH1が印加される領域)からH2電極下領域(φH2が印加される領域)への信号電荷の転送の改善及びH2電極下領域からH1電極下領域への信号電荷の転送の改善を目的として、Transfer部(2)のポテンシャルを深くすると、H1電極下領域からH2電極下領域への信号電荷の転送及びH2電極下領域からH1電極下領域への信号電荷の転送は改善されるものの、電荷蓄積部の取り扱い電荷量の減少を招いてしまう。具体的には、図8(b)で示す様に、Transfer部(2)のポテンシャルを深くすると、H1電極下領域からH2電極下領域への転送電界(図8(b)中符合bで示す転送電界)が大きくなるものの、電荷蓄積部の取り扱い電荷量(図8(b)中符合cで示す信号電荷量)が減少してしまう。   On the other hand, the signal charge transfer from the H1 electrode lower region (region to which φH1 is applied) to the H2 electrode lower region (region to which φH2 is applied) is improved and the signal charge from the H2 electrode lower region to the H1 electrode lower region is improved. For the purpose of improving the transfer, if the potential of the transfer portion (2) is deepened, the transfer of the signal charge from the H1 electrode lower region to the H2 electrode lower region and the transfer of the signal charge from the H2 electrode lower region to the H1 electrode lower region are performed. Although improved, the amount of charge handled by the charge storage portion is reduced. Specifically, as shown in FIG. 8B, when the potential of the transfer part (2) is deepened, the transfer electric field from the region under the H1 electrode to the region under the H2 electrode (indicated by the symbol b in FIG. 8B). Although the transfer electric field is increased, the amount of charge handled by the charge storage unit (the amount of signal charge indicated by the symbol c in FIG. 8B) is reduced.

なお、H1電極下での転送やH2電極下での転送よりもH1電極下からH2電極下への転送やH2電極下からH1電極下への転送の方が水平転送レジスタ全体における信号電荷の転送に与える影響が大きいことが知られている。
具体的には、Transfer部(2)とTransfer部(1)とのポテンシャル差やTransfer部(1)とStrage部とのポテンシャル差(図8(b)中符合dで示すポテンシャル差や図8(b)中符合eで示すポテンシャル差)よりも、Strage部とTransfer部(2)とのポテンシャル差(図8(b)中符合bで示すポテンシャル差)の方が信号電荷全体に及ぼす影響が大きいことが知られているのである。
Note that the transfer of signal charges in the entire horizontal transfer register is performed by transferring from under the H1 electrode to under the H2 electrode or from under the H2 electrode to under the H1 electrode rather than from under the H1 electrode or from under the H2 electrode. It is known that the impact on
Specifically, the potential difference between the transfer part (2) and the transfer part (1), the potential difference between the transfer part (1) and the storage part (the potential difference indicated by the symbol d in FIG. b) The potential difference between the storage portion and the transfer portion (2) (the potential difference indicated by the symbol b in FIG. 8B) has a greater influence on the overall signal charge than the potential difference indicated by the symbol e in the middle). It is known.

ここで、電荷蓄積部の取り扱い電荷量が減少すると、高輝度の被写体を撮影した場合に、受光部にて光電変換された信号電荷の全てを各電荷蓄積部に蓄積することができずに、信号電荷の一部が隣接する電荷蓄積部に漏れ込むことがある。そして、信号電荷の一部が隣接する電荷蓄積部に漏れ込んだ場合には、結果として混色を招くことになってしまう。   Here, when the amount of charge handled by the charge storage unit decreases, when a high-luminance subject is photographed, all of the signal charges photoelectrically converted by the light receiving unit cannot be stored in each charge storage unit, Part of the signal charge may leak into the adjacent charge storage portion. When a part of the signal charge leaks into the adjacent charge storage part, color mixing is caused as a result.

また、H1電極下領域からH2電極下領域へのポテンシャル差やH2電極下領域からH1電極下領域へのポテンシャル差が小さくなると、信号電荷が完全には転送されずに、信号電荷の一部が取り残されて、直後に転送されてくる信号電荷と一緒に転送されてしまうことがある。そして、信号電荷の一部が直後に転送されてくる信号電荷と一緒に転送された場合には、結果として混色を招くことになってしまう。   Also, if the potential difference from the H1 electrode lower region to the H2 electrode lower region or the potential difference from the H2 electrode lower region to the H1 electrode lower region is reduced, the signal charge is not completely transferred and a part of the signal charge is In some cases, the signal charges are left behind and transferred together with the signal charges transferred immediately afterward. When a part of the signal charge is transferred together with the signal charge transferred immediately afterward, color mixing is caused as a result.

特開平10−144907号公報JP-A-10-144907

上記した様に、水平転送レジスタの取り扱い電荷量と信号電荷の転送改善とはトレードオフの関係にあり、両者の両立は非常に困難であるものの、水平転送レジスタの取り扱い電荷量の増加を図りつつも信号電荷の転送改善を行なうことが強く望まれていた。   As described above, the amount of charge handled by the horizontal transfer register and the improvement in signal charge transfer are in a trade-off relationship, and it is very difficult to achieve both, but the amount of charge handled by the horizontal transfer register is increasing. However, it has been strongly desired to improve signal charge transfer.

本発明は以上の点に鑑みて創案されたものであって、転送レジスタの取り扱い電荷量の増加を図りつつ信号電荷の転送改善をも図ることができる電荷転送部及び固体撮像装置を提供することを目的とするものである。   The present invention has been made in view of the above points, and provides a charge transfer unit and a solid-state imaging device capable of improving the transfer of signal charges while increasing the amount of charge handled by a transfer register. It is intended.

上記の目的を達成するために、本発明に係る電荷転送部では、信号電荷を蓄積する複数の電荷蓄積部を有し、該電荷蓄積部のポテンシャルを変化することにより前記電荷蓄積部間で信号電荷を転送する電荷転送部において、前記電荷蓄積部は、第1の領域と、該第1の領域の信号電荷の転送方向側に隣接する第2の領域とを有し、前記第1の領域に印加される転送クロックの立ち下がりタイミングは、前記第2の領域に印加される転送クロックの立ち下がりタイミングよりも早い。   In order to achieve the above object, a charge transfer unit according to the present invention has a plurality of charge storage units that store signal charges, and a signal is transferred between the charge storage units by changing the potential of the charge storage unit. In the charge transfer unit for transferring charges, the charge storage unit includes a first region and a second region adjacent to the signal charge transfer direction side of the first region, and the first region The fall timing of the transfer clock applied to is earlier than the fall timing of the transfer clock applied to the second area.

ここで、第1の領域に印加される転送クロックの立ち下がりタイミングが、第2の領域に印加される転送クロックの立ち下がりタイミングよりも早いために、信号電荷の転送に悪影響を及ぼすことなく取り扱い電荷量を増大することができる。   Here, since the falling timing of the transfer clock applied to the first area is earlier than the falling timing of the transfer clock applied to the second area, it is handled without adversely affecting the transfer of the signal charge. The amount of charge can be increased.

また、上記の目的を達成するために、本発明に係る固体撮像装置では、撮像部と、該撮像部より転送された信号電荷を転送する電荷転送部とを備え、前記電荷転送部は、信号電荷を蓄積する複数の電荷蓄積部を有し、該電荷蓄積部のポテンシャルを変化することにより前記電荷蓄積部間で信号電荷を転送する固体撮像装置において、前記電荷蓄積部は、第1の領域と、該第1の領域の信号電荷の転送方向側に隣接する第2の領域とを有し、前記第1の領域に印加される転送クロックの立ち下がりタイミングは、前記第2の領域に印加される転送クロックの立ち下がりタイミングよりも早い。   In order to achieve the above object, the solid-state imaging device according to the present invention includes an imaging unit and a charge transfer unit that transfers a signal charge transferred from the imaging unit. In the solid-state imaging device having a plurality of charge storage units that store charges and transferring signal charges between the charge storage units by changing the potential of the charge storage units, the charge storage unit includes a first region And a second region adjacent to the signal charge transfer direction side of the first region, and the falling timing of the transfer clock applied to the first region is applied to the second region. Earlier than the falling timing of the transfer clock.

ここで、第1の領域に印加される転送クロックの立ち下がりタイミングが、第2の領域に印加される転送クロックの立ち下がりタイミングよりも早いために、信号電荷の転送に悪影響を及ぼすことなく電荷転送部の取り扱い電荷量を増大することができる。   Here, since the falling timing of the transfer clock applied to the first region is earlier than the falling timing of the transfer clock applied to the second region, the charge is not adversely affected to the transfer of the signal charge. The amount of charge handled by the transfer unit can be increased.

本発明を適用した電荷転送部及び固体撮像装置では、トレードオフの関係にあるとされていた信号電荷の転送と取り扱い電荷量の増大の双方を実現することができる。   In the charge transfer unit and the solid-state imaging device to which the present invention is applied, it is possible to realize both the transfer of signal charges and the increase in the amount of handled charges, which are considered to be in a trade-off relationship.

以下、本発明の実施の形態について図面を参照しながら説明し、本発明の理解に供する。
図1は本発明を適用した固体撮像装置の一例であるCCD固体撮像装置(1)を説明するための模式的な平面図であり、図2は本発明を適用したCCD固体撮像装置(1)の水平転送レジスタを説明するための模式図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings to facilitate understanding of the present invention.
FIG. 1 is a schematic plan view for explaining a CCD solid-state imaging device (1) which is an example of a solid-state imaging device to which the present invention is applied, and FIG. 2 is a CCD solid-state imaging device (1) to which the present invention is applied. It is a schematic diagram for demonstrating this horizontal transfer register.

ここで示すCCD固体撮像装置は、上記した従来のCCD固体撮像装置と同様に、シリコン基板内に、マトリクス状に配列された受光部1、この受光部に隣接して設けられ、受光部で取り込んだ信号電荷を読み出す読み出しゲート(図示せず)、読み出しゲートに隣接して設けられ、読み出しゲートによって読み出された信号電荷を垂直方向に転送する垂直転送レジスタ3、垂直転送レジスタにより転送された信号電荷を水平方向に転送する水平転送レジスタ4及び受光部の読み出しゲートとは逆側に設けられ、混色を抑制するチャネルストップ領域(図示せず)が形成されている。また、水平転送レジスタは受光部から得られた信号電荷を蓄積する複数の電荷蓄積部を有しており、水平転送レジスタ上の転送電極に転送クロックを印加することで電荷蓄積部のポテンシャルを変化させ、電荷蓄積部間で信号電荷を水平転送する様に構成されている。   The CCD solid-state imaging device shown here is similar to the conventional CCD solid-state imaging device described above, and is provided in the silicon substrate adjacent to the light receiving portions 1 arranged in a matrix, and is captured by the light receiving portion. A read gate (not shown) for reading out the signal charge, a vertical transfer register 3 provided adjacent to the read gate and transferring the signal charge read by the read gate in the vertical direction, and a signal transferred by the vertical transfer register A channel transfer region (not shown) is provided on the opposite side to the horizontal transfer register 4 for transferring charges in the horizontal direction and the readout gate of the light receiving unit, and suppresses color mixing. In addition, the horizontal transfer register has a plurality of charge storage units that store the signal charges obtained from the light receiving unit, and changes the potential of the charge storage unit by applying a transfer clock to the transfer electrode on the horizontal transfer register. The signal charges are horizontally transferred between the charge storage units.

ここで、水平転送レジスタの各電荷蓄積部は、図2中符合Trで示すTransfer部と図2中符合Stで示すStrage部とに分けられ、Transfer部は更に図2中符合Tr1で示すTransfer部(1)と図2中符合Tr2で示すTransfer部(2)とに分けられており、Strage部上の転送電極(H1a,H2a)、Transfer部(1)上の転送電極(H1b,H2b)及びTransfer部(2)上の転送電極(H1c,H2c)に対して、バイアス回路5で発生するDCバイアスを個別に印加することでTransfer部(2)からStrage部に向けて転送電界が形成される様に構成されている。   Here, each charge storage section of the horizontal transfer register is divided into a transfer section indicated by reference numeral Tr in FIG. 2 and a storage section indicated by reference numeral St in FIG. 2, and the transfer section is further transferred by reference numeral Tr1 in FIG. (1) and the transfer part (2) indicated by the reference numeral Tr2 in FIG. 2, the transfer electrodes (H1a, H2a) on the storage part, the transfer electrodes (H1b, H2b) on the transfer part (1), and A transfer electric field is formed from the Transfer section (2) toward the Storage section by individually applying a DC bias generated by the bias circuit 5 to the transfer electrodes (H1c, H2c) on the Transfer section (2). It is configured like this.

具体的には、バイアス回路で、(図2中符合5aで示す回路で発生するDCバイアス値)=(図2中符合5dで示す回路で発生するDCバイアス値)>(図2中符合5bで示す回路で発生するDCバイアス値)=(図2中符合5eで示す回路で発生するDCバイアス値)>(図2中符合5cで示す回路で発生するDCバイアス値)=(図2中符合5eで示す回路で発生するDCバイアス値)であるDCバイアスを発生させ、図2中符合5aで示す回路で発生するDCバイアスを図2中符合H1aで示す転送電極に印加し、図2中符合5bで示す回路で発生するDCバイアスを図2中符合H1bで示す転送電極に印加し、図2中符合5cで示す回路で発生するDCバイアスを図2中符合H1cで示す転送電極に印加すると共に、図2中符合5dで示す回路で発生するDCバイアスを図2中符合H2aで示す転送電極に印加し、図2中符合5eで示す回路で発生するDCバイアスを図2中符合H2bで示す転送電極に印加し、図2中符合5fで示す回路で発生するDCバイアスを図2中符合H2cで示す転送電極に印加することによってTransfer部(2)からStrage部に向けて転送電界が形成される様に構成されている。   Specifically, in the bias circuit, (DC bias value generated by the circuit indicated by reference numeral 5a in FIG. 2) = (DC bias value generated by the circuit indicated by reference numeral 5d in FIG. 2)> (at reference numeral 5b in FIG. 2) DC bias value generated by the circuit shown in FIG. 2 = (DC bias value generated by the circuit indicated by reference numeral 5e in FIG. 2)> (DC bias value generated by the circuit indicated by reference numeral 5c in FIG. 2) = (reference numeral 5e in FIG. 2) 2 is generated, and the DC bias generated by the circuit indicated by reference numeral 5a in FIG. 2 is applied to the transfer electrode indicated by reference numeral H1a in FIG. 2, and the reference numeral 5b in FIG. 2 is applied to the transfer electrode indicated by symbol H1b in FIG. 2, and the DC bias generated by the circuit indicated by symbol 5c in FIG. 2 is applied to the transfer electrode indicated by symbol H1c in FIG. 2d in FIG. 2 is applied to the transfer electrode indicated by symbol H2a in FIG. 2, and the DC bias generated by the circuit indicated by symbol 5e in FIG. 2 is applied to the transfer electrode indicated by symbol H2b in FIG. A transfer electric field is formed from the transfer portion (2) toward the storage portion by applying a DC bias generated in the circuit indicated by the intermediate symbol 5f to the transfer electrode indicated by the reference symbol H2c in FIG.

なお、Transfer部(2)が第1の領域の一例であり、Transfer部(1)及びStrage部が第2の領域の一例である。更に、Transfer部(1)が第3の領域の一例であり、Strage部が第4の領域の一例である。   The Transfer part (2) is an example of the first area, and the Transfer part (1) and the Storage part are examples of the second area. Further, the transfer part (1) is an example of the third area, and the storage part is an example of the fourth area.

また、図2中符合H1aで示す転送電極に図3中符合φH1αで示す転送クロックをコンデンサCを介して印加し、図2中符合H1bで示す転送電極及び図2中符合H1cで示す転送電極に図3中符合φH1βで示す転送クロックをコンデンサCを介して印加すると共に、図2中符合H2aで示す転送電極に図3中符合φH2αで示す転送クロックをコンデンサCを介して印加し、図2中符合H2bで示す転送電極及び図2中符合H2cで示す転送電極に図3中符合φH2βで示す転送クロックをコンデンサCを介して印加する様に構成されている。   Further, a transfer clock indicated by symbol φH1α in FIG. 3 is applied to the transfer electrode indicated by symbol H1a in FIG. 2 via a capacitor C, and applied to the transfer electrode indicated by symbol H1b in FIG. 2 and the transfer electrode indicated by symbol H1c in FIG. A transfer clock indicated by symbol φH1β in FIG. 3 is applied via a capacitor C, and a transfer clock indicated by symbol φH2α in FIG. 3 is applied via a capacitor C to a transfer electrode indicated by symbol H2a in FIG. A transfer clock indicated by symbol φH2β in FIG. 3 is applied via a capacitor C to the transfer electrode indicated by symbol H2b and the transfer electrode indicated by symbol H2c in FIG.

従って、図2中符合H1aで示す転送電極には図2中符合5aで示す回路で発生するDCバイアスが印加されると共に図3中符合φH1αで示す転送クロックがコンデンサを介して印加され、図2中符合H1bで示す転送電極には図2中符合5bで示す回路で発生するDCバイアスが印加されると共に図3中符合φH1βで示す転送クロックがコンデンサを介して印加され、図2中符合H1cで示す転送電極には図2中符合5cで示す回路で発生するDCバイアスが印加されると共に図3中符合φH1βで示す転送クロックがコンデンサを介して印加される。また、図2中符合H2aで示す転送電極には図2中符合5dで示す回路で発生するDCバイアスが印加されると共に図3中符合φH2αで示す転送クロックがコンデンサを介して印加され、図2中符合H2bで示す転送電極には図2中符合5eで示す回路で発生するDCバイアスが印加されると共に図3中符合φH2βで示す転送クロックがコンデンサを介して印加され、図2中符合H2cで示す転送電極には図2中符合5fで示す回路で発生するDCバイアスが印加されると共に図3中符合φH2βで示す転送クロックがコンデンサを介して印加される。   Accordingly, a DC bias generated by the circuit indicated by reference numeral 5a in FIG. 2 is applied to the transfer electrode indicated by reference numeral H1a in FIG. 2, and a transfer clock indicated by reference numeral φH1α in FIG. 3 is applied via the capacitor. A DC bias generated by a circuit indicated by reference numeral 5b in FIG. 2 is applied to the transfer electrode indicated by reference numeral H1b, and a transfer clock indicated by reference numeral φH1β in FIG. 3 is applied via a capacitor. A DC bias generated by a circuit indicated by reference numeral 5c in FIG. 2 is applied to the transfer electrode shown, and a transfer clock indicated by reference numeral φH1β in FIG. 3 is applied via a capacitor. 2 is applied with a DC bias generated by a circuit indicated by reference numeral 5d in FIG. 2 and a transfer clock indicated by reference numeral φH2α in FIG. 3 via a capacitor. A DC bias generated by the circuit indicated by reference numeral 5e in FIG. 2 is applied to the transfer electrode indicated by reference numeral H2b, and a transfer clock indicated by reference numeral φH2β in FIG. 3 is applied via a capacitor. A DC bias generated by a circuit indicated by reference numeral 5f in FIG. 2 is applied to the transfer electrode shown, and a transfer clock indicated by reference numeral φH2β in FIG. 3 is applied via a capacitor.

以下、上記の様に構成されたCCD固体撮像装置の駆動について説明を行なう。
なお、上記の様に構成されたCCD固体撮像装置における水平転送の各転送クロックのタイミングチャートは図3に示す通りであり、転送クロックφH1βは転送クロックφH1αと同タイミングで立ち上がり、転送クロックφH1βは転送クロックφH1αよりも立ち下がりタイミングが早い。また、転送クロックφH2βは転送クロックφH2αと同タイミングで立ち上がり、転送クロックφH2βは転送クロックφH2αよりも立ち下がりタイミングが早い。なお、φH1αとφH2αとは従来のCCD固体撮像装置に印加しているφH1とφH2と同一の転送クロックであり、φH1αとφH2αとは逆位相の転送クロックである。
Hereinafter, driving of the CCD solid-state imaging device configured as described above will be described.
The timing chart of each transfer clock for horizontal transfer in the CCD solid-state imaging device configured as described above is as shown in FIG. 3. The transfer clock φH1β rises at the same timing as the transfer clock φH1α, and the transfer clock φH1β is transferred. The fall timing is earlier than the clock φH1α. Further, the transfer clock φH2β rises at the same timing as the transfer clock φH2α, and the transfer clock φH2β falls earlier than the transfer clock φH2α. Note that φH1α and φH2α are the same transfer clocks as φH1 and φH2 applied to the conventional CCD solid-state imaging device, and φH1α and φH2α are transfer clocks having opposite phases.

さて、図3中符合t1で示すタイミングでは、φH1α及びφH1βがHレベル、φH2α及びφH2βがLレベルであり、H1a電極下、H1b電極下及びH1c電極下に信号電荷が蓄積されることとなる(図4A(a)参照。)。なお、この時点では上述の従来のCCD固体撮像装置と特に異なる点は無い。   At the timing indicated by the symbol t1 in FIG. 3, φH1α and φH1β are at the H level, φH2α and φH2β are at the L level, and signal charges are accumulated under the H1a electrode, the H1b electrode, and the H1c electrode ( (See FIG. 4A (a).) At this point, there is no particular difference from the above-described conventional CCD solid-state imaging device.

次に、図3中符合t2で示すタイミングで、φH1βをLレベルとすることによって、H1c電極下のポテンシャルを浅くする(図4A(b)参照。)。ここで、φH1βをφH1αに先立ってLレベルとするのは、H1電極(H1a,H1b,H1c)によって転送クロックが印加される電荷蓄積部の取り扱い電荷量を増加させるためである。   Next, at the timing indicated by the symbol t2 in FIG. 3, the potential under the H1c electrode is made shallow by setting φH1β to the L level (see FIG. 4A (b)). Here, the reason why φH1β is set to the L level prior to φH1α is to increase the amount of charge handled by the charge storage unit to which the transfer clock is applied by the H1 electrodes (H1a, H1b, H1c).

続いて、図3中符合t3で示すタイミングでφH1αとφH2αがMレベルとなり、このタイミングでの取り扱い電荷量が最小となるのであるが、図3中符合t2で示すタイミングでH1c電極下のポテンシャルを浅くしているために、信号電荷が転送方向と反対方向に溢れることはなく、隣り合う画素と信号電荷が混ざることは無い。なお、取り扱い電荷量の増加に伴って信号電荷の転送方向に信号電荷が溢れることは考えられるが、信号電荷の転送方向に信号電荷が溢れたとしても隣り合う画素と信号電荷が混ざることはない(図4B(c)参照。)。   Subsequently, φH1α and φH2α are at the M level at the timing indicated by symbol t3 in FIG. 3, and the amount of charge handled at this timing is minimized. However, the potential below the H1c electrode is reduced at the timing indicated by symbol t2 in FIG. Since it is shallow, the signal charge does not overflow in the direction opposite to the transfer direction, and the adjacent pixel and the signal charge are not mixed. Although it is conceivable that the signal charge overflows in the signal charge transfer direction as the amount of charge handled increases, even if the signal charge overflows in the signal charge transfer direction, the signal charge does not mix with adjacent pixels. (See FIG. 4B (c).)

その後、図3中符合t4で示すタイミングでφH1α及びφH1βがLレベル、φH2α及びφH2βがLレベルとなることによって、H1電極(H1a,H1b,H1c)で転送クロックが印加される電荷蓄積部からH2電極(H2a,H2b,H2c)で転送クロックが印加される電荷蓄積部への信号電荷の転送が完了する(図4B(d)参照。)。   Thereafter, φH1α and φH1β are set to L level and φH2α and φH2β are set to L level at the timing indicated by reference numeral t4 in FIG. 3, so that a transfer clock is applied to the H2 electrodes (H1a, H1b, H1c) from the charge storage unit The transfer of the signal charge to the charge storage portion to which the transfer clock is applied is completed at the electrodes (H2a, H2b, H2c) (see FIG. 4B (d)).

以後、上記と同様の駆動を繰り返すことによって水平転送が実現する。   Thereafter, horizontal transfer is realized by repeating the same driving as described above.

図5(a)は本発明を適用した固体撮像装置の他の一例であるCCD固体撮像装置(2)の水平転送レジスタを説明するための模式図である。なお、本発明を適用した固体撮像装置の他の一例であるCCD固体撮像装置(2)は水平転送レジスタ以外の構造は上述した本発明を適用した固体撮像装置の一例であるCCD固体撮像装置(1)と同様である。即ち、図1と同様の構造を採っている。   FIG. 5A is a schematic diagram for explaining a horizontal transfer register of a CCD solid-state imaging device (2) which is another example of the solid-state imaging device to which the present invention is applied. The CCD solid-state image pickup device (2), which is another example of the solid-state image pickup device to which the present invention is applied, has a CCD solid-state image pickup device (example of a solid-state image pickup device to which the present invention is applied described above) except for the horizontal transfer register ( Same as 1). That is, the same structure as in FIG. 1 is adopted.

ここで示すCCD固体撮像装置の水平転送レジスタの各電荷蓄積部は、図5(a)中符合Trで示すTransfer部と図5(a)中符号Stで示すStrage部とに分けられており、不純物イオン注入によってStrage部のポテンシャルがTransfer部のポテンシャルよりも深くなる様なポテンシャル差が形成されている。
更に、Transfer部は図5(a)中符合Tr1で示すTransfer部(1)と図5(a)中符合Tr2で示すTransfer部(2)とに分けられており、不純物イオン注入によってTransfer部(1)のポテンシャルがTransfer部(2)のポテンシャルよりも深くなる様なポテンシャル差が形成されている。
Each charge storage section of the horizontal transfer register of the CCD solid-state imaging device shown here is divided into a transfer section indicated by reference numeral Tr in FIG. 5A and a storage section indicated by reference numeral St in FIG. 5A. A potential difference is formed such that the potential of the storage portion becomes deeper than the potential of the transfer portion by impurity ion implantation.
Further, the transfer part is divided into a transfer part (1) indicated by reference numeral Tr1 in FIG. 5 (a) and a transfer part (2) indicated by reference numeral Tr2 in FIG. 5 (a). Transfer parts (2) indicated by reference numeral Tr2 in FIG. A potential difference is formed such that the potential of 1) is deeper than the potential of the transfer portion (2).

また、図5(a)中符合H1aで示す転送電極に図3中符合φH1αで示す転送クロックを印加し、図5(a)中符合H1bで示す転送電極に図3中符合φH1βで示す転送クロックを印加すると共に、図5(a)中符合H2aで示す転送電極に図3中符合φH2αで示す転送クロックを印加し、図5(a)中符号H2bで示す転送電極に図3中符合φH2βで示す転送クロックを印加する様に構成されている。   Further, a transfer clock indicated by symbol φH1α in FIG. 3 is applied to the transfer electrode indicated by symbol H1a in FIG. 5A, and a transfer clock indicated by symbol φH1β in FIG. 3 is applied to the transfer electrode indicated by symbol H1b in FIG. 5A. 3 is applied to the transfer electrode indicated by symbol H2a in FIG. 5A, and the transfer clock indicated by symbol φH2α in FIG. 3 is applied to the transfer electrode indicated by symbol H2b in FIG. 5A at the symbol φH2β in FIG. The transfer clock shown is configured to be applied.

上記の様に構成されたCCD固体撮像装置についても、上述の本発明を適用した固体撮像装置の一例であるCCD固体撮像装置(1)と同様に駆動して信号電荷の水平転送を行なうこととなる。   The CCD solid-state imaging device configured as described above is also driven in the same manner as the CCD solid-state imaging device (1) which is an example of the solid-state imaging device to which the present invention is applied to perform horizontal transfer of signal charges. Become.

図5(b)は本発明を適用した固体撮像装置の更に他の一例であるCCD固体撮像装置(3)の水平転送レジスタを説明するための模式図である。なお、本発明を適用した固体撮像装置の更に他の一例であるCCD固体撮像装置(3)は水平転送レジスタ以外の構造は上述した本発明を適用した固体撮像装置の一例であるCCD固体撮像装置(1)及び本発明を適用した固体撮像装置の他の一例であるCCD固体撮像装置(2)と同様である。即ち、図1と同様の構造を採っている。   FIG. 5B is a schematic diagram for explaining a horizontal transfer register of a CCD solid-state imaging device (3) which is still another example of the solid-state imaging device to which the present invention is applied. The CCD solid-state imaging device (3), which is still another example of the solid-state imaging device to which the present invention is applied, has a structure other than the horizontal transfer register, which is an example of the solid-state imaging device to which the present invention is applied. This is the same as the CCD solid-state imaging device (2) as another example of the solid-state imaging device to which (1) and the present invention are applied. That is, the same structure as in FIG. 1 is adopted.

ここで示すCCD固体撮像装置の水平転送レジスタの各電荷蓄積部は、図5(b)中符合Trで示すTransfer部と図5(b)中符号Stで示すStrage部とに分けられており、不純物イオン注入によってStrage部のポテンシャルがTransfer部のポテンシャルよりも深くなる様なポテンシャル差が形成されている。
更に、Transfer部は図5(b)中符合Tr1で示すTransfer部(1)、図5(b)中符合Tr2で示すTransfer部(2)及び図5(b)中符合Tr3で示すTransfer部(3)とに分けられており、不純物イオン注入によってTransfer部(1)、Transfer部(2)、Transfer部(3)の順にそのポテンシャルが浅くなる様に形成されている。
Each charge storage section of the horizontal transfer register of the CCD solid-state imaging device shown here is divided into a transfer section indicated by reference numeral Tr in FIG. 5B and a storage section indicated by reference numeral St in FIG. 5B. A potential difference is formed such that the potential of the storage portion becomes deeper than the potential of the transfer portion by impurity ion implantation.
Further, the transfer part includes a transfer part (1) indicated by reference numeral Tr1 in FIG. 5 (b), a transfer part (2) indicated by reference numeral Tr2 in FIG. 5 (b), and a transfer part indicated by reference numeral Tr3 in FIG. 5 (b). The transfer portion (1), the transfer portion (2), and the transfer portion (3) are formed so that the potential becomes shallower in the order of impurity ion implantation.

また、図5(b)中符合H1aで示す転送電極に図3中符合φH1αで示す転送クロックを印加し、図5(b)中符合H1bで示す転送電極に図3中符合φH1βで示す転送クロックを印加すると共に、図5(b)中符合H2aで示す転送電極に図3中符合φH2αで示す転送クロックを印加し、図5(b)中符合H2bで示す転送電極に図3中符合φH2βで示す転送クロックを印加する様に構成されている。   Further, a transfer clock indicated by symbol φH1α in FIG. 3 is applied to the transfer electrode indicated by symbol H1a in FIG. 5B, and a transfer clock indicated by symbol φH1β in FIG. 3 is applied to the transfer electrode indicated by symbol H1b in FIG. 5B. 3 is applied to the transfer electrode indicated by symbol H2a in FIG. 5B, and the transfer clock indicated by symbol H2b in FIG. 5B is applied to the transfer electrode indicated by symbol H2b in FIG. 5B at the symbol φH2β in FIG. The transfer clock shown is configured to be applied.

上記の様に構成されたCCD固体撮像装置についても、上述の本発明を適用した固体撮像装置の一例であるCCD固体撮像装置(1)や本発明を適用した固体撮像装置の他の一例であるCCD固体撮像装置(2)と同様に駆動して信号電荷の水平転送を行なうこととなる。   The CCD solid-state imaging device configured as described above is also another example of the CCD solid-state imaging device (1) that is an example of the solid-state imaging device to which the present invention is applied and the solid-state imaging device to which the present invention is applied. It is driven in the same manner as the CCD solid-state imaging device (2) to perform horizontal transfer of signal charges.

上記した本発明を適用したCCD固体撮像装置(1)及びCCD固体撮像装置(2)ではTransfer部(2)がTransfer部(1)やStrage部とは個別に駆動することができるために、Transfer部(2)に印加する転送クロックの立ち下がりタイミングをTransfer部(1)やStrage部に印加する転送クロックの立ち下がりタイミングよりも早くすることによって、水平転送レジスタの取り扱い電荷量の増加を図ると共に水平転送レジスタにおける信号電荷の転送改善を実現することができる。   In the CCD solid-state imaging device (1) and the CCD solid-state imaging device (2) to which the present invention is applied, the transfer unit (2) can be driven separately from the transfer unit (1) and the storage unit. By making the falling timing of the transfer clock applied to the section (2) earlier than the falling timing of the transfer clock applied to the Transfer section (1) or the Storage section, the amount of charge handled by the horizontal transfer register is increased. It is possible to improve signal charge transfer in the horizontal transfer register.

同様に、本発明を適用したCCD固体撮像装置(3)ではTransfer部(3)がTransfer部(1)やTransfer部(2)やStarage部とは個別に駆動することができるために、Transfer部(3)に印加する転送クロックの立ち下がりタイミングをTransfer部(1)やTransfer部(2)やStrage部に印加する転送クロックの立ち下がりタイミングより早くすることによって、水平転送レジスタの取り扱い電荷量の増加を図ると共に水平転送レジスタにおける信号電荷の転送改善を実現することができる。   Similarly, in the CCD solid-state imaging device (3) to which the present invention is applied, the transfer unit (3) can be driven separately from the transfer unit (1), the transfer unit (2), and the storage unit. By making the falling timing of the transfer clock applied to (3) earlier than the falling timing of the transfer clock applied to the Transfer unit (1), Transfer unit (2), or Storage unit, the amount of charge handled by the horizontal transfer register can be reduced. It is possible to increase the signal charges and improve the transfer of signal charges in the horizontal transfer register.

本発明を適用した固体撮像装置の一例であるCCD固体撮像装置(1)を説明するための模式的な平面図である。It is a typical top view for demonstrating the CCD solid-state imaging device (1) which is an example of the solid-state imaging device to which this invention is applied. 本発明を適用したCCD固体撮像装置(1)の水平転送レジスタを説明するための模式図である。It is a schematic diagram for demonstrating the horizontal transfer register | resistor of CCD solid-state imaging device (1) to which this invention is applied. 各転送クロックを説明するための図である。It is a figure for demonstrating each transfer clock. 信号電荷の水平転送を説明するための模式図(1)である。It is a schematic diagram (1) for demonstrating the horizontal transfer of a signal charge. 信号電荷の水平転送を説明するための模式図(2)である。It is a schematic diagram (2) for demonstrating the horizontal transfer of a signal charge. 本発明を適用した固体撮像装置の他の一例であるCCD固体撮像装置(2)や本発明を適用した固体撮像装置の更に他の一例であるCCD固体撮像装置(3)の水平転送レジスタを説明するための模式図である。A horizontal transfer register of a CCD solid-state imaging device (2) which is another example of the solid-state imaging device to which the present invention is applied and a CCD solid-state imaging device (3) which is still another example of the solid-state imaging device to which the present invention is applied will be described. It is a schematic diagram for doing. 従来のCCD固体撮像装置を説明するための模式的な平面図である。It is a typical top view for demonstrating the conventional CCD solid-state imaging device. 従来のCCD固体撮像装置の水平転送レジスタのポテンシャルを説明するための模式図及び各転送クロックを説明するための図である。It is the figure for demonstrating the potential of the horizontal transfer register of the conventional CCD solid-state imaging device, and the figure for demonstrating each transfer clock. 電荷転送部の取り扱い電荷量及び信号電荷の転送を説明するための模式図である。It is a schematic diagram for demonstrating the handling charge amount of a charge transfer part, and transfer of a signal charge.

符号の説明Explanation of symbols

1 受光部
3 垂直転送レジスタ
4 水平転送レジスタ
5 バイアス回路
1 Photodetector 3 Vertical transfer register 4 Horizontal transfer register 5 Bias circuit

Claims (5)

信号電荷を蓄積する複数の電荷蓄積部を有し、該電荷蓄積部のポテンシャルを変化することにより前記電荷蓄積部間で信号電荷を転送する電荷転送部において、
前記電荷蓄積部は、第1の領域と、該第1の領域の信号電荷の転送方向側に隣接する第2の領域とを有し、
前記第1の領域に印加される転送クロックの立ち下がりタイミングは、前記第2の領域に印加される転送クロックの立ち下がりタイミングよりも早い
ことを特徴とする電荷転送部。
In a charge transfer unit that has a plurality of charge storage units that store signal charges and transfers signal charges between the charge storage units by changing the potential of the charge storage units.
The charge storage unit includes a first region and a second region adjacent to the signal charge transfer direction side of the first region,
The charge transfer unit, wherein the falling timing of the transfer clock applied to the first region is earlier than the falling timing of the transfer clock applied to the second region.
前記第2の領域は、第3の領域と、該第3の領域の信号電荷の転送方向側に隣接する第4の領域とを有し、不純物注入により前記第3の領域から第4の領域に向けてポテンシャル差が形成された
ことを特徴とする請求項1に記載の電荷転送部。
The second region includes a third region and a fourth region adjacent to the third region in the signal charge transfer direction, and the third region to the fourth region by impurity implantation. The charge transfer unit according to claim 1, wherein a potential difference is formed toward
前記第2の領域は、第3の領域と、該第3の領域の信号電荷の転送方向側に隣接する第4の領域とを有し、前記第3の領域から第4の領域に向けて転送電界が形成された
ことを特徴とする請求項1に記載の電荷転送部。
The second region includes a third region and a fourth region adjacent to the third region in the direction of signal charge transfer, from the third region toward the fourth region. The charge transfer unit according to claim 1, wherein a transfer electric field is formed.
前記第1の領域に印加される転送クロックの立ち上がりタイミングは、前記第2の領域に印加される転送クロックの立ち上がりタイミングと略同タイミングである
ことを特徴とする請求項1に記載の電荷転送部。
The charge transfer unit according to claim 1, wherein the rising timing of the transfer clock applied to the first region is substantially the same as the rising timing of the transfer clock applied to the second region. .
撮像部と、
該撮像部より転送された信号電荷を転送する電荷転送部とを備え、
前記電荷転送部は、信号電荷を蓄積する複数の電荷蓄積部を有し、該電荷蓄積部のポテンシャルを変化することにより前記電荷蓄積部間で信号電荷を転送する固体撮像装置において、
前記電荷蓄積部は、第1の領域と、該第1の領域の信号電荷の転送方向側に隣接する第2の領域とを有し、
前記第1の領域に印加される転送クロックの立ち下がりタイミングは、前記第2の領域に印加される転送クロックの立ち下がりタイミングよりも早い
ことを特徴とする固体撮像装置。
An imaging unit;
A charge transfer unit that transfers the signal charge transferred from the imaging unit,
In the solid-state imaging device, the charge transfer unit includes a plurality of charge storage units that store signal charges, and transfers signal charges between the charge storage units by changing a potential of the charge storage unit.
The charge storage unit includes a first region and a second region adjacent to the signal charge transfer direction side of the first region,
The solid-state imaging device, wherein the falling timing of the transfer clock applied to the first region is earlier than the falling timing of the transfer clock applied to the second region.
JP2007123084A 2007-05-08 2007-05-08 Charge transfer section and solid-state imaging apparatus Pending JP2008283240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007123084A JP2008283240A (en) 2007-05-08 2007-05-08 Charge transfer section and solid-state imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007123084A JP2008283240A (en) 2007-05-08 2007-05-08 Charge transfer section and solid-state imaging apparatus

Publications (1)

Publication Number Publication Date
JP2008283240A true JP2008283240A (en) 2008-11-20

Family

ID=40143727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007123084A Pending JP2008283240A (en) 2007-05-08 2007-05-08 Charge transfer section and solid-state imaging apparatus

Country Status (1)

Country Link
JP (1) JP2008283240A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148372A (en) * 1981-03-09 1982-09-13 Sony Corp Method for charge transfer
JPS6169173A (en) * 1984-09-12 1986-04-09 Sanyo Electric Co Ltd Charge coupled device
JPH04152641A (en) * 1990-10-17 1992-05-26 Nec Corp Charge-coupled device
JPH04360578A (en) * 1991-06-07 1992-12-14 Mitsubishi Electric Corp Solid-state image sensing element and manufacture thereof
JP2008118414A (en) * 2006-11-06 2008-05-22 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus and imaging apparatus provided with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148372A (en) * 1981-03-09 1982-09-13 Sony Corp Method for charge transfer
JPS6169173A (en) * 1984-09-12 1986-04-09 Sanyo Electric Co Ltd Charge coupled device
JPH04152641A (en) * 1990-10-17 1992-05-26 Nec Corp Charge-coupled device
JPH04360578A (en) * 1991-06-07 1992-12-14 Mitsubishi Electric Corp Solid-state image sensing element and manufacture thereof
JP2008118414A (en) * 2006-11-06 2008-05-22 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus and imaging apparatus provided with the same

Similar Documents

Publication Publication Date Title
JP4416753B2 (en) Solid-state imaging device
JP2006319951A (en) Amplifying solid-state imaging device
JPH11355663A (en) Method for driving solid-state image pickup element
KR20070076514A (en) Charge coupled device and operating method thereof
JP2007110496A (en) Control circuit of solid-state imaging element and driving method of solid-state imaging element
KR100381687B1 (en) A solid image pickup device and method for driving the same
JP3715781B2 (en) Imaging device
JP2008283240A (en) Charge transfer section and solid-state imaging apparatus
JP5178364B2 (en) Solid-state imaging device and solid-state imaging device
JP2007325181A (en) Driving method of ccd type solid state imaging element, and solid state imaging apparatus
JP2009302348A (en) Solid-state image pickup device and electronic information equipment
JP6019295B2 (en) Solid-state imaging device and camera system
JP2009124633A (en) Imaging apparatus, and method of driving imaging apparatus
JPH10200819A (en) Solid-state image pickup device, and its driving method and camera
JP2010123707A (en) Solid-state imaging device and readout method thereof
JP2004328314A (en) Method of driving solid-state imaging device, driving device therefor, solid-state imaging apparatus, and imaging apparatus module
JP2007174059A (en) Imaging method and imaging apparatus as well as driver
US7602432B2 (en) Solid-state imaging element and solid-state imaging device
JP2009225478A (en) Method of driving solid-state imaging device, solid-state imaging apparatus, and camera system
JP2003209242A (en) Ccd solid-state imaging device
JP2014022689A (en) Pixel structure for rear surface irradiation type solid imaging device, rear surface irradiation type solid imaging device, driver, imaging apparatus and driving method of pixel structure for rear surface irradiation type solid imaging device
JP4193877B2 (en) Charge transfer device and solid-state imaging device
JP2753895B2 (en) Solid-state imaging device
JP2007036516A (en) Method for driving charge transfer device, and solid-state imaging device
JP2007159024A (en) Driving system of ccd type solid-state imaging device and the ccd type solid-state imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100427

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529