JP2008268843A - アクティブマトリックス型表示装置の駆動回路、駆動方法及びアクティブマトリックス型表示装置 - Google Patents

アクティブマトリックス型表示装置の駆動回路、駆動方法及びアクティブマトリックス型表示装置 Download PDF

Info

Publication number
JP2008268843A
JP2008268843A JP2007210328A JP2007210328A JP2008268843A JP 2008268843 A JP2008268843 A JP 2008268843A JP 2007210328 A JP2007210328 A JP 2007210328A JP 2007210328 A JP2007210328 A JP 2007210328A JP 2008268843 A JP2008268843 A JP 2008268843A
Authority
JP
Japan
Prior art keywords
display device
active matrix
gate
lines
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007210328A
Other languages
English (en)
Other versions
JP4270310B2 (ja
Inventor
Shigeru Yamanaka
茂 山中
Ryuichi Hirayama
隆一 平山
Ken Yoshino
研 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2007210328A priority Critical patent/JP4270310B2/ja
Priority to US12/075,729 priority patent/US8330700B2/en
Priority to CN2008101003389A priority patent/CN101276535B/zh
Priority to TW097111168A priority patent/TWI413958B/zh
Priority to KR1020080028736A priority patent/KR100935789B1/ko
Publication of JP2008268843A publication Critical patent/JP2008268843A/ja
Application granted granted Critical
Publication of JP4270310B2 publication Critical patent/JP4270310B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2014Display of intermediate tones by modulation of the duration of a single pulse during which the logic level remains constant
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0289Details of voltage level shifters arranged for use in a driving circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】画素間寄生容量が存在する場合の表示ムラを低減すること。
【解決手段】2画素毎に1本のソースラインを配置し、ソースラインを挟んで隣接する2つの画素が、ソースラインを共用するとともにそれぞれ異なるゲートラインにTFT18を介して接続されているLCDパネル10を駆動するドライバ回路12のゲートドライバブロックは、複数のゲートラインG1,G2,…を順次選択する第1の駆動と、異なるソースラインS1,S2,…に接続され隣接配置された2つの画素に対応する2本のゲートラインの組の選択順を逆にする第2の駆動と、を少なくとも一つの所定期間毎に交互に行うことで、画素間の書き込み時の電位差ずれを減少させ、表示ムラを低減する。
【選択図】図3

Description

本発明は、1本の信号線を隣接する2画素が共用するタイプのアクティブマトリックス型表示装置の駆動回路及び駆動方法、並びに、そのような駆動回路を用いたアクティブマトリックス型表示装置に関する。
近年、スイッチング素子として薄膜トランジスタ(TFT)を用いたアクティブマトリックス型表示装置が開発されている。
このアクティブマトリックス型表示装置は、マトリックス状に配置された複数の画素を行毎に順次走査するための走査信号を発生する走査線駆動回路(以下、ゲートドライバと称する)を有する。ゲートドライバは、前記各画素に映像信号を与える信号線駆動回路(以下、ソースドライバと称する)に比べると動作周波数は低い。このため、前記各画素に対応したTFTを形成するための工程と同一の工程で、前記TFTと前記ゲートドライバとを同時に形成したとしても、前記ゲートドライバは、そのスペックを満足させることが可能である。
また、アクティブマトリックス型表示装置における各画素は、前記TFTに接続された画素電極と、共通電圧Vcomが印加される共通電極と、を有している。そして、アクティブマトリックス型表示装置では、一方向の電界が長く印加されることによって発生する液晶の劣化現象を防止するために、ソースドライバからの映像信号Vsigの極性を共通電圧Vcomに対して、フレーム毎、ライン毎、又はドット毎に反転させる反転駆動が一般に行われている。
ところで、アクティブマトリックス型表示装置の実装においては、多数の画素が配列された表示パネル(表示画面)の周囲に前記ゲートドライバやソースドライバ等が配置される。そして、表示画面内の走査線(以下、ゲートラインと称する)及び信号線(以下、ソースラインと称する)と、前記ゲートドライバやソースドライバとを電気的に接続するための配線は、前記表示画面の外側を引き回されて、双方を接続されている。このとき、これら配線の引き回し面積を少なくすること、即ち、表示パネル以外の面積縮小(狭額縁)を成し遂げることが、該アクティブマトリックス型表示装置を組み込む情報機器の小型化の観点から強く望まれている。
そのため、特に表示パネルの上下方向の狭額縁化の要求に対して、ソースラインの占有面積を小さくできることから、ソースライン数を半分にした画素結線の構成が考えられている。(例えば、特許文献1の図5)。
図19は、そのような狭額縁を達成するための一手法として考えられた表示画面内における画素結線例の概略図である。これは、1本のソースラインを隣接する2つの画素200で共用するものである。この場合、それら2つの画素200のTFT202は、それぞれ異なるゲートラインに接続されている。例えば、図19において、左上の赤(R)の画素200のTFT202は、ゲートラインG1とソースラインS1に接続され、その右隣の緑(G)の画素200のTFT202は、ゲートラインG2とソースラインS1に接続されている。
図20は、このような画素結線において、複数のソースラインS1,S2,S3,…に出力される、表示すべき情報に従った映像信号Vsigの組み合わせの出力順と、複数のゲートラインG1,G2,G3,…の選択順とからなるタイミングチャートを示す図である。同図に示すように、ゲートラインが画素の行数の2倍あるので、複数のゲートラインG1,G2,G3,…は、その順番通りに1/2水平期間(1/2H)毎に1つのゲートラインが選択されていく(H信号になっていく)。そして、その選択されたゲートラインに対応する画素200それぞれに書き込むべき映像信号Vsigの組み合わせが、1/2水平期間に複数のソースラインS1,S2,S3,…に一度に出力される。例えば、ゲートラインG1が選択されている1/2水平期間中には“S−1”なる映像信号Vsigの組み合わせが複数のソースラインS1,S2,S3,…に出力され、次の、ゲートラインG2が選択されている1/2水平期間中には“S−2”なる映像信号Vsigの組み合わせが複数のソースラインS1,S2,S3,…に出力される、という具合である。
図21は、各画素200に映像信号Vsigを書き込む順番を示す図である。前記画素結線において、各画素200への映像信号Vsigの書き込みは、図20に示すようにゲートラインの順番通りに実行されるので、図21に示すようなものとなる。
特開2004−185006号公報
上述したようなソースライン数を半分にするための画素結線では、画素間にソースラインがある箇所とない箇所があり、ソースラインのない箇所には、ソースラインのある箇所に比べて画素間の寄生容量が大きく存在する。図22は、このときの等価回路を示す図である。この画素間寄生容量204が存在する画素間では、電圧リークが発生し、これにより、先に書かれた画素200の電位が、後に書かれた画素200の電位の影響を受けて変化する。この電位の変化は、画面上では表示ムラとなって現れる。図21に示したように画素書き込み順番は固定であるので、このリーク発生による表示ムラは、常に同じ箇所で発生することになる。
図23は、この表示ムラの例を示す図である。同図は、分かり易くするためにGの画素200についてのみ示したものである。ここで、ゲートラインの走査順番は、G1→G2→G3→・・・→G8である。また、図23において、黒塗りした他の色の画素200においても、先に書かれた画素200の電位が変化してしまうことは同様である。(詳細は後述する。)
以下、この画素電位変動について、更に詳細に説明する。図24は、表示パネルをTFTLCDとした場合の各画素の構成を示す図である。各画素200は、ゲートラインに接続されるTFT202を介してソースラインに接続された画素電極と、共通電圧Vcomが印加される共通電極(図示せず)との間に液晶(図示せず)が挟持されて構成されている。そして、液晶容量Clcに電荷をフィールド期間(ノンインターレース方式の場合にはフレーム期間)にわたって保持することで対応する表示を実現する。液晶容量ClcやTFTを介しての電流リークの対策のために、液晶容量Clcと並列に補助容量Csを設けている。
図25(A)は、図24におけるゲートドライバによるゲートラインG1〜G4の走査タイミングチャートを示す図であり、図25(B)は、1/2水平期間(1/2H)毎に共通電圧Vcomの極性を反転する水平ライン反転駆動を行う場合における、先に書き込まれる図22の例えばソースラインS3に接続される緑の画素F(以下、G先の画素と称する)及び後に書き込まれる図22の例えばソースラインS2に接続される赤の画素L(以下、R後の画素と称する)の画素電位波形を示す図である。
以下、画素にかかる電圧が大きい程、透過率が下がる(暗くなる)ノーマリーホワイトモードの液晶表示装置の場合について述べる。なお、図25(B)は、共通電圧Vcomの振幅を5.0V、G先の画素Fの書き込み電圧(映像信号Vsig)を共通電圧Vcomに対して2.0V(中間調)、R後の画素Lの書き込み電圧(映像信号Vsig)を共通電圧Vcomに対して4.0V(黒、暗)、とした場合を示している。また、TFT202がオンからオフになる際に発生する引き込み電圧(フィードスルー電圧)ΔVの影響は、共通電圧Vcomの調整(VcomをΔV分下方にシフトする)によりキャンセルできるので、図25(B)の波形には記載していない(以下に説明する他の画素電位波形の図においても同様)。
図25(A)に示すように、各フィールドにおいて、1/2水平期間に2本のゲートラインが選択され、その選択される2本のゲートラインは、水平期間毎に順次走査されていく。そして、図25(B)に示すように、選択されたゲートラインに接続されたTFT202がオンして、対応する画素200にソースラインから印加される映像信号Vsigが書き込まれる。従って、G先の画素Fの書き込みタイミングは、図25(B)におけるWとなり、R後の画素Lの書き込みタイミングはWとなる。これらの書き込みタイミングで書き込まれた画素電位が、次フィールドで書き換えられるまで維持される。
図25(B)は、前記画素間寄生容量204が0の場合の理想的な状態における画素電位波形である。しかしながら、上述したように、ソースラインのない箇所には画素間寄生容量204が存在してしまう。図26(A)は、画素間寄生容量204を考慮した場合の図25(B)と同じ電圧条件での画素電位波形を示す図である。また、図26(B)は画素間寄生容量204を考慮した場合の共通電圧Vcomの振幅が5.0V、G先の画素Fの書き込み電圧は共通電圧Vcomに対して2.0V、R後の画素Lの書き込み電圧は共通電圧Vcomに対して1.0V(白、明)、とした場合の画素電位波形を示す図である。
即ち、図26(A)及び図26(B)に示すように、G先の画素Fにおいては、ゲートラインG1の選択によって書き込まれた画素電位が、ゲートラインG2の選択によるR後の画素Lの書き込みの際に、Vc分、共通電圧Vcomに対して遠ざかる向き(暗くなる向き)にシフトしてしまう。このVcの大きさは、
Vc=(Vsig(Fn−1)+Vsig(Fn))×Cpp/(Cs+Clc+Cpp)×α …(1)
のように表せる。この(1)式において、Vsig(Fn)は現フィールドのR後の画素Lの書き込み電圧、Vsig(Fn−1)は前フィールドのR後の画素Lの書き込み電圧である。従って、図26(A)の場合にはVsig(Fn−1)+Vsig(Fn)=8.0V、図26(B)の場合にはVsig(Fn−1)+Vsig(Fn)=2.0Vとなる。また、Cppは画素間寄生容量204の容量値、Csは補助容量Csの容量値、Clcは液晶容量Clcの容量値、αは比例係数であり、パネル構造等によって決まる値である。
このように、Vsig(Fn−1)+Vsig(Fn)が大きい程、電位変動の値Vcは大きくなり、Vcomの振幅の大きさにはよらない。
以上は、ソースラインに沿った方向に隣接する画素間で共通電圧Vcomの極性が異なる水平ライン反転駆動の場合である。即ち、例えば図21において、ゲートラインG1またはG2に接続される画素の間、ゲートラインG3またはゲートラインG4に接続される画素の間、ゲートラインG5またはゲートラインG6に接続される画素の間、ゲートラインG7またはゲートラインG8に接続される画素の間で、共通電圧Vcomの極性を反転させる。
ところで、共通電極Vcomの極性反転には、ソースラインに沿った方向に隣接する画素間で共通電圧Vcomの極性が異なることに加え、ゲートラインに沿った方向に隣接する画素間においても共通電圧Vcomの極性が異なるドット反転駆動という駆動方法も存在する。この場合、上下左右に隣接する画素間で共通電圧Vcomの極性が反転するように、図21の、ゲートラインG1とゲートラインG2の間、ゲートラインG3とゲートラインG4の間、ゲートラインG5とゲートラインG6の間、ゲートラインG7とゲートラインG8の間、に共通電圧Vcomの極性を反転させる。
なお、水平ライン反転駆動、ドット反転駆動のいずれにおいても、各画素における共通電圧Vcomの極性は、フィールド毎に反転される。
このようなドット反転駆動を行う場合には、図27(A)及び図27(B)に示すようになる。ここで、図27(A)は画素間寄生容量204を考慮した場合の共通電圧Vcomの振幅が5.0V、G先の画素Fの書き込み電圧は共通電圧Vcomに対して2.0V(中間調)、R後の画素Lの書き込み電圧は共通電圧Vcomに対して4.0V(黒)、とした場合の画素電位波形を示す図であり、図27(B)は画素間寄生容量204を考慮した場合の共通電圧Vcomの振幅が5.0V、G先の画素Fの書き込み電圧は共通電圧Vcomに対して2.0V、R後の画素Lの書き込み電圧は共通電圧Vcomに対して1.0V(白)、とした場合の画素電位波形を示す図である。
即ち、図27(A)及び図27(B)に示すように、ドット反転駆動を行う場合にも、前記水平ライン反転駆動を行う場合と同様に、G先の画素Fにおいては、ゲートラインG1の選択によって書き込まれた画素電位が、ゲートラインG2の選択によるR後の画素Lの書き込みの際に、Vc分、シフトするが、シフトする方向は、前記水平ライン反転駆動を行う場合と異なり、共通電圧Vcom対して近づく向き(明るくなる向き)になる。
この場合も、Vsig(Fn−1)+Vsig(Fn)が大きい程、電位変動の値Vcは大きくなり、Vcomの振幅の大きさにはよらないことは、水平ライン反転駆動の場合と同様である。
以上のようなVc分の変動により、G先の画素は、水平ライン反転駆動の場合は実際の表示よりも暗くなってしまう。またドット反転駆動の場合は実際の表示よりも明るくなってしまう。これに対して、G後の画素の画素電位は正常な電圧が書き込まれるので、Gラスタのような表示にすると、どちらの反転駆動の場合も縦方向に1本おきに明暗の緑が表示されることとなってしまう。
同様のVc分の変動が、R先の画素及びB先の画素においても発生する。
また、前記のことは、画素200をストライプ配列とした場合に限らず、デルタ配列とした場合も同様である。
前記特許文献1に開示された手法では、このような画素間寄生容量204に起因して先に書き込まれた画素に発生する電位変動による表示ムラの問題に対処できない。
本発明は、前記の点に鑑みてなされたもので、画素間寄生容量が存在する場合の表示ムラを低減できるアクティブマトリックス型表示装置の駆動回路、駆動方法及びアクティブマトリックス型表示装置を提供することを目的とする。
請求項1に記載のアクティブマトリックス型表示装置の駆動回路は、2画素毎に1本の信号線を配置し、前記信号線を挟んで隣接する2つの画素が、前記信号線を共用するとともにそれぞれ異なる走査線にスイッチング素子を介して接続されているアクティブマトリックス型表示装置の駆動回路であって、
前記複数の走査線を選択する走査線駆動回路と、
前記複数の信号線に、表示すべき情報に従った信号を出力する信号線駆動回路と、
を具備し、
前記走査線駆動回路は、異なる信号線に接続され隣接配置された2つの画素に対応する2本の走査線を順次選択する第1の駆動と、前記2本の走査線の選択順を前記第1の駆動と逆にする第2の駆動と、を少なくとも一つの所定期間毎に交互に行うことを特徴とする。
請求項2に記載のアクティブマトリックス型表示装置の駆動回路は、請求項1に記載のアクティブマトリックス型表示装置の駆動回路において、前記所定期間毎は、2j走査期間(j:1以上の整数)毎であることを特徴とする。
請求項3に記載のアクティブマトリックス型表示装置の駆動回路は、請求項1に記載のアクティブマトリックス型表示装置の駆動回路において、前記所定期間は二つの期間からなり、第1の期間は2j走査期間(j:1以上の整数)であり、第2の期間はkフィールド(k:1以上の整数)であることを特徴とする。
請求項4に記載のアクティブマトリックス型表示装置の駆動回路は、請求項1に記載のアクティブマトリックス型表示装置の駆動回路において、前記所定期間毎は、kフィールド(k:1以上の整数)毎であることを特徴とする。
請求項5に記載のアクティブマトリックス型表示装置の駆動回路は、請求項1乃至4の何れかに記載のアクティブマトリックス型表示装置の駆動回路において、前記信号線駆動回路は、前記走査線駆動回路による前記走査線の選択順に応じた信号を前記複数の信号線に出力することを特徴とする。
請求項6に記載のアクティブマトリックス型表示装置の駆動回路は、請求項1乃至5の何れかに記載のアクティブマトリックス型表示装置の駆動回路において、前記表示パネルは前記複数の画素をストライプ状に配列したストライプ配列の表示パネルであることを特徴とする。
請求項7に記載のアクティブマトリックス型表示装置の駆動回路は、請求項1乃至5の何れかに記載のアクティブマトリックス型表示装置の駆動回路において、前記表示パネルは前記複数の画素をデルタ状に配列したデルタ配列の表示パネルであることを特徴とする。
請求項8に記載のアクティブマトリックス型表示装置の駆動方法は、2画素毎に1本の信号線を配置し、前記信号線を挟んで隣接する2つの画素が、前記信号線を共用するとともにそれぞれ異なる走査線にスイッチング素子を介して接続されているアクティブマトリックス型表示装置の駆動方法であって、
異なる信号線に接続され隣接配置された2つの画素に対応する2本の走査線を順次選択する第1の駆動と、前記2本の走査線の選択順を前記第1の駆動と逆にする第2の駆動と、を少なくとも一つの所定期間毎に交互に行うことを特徴とする。
請求項9に記載のアクティブマトリックス型表示装置の駆動方法は、請求項8に記載のアクティブマトリックス型表示装置の駆動方法において、前記所定期間毎は、2j走査期間(j:1以上の整数)毎であることを特徴とする。
請求項10に記載のアクティブマトリックス型表示装置の駆動方法は、請求項8に記載のアクティブマトリックス型表示装置の駆動方法において、前記所定期間は二つの期間からなり、第1の期間は2j走査期間(j:1以上の整数)であり、第2の期間はkフィールド(k:1以上の整数)であることを特徴とする。
請求項11に記載のアクティブマトリックス型表示装置の駆動方法は、請求項8に記載のアクティブマトリックス型表示装置の駆動方法において、前記所定期間毎は、kフィールド(k:1以上の整数)毎であることを特徴とする。
請求項12に記載のアクティブマトリックス型表示装置の駆動方法は、請求項8乃至11の何れかに記載のアクティブマトリックス型表示装置の駆動方法において、前記複数の信号線に出力する表示すべき情報に従った信号を前記走査線の選択順に応じて出力することを特徴とする。
請求項13に記載のアクティブマトリックス型表示装置の駆動方法は、請求項8乃至12の何れかに記載のアクティブマトリックス型表示装置の駆動方法において、前記表示パネルは前記複数の画素をストライプ状に配列したストライプ配列の表示パネルであることを特徴とする。
請求項14に記載のアクティブマトリックス型表示装置の駆動方法は、請求項8乃至12の何れかに記載のアクティブマトリックス型表示装置の駆動方法において、前記表示パネルは前記複数の画素をデルタ状に配列したデルタ配列の表示パネルであることを特徴とする。
請求項15に記載のアクティブマトリックス型表示装置は、
2画素毎に1本の信号線を配置し、前記信号線を挟んで隣接する2つの画素が、前記信号線を共用するとともにそれぞれ異なる走査線にスイッチング素子を介して接続されている表示パネルと、
前記複数の走査線を選択する走査線駆動回路と、
前記複数の信号線に、表示すべき情報に従った信号を出力する信号線駆動回路と、
を具備し、
前記走査線駆動回路は、異なる信号線に接続され隣接配置された2つの画素に対応する2本の走査線を順次選択する第1の駆動と、前記2本の走査線の選択順を前記第1の駆動と逆にする第2の駆動と、を少なくとも一つの所定期間毎に交互に行うことを特徴とする。
請求項16に記載のアクティブマトリックス型表示装置は、請求項15に記載のアクティブマトリックス型表示装置において、前記所定期間毎は、2j走査期間(j:1以上の整数)毎であることを特徴とする。
請求項17に記載のアクティブマトリックス型表示装置は、請求項15に記載のアクティブマトリックス型表示装置において、前記所定期間は二つの期間からなり、第1の期間は2j走査期間(j:1以上の整数)であり、第2の期間はkフィールド(k:1以上の整数)であることを特徴とする。
請求項18に記載のアクティブマトリックス型表示装置は、請求項15に記載のアクティブマトリックス型表示装置において、前記所定期間毎は、kフィールド(k:1以上の整数)毎であることを特徴とする。
請求項19に記載のアクティブマトリックス型表示装置は、請求項15乃至18の何れかに記載のアクティブマトリックス型表示装置において、前記信号線駆動回路は、前記走査線駆動回路による前記走査線の選択順に応じた信号を前記複数の信号線に出力することを特徴とする。
請求項20に記載のアクティブマトリックス型表示装置は、請求項15乃至19の何れかに記載のアクティブマトリックス型表示装置において、前記表示パネルは前記複数の画素をストライプ状に配列したストライプ配列の表示パネルであることを特徴とする。
請求項21に記載のアクティブマトリックス型表示装置は、請求項15乃至19の何れかに記載のアクティブマトリックス型表示装置において、前記表示パネルは前記複数の画素をデルタ状に配列したデルタ配列の表示パネルであることを特徴とする。
本発明によれば、複数の走査線を順次選択する際の、異なる信号線に接続され隣接配置された2つの画素に対応する2本の走査線の選択順を、所定期間毎に入れ替えることで、表示ムラを低減できるアクティブマトリックス型表示装置の駆動回路及び駆動方法、並びに、そのような駆動回路を用いたアクティブマトリックス型表示装置を提供することができる。
以下、本発明を実施するための最良の形態を、図面を参照して説明する。
[第1実施形態]
図1(A)は、本発明の第1実施形態に係るアクティブマトリックス型表示装置の全体構成を示す概略構成図であり、図1(B)は、図1(A)中のLCDパネル(液晶表示パネル)の画素結線の概略図である。
即ち、本実施形態に係るアクティブマトリックス型表示装置は、図1(A)に示すように、複数の画素が配置されたLCDパネル(表示パネル)10と、該LCDパネル10の各画素を駆動制御するドライバ回路12と、LCDパネル10に共通電圧Vcomを印加するVcom回路14と、から構成されている。
LCDパネル10は、図1(B)に示すように、複数の画素がマトリックス状に配置されている。また、複数のソースライン(信号線)S1〜S480と複数のゲートライン(走査線)G1〜G480とが互いに交差するように配置されている。そして、各画素は、それぞれスイッチング素子としてのTFT18を介してソースラインの何れか及びゲートラインの何れかと接続されている。ここで、各画素は、1本のソースラインを隣接する2つの画素16が共用するように、配置されている。この場合、それら2つの画素16に対応するそれぞれのTFT18は、互いに異なるゲートラインに接続されている。例えば、図1(B)において、左上のRの画素16のTFT18は、ゲートラインG1とソースラインS1に接続され、その右隣のGの画素16のTFT18は、ゲートラインG2とソースラインS1に接続されている。なお、ここでは、画素16がストライプ配列で並べられた場合を示している。
LCDパネル10の複数のソースラインS1〜S480及び複数のゲートラインG1〜G480は、該LCDパネル10の基板(図示せず)上を引き回された配線20によりドライバ回路12に電気的に接続されている。
図2は、図1(A)中のドライバ回路12のブロック構成図である。このドライバ回路12は、同図に示すように、ゲートドライバブロック(走査線駆動回路)22、ソースドライバブロック(信号線駆動回路)24、レベルシフタ回路26、タイミングジェネレータ(以下、TGと略記する)部ロジック回路28、ガンマ(以下、γと略記する)回路ブロック30、チャージポンプ/レギュレータブロック32、アナログブロック34、その他のブロックから構成されている。
ここで、ゲートドライバブロック22は、LCDパネル10の複数のゲートラインG1〜G480を選択するものであり、ソースドライバブロック24は、LCDパネル10の複数の信号線S1〜S480に、表示すべき情報に従った映像信号Vsigを出力するものである。
レベルシフタ回路26は、外部から供給される信号のレベルを所定レベルにシフトするものである。TG部ロジック回路28は、このレベルシフタ回路26によって所定レベルにシフトされた信号及び外部から供給された信号に基づいて必要なタイミング信号や制御信号を生成して、該ドライバ回路12内の各部に供給するものである。
γ回路ブロック30は、前記ソースドライバブロック24から出力する映像信号Vsigを良好な階調特性とするようにγ補正をかけるためのものである。
チャージポンプ/レギュレータブロック32は、外部電源から必要な論理レベルの各種電圧を発生するものであり、アナログブロック34は、このチャージポンプ/レギュレータブロック32で発生された電圧から更に各種の電圧を発生するものである。前記Vcom回路14は、このアナログブロック34で発生した電圧VVCOMから前記共通電圧Vcomを発生する。その他のブロックについては、直接本願発明とは直接の関係がないので、その説明を省略する。
図3は、本第1実施形態における、複数のソースラインS1〜S480に出力される、表示すべき情報に従った映像信号Vsigの組み合わせの出力順と、複数のゲートラインG1〜G480(図では簡略化のためにゲートラインG1〜G8のみを取り出して示す)の選択順とからなるタイミングチャートを示す図である。また、図4A及び図4Bは、各画素16に映像信号Vsigを書き込む順番を示す図である。ここで、図4Aは、便宜的に、1stフィールド(奇数フィールド)を、図4Bは2ndフィールド(偶数フィールド)をそれぞれ示している。(1stフィールドと2ndフィールドは入れ替わってもよい。)
本第1実施形態においては、図3に示すように、複数のゲートラインG1〜G480の選択順番を、フィールド毎に変化させている。
即ち、第1フィールド(1stフィールド)では、従来と同様、ゲートドライバブロック22は、複数のゲートラインG1〜G480を、その順番通りに1/2水平期間(1/2H)毎に順次選択する(H信号にする)第1の駆動を行う。そして、ソースドライバブロック24は、その選択されたゲートラインに対応する画素16それぞれに書き込むべき映像信号Vsigの組み合わせを、1/2水平期間に複数のソースラインS1〜S480に一度に出力する。例えば、ゲートラインG1が選択されている1/2水平期間中には“S1−1”なる映像信号Vsigの組み合わせが複数のソースラインS1〜S480に出力され、次の、ゲートラインG2が選択されている1/2水平期間中には“S1−2”なる映像信号Vsigの組み合わせが複数のソースラインS1〜S480に出力される、という具合である。
つまり、2本ずつのゲートラインの組の出力順に対応して、ソースドライバブロック24は、奇数列のデータ→偶数列のデータの順で出力する。
従って、1stフィールドでは、上述したようなソースライン数を半分にした画素結線において、各画素16への映像信号Vsigの書き込みは、図3に示すようにゲートラインの順番通りに実行されるので、図4Aに示すようなものとなる。これにより、ソースラインのない箇所である画素間寄生容量204が存在する画素間で電圧リークが発生し、先に書かれた画素16の電位が、後に書かれた画素16の電位の影響を受けて変化してしまう。
また、第2フィールド(2ndフィールド)では、図3に示すように、ゲートドライバブロック22は、異なるソースラインに接続され隣接配置された2つの画素16に対応する2本のゲートラインの組の選択順を第1フィールドとは逆にする第2の駆動を行う。即ち、まず、異なるソースラインに接続され隣接配置された2つの画素16に対応する2本のゲートラインG1,G2について、1stフィールドとは逆の順番であるゲートラインG2、ゲートラインG1の順に選択し、次に、異なるソースラインに接続され隣接配置された2つの画素16に対応する2本のゲートラインG3,G4について、1stフィールドとは逆の順番であるゲートラインG4、ゲートラインG3の順に選択する、というように、2本ずつのゲートラインの組において、その選択順を入れ替える。そしてそのゲートラインの選択順の入れ替えに伴って、ソースドライバブロック24は、その選択順に応じて、その選択されたゲートラインに対応する画素16それぞれに書き込むべき映像信号Vsigの組み合わせを、1/2水平期間に複数のソースラインS1〜S480に一度に出力する。
つまり、2本ずつのゲートラインの組の出力順に対応して、ソースドライバブロック24は、偶数列のデータ→奇数列のデータの順で出力する。
これにより、例えば、1stフィールドでは、“S1−1”→“S1−2”→“S1−3”→“S1−4”→“S1−5”→“S1−6”→…という映像信号Vsigの組み合わせ順で出力していたものを、2ndフィールドでは、S1−2”→“S1−1”→“S1−4”→“S1−3”→“S1−6”→“S1−5”→…という映像信号Vsigの組み合わせ順で出力することになる。
従って、2ndフィールドでは、上述したようなソースライン数を半分にした画素結線において、各画素16への映像信号Vsigの書き込みは、図3に示すように、異なるソースラインに接続され隣接配置された2つの画素16に対応する2本のゲートラインの選択順が逆にされた順番で実行されるので、図4Bに示すようなものとなる。これにより、やはり、2ndフィールドにおいても、ソースラインのない箇所である画素間寄生容量204が存在する画素間で電圧リークが発生し、先に書かれた画素16の電位が、後に書かれた画素16の電位の影響を受けて変化してしまう。
しかしながら、2ndフィールドにおいて電位が変化する画素16は、1stフィールドにおいて電位が変化する画素16とは異なっている。即ち、この2ndフィールドにおいては、1stフィールドとは映像信号Vsigの書き込み順が反対にされているので、1stフィールドと2ndフィールドで、隣り合う画素16への書き込み順番が入れ替わることになる。このため、1stフィールドと2ndフィールドで電位差の発生する画素の位置が反対になり、結果として画素電位のずれが時間的に平均化されて表示ムラが軽減される。
図5は、前記のような駆動を行うためのゲートドライバブロック22の具体的な構成を示す図である。なお、説明及び図示の簡単化のため、ここでは、ゲートラインを8本として説明する。この場合、該ゲートドライバブロック22は、3ビットカウンタ36と、32個のANDゲート38〜100と、4個のNOTゲート102〜108と、8個のORゲート110〜124と、で構成される。(なお、ここでは、論理回路の入力が同時に切り替わる場合に生じるハザード対策については、本質的ではないので、簡単のために記載していない。以下同様。)
即ち、3ビットカウンタ36には、TG部ロジック回路28からゲートクロックとアップ/ダウン(以下、U/Dと略記する)信号とが供給される。U/D信号は、通常表示である非反転シフト時には「1」、上下が反転した表示を行う上下反転シフト時には「0」となるものである。これは、非反転シフト時と上下反転シフト時では、ゲートラインの走査方向が上下逆になり、その結果、先に書き込まれる画素と後に書き込まれる画素とが反対になるため、それに応じて動作を切り替える必要があるからである。
そして、リセット信号が解除されるタイミング後、ゲートクロックとアップ/ダウン信号に応じて、3ビットカウンタ36がカウントを開始するようになっている。
この3ビットカウンタ36のQ1出力は、デコードされる偶数番目のラインX2,X4,X6,X8用のANDゲート40,44,48,52に与えられると共に、NOTゲート102を介して、デコードされる奇数数番目のラインX1,X3,X5,X7用のANDゲート38,42,46,50に与えられる。また、前記3ビットカウンタ36のQ2出力は、前記ラインX3,X4,X7,X8用のANDゲート42,44,50,52に与えられると共に、NOTゲート104を介して、前記ラインX1,X2,X5,X6用のANDゲート38,40,46,48に与えられる。そして、前記3ビットカウンタ36のQ3出力は、前記ラインX5,X6,X7,X8用のANDゲート46,48,50,52に与えられると共に、NOTゲート106を介して、前記ラインX1,X2,X3,X4用のANDゲート38,40,42,44に与えられる。
前記ラインX1用のANDゲート38の出力は、ゲートラインG1,G2用第1ANDゲート54,56に与えられる。前記ゲートラインG1用第1ANDゲート54には、TG部ロジック回路28からフィールド切り替え(以下、FIと略記する)信号が供給され、前記ゲートラインG2用第1ANDゲート56には、前記FI信号がNOTゲート108を介して供給される。
前記ラインX2用のANDゲート40の出力は、ゲートラインG1,G2用第2ANDゲート58,60に与えられる。これらゲートラインG1,G2用第2ANDゲート58,60には、前記ゲートラインG1,G2用第1ANDゲート54,56とは反対に、前記ゲートラインG1用第2ANDゲート58には前記FI信号が前記NOTゲート108を介して供給され、前記ゲートラインG2用第2ANDゲート60には前記FI信号が供給されるようになっている。
そして、前記ゲートラインG1用第1ANDゲート54の出力と前記ゲートラインG1用第2ANDゲート58の出力は、ゲートラインG1用ORゲート110に供給され、該ゲートラインG1用ORゲート110の出力が、TG部ロジック回路28からのゲートイネーブル信号によって制御されるゲートラインG1用第3ANDゲート86を通して、ゲートラインG1に供給される。また、前記ゲートラインG2用第1ANDゲート56の出力と前記ゲートラインG2用第2ANDゲート60の出力は、ゲートラインG2用ORゲート112に供給され、該ゲートラインG2用ORゲート112の出力が、前記ゲートイネーブル信号によって制御されるゲートラインG2用第3ANDゲート88を通して、ゲートラインG2に供給される。
以下、同様にして、前記ラインX3用,X5用,X7用のANDゲート42,46,50の出力は、ゲートラインG3,G4用第1ANDゲート62,64,ゲートラインG5,G6用第1ANDゲート70,72,ゲートラインG7,G8用第1ANDゲート78,80に与えられ、前記ゲートラインG3用,G5用,G7用第1ANDゲート62,70,78には前記FI信号が供給され、前記ゲートラインG4用,G6用,G8用第1ANDゲート64,72,80には前記FI信号が前記NOTゲート108を介して供給される。また、前記ラインX4用,X6用,X8用のANDゲートの出力44,48,52は、ゲートラインG3,G4用第2ANDゲート66,68,ゲートラインG5,G6用第2ANDゲート74,76,ゲートラインG7,G8用第2ANDゲート82,84に与えられ、前記ゲートラインG3用,G5用,G7用第2ANDゲート66,74,82には前記FI信号が前記NOTゲート108を介して供給され、前記ゲートラインG4用,G6用,G8用第2ANDゲート68,76,84には前記FI信号が供給される。そして、前記ゲートラインG3用,G5用,G7用第1ANDゲート62,70,78の出力と前記ゲートラインG3用,G5用,G7用第2ANDゲート66,74,82の出力は、ゲートラインG3用,G5用,G7用ORゲート114,118,122に供給され、該ゲートラインG3用,G5用,G7用ORゲート114,118,122の出力が、前記ゲートイネーブル信号によって制御されるゲートラインG3用,G5用,G7用第3ANDゲート90,94,98を通して、ゲートラインG3,G5,G7に供給される。また、前記ゲートラインG4用,G6用,G8用第1ANDゲート64,72,80の出力と前記ゲートラインG4用,G6用,G8用第2ANDゲート68,76,84の出力は、ゲートラインG4用,G6用,G8用ORゲート116,120,124に供給され、該ゲートラインG4用,G6用,G8用ORゲート116,120,124の出力が、前記ゲートイネーブル信号によって制御されるゲートラインG4用,G6用,G8用第3ANDゲート92,96,100を通して、ゲートラインG3,G5,G7に供給される。
図6Aは、このような構成のゲートドライバブロック22における非反転シフト時の1stフィールドのタイミングチャートを示す図であり、図6Bは、同じく2ndフィールドのタイミングチャートを示す図である。
非反転シフト時に、1stフィールドでは、図6Aに示すように、ラインX1〜X8には、ゲートクロック1発分に相当する期間、それぞれ順番にH信号が出力されることとなる。即ち、タイミング的には、ラインX1が選択状態(H信号)→ラインX2が選択状態→ラインX3が選択状態→ラインX4が選択状態→ラインX5が選択状態→ラインX6が選択状態→ラインX7が選択状態→ラインX8が選択状態、となっていく。
ここで、該1stフィールドでは、前記FI信号としてH信号が供給されている。従って、ラインX1が選択状態となっている期間には、前記ゲートラインG1用第1ANDゲート54のみが選択状態となって、G1用ORゲート110と、ゲートイネーブル信号によって制御されるゲートラインG1用第3ANDゲート86を通して、ゲートラインG1が選択状態となる。また、ラインX2が選択状態となっている期間には、前記ゲートラインG2用第2ANDゲート60のみが選択状態となって、G2用ORゲート112と、ゲートイネーブル信号によって制御されるゲートラインG2用第3ANDゲート88を通して、ゲートラインG2が選択状態となる。以下、同様にして、ゲートラインG3〜G8が順次選択状態となっていく。
そして、2ndフィールドになると、図6Bに示すように、ラインX1〜X8には、前記1stフィールドと同様に、ラインX1→ラインX2→ラインX3→ラインX4→ラインX5→ラインX6→ラインX7→ラインX8の順で選択状態となっていく。
ここで、該2ndフィールドでは、前記FI信号としてL信号が供給されている。従って、ラインX1が選択状態となっている期間には、前記ゲートラインG2用第1ANDゲート56のみが選択状態となって、G2用ORゲート112と、ゲートイネーブル信号によって制御されるゲートラインG2用第3ANDゲート88を通して、ゲートラインG2が選択状態となる。また、ラインX2が選択状態となっている期間には、前記ゲートラインG1用第2ANDゲート58のみが選択状態となって、G1用ORゲート110と、ゲートイネーブル信号によって制御されるゲートラインG1用第3ANDゲート86を通して、ゲートラインG1が選択状態となる。以下、同様にして、ゲートラインG4→ゲートラインG3→ゲートラインG6→ゲートラインG5→ゲートラインG8→ゲートラインG7の順で選択状態となっていく。
また、図7Aは、図5の構成のゲートドライバブロック22における上下反転シフト時の1stフィールドのタイミングチャートを示す図であり、図7Bは、同じく2ndフィールドのタイミングチャートを示す図である。(なお、上下反転シフト時には、リセット信号が図6A及び図6Bより1ゲートクロック分早めに立ち下がるようになっている。)また、図8A及び図8Bは、この上下反転シフト時に各画素16に映像信号Vsigを書き込む順番を示す図である。ここで、図8Aは1stフィールドを、図8Bは2ndフィールドをそれぞれ示している。
上下反転シフト時に、1stフィールドでは、図7Aに示すように、ラインX1〜X8には、ゲートクロック1発分に相当する期間、それぞれ逆方向に順番にH信号が出力されることとなる。即ち、タイミング的には、ラインX8が選択状態→ラインX7が選択状態→ラインX6が選択状態→ラインX5が選択状態→ラインX4が選択状態→ラインX3が選択状態→ラインX2が選択状態→ラインX1が選択状態、となっていく。
ここで、該1stフィールドでは、前記FI信号としてH信号が供給されている。従って、ラインX8が選択状態となっている期間には、前記ゲートラインG8用第2ANDゲート84のみが選択状態となって、G8用ORゲート124と、ゲートイネーブル信号によって制御されるゲートラインG8用第3ANDゲート100を通して、ゲートラインG8が選択状態となる。また、ラインX7が選択状態となっている期間には、前記ゲートラインG7用第1ANDゲート78のみが選択状態となって、G7用ORゲート122と、ゲートイネーブル信号によって制御されるゲートラインG7用第3ANDゲート98を通して、ゲートラインG7が選択状態となる。以下、同様にして、ゲートラインG6〜G1が順次選択状態となっていく。
従って、1stフィールドでは、各画素16への映像信号Vsigの書き込みは、図7Aに示すようにゲートラインの逆方向の順番通りに実行されるので、図8Aに示すようなものとなる。これにより、ソースラインのない箇所である画素間寄生容量204が存在する画素間で電圧リークが発生し、先に書かれた画素16の電位が、後に書かれた画素16の電位の影響を受けて変化してしまう。
そして、2ndフィールドになると、図7Bに示すように、ラインX1〜X8には、前記1stフィールドと同様に、ラインX8→ラインX7→ラインX6→ラインX5→ラインX4→ラインX3→ラインX2→ラインX1の順で選択状態となっていく。
ここで、該2ndフィールドでは、前記FI信号としてL信号が供給されている。従って、ラインX8が選択状態となっている期間には、前記ゲートラインG7用第2ANDゲート82のみが選択状態となって、G7用ORゲート122と、ゲートイネーブル信号によって制御されるゲートラインG7用第3ANDゲート98を通して、ゲートラインG7が選択状態となる。また、ラインX7が選択状態となっている期間には、前記ゲートラインG8用第1ANDゲート80のみが選択状態となって、G8用ORゲート124と、ゲートイネーブル信号によって制御されるゲートラインG8用第3ANDゲート100を通して、ゲートラインG8が選択状態となる。以下、同様にして、ゲートラインG5→ゲートラインG6→ゲートラインG3→ゲートラインG4→ゲートラインG1→ゲートラインG2の順で選択状態となっていく。
従って、2ndフィールドでは、上述したようなソースライン数を半分にした画素結線において、各画素16への映像信号Vsigの書き込みは、図7Bに示すように、異なるソースラインに接続され隣接配置された2つの画素16に対応する2本のゲートラインの選択順が逆にされた逆方向の順番で実行されるので、図8Bに示すようなものとなる。これにより、やはり、2ndフィールドにおいても、ソースラインのない箇所である画素間寄生容量204が存在する画素間で電圧リークが発生し、先に書かれた画素16の電位が、後に書かれた画素16の電位の影響を受けて変化してしまう。
しかしながら、2ndフィールドにおいて電位が変化する画素16は、1stフィールドにおいて電位が変化する画素16とは異なっている。即ち、この2ndフィールドにおいては、1stフィールドとは映像信号Vsigの書き込み順が反対にされているので、1stフィールドと2ndフィールドで、隣り合う画素16への書き込み順番が入れ替わることになる。このため、1stフィールドと2ndフィールドで電位差の発生する画素の位置が反対になり、結果として画素電位のずれが時間的に平均化されて表示ムラが軽減される。
以上のように、本第1実施形態によれば、ゲートドライバブロック22によって複数のゲートラインを順次選択する際の、異なるソースラインに接続され隣接配置された2つの画素に対応する2本のゲートラインの選択順を、フィールド毎に入れ替えることで、画素の電位差を時間的に平均化することにより、表示ムラを低減することができる。
そして、ソースドライバブロック24より前記複数のソースラインに出力する表示すべき情報に従った映像信号Vsigの組み合わせを、2ndフィールドでは図3に示すように、ゲートラインの選択順の入れ替えに応じて奇数列と偶数列のデータの順番を入れ替えて出力しているので、乱れなく表示を行うことができる。なお、この2ndフィールドでの映像信号Vsigの組み合わせの出力順の変更は、特に回路構成詳細を図示はしないが、例えばTG部ロジック回路28で少なくとも1ライン分の映像信号Vsigの組み合わせを保持し、奇数列と偶数列のデータの順番を入れ替えてソースドライバブロック24に供給するようにしても良いし、或いは、ソースドライバブロック24内で奇数列と偶数列のデータの順番を入れ替えるようにしても良いし、又は、当該アクティブマトリックス型表示装置に映像信号を供給する側で、2ndフィールドにおいては映像信号の奇数列と偶数列のデータの順序を入れ替えて供給するようにしても良い。(これは上下反転シフト時に行なう操作と基本的に同様のものである。)
(上下反転シフトを行なう場合はフィールドメモリが必要であるが、上下反転シフトを行なわない場合はラインメモリで実現可能である。)
[変形例]
前記第1実施形態では、フィールド毎に、異なる信号線に接続され隣接配置された2つの画素に対応する2本の走査線を順次選択する順序を切り替えたが、図9に示すように、2ゲートライン毎(1H期間毎、2走査期間毎)に切り替えるようにしてもよい。
このようにすると、各画素16への映像信号Vsigの書き込みは、1stフィールドは図10Aに、2ndフィールドは図10Bに示すような順番となるので、寄生容量により影響を受ける画素が同一フィールド内でも縦にそろわないために、縦縞をより目立ちにくくすることができる。
このような駆動を実現する回路例を図11に示す。これは、図5において、イクスクルーシブオアゲート126を追加して、FI信号とQ2信号とを入力し、FI信号の代わりにFI’信号を出力するようにした点を除き同様である。
非反転シフト時における図11の回路動作の様子を図12A及び図12Bに示す。
そして、上下反転シフト時における図11の回路動作の様子を図13A及び図13Bに示す。(なお、上下反転シフト時には、リセット信号が図12A及び図12Bより1ゲートクロック分早めに立ち下がるようになっている。)
この回路では、より好ましい例として、2ゲートライン毎(1H期間毎、2走査期間毎)かつフィールド毎に走査線の選択順序を切り換えていることになる。
図5のゲートドライバブロックに簡単な変更を施すことにより、このような駆動を実現することができる。
また、これは、画素とTFTが、図14に示すように結線される構成のLCDパネル10においても適用できる。
この場合も、図15A及び図15Bに示すような順序になるように走査線を順次選択する。図14のような結線の場合、駆動を実現する回路例は図5のものを使うことができ、従来のゲートドライバを流用可能な点で好都合である。
以上のように、本変形例によれば、このような駆動を行なうことにより、同一フィールド内においても、縦縞自体がジグザグの縞になるので、縦縞自体が見えにくくなるという効果がある。
なお、ここでは、フィールド毎にも走査線の選択順序を切り換えるより好ましい例を示したが、フィールド毎には走査線の選択順序を切り換えない方法でも同一フィールド内で縦縞自体がジグザグの縞になるので、縦縞自体が見えにくくなるという効果はある。その際は、図11の回路において、FI信号を固定させればよい。
また、ここでは、2ゲートライン毎に切り換えたが、2j(jは2以上の整数)ゲートライン毎でもよい(周期は短い方が好ましい)。
[第2実施形態]
次に、本発明の第2実施形態を説明する。
アクティブマトリックス型表示装置においては、図1(B)に示すように画素16を縦横に整列させたストライプ配列以外に、RGBの3種類の画素をデルタ状に配置したデルタ配列が知られている。
図16は、そのようなデルタ配列を採用したLCDパネルの画素結線の概略図である。このデルタ配列では、図1(B)に示すように複数のソースラインS1〜S480がストライプ配列のように直線状に形成されるのではなく、図16に示すように、画素16間を縫うようにジグザグに形成され、奇数番目の行に対応する画素と偶数番目の行に対応する画素が、それぞれ列方向の隣接画素ピッチの半分ずつずれるように配置される。
図17Aは、本第2実施形態における非反転シフト時の1stフィールドにおいて各画素16に映像信号Vsigを書き込む順番を示す図であり、図17Bは、同じく2ndフィールドにおいて各画素16に映像信号Vsigを書き込む順番を示す図である。
本第2実施形態においても、図3に示すように、複数のゲートラインG1〜G480の選択順番を、フィールド毎に変化させる。
即ち、1stフィールドでは、ゲートドライバブロック22は、複数のゲートラインG1〜G480を、その順番通りに1/2水平期間毎に順次選択する第1の駆動を行う。そして、ソースドライバブロック24は、その選択されたゲートラインに対応する画素16それぞれに書き込むべき映像信号Vsigの組み合わせを、1/2水平期間に複数のソースラインS1〜S480に一度に出力する。従って、該1stフィールドでは、各画素16への映像信号Vsigの書き込みは、図3に示すようにゲートラインの順番通りに実行されるので、図17Aに示すようなものとなる。これにより、ソースラインのない箇所である画素間寄生容量204が存在する画素間で電圧リークが発生し、先に書かれた画素16の電位が、後に書かれた画素16の電位の影響を受けて変化してしまう。
また、2ndフィールドでは、図3に示すように、ゲートドライバブロック22は、異なるソースラインに接続され隣接配置された2つの画素16に対応する2本のゲートラインの組の選択順を1stフィールドとは逆にする第2の駆動を行う。そしてそのゲートラインの選択順の入れ替えに伴って、ソースドライバブロック24は、その選択順に応じて、その選択されたゲートラインに対応する画素16それぞれに書き込むべき映像信号Vsigの組み合わせを、1/2水平期間に複数のソースラインS1〜S480に一度に出力する。従って、該2ndフィールドでは、各画素16への映像信号Vsigの書き込みは、図3に示すように、異なるソースラインに接続され隣接配置された2つの画素16に対応する2本のゲートラインの選択順が逆にされた順番で実行されるので、図17Bに示すようなものとなる。これにより、やはり、2ndフィールドにおいても、ソースラインのない箇所である画素間寄生容量204が存在する画素間で電圧リークが発生し、先に書かれた画素16の電位が、後に書かれた画素16の電位の影響を受けて変化してしまう。
しかしながら、2ndフィールドにおいて電位が変化する画素16は、1stフィールドにおいて電位が変化する画素16とは異なっている。即ち、この2ndフィールドにおいては、1stフィールドとは映像信号Vsigの書き込み順が反対にされているので、1stフィールドと2ndフィールドで、隣り合う画素16への書き込み順番が入れ替わることになる。このため、1stフィールドと2ndフィールドで電位差の発生する画素の位置が反対になり、結果として画素電位のずれが時間的に平均化されて表示ムラが軽減される。
また、図18Aは、図5の構成のゲートドライバブロック22における上下反転シフト時の1stフィールドにおいて各画素16に映像信号Vsigを書き込む順番を示す図であり、図18Bは、同じく上下反転シフト時の2ndフィールドにおいて各画素16に映像信号Vsigを書き込む順番を示す図である。
上下反転シフト時に、1stフィールドでは、各画素16への映像信号Vsigの書き込みは、図7Aに示すようにゲートラインの逆方向の順番通りに実行されるので、図18Aに示すようなものとなる。これにより、ソースラインのない箇所である画素間寄生容量204が存在する画素間で電圧リークが発生し、先に書かれた画素16の電位が、後に書かれた画素16の電位の影響を受けて変化してしまう。
そして、2ndフィールドになると、各画素16への映像信号Vsigの書き込みは、図7Bに示すように、異なるソースラインに接続され隣接配置された2つの画素16に対応する2本のゲートラインの選択順が逆にされた逆方向の順番で実行されるので、図18Bに示すようなものとなる。これにより、やはり、2ndフィールドにおいても、ソースラインのない箇所である画素間寄生容量204が存在する画素間で電圧リークが発生し、先に書かれた画素16の電位が、後に書かれた画素16の電位の影響を受けて変化してしまう。
しかしながら、2ndフィールドにおいて電位が変化する画素16は、1stフィールドにおいて電位が変化する画素16とは異なっている。即ち、この2ndフィールドにおいては、1stフィールドとは映像信号Vsigの書き込み順が反対にされているので、1stフィールドと2ndフィールドで、隣り合う画素16への書き込み順番が入れ替わることになる。このため、1stフィールドと2ndフィールドで電位差の発生する画素の位置が反対になり、結果として画素電位のずれが時間的に平均化されて表示ムラが軽減される。
以上のように、デルタ配列を採用しても、前記第1実施形態と同様の駆動を行うことで、同様に表示ムラを低減できる。
更に、画素16をデルタ配列とした場合の方が、前記第1実施形態のようなストライプ配列とした場合よりも表示ムラ(例えば、図16に対応する縦縞)が蛇行するので、ストライプ配列に比べて目立ちにくいという効果もある。
また、第1実施形態の変形例(図9)に示したような駆動によって、蛇行のさせ方をより複雑にして縦縞をより目立ちにくくすることも可能である。
以上、実施形態に基づいて本発明を説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能なことは勿論である。
例えば、画素書き込みの順番は、隣り合う画素間の順番がフィールド毎に切り替わるのであれば、前述した実施形態の順番どおりでなくても良い。
また、前述した実施形態では、1フィールド毎に書き込み順番を切り替えたが、2フィールド毎(1フレーム毎)の切り替えであっても、ほぼ同様の効果が得られる。
さらに、kフィールド(kは3以上の整数)毎の切り替えであってもよいが、周期は短い方が好ましい。
ここでは、画素にかかる電圧大きい程、透過率が下がる(暗くなる)ノーマリーホワイトモードの液晶表示装置の場合について述べたが、画素にかかる電圧大きい程、透過率が上がる(明るくなる)ノーマリーブラックモードの液晶表示装置の場合についても適用可能なことは勿論である。
また、ここでは、カラー表示の液晶の例で説明したが、モノクロ(白黒)表示液晶であってもよいことは言うまでもない。
さらに、スイッチング素子はTFTに限らず、ダイオード等でも良いことはいうまでもない。また、ゲートライン及びソースラインの数は、図1の例に限定されないことは勿論である。
また、アクティブマトリックス型表示装置の画素は液晶に限らず容量性素子であれば、画素間寄生容量が発生するので、本発明により同様に表示ムラを低減することができる。
(A)は本発明の第1実施形態に係るアクティブマトリックス型表示装置の全体構成を示す概略構成図であり、(B)は(A)中のLCDパネル(表示パネル)の画素結線の概略図である。 図1(A)中のドライバ回路のブロック構成図である。 第1実施形態における複数のソースラインに出力される表示すべき情報に従った映像信号の組み合わせの出力順と複数のゲートラインの選択順とからなるタイミングチャートを示す図である。 第1実施形態における1stフィールドに各画素に映像信号を書き込む順番を示す図である。 第1実施形態における2ndフィールドに各画素に映像信号を書き込む順番を示す図である。 図2中の第1実施形態におけるゲートドライバブロックの具体的な構成を示す図である。 図5のゲートドライバブロックにおける非反転シフト時の1stフィールドのタイミングチャートを示す図である。 図5のゲートドライバブロックにおける非反転シフト時の2ndフィールドのタイミングチャートを示す図である。 図5のゲートドライバブロックにおける上下反転シフト時の1stフィールドのタイミングチャートを示す図である。 図5のゲートドライバブロックにおける上下反転シフト時の2ndフィールドのタイミングチャートを示す図である。 第1実施形態における上下反転シフト時の1stフィールドにおいて各画素に映像信号を書き込む順番を示す図である。 第1実施形態における上下反転シフト時の2ndフィールドにおいて各画素に映像信号を書き込む順番を示す図である。 第1実施形態の変形例における複数のソースラインに出力される表示すべき情報に従った映像信号の組み合わせの出力順と複数のゲートラインの選択順とからなるタイミングチャートを示す図である。 第1実施形態の変形例における1stフィールドに各画素に映像信号を書き込む順番を示す図である。 第1実施形態の変形例における2ndフィールドに各画素に映像信号を書き込む順番を示す図である。 第1実施形態の変形例におけるゲートドライバブロックの具体的な構成を示す図である。 図11のゲートドライバブロックにおける非反転シフト時の1stフィールドのタイミングチャートを示す図である。 図11のゲートドライバブロックにおける非反転シフト時の2ndフィールドのタイミングチャートを示す図である。 図11のゲートドライバブロックにおける上下反転シフト時の1stフィールドのタイミングチャートを示す図である。 図11のゲートドライバブロックにおける上下反転シフト時の2ndフィールドのタイミングチャートを示す図である。 LCDパネル(表示パネル)の別の画素結線の概略図である。 図14の画素結線における1stフィールドに各画素に映像信号を書き込む順番を示す図である。 図14の画素結線における2ndフィールドに各画素に映像信号を書き込む順番を示す図である。 本発明の第2実施形態におけるデルタ配列を採用したLCDパネルの画素結線の概略図である。 本発明の第2実施形態における非反転シフト時の1stフィールドにおいて各画素に映像信号を書き込む順番を示す図である。 本発明の第2実施形態における非反転シフト時の2ndフィールドにおいて各画素に映像信号を書き込む順番を示す図である。 本発明の第2実施形態における上下反転シフト時の1stフィールドにおいて各画素に映像信号を書き込む順番を示す図である。 本発明の第2実施形態における上下反転シフト時の2ndフィールドにおいて各画素に映像信号を書き込む順番を示す図である。 従来のアクティブマトリックス型表示装置におけるソースライン数を半分にした表示パネルの画素結線を示す概略図である。 図19の画素結線における走査タイミングチャートを示す図である。 図19の画素結線において各画素に映像信号を書き込む順番を示す図である。 図19の表示パネルの等価回路を示す図である。 図19の表示パネルでの表示ムラの例を示す図である。 表示パネルをTFTLCDパネルとした場合の各画素の構成を示す図である。 (A)は走査タイミングチャートを示す図であり、(B)は画素間寄生容量が無い場合の水平ライン反転駆動での画素電位波形を示す図である。 画素間寄生容量を考慮した場合の水平ライン反転駆動での画素電位波形を示す図で、特に、(A)は共通電圧の振幅が5.0V、G先の画素の書き込み電圧は共通電圧に対して2.0V、R後の画素の書き込み電圧は共通電圧に対して4.0Vとした場合を示す図であり、(B)は共通電圧の振幅が5.0V、G先の画素の書き込み電圧は共通電圧に対して2.0V、R後の画素の書き込み電圧は共通電圧に対して1.0Vとした場合の画素電位波形を示す図である。 画素間寄生容量を考慮した場合のドット反転駆動での画素電位波形を示す図で、特に、(A)は共通電圧の振幅が5.0V、G先の画素の書き込み電圧は共通電圧に対して2.0V、R後の画素の書き込み電圧は共通電圧に対して4.0Vとした場合の画素電位波形を示す図であり、(B)は共通電圧の振幅が5.0V、G先の画素の書き込み電圧は共通電圧に対して2.0V、R後の画素の書き込み電圧は共通電圧に対して1.0Vとした場合の画素電位波形を示す図である。
符号の説明
10…LCDパネル(表示パネル)、 12…ドライバ回路、 14…Vcom回路、 16…画素、 18…TFT、 20…配線、 22…ゲートドライバブロック(走査線駆動回路)、 24…ソースドライバブロック(信号線駆動回路)、 26…レベルシフタ回路、 28…タイミングジェネレータ(TG)部ロジック回路、 30…ガンマ(γ)回路ブロック、 32…レギュレータブロック、 34…アナログブロック、 36…3ビットカウンタ、 38〜100…ANDゲート、 102〜108…NOTゲート、 110〜124…ORゲート、 126…イクスクルーシブオアゲート、 S1〜S480…ソースライン(信号線)、 G1〜G480…ゲートライン(走査線)。

Claims (21)

  1. 2画素毎に1本の信号線を配置し、前記信号線を挟んで隣接する2つの画素が、前記信号線を共用するとともにそれぞれ異なる走査線にスイッチング素子を介して接続されているアクティブマトリックス型表示装置の駆動回路であって、
    前記複数の走査線を選択する走査線駆動回路と、
    前記複数の信号線に、表示すべき情報に従った信号を出力する信号線駆動回路と、
    を具備し、
    前記走査線駆動回路は、異なる信号線に接続され隣接配置された2つの画素に対応する2本の走査線を順次選択する第1の駆動と、前記2本の走査線の選択順を前記第1の駆動と逆にする第2の駆動と、を少なくとも一つの所定期間毎に交互に行うことを特徴とするアクティブマトリックス型表示装置の駆動回路。
  2. 前記所定期間毎は、2j走査期間(j:1以上の整数)毎であることを特徴とする請求項1に記載のアクティブマトリックス型表示装置の駆動回路。
  3. 前記所定期間は二つの期間からなり、第1の期間は2j走査期間(j:1以上の整数)であり、第2の期間はkフィールド(k:1以上の整数)であることを特徴とする請求項1に記載のアクティブマトリックス型表示装置の駆動回路。
  4. 前記所定期間毎は、kフィールド(k:1以上の整数)毎であることを特徴とする請求項1に記載のアクティブマトリックス型表示装置の駆動回路。
  5. 前記信号線駆動回路は、前記走査線駆動回路による前記走査線の選択順に応じた信号を前記複数の信号線に出力することを特徴とする請求項1乃至4の何れかに記載のアクティブマトリックス型表示装置の駆動回路。
  6. 前記表示パネルは前記複数の画素をストライプ状に配列したストライプ配列の表示パネルであることを特徴とする請求項1乃至5の何れかに記載のアクティブマトリックス型表示装置の駆動回路。
  7. 前記表示パネルは前記複数の画素をデルタ状に配列したデルタ配列の表示パネルであることを特徴とする請求項1乃至5の何れかに記載のアクティブマトリックス型表示装置の駆動回路。
  8. 2画素毎に1本の信号線を配置し、前記信号線を挟んで隣接する2つの画素が、前記信号線を共用するとともにそれぞれ異なる走査線にスイッチング素子を介して接続されているアクティブマトリックス型表示装置の駆動方法であって、
    異なる信号線に接続され隣接配置された2つの画素に対応する2本の走査線を順次選択する第1の駆動と、前記2本の走査線の選択順を前記第1の駆動と逆にする第2の駆動と、を少なくとも一つの所定期間毎に交互に行うことを特徴とするアクティブマトリックス型表示装置の駆動方法。
  9. 前記所定期間毎は、2j走査期間(j:1以上の整数)毎であることを特徴とする請求項8に記載のアクティブマトリックス型表示装置の駆動方法。
  10. 前記所定期間は二つの期間からなり、第1の期間は2j走査期間(j:1以上の整数)であり、第2の期間はkフィールド(k:1以上の整数)であることを特徴とする請求項8に記載のアクティブマトリックス型表示装置の駆動方法。
  11. 前記所定期間毎は、kフィールド(k:1以上の整数)毎であることを特徴とする請求項8に記載のアクティブマトリックス型表示装置の駆動方法。
  12. 前記複数の信号線に出力する表示すべき情報に従った信号を、前記走査線の選択順に応じて出力することを特徴とする請求項8乃至11の何れかに記載のアクティブマトリックス型表示装置の駆動方法。
  13. 前記表示パネルは前記複数の画素をストライプ状に配列したストライプ配列の表示パネルであることを特徴とする請求項8乃至12の何れかに記載のアクティブマトリックス型表示装置の駆動方法。
  14. 前記表示パネルは前記複数の画素をデルタ状に配列したデルタ配列の表示パネルであることを特徴とする請求項8乃至12の何れかに記載のアクティブマトリックス型表示装置の駆動方法。
  15. 2画素毎に1本の信号線を配置し、前記信号線を挟んで隣接する2つの画素が、前記信号線を共用するとともにそれぞれ異なる走査線にスイッチング素子を介して接続されている表示パネルと、
    前記複数の走査線を選択する走査線駆動回路と、
    前記複数の信号線に、表示すべき情報に従った信号を出力する信号線駆動回路と、
    を具備し、
    前記走査線駆動回路は、異なる信号線に接続され隣接配置された2つの画素に対応する2本の走査線を順次選択する第1の駆動と、前記2本の走査線の選択順を前記第1の駆動と逆にする第2の駆動と、を少なくとも一つの所定期間毎に交互に行うことを特徴とするアクティブマトリックス型表示装置。
  16. 前記所定期間毎は、2j走査期間(j:1以上の整数)毎であることを特徴とする請求項15に記載のアクティブマトリックス型表示装置。
  17. 前記所定期間は二つの期間からなり、第1の期間は2j走査期間(j:1以上の整数)であり、第2の期間はkフィールド(k:1以上の整数)であることを特徴とする請求項15に記載のアクティブマトリックス型表示装置。
  18. 前記所定期間毎は、kフィールド(k:1以上の整数)毎であることを特徴とする請求項15に記載のアクティブマトリックス型表示装置。
  19. 前記信号線駆動回路は、前記走査線駆動回路による前記走査線の選択順に応じた信号を前記複数の信号線に出力することを特徴とする請求項15乃至18の何れかに記載のアクティブマトリックス型表示装置。
  20. 前記表示パネルは前記複数の画素をストライプ状に配列したストライプ配列の表示パネルであることを特徴とする請求項15乃至19の何れかに記載のアクティブマトリックス型表示装置。
  21. 前記表示パネルは前記複数の画素をデルタ状に配列したデルタ配列の表示パネルであることを特徴とする請求項15乃至19の何れかに記載のアクティブマトリックス型表示装置。
JP2007210328A 2007-03-29 2007-08-10 アクティブマトリックス型表示装置の駆動回路、駆動方法及びアクティブマトリックス型表示装置 Active JP4270310B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007210328A JP4270310B2 (ja) 2007-03-29 2007-08-10 アクティブマトリックス型表示装置の駆動回路、駆動方法及びアクティブマトリックス型表示装置
US12/075,729 US8330700B2 (en) 2007-03-29 2008-03-13 Driving circuit and driving method of active matrix display device, and active matrix display device
CN2008101003389A CN101276535B (zh) 2007-03-29 2008-03-28 有源矩阵型显示装置的驱动电路、驱动方法和有源矩阵型显示装置
TW097111168A TWI413958B (zh) 2007-03-29 2008-03-28 主動矩陣型顯示裝置的驅動電路、驅動方法及主動矩陣型顯示裝置
KR1020080028736A KR100935789B1 (ko) 2007-03-29 2008-03-28 액티브 매트릭스형 표시장치의 구동회로, 구동방법 및액티브 매트릭스형 표시장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007089664 2007-03-29
JP2007210328A JP4270310B2 (ja) 2007-03-29 2007-08-10 アクティブマトリックス型表示装置の駆動回路、駆動方法及びアクティブマトリックス型表示装置

Publications (2)

Publication Number Publication Date
JP2008268843A true JP2008268843A (ja) 2008-11-06
JP4270310B2 JP4270310B2 (ja) 2009-05-27

Family

ID=39995935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007210328A Active JP4270310B2 (ja) 2007-03-29 2007-08-10 アクティブマトリックス型表示装置の駆動回路、駆動方法及びアクティブマトリックス型表示装置

Country Status (4)

Country Link
JP (1) JP4270310B2 (ja)
KR (1) KR100935789B1 (ja)
CN (1) CN101276535B (ja)
TW (1) TWI413958B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009237041A (ja) * 2008-03-26 2009-10-15 Sony Corp 画像表示装置及び画像表示方法
WO2010116436A1 (ja) * 2009-03-30 2010-10-14 Necディスプレイソリューションズ株式会社 駆動回路、液晶表示装置および駆動方法
JP2011013485A (ja) * 2009-07-02 2011-01-20 Toshiba Mobile Display Co Ltd 液晶表示装置およびその画素配線方法
JP2014052627A (ja) * 2012-09-07 2014-03-20 Beijing Boe Optoelectronics Technology Co Ltd 液晶ディスプレイ及びその駆動方法
JP2017532605A (ja) * 2014-10-20 2017-11-02 深▲セン▼市華星光電技術有限公司 トライゲート型表示パネル

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489437B (zh) * 2010-06-02 2015-06-21 Novatek Microelectronics Corp 驅動模組、驅動方法及液晶顯示裝置
WO2019017301A1 (ja) * 2017-07-19 2019-01-24 シャープ株式会社 タッチパネル付き表示装置
CN107507600B (zh) * 2017-10-18 2020-03-06 京东方科技集团股份有限公司 显示装置、像素电路及其驱动方法、驱动装置
CN109658867A (zh) * 2018-12-10 2019-04-19 北京欧徕德微电子技术有限公司 数据读写方法及其装置
CN113870806B (zh) * 2020-06-30 2023-10-10 晶门科技(中国)有限公司 用于双闸极显示器的补偿系统和方法
CN114937418B (zh) * 2022-06-24 2023-07-18 业泓科技(成都)有限公司 具有生物辨识功能的像素电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3168974B2 (ja) 1998-02-24 2001-05-21 日本電気株式会社 液晶表示装置の駆動方法と、それを用いた液晶表示装置
KR100291770B1 (ko) 1999-06-04 2001-05-15 권오경 액정표시장치
TW511047B (en) * 2001-06-12 2002-11-21 Prime View Int Co Ltd Scan driving circuit and method for an active matrix liquid crystal display
JP3821701B2 (ja) * 2001-12-12 2006-09-13 シャープ株式会社 液晶表示装置
KR100890025B1 (ko) 2002-12-04 2009-03-25 삼성전자주식회사 액정 표시 장치, 액정 표시 장치의 구동 장치 및 방법
JP3904524B2 (ja) * 2003-03-20 2007-04-11 シャープ株式会社 液晶表示装置およびその駆動方法
KR100933446B1 (ko) * 2003-06-20 2009-12-23 엘지디스플레이 주식회사 액정표시장치의 구동장치 및 구동방법
KR101039023B1 (ko) * 2004-04-19 2011-06-03 삼성전자주식회사 액정 표시 장치
TWI271115B (en) * 2005-08-30 2007-01-11 Au Optronics Corp Active display and driving circuit of a pixel thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009237041A (ja) * 2008-03-26 2009-10-15 Sony Corp 画像表示装置及び画像表示方法
US8054298B2 (en) 2008-03-26 2011-11-08 Sony Corporation Image displaying apparatus and image displaying method
WO2010116436A1 (ja) * 2009-03-30 2010-10-14 Necディスプレイソリューションズ株式会社 駆動回路、液晶表示装置および駆動方法
JPWO2010116436A1 (ja) * 2009-03-30 2012-10-11 Necディスプレイソリューションズ株式会社 駆動回路、液晶表示装置および駆動方法
JP2011013485A (ja) * 2009-07-02 2011-01-20 Toshiba Mobile Display Co Ltd 液晶表示装置およびその画素配線方法
JP2014052627A (ja) * 2012-09-07 2014-03-20 Beijing Boe Optoelectronics Technology Co Ltd 液晶ディスプレイ及びその駆動方法
JP2017532605A (ja) * 2014-10-20 2017-11-02 深▲セン▼市華星光電技術有限公司 トライゲート型表示パネル

Also Published As

Publication number Publication date
CN101276535B (zh) 2012-05-23
KR20080088483A (ko) 2008-10-02
CN101276535A (zh) 2008-10-01
KR100935789B1 (ko) 2010-01-06
JP4270310B2 (ja) 2009-05-27
TW200849187A (en) 2008-12-16
TWI413958B (zh) 2013-11-01

Similar Documents

Publication Publication Date Title
JP4270310B2 (ja) アクティブマトリックス型表示装置の駆動回路、駆動方法及びアクティブマトリックス型表示装置
US8330700B2 (en) Driving circuit and driving method of active matrix display device, and active matrix display device
US8633884B2 (en) Liquid crystal display having data lines disposed in pairs at both sides of the pixels
KR100910711B1 (ko) 액티브 매트릭스형 표시장치
KR101189272B1 (ko) 표시 장치 및 그 구동 방법
JP4953227B2 (ja) ゲート駆動部を有する表示装置
JP3039404B2 (ja) アクティブマトリクス型液晶表示装置
US9495897B2 (en) Display device, method of driving display device, and electronic appliance
KR100765676B1 (ko) 표시 장치용 구동 장치 및 표시 장치용 구동 방법
JP5629439B2 (ja) 液晶表示装置
US20080284758A1 (en) Liquid crystal display and method of driving the same
JP2010102189A (ja) 液晶表示装置及びその駆動方法
JP2012068599A (ja) 液晶表示装置
JP5115001B2 (ja) 表示パネル及びそれを用いたマトリックス表示装置
KR101518326B1 (ko) 액정 표시 장치
JP2008151986A (ja) 電気光学装置、走査線駆動回路および電子機器
CN101364387A (zh) 以时间多工驱动的显示面板及其驱动方法
JP4893726B2 (ja) 表示装置及びその駆動方法
KR100956343B1 (ko) 액정 표시 장치 및 그 구동 방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4270310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250