JP2008263896A - High zinc-containing wheat - Google Patents

High zinc-containing wheat Download PDF

Info

Publication number
JP2008263896A
JP2008263896A JP2007113302A JP2007113302A JP2008263896A JP 2008263896 A JP2008263896 A JP 2008263896A JP 2007113302 A JP2007113302 A JP 2007113302A JP 2007113302 A JP2007113302 A JP 2007113302A JP 2008263896 A JP2008263896 A JP 2008263896A
Authority
JP
Japan
Prior art keywords
wheat
zinc
triticum
grain
durum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007113302A
Other languages
Japanese (ja)
Other versions
JP5006686B2 (en
Inventor
Hideaki Yamamoto
英明 山本
Masahiko Yamamoto
正彦 山本
Hiroshi Soejima
洋 副島
Hidefumi Shinoda
英史 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAMOTO TADANOBU SHOTEN KK
Original Assignee
YAMAMOTO TADANOBU SHOTEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAMOTO TADANOBU SHOTEN KK filed Critical YAMAMOTO TADANOBU SHOTEN KK
Priority to JP2007113302A priority Critical patent/JP5006686B2/en
Publication of JP2008263896A publication Critical patent/JP2008263896A/en
Application granted granted Critical
Publication of JP5006686B2 publication Critical patent/JP5006686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide wheat containing zinc in brown cereals at high concentration, and to provide a method for producing the wheat. <P>SOLUTION: Wheat mature grains contain ≥4.0 mg/100g of zinc in brown cereals. The method for producing the wheat which contains ≥4.0 mg/100g of zinc in brown cereals comprises scattering a liquid which has a zinc concentration of 0.01-2 wt.%, on a leaf surface, or a leaf surface and a spicule from a wheat spicule differentiation period. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、玄穀中に亜鉛を高濃度含有し、食品また食品材料として有用なコムギ及びその製造法に関する。   The present invention relates to a wheat containing a high concentration of zinc in brown cereal and useful as a food or food material, and a method for producing the same.

ヒトが生命を維持するためには鉄(Fe)、銅(Cu)、亜鉛(Zn)、マンガン(Mn)、コバルト(Co)、モリブデン(Mo)、バナジウム(V)、セレン(Se)、クロム(Cr)、ニッケル(Ni)、ヨウ素(I)、ケイ素(Si)、フッ素(F)、ヒ素(As)、鉛(Pb)などといった微量金属元素を体外から摂取する必要があり、これらの元素は必須元素と呼ばれている(非特許文献1)。なかでも亜鉛(Zn)は人体内に微量金属元素としては鉄についで多く含まれており、カルボキシペプチダーゼ、炭酸脱水素酵素、アルコール脱水素酵素などの重要な酵素に含有され、体内の代謝系で重要な役割を担っていることが知られている。また、亜鉛が欠乏すると成長障害、性機能低下、皮膚や毛髪の損傷、味覚異常などを示すことが知られており問題となっている。さらに、成人の亜鉛所要量は1日当たり12〜15mgとされている一方で、平均的な日本食では1日あたり9mg程度しか亜鉛を摂取できないとされ、日本人の亜鉛不足が問題視されている(非特許文献2)。このことから平成14年には厚生労働省が栄養機能食品成分として亜鉛を追加し、また平成16年には文部科学省により給食中亜鉛含量の目標値が設定されるなどといった公的機関による対策が講じられている。   In order to maintain human life, iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), cobalt (Co), molybdenum (Mo), vanadium (V), selenium (Se), chromium It is necessary to ingest trace metal elements such as (Cr), nickel (Ni), iodine (I), silicon (Si), fluorine (F), arsenic (As), and lead (Pb) from outside the body. Is called an essential element (Non-patent Document 1). Among them, zinc (Zn) is abundantly contained in the human body after iron as a trace metal element, and is contained in important enzymes such as carboxypeptidase, carbonic acid dehydrogenase, and alcohol dehydrogenase, It is known to play an important role. In addition, lack of zinc is known to cause problems such as growth failure, decreased sexual function, skin and hair damage, and abnormal taste. Furthermore, while the zinc requirement for adults is 12-15 mg per day, the average Japanese food is said to be able to ingest only about 9 mg of zinc per day. Non-patent document 2). Therefore, in 2002, the Ministry of Health, Labor and Welfare added zinc as a nutrient functional food ingredient, and in 2004, the Ministry of Education, Culture, Sports, Science and Technology set a target value for the zinc content during school meals. Has been taken.

以上のように、亜鉛(Zn)は人体が生命活動を営む上で重要であるため、適正量を日常的な食事によって摂取することが望まれている。しかしながら、これらの元素を多く含む食品は比較的限られている。例えば亜鉛(Zn)は牡蠣(カキ)中には13.2mg/100g、牛レバーには3.8mg/100gといった高い濃度で含有されている(非特許文献3)。しかしながら、現在の日本人の食生活習慣においてこれらの食材を毎日摂取するのは一般的とはいえない。これに対してコムギはパンやうどん、スパゲティなど麺類などに加工されて日常的に摂取できる食材といえる。この点からコムギにこれらの微量金属元素の含有量を高めることができれば有用と考えられるが、コムギの栽培法に関する技術分野では微量金属元素の研究は必要最低限の施肥方法などの研究は行われているものの、可食部に積極的に取り込ませる技術については満足できるものではなかった。   As described above, since zinc (Zn) is important for the human body to carry out life activities, it is desired to take an appropriate amount by daily eating. However, foods rich in these elements are relatively limited. For example, zinc (Zn) is contained at a high concentration of 13.2 mg / 100 g in oysters (oysters) and 3.8 mg / 100 g in beef liver (Non-patent Document 3). However, it is not common to take these ingredients every day in the current Japanese dietary habits. Wheat, on the other hand, can be said to be a daily food that is processed into noodles such as bread, udon and spaghetti. From this point of view, it would be useful if the content of these trace metal elements could be increased in wheat, but in the technical field related to wheat cultivation methods, research on trace metal elements such as the minimum required fertilization method was conducted. However, it was not satisfactory for the technology to be actively incorporated into the edible part.

コムギではないものの、最近ライムギの子実中の亜鉛含量を高めるために遺伝子組み換えによってシロイヌナズナ由来の亜鉛トランスポーター遺伝子を過剰発現させるという技術が開発された。しかしながら、この遺伝子組み換え体に亜鉛を施肥しても亜鉛吸収速度は高まらなかった(非特許文献4)。この原因については亜鉛トランスポーター遺伝子が発現していても亜鉛が存在すると他の金属トランスポータータンパク質でみられる(非特許文献5)ように、翻訳後調節によって亜鉛トランスポータータンパク質が消失してしまうためではないかと考察されている。このように現在先端的な技術である遺伝子組み換え技術を用いても作物の可食部に亜鉛などの微量金属元素をとりこませることは困難である。   Although not wheat, recently a technique has been developed to overexpress the zinc transporter gene from Arabidopsis thaliana by genetic recombination in order to increase the zinc content in rye grains. However, even when fertilized with this genetically modified product, the rate of zinc absorption did not increase (Non-Patent Document 4). About this cause, even if the zinc transporter gene is expressed, if zinc is present, the zinc transporter protein disappears due to post-translational regulation, as seen in other metal transporter proteins (Non-patent Document 5). It is considered that. In this way, it is difficult to incorporate trace metal elements such as zinc into the edible part of crops even using genetically modified technology, which is the most advanced technology at present.

また、従来の施肥技術の一つとして葉面散布法も実用化されている。この方法は散布液が直接接触する細胞中に肥料成分を取り込ませることは可能であるため、葉の要素欠乏症状の防止もしくは改善させるといったことは出来る。しかしながら、葉から種子中に転流させる、すなわち、複数の細胞間を移行させることによって、散布液が直接接触することのない種子中に金属元素含量を高濃度で蓄積させるといった技術はみられなかった。特に亜鉛は窒素、リン、カリウム、マグネシウムなどといった転流しやすい元素ではない(非特許文献6)ため、従来の葉面散布方法では種子中に高濃度で蓄積させることは困難であった。
桜井・田中(編著)1993.生物無機化学.廣川書店 冨田1998.元気になるミネラル 亜鉛パワーの秘密.宙出版 香川(監)2003.『五訂食品分析表2003』女子栄養大学出版部 Rameshら2004.Plant Mol.Biol. Connolyら2002.Plant Cell Marschner1995.Mineral Nutrition of Higher Plants(2nd ed.)Academic Press
In addition, a foliar spray method has been put to practical use as one of the conventional fertilization techniques. In this method, the fertilizer component can be taken into the cells that are directly in contact with the spray solution, so that the leaf element deficiency symptoms can be prevented or improved. However, there has been no technique for accumulating metal element content at a high concentration in seeds that are not directly contacted by the spray solution by translocation from the leaves into the seeds, that is, by transferring between cells. It was. In particular, zinc is not an easily commutable element such as nitrogen, phosphorus, potassium, magnesium, etc. (Non-patent Document 6), and therefore it has been difficult to accumulate high concentrations in seeds by the conventional foliar application method.
Sakurai and Tanaka (edited) 1993. Bioinorganic chemistry. Yodogawa Shoten Iwata 1998. Energetic minerals The secret of zinc power. Air publication Kagawa (Director) 2003. "Fiveth Food Analysis Table 2003"Women's Nutrition University Press Ramesh et al. 2004. Plant Mol. Biol. Connolly et al. 2002. Plant Cell Marschner 1995. Mineral Nutrition of Higher Plants (2nd ed.) Academic Press

本発明の目的は、コムギの可食部、すなわち子実中に亜鉛を高濃度含有するコムギ及びその製造法を提供することにある。   An object of the present invention is to provide a edible part of wheat, that is, a wheat containing a high concentration of zinc in a grain and a method for producing the same.

そこで本発明者は、コムギの子実中に亜鉛を高濃度で取り込ませるべく種々検討した結果、全く意外にも、亜鉛含有液を葉面及び小穂に散布することにより、土壌に施用する場合に比べて高濃度に子実中に取り込まれ、子実中の亜鉛濃度が従来にない高濃度のコムギが得られることを見出し、本発明を完成した。   Therefore, as a result of various studies to incorporate zinc in wheat grains at a high concentration, the present inventor unexpectedly applied a zinc-containing liquid to the leaves and spikelets when applied to the soil. The present inventors completed the present invention by discovering that wheat having a higher concentration than in the prior art can be obtained, and that the zinc concentration in the seed is higher than that in the prior art.

すなわち、本発明は、玄穀中に亜鉛を4.0mg/100g以上含有するコムギ完熟子実を提供するものである。   That is, this invention provides the mature wheat grain which contains 4.0 mg / 100g or more of zinc in a brown grain.

また、本発明は、亜鉛濃度として0.01〜2重量%含有する液を、コムギの小穂分化期から葉面又は葉面及び小穂に散布することを特徴とする完熟子実玄穀中に亜鉛を4.0mg/100g以上含有するコムギの製造法を提供するものである。   In addition, the present invention provides a solution containing 0.01 to 2% by weight of zinc as a zinc concentration in the ripe grain seed cereal, which is sprayed on the leaf surface or leaf surface and spikelet from the spikelet differentiation stage of wheat. The present invention provides a method for producing wheat containing 4.0 mg / 100 g or more of zinc.

また、本発明は、亜鉛濃度として0.01〜2重量%含有するコムギの葉面又は小穂散布用液であって、完熟子実玄穀中に亜鉛を4.0mg/100g以上含有するコムギ製造用資材を提供するものである。   The present invention also relates to a wheat leaf or spikelet spraying solution containing 0.01 to 2% by weight of zinc as a zinc concentration, wherein the wheat grains contain 4.0 mg / 100 g or more of zinc in ripe grain brown grains. It provides materials for use.

本発明のコムギ子実は、従来遺伝子組み換え技術によっても作製し得なかった高濃度の亜鉛を含有しており、栄養価の高い食品及び食品材料として有用である。
また、本発明のコムギの製造法は、土壌施用でなく、葉面等への散布であることから、土壌に亜鉛を大量に施肥した場合に生じるとされている、土壌中の鉄の吸収移動を阻害し、鉄欠乏症状を引き起こしてしまう、いわゆる“重金属誘導クロロシス”という問題(熊沢・西沢1976.植物の養分吸収.東京大学出版会)が生じない。また、土壌に大量に施用した場合は河川への流亡も環境保全上問題となる。例えば日本においては平成15年の環境基本法改正により河川や海水中の亜鉛濃度基準が10〜30μg/L以下と設定されているが、本発明方法によれば、かかる問題も生じない。
The wheat grain of the present invention contains a high concentration of zinc that could not be produced by conventional genetic recombination techniques, and is useful as a food and food material with high nutritional value.
In addition, since the method for producing wheat of the present invention is not applied to the soil but is applied to the leaves, etc., it is said that it occurs when fertilizing a large amount of zinc in the soil. The problem of so-called “heavy metal-induced chlorosis” (Kumazawa and Nishizawa 1976. Absorption of plant nutrients. The University of Tokyo Press) does not occur. In addition, when applied to soil in large quantities, runoff into rivers becomes a problem for environmental conservation. For example, in Japan, the zinc concentration standard in rivers and seawater is set to 10 to 30 μg / L or less by the amendment of the Basic Environment Law in 2003. However, according to the method of the present invention, such a problem does not occur.

本発明のコムギ完熟子実は、玄穀中に亜鉛を4.0mg/100g以上含有する。通常完熟コムギ玄穀中の亜鉛濃度は2.0〜3.2mg/100gとされており、本発明のように高濃度の亜鉛を含有する完熟コムギ子実は知られていない。完熟コムギ玄穀中のより好ましい亜鉛濃度は4.0〜12.0mg/100gであり、特に好ましくは4.5〜8.0mg/100gである。ここで、亜鉛濃度は原子吸光法、ICP発光分析法、ICP質量分析法により測定でき、この濃度は乾燥物100g中の亜鉛含有量(mg)である。   The mature wheat grain of the present invention contains 4.0 mg / 100 g or more of zinc in the cereal. Normally, the concentration of zinc in fully ripened wheat cereal is 2.0 to 3.2 mg / 100 g, and no fully ripened wheat grain containing a high concentration of zinc as in the present invention is known. The more preferable zinc concentration in ripe wheat unpolished is 4.0 to 12.0 mg / 100 g, particularly preferably 4.5 to 8.0 mg / 100 g. Here, the zinc concentration can be measured by atomic absorption method, ICP emission spectrometry, and ICP mass spectrometry, and this concentration is the zinc content (mg) in 100 g of the dried product.

本発明におけるコムギとしては、パンコムギ(Triticum aestivum)、デューラムコムギ(Triticum durum)、クラブコムギ(Triticum compactum)、エンマコムギ(Triticum dicoccum)、ポーランドコムギ(Triticum polonicum)、イギリスコムギ(Triticum turgidum)、スペルトコムギ(Triticum spelta)、ヒトツブコムギ(Triticum monococcum)及びその交雑種等が挙げられるが、このうちパンコムギ、デューラムコムギ、クラブコムギが好ましく、特にパンコムギが好ましい。ここでパンコムギには、秋播き小麦、春播き小麦が含まれる。 The wheat in the present invention, bread wheat (Triticum aestivum), durum wheat (Triticum durum), club wheat (Triticum compactum), Enmakomugi (Triticum dicoccum), Poland wheat (Triticum polonicum), United Kingdom wheat (Triticum turgidum), spelled ( Triticum spelta ), human wheat ( Triticum monococcum ), and hybrids thereof are exemplified , among which bread wheat, durum wheat and club wheat are preferable, and bread wheat is particularly preferable. Here, bread wheat includes autumn wheat and spring wheat.

本発明の子実中に高濃度亜鉛を含有するコムギは、亜鉛濃度として0.01〜2重量%含有する液を、小穂分化期から葉面又は葉面及び小穂に散布することにより製造できる。
本発明者等の検討によれば、コムギの子実中に亜鉛を高濃度に吸収させるには、土壌処理でなく、葉面又は小穂散布が好ましいことが判明した。従って、亜鉛濃度として0.01〜2重量%含有し、コムギの葉面又は葉面及び小穂散布用液は、子実玄穀中に亜鉛を4.0〜12.0mg/100g以上含有するコムギ製造用資材として有用である。
Wheat containing high-concentration zinc in the seeds of the present invention is produced by spraying a solution containing 0.01 to 2% by weight of zinc on the leaf surface or leaf surface and spikelet from the spikelet differentiation stage. it can.
According to the study by the present inventors, it was found that foliar or spikelet spraying is preferable instead of soil treatment in order to absorb zinc in wheat grains at a high concentration. Therefore, 0.01 to 2% by weight zinc concentration is included, and the wheat leaf surface or leaf surface and spikelet spraying solution contains 4.0 to 12.0 mg / 100 g or more of zinc in the grain brown grain. Useful as manufacturing material.

散布に用いる液(以下、葉面散布資材ということもある)は、亜鉛を0.01〜2重量%含有する液が好ましい。当該液を調製するために用いる亜鉛としては水溶性があれば特に制限はなく、硫酸亜鉛、塩化亜鉛、硝酸亜鉛、蟻酸亜鉛、酢酸亜鉛、及びEDTA亜鉛のようなキレート体亜鉛などが挙げられる。このうち、子実への亜鉛移行性の点から硫酸亜鉛が特に好ましい。
葉面散布資材中の亜鉛濃度としては、亜鉛として0.02〜1重量%が好ましく、特に0.1〜0.5重量%が好ましい。
The liquid used for spraying (hereinafter sometimes referred to as foliar spray material) is preferably a liquid containing 0.01 to 2% by weight of zinc. Zinc used for preparing the liquid is not particularly limited as long as it has water solubility, and examples thereof include zinc sulfate, zinc chloride, zinc nitrate, zinc formate, zinc acetate, and chelate zinc such as EDTA zinc. Of these, zinc sulfate is particularly preferred from the viewpoint of zinc migration to the grain.
The zinc concentration in the foliar spray material is preferably 0.02 to 1% by weight, particularly 0.1 to 0.5% by weight as zinc.

また、本発明で用いる葉面散布資材には、海藻抽出物を含有させることにより、コムギ子実への亜鉛移行率が向上する。海藻としては褐藻類が好ましく、なかでもコンブ目(Laminariales)が好ましい。さらにチガイソ科(Alariaceae)が好ましい。最も好適なのはアイヌワカメ(Alaria praelonga)である。これらの原料となる海藻は水分を含んだままでもよいし、乾燥させてもよいが、処理のしやすさを考慮すると乾燥物のほうが好ましい。 Moreover, the foliar spray material used by this invention improves the zinc transfer rate to a wheat grain by containing a seaweed extract. As the seaweed, brown algae are preferable, and in particular, the order of the order is Laminariales. Furthermore, the Algaceae family is preferable. Most preferred is Alaria praelonga . These seaweeds as raw materials may contain moisture or may be dried, but a dried product is more preferable in consideration of ease of treatment.

海藻抽出物の葉面散布資材中の含有量は、乾燥物換算で0.1〜20重量%、さらに1〜10重量%、特に3〜5重量%が好ましい。   The content in the leaf spray material of the seaweed extract is preferably 0.1 to 20% by weight, more preferably 1 to 10% by weight, and particularly preferably 3 to 5% by weight in terms of dry matter.

海藻抽出物は、例えば以下の如くして調製できる。材料となる海藻は希硫酸水あるいは希塩酸水などの酸を加え、60℃以上に加温することによって加水分解を行う。この場合、用いる酸の種類は硫酸が好ましく、濃度は0.5〜2Nが好ましい。加温する温度については分解速度の速さから煮沸するのが好ましい。得られた加水分解物は適宜アルカリを加えることによってpHを調整したのち、遠心分離又はろ過により固形分を取り除き、海藻抽出物を得る。好ましい葉面散布資材を得るには、この海藻抽出物そのもの又は希釈液に亜鉛を適宜添加すればよい。   The seaweed extract can be prepared, for example, as follows. Seaweed as a material is hydrolyzed by adding an acid such as dilute sulfuric acid or dilute hydrochloric acid and heating to 60 ° C. or higher. In this case, the type of acid used is preferably sulfuric acid, and the concentration is preferably 0.5 to 2N. About the temperature to heat, it is preferable to boil from the speed of a decomposition rate. After adjusting the pH of the obtained hydrolyzate by adding an alkali as appropriate, the solid content is removed by centrifugation or filtration to obtain a seaweed extract. In order to obtain a preferable foliar spray material, zinc may be appropriately added to the seaweed extract itself or a diluted solution.

葉面散布資材には、葉面及び小穂への付着性を高めるため、農業上通常用いられる展着剤、界面活性剤を添加するのが好ましい。用いる展着剤、界面活性剤は特に制限はないが、界面活性剤としては非イオン性、陰イオン性、陽イオン性及び両イオン性のいずれも使用することが出来る。例を挙げると、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、オキシエチレンポリマー、オキシプロピレンポリマー、ポリオキシエチレンアルキルリン酸エステル、脂肪酸塩、アルキル硫酸エステル塩、アルキルスルホン酸塩、アルキルアリールスルホン酸塩、アルキルリン酸塩、アルキルリン酸エステル塩、ポリオキシエチレンアルキル硫酸エステル、第四級アンモニウム塩、オキシアルキルアミン、レシチン、サポニン等である。また、必要に応じてゼラチン、カゼイン、デンプン、寒天、ポリビニルアルコール、アルギン酸ソーダなどを補助剤として用いることが出来る。   In order to increase the adhesion to the foliage and spikelets, it is preferable to add a spreading agent and a surfactant that are usually used in agriculture to the foliar spray material. The spreading agent and surfactant used are not particularly limited, and any of nonionic, anionic, cationic and amphoteric surfactants can be used as the surfactant. For example, polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, oxyethylene polymer, oxypropylene polymer, polyoxyethylene alkyl phosphate ester , Fatty acid salt, alkyl sulfate ester salt, alkyl sulfonate salt, alkyl aryl sulfonate salt, alkyl phosphate salt, alkyl phosphate ester salt, polyoxyethylene alkyl sulfate ester, quaternary ammonium salt, oxyalkylamine, lecithin, Such as saponin. If necessary, gelatin, casein, starch, agar, polyvinyl alcohol, sodium alginate and the like can be used as auxiliary agents.

葉面散布資材を散布する場合、農業上通常用いられる葉面散布用肥料と混合してもよい。この場合、肥料成分としては特に制限はないが、溶解後アルカリ性を示すものについては亜鉛が塩として沈殿を起こすため好ましくない。混合する場合に好ましい肥料成分を例示すれば、尿素、燐酸アンモニウム、塩酸アンモニウム、硫酸アンモニウム、燐酸、ピロ燐酸、などが挙げられる。中でも尿素の混用は亜鉛の吸収量を高める場合があるため好ましい(MortvedtとGilkes1993.Zinc fertilizer.“Zinc in soils and plants”Kluwer academic publishers)。   When foliar spraying material is sprayed, it may be mixed with a foliar fertilizer usually used in agriculture. In this case, although there is no restriction | limiting in particular as a fertilizer component, since the thing which shows alkalinity after melt | dissolution causes zinc to precipitate as a salt, it is not preferable. Examples of preferable fertilizer components when mixing include urea, ammonium phosphate, ammonium hydrochloride, ammonium sulfate, phosphoric acid, pyrophosphoric acid, and the like. Among them, the use of urea is preferable because it may increase the amount of zinc absorbed (Mortvedt and Gilkes 1993. Zinc fertilizer. “Zinc in soils and plants” Kluwer academic publishers).

本発明のコムギを栽培する場合の土壌に施用する基肥・追肥はその地域で行われている施肥量・施肥方法に準拠すればよい。ただし、土壌に亜鉛処理すれば子実中亜鉛含量をさらに若干増加させることが出来ることは言うまでもない。   The basic fertilizer and topdressing applied to the soil when cultivating the wheat of the present invention may be based on the fertilizing amount and fertilizing method performed in the region. However, it goes without saying that if the soil is treated with zinc, the zinc content in the grain can be further increased.

本発明のコムギを栽培する場合の栽植密度は、その地域で推奨されている密度でよいが、葉面散布資材中の亜鉛濃度を0.1重量%以上とする場合は、減収を軽減する目的で栽植密度(単位面積あたり播種量)を通常より1.2〜2倍高めることが好ましい。   The planting density when cultivating the wheat of the present invention may be the density recommended in the region, but when the zinc concentration in the foliar spray material is 0.1% by weight or more, the purpose of reducing the decrease in sales It is preferable to increase the planting density (seeding amount per unit area) by 1.2 to 2 times than usual.

葉面散布資材の散布方法としては、小穂及び葉の裏面まで葉面散布資材が展着するようにすることが望ましい。ブームスプレーヤーを使用する場合は散布液量を1ヘクタール当たり1000リットル以上、好ましくは1000〜3000リットル、より好ましくは1200〜2000リットルとすることが望ましい。その際、噴霧器の加圧は2〜3MPaと高めに設定することが好ましい。また、噴孔を小さくするなど、噴霧される液の粒子径が小さくなるような装置を使用した方がよい点については言うまでもない。また、静電気を利用することにより噴霧液の植物体への付着を促進させるいわゆる静電噴霧機や静電噴霧ノズル口を用いることも望ましい。   As a method for spraying the foliar spraying material, it is desirable that the foliar spraying material spreads to the spikelets and the back of the leaves. When using a boom sprayer, the amount of sprayed liquid should be 1000 liters or more per hectare, preferably 1000 to 3000 liters, more preferably 1200 to 2000 liters. In that case, it is preferable to set the pressurization of the sprayer as high as 2 to 3 MPa. Needless to say, it is better to use an apparatus that reduces the particle diameter of the sprayed liquid, such as reducing the nozzle hole. It is also desirable to use a so-called electrostatic sprayer or an electrostatic spray nozzle port that promotes adhesion of the spray liquid to the plant body by utilizing static electricity.

葉面散布資材の散布時期については小穂分化期から小穂が黄化する時期までがよく、特に穂ばらみ期〜黄化直前までの時期が好ましい。葉面散布資材の散布間隔については1日1回乃至2週間に1回が好ましい。さらに1週間〜2週間に1回散布することがより好ましい。また、作物生育期間中での合計散布回数は2〜8回が好ましい。   The application time of the foliar application material is preferably from the spikelet differentiation stage to the time when the spikelets turn yellow, and particularly preferably from the booting stage to just before yellowing. The interval between the foliar spraying materials is preferably once a day to once every two weeks. Further, it is more preferable to spray once every one to two weeks. Further, the total number of spraying during the crop growing period is preferably 2 to 8 times.

次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to a following example.

製造例1
海藻エキスの調製
アイヌワカメ(Alaria praelonga)、チガイソ(Alaria crassifola)、マコンブ(Laminaria japonica)、スジメ(Costraia costata)の乾燥物はそれぞれハサミで5cm角に細断した。これらの細断物450gに1N硫酸を2,550mL加え、2時間撹拌しながら煮沸した。得られた液体は容器をクラッシュアイス内に入れることにより冷却し、ついで遠心分離機により8,000G×60分で遠心分離した。得られた上澄み1.5Lに水1Lを加えて希釈し、硫酸亜鉛七水和物2.5kgを加えて溶かした。この液に水酸化カリウムを加えpH2.0に調整した。このうち、アイヌワカメを原料としたものを亜鉛入りアイヌワカメエキスと以後称することとする。なお、アイヌワカメ現物中の亜鉛含量は2.34mg/kgであることから、亜鉛含有アイヌワカメエキス中でアイヌワカメそのものに由来する亜鉛は0.11mg/kgに過ぎず、実質上無視できる。
Production Example 1
Preparation of seaweed extract Ainu sea turtle ( Alaria praelonga ), chigaiso ( Alaria crassifola ), macombu ( Laminaria japonica ), sujime ( Costraia costata ) dried products were each cut into 5 cm squares with scissors. 2,550 mL of 1N sulfuric acid was added to 450 g of these shredded products and boiled with stirring for 2 hours. The obtained liquid was cooled by putting the container in crushed ice, and then centrifuged at 8,000 G × 60 minutes by a centrifuge. 1 L of water was added to 1.5 L of the resulting supernatant for dilution, and 2.5 kg of zinc sulfate heptahydrate was added to dissolve. Potassium hydroxide was added to this solution to adjust to pH 2.0. Among these, what uses Ainu-wakame as a raw material is hereinafter referred to as zinc-containing Ainu-wakame extract. In addition, since the zinc content in the actual Ainu turtle is 2.34 mg / kg, the zinc derived from the Ainu turtle itself in the zinc-containing Ainu turtle extract is only 0.11 mg / kg and can be substantially ignored.

実施例1
北海道上川郡清水町の圃場においてコムギ品種「ホクシン」を栽培した。基肥は『北海道施肥ガイド』(北海道農政部編2002、社団法人 北海道農業改良普及協会)の秋まきコムギの施肥基準に準じて行った(標準施肥区)が、その一部に硫酸亜鉛(ZnSO4)を亜鉛含量として5.7及び11.4kg/ha施用した硫酸亜鉛土壌施用区、酸化亜鉛(ZnO)を亜鉛含量として20.6及び41.2kg/ha施用した酸化亜鉛土壌施用区を設けた。播種は9月15日にドリル播きにて行い、播種量は100kg/haとした。標準施肥区で生育している植物体に小穂分化期である5月19日より2週間おきに6回、硫酸亜鉛七水和物の0.5%及び1%水溶液(亜鉛濃度としては0.11%及び0.22%)、及び製造例1に示した亜鉛含有アイヌワカメエキスの1%、2%水溶液(亜鉛濃度としては同じく、0.11%、0.22%となる)にポリオキシエチレンヘキシタン脂肪酸エステル含有展着剤アプローチBI(花王(株)社製)を0.1%加えたものを150mL/m2葉面散布した。試験は各処理2反復とした。サンプリングは収穫期である8月5日に行い、植物体を風乾後、脱穀機で玄穀を分離した。得られた玄穀は重量を測定した後、乾燥機内で90℃、3日間乾燥させた。乾燥後の子実はすみやかに乾物重を測定し、乾物率を算出した。乾燥物は超遠心粉砕機MRK−RETSCH(三田村理研工業社製)で粉砕した後、0.5gを秤量し、精密分析用硝酸(和光純薬社製)5mLを加え、テフロン(登録商標)密閉加圧分解容器にて分解した。分解液を一定量に定容し、その液をICP発光分光分析装置SPS4000(セイコーインスツルメンツ社製)によって亜鉛含量を測定した。定量値は乾物率を用いて逆算することで現物中の亜鉛含有量を算出した。
Example 1
A wheat cultivar "Hokushin" was cultivated in a field in Shimizu-cho, Kamikawa-gun, Hokkaido. The basic fertilization was carried out in accordance with the autumn fermented wheat fertilizer standards of the “Hokkaido Fertilizer Guide” (Hokkaido Agricultural Administration Division 2002, Hokkaido Agricultural Improvement Promotion Association) (standard fertilization zone), but zinc sulfate (ZnSO 4 ) With zinc content of 5.7 and 11.4 kg / ha, and zinc oxide soil application with zinc oxide (ZnO) of 20.6 and 41.2 kg / ha. . Sowing was performed by drill sowing on September 15, and the sowing rate was 100 kg / ha. Plants growing in the standard fertilization zone were subjected to 0.5% and 1% aqueous solutions of zinc sulfate heptahydrate 6 times every 2 weeks from May 19 during the spikelet differentiation stage (Zinc concentration was 0) .11% and 0.22%), and 1% and 2% aqueous solutions of zinc-containing Ainu Wakame extract shown in Production Example 1 (the zinc concentration is also 0.11% and 0.22%). 150 mL / m 2 of foliar spray was added with 0.1% oxyethylene hexitan fatty acid ester-containing spreading agent Approach BI (manufactured by Kao Corporation). The test was repeated twice for each treatment. Sampling was carried out on August 5th, the harvest season, and the plants were air-dried and the cereals were separated with a threshing machine. The obtained unpolished grains were weighed and then dried at 90 ° C. for 3 days in a dryer. The dry weight of the grains after drying was immediately measured, and the dry matter rate was calculated. The dried product was pulverized with an ultracentrifugal mill MRK-RETSCH (Mitamura Riken Kogyo Co., Ltd.), 0.5 g was weighed, 5 mL of nitric acid for precision analysis (Wako Pure Chemical Industries, Ltd.) was added, and Teflon (registered trademark) sealed. Decomposed in a pressure decomposition vessel. The decomposition solution was made up to a constant volume, and the zinc content of the solution was measured using an ICP emission spectroscopic analyzer SPS4000 (manufactured by Seiko Instruments Inc.). The zinc content in the actual product was calculated by calculating back the quantitative value using the dry matter rate.

その結果は表1に示した。土壌に硫酸亜鉛を施用し、葉面散布を行わなかった区で比較すると、もっとも玄穀中亜鉛含量が高かったのは11.4kg/ha施用区で、玄穀中亜鉛含量は2.81mg/100gで無施用区より6%高かった。土壌に酸化亜鉛を施用し、葉面散布を行わなかった区で比較すると、もっとも玄穀中亜鉛含量が高かったのは41.2kg/ha施用区であったが、玄穀中亜鉛含量は2.68mg/100gにとどまった(酸化亜鉛よりも硫酸亜鉛の効果が高かった原因としては酸化亜鉛より硫酸亜鉛の水溶性が極めて高いことが考えられる)。   The results are shown in Table 1. Compared with the area where zinc sulfate was applied to the soil and the foliar application was not performed, the highest zinc content in the cereal was 11.4 kg / ha, and the zinc content in the cereal was 2.81 mg / It was 6% higher than the no application area at 100 g. Compared to the plots where zinc oxide was applied to the soil and no foliar application was performed, the highest zinc content in the grain was 41.2 kg / ha, but the zinc content in the grain was 2 It was limited to .68 mg / 100 g (as a cause of the effect of zinc sulfate being higher than that of zinc oxide, it is considered that the water solubility of zinc sulfate is extremely higher than that of zinc oxide).

一方、土壌に亜鉛を施用せず、硫酸亜鉛七水和物水溶液を葉面散布した区で得られたコムギ玄穀中の亜鉛含量は4.18〜5.42mg/100gであり、いかなる土壌施用区よりも高かった。さらに、製造例1に示した亜鉛含有アイヌワカメエキス散布区は、散布液中の亜鉛濃度が同じであっても玄穀中亜鉛含量が高いことが明らかとなった。以上の結果から、コムギの玄穀中に亜鉛を取り込ませようとする場合、一般的な肥料の施用方法である土壌施用と比較して、小穂分化期からの葉面散布法が有効であり、さらに葉面散布液に海藻抽出物を添加することでその効果をより高めることが明らかとなった。   On the other hand, the zinc content in the wheat grain obtained in the area where zinc was not applied to the soil and the aqueous solution of zinc sulfate heptahydrate was applied to the leaves was 4.18 to 5.42 mg / 100 g. It was higher than the ward. Furthermore, it was revealed that the zinc-containing Ainu wakame extract spraying area shown in Production Example 1 has a high zinc content in the brown grain even when the zinc concentration in the spraying liquid is the same. From the above results, when trying to incorporate zinc into the wheat grain, the foliar spraying method from the spikelet differentiation stage is more effective than soil application, which is a general fertilizer application method. Furthermore, it was clarified that the effect was further enhanced by adding a seaweed extract to the foliar spray.

Figure 2008263896
Figure 2008263896

実施例2
北海道上川郡清水町の圃場においてコムギ品種「春よ恋」を栽培した。基肥は『北海道施肥ガイド』(北海道農政部編2002、社団法人 北海道農業改良普及協会)の春まきコムギの施肥基準に準じて行った。播種は4月22日にドリル播きにて行い、播種量は80kg/haとした。栽培中、小穂分化期である6月16日より2週間おきに4回、実施例1と同様に硫酸亜鉛七水和物、及び製造例1に示した亜鉛含有アイヌワカメエキスにポリオキシエチレンヘキシタン脂肪酸エステル含有展着剤アプローチBI(花王(株)社製)を0.1%加えたものを150mL/m2葉面散布した。試験は各処理2反復とした。サンプリングは収穫期である8月22日に行い、植物体を風乾後、脱穀機で玄穀を分離した。得られた玄穀中亜鉛含量は実施例1と同様に測定した。
Example 2
A wheat cultivar "Spring Yo Koi" was cultivated in a field in Shimizu-cho, Kamikawa-gun, Hokkaido. The basic fertilization was carried out in accordance with the fertilizer standards for spring wheat in the “Hokkaido Fertilizer Guide” (Hokkaido Agricultural Administration Division 2002, Hokkaido Agricultural Improvement Promotion Association). Sowing was carried out by drill sowing on April 22, and the sowing rate was 80 kg / ha. During cultivation, 4 times every 2 weeks from June 16, which is the spikelet differentiation stage, zinc sulfate heptahydrate as in Example 1, and polyoxyethylene in the zinc-containing Ainu Wakame extract shown in Production Example 1 150 mL / m 2 foliar was sprayed with 0.1% of a hexitan fatty acid ester-containing spreading agent approach BI (manufactured by Kao Corporation). The test was repeated twice for each treatment. Sampling was carried out on August 22 during the harvest period, and after the plants were air-dried, the cereals were separated with a threshing machine. The zinc content in the obtained brown cereal was measured in the same manner as in Example 1.

その結果は表2に示した。玄穀中亜鉛含量は無散布区の2.53mg/100gに比較し、硫酸亜鉛七水和物水溶液を葉面散布した区で4.33mg/100gであり、明らかに玄穀中の亜鉛取り込み量が高まっていた。さらに、製造例1に示した亜鉛含有アイヌワカメエキス散布区は、散布液中の亜鉛濃度が同じであっても玄穀中亜鉛含量が高いことが明らかとなった。以上の結果から、春播きコムギの玄穀中に亜鉛を取り込ませようとする場合でも、小穂分化期からの亜鉛の継続的な葉面散布法が有効であり、さらに葉面散布液に海藻抽出物を添加することでその効果をより高めることが明らかとなった。   The results are shown in Table 2. The zinc content in the brown grain is 4.33 mg / 100 g in the area sprayed with zinc sulfate heptahydrate aqueous solution compared to 2.53 mg / 100 g in the non-sprayed area, and clearly the zinc uptake in the brown grain Was growing. Furthermore, it was revealed that the zinc-containing Ainu seaweed extract sprayed area shown in Production Example 1 has a high zinc content in the brown grain even if the zinc concentration in the spray liquid is the same. From the above results, the continuous foliar application method of zinc from the spikelet differentiation stage is effective even when trying to incorporate zinc into the brown wheat grains of spring sowing. It became clear that the effect was heightened more by adding an extract.

Figure 2008263896
Figure 2008263896

Claims (12)

玄穀中に亜鉛を4.0mg/100g以上含有するコムギ完熟子実。   A mature wheat grain containing 4.0 mg / 100 g or more of zinc in the cereal. 玄穀中の亜鉛含有量が4.0〜12.0mg/100gである請求項1記載のコムギ完熟子実。   The fully-ripened wheat grain according to claim 1, wherein the content of zinc in the brown cereal is 4.0-12.0 mg / 100 g. コムギが、パンコムギ(Triticum aestivum)、デューラムコムギ(Triticum durum)、クラブコムギ(Triticum compactum)、エンマコムギ(Triticum dicoccum)、ポーランドコムギ(Triticum polonicum)、イギリスコムギ(Triticum turgidum)、スペルトコムギ(Triticum spelta)、ヒトツブコムギ(Triticum monococcum)及びその交雑種から選ばれる請求項1又は2記載のコムギ完熟子実。 Wheat, bread wheat (Triticum aestivum), durum wheat (Triticum durum), club wheat (Triticum compactum), Enmakomugi (Triticum dicoccum), Poland wheat (Triticum polonicum), United Kingdom wheat (Triticum turgidum), spelled (Triticum spelta) A fully mature wheat grain according to claim 1 or 2, selected from the group consisting of Triticum monococcum and hybrids thereof. 亜鉛濃度として0.01〜2重量%含有する液を、コムギの小穂分化期から葉面又は葉面及び小穂に散布することを特徴とする完熟玄穀中に亜鉛を4.0mg/100g以上含有するコムギ子実の製造法。   A solution containing 0.01 to 2% by weight of zinc as a zinc concentration is sprayed onto the leaf surface or leaf surface and spikelet from the spikelet differentiation stage of wheat, and 4.0 mg / 100 g of zinc in the ripe unpolished grain. The manufacturing method of the wheat grain which contains the above. 亜鉛を含有する液が、さらに海藻抽出物を含有するものである請求項4記載の製造法。   The process according to claim 4, wherein the zinc-containing liquid further contains a seaweed extract. 亜鉛を含有する液の散布量が、1ヘクタール当たり1000リットル以上である請求項4又は5記載の製造法。   The production method according to claim 4 or 5, wherein the amount of zinc-containing liquid sprayed is 1000 liters or more per hectare. 亜鉛を含有する液の散布が、小穂分化期から1〜2週間おきに行うものである請求項4〜6のいずれか1項記載の製造法。   The method according to any one of claims 4 to 6, wherein the zinc-containing solution is sprayed every 1 to 2 weeks from the spikelet differentiation stage. 完熟玄穀中の亜鉛含有量が、4.0〜12.0mg/100gである請求項4〜7のいずれか1項記載の製造法。   The production method according to any one of claims 4 to 7, wherein the content of zinc in the ripe brown grain is 4.0 to 12.0 mg / 100 g. コムギが、パンコムギ(Triticum aestivum)、デューラムコムギ(Triticum durum)、クラブコムギ(Triticum compactum)、エンマコムギ(Triticum dicoccum)、ポーランドコムギ(Triticum polonicum)、イギリスコムギ(Triticum turgidum)、スペルトコムギ(Triticum spelta)、ヒトツブコムギ(Triticum monococcum)及びその交雑種から選ばれる請求項4〜8のいずれか1項記載の製造法。 Wheat, bread wheat (Triticum aestivum), durum wheat (Triticum durum), club wheat (Triticum compactum), Enmakomugi (Triticum dicoccum), Poland wheat (Triticum polonicum), United Kingdom wheat (Triticum turgidum), spelled (Triticum spelta) The production method according to any one of claims 4 to 8, which is selected from the group consisting of Triticum monococcum and hybrids thereof. 亜鉛濃度として0.01〜2重量%含有する、コムギの葉面又は小穂散布用液であって、完熟玄穀中に亜鉛を4.0mg/100g以上含有するコムギの製造用資材。   A wheat leaf or spikelet application liquid containing 0.01 to 2% by weight of zinc as a zinc concentration, wherein the mature ripe brown grains contain 4.0 mg / 100 g or more of zinc. さらに海藻抽出物を含有するものである請求項10記載の資材。   Furthermore, the material of Claim 10 containing a seaweed extract. コムギが、パンコムギ(Triticum aestivum)、デューラムコムギ(Triticum durum)、クラブコムギ(Triticum compactum)、エンマコムギ(Triticum dicoccum)、ポーランドコムギ(Triticum polonicum)、イギリスコムギ(Triticum turgidum)、スペルトコムギ(Triticum spelta)、ヒトツブコムギ(Triticum monococcum)及びその交雑種から選ばれるものである請求項10又は11記載の資材。 Wheat, bread wheat (Triticum aestivum), durum wheat (Triticum durum), club wheat (Triticum compactum), Enmakomugi (Triticum dicoccum), Poland wheat (Triticum polonicum), United Kingdom wheat (Triticum turgidum), spelled (Triticum spelta) The material according to claim 10 or 11, wherein the material is selected from human wheat wheat ( Triticum monococcum ) and hybrids thereof.
JP2007113302A 2007-04-23 2007-04-23 High zinc content wheat Active JP5006686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113302A JP5006686B2 (en) 2007-04-23 2007-04-23 High zinc content wheat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113302A JP5006686B2 (en) 2007-04-23 2007-04-23 High zinc content wheat

Publications (2)

Publication Number Publication Date
JP2008263896A true JP2008263896A (en) 2008-11-06
JP5006686B2 JP5006686B2 (en) 2012-08-22

Family

ID=40044310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113302A Active JP5006686B2 (en) 2007-04-23 2007-04-23 High zinc content wheat

Country Status (1)

Country Link
JP (1) JP5006686B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102227977A (en) * 2011-04-16 2011-11-02 常天佑 Method for improving cold resistance of late-sowed wheat

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624884A (en) * 1991-09-04 1994-02-01 Kiyotake Aoki Foliage dressing agent for crop and its dressing method
JP2002017163A (en) * 2000-07-06 2002-01-22 Goko:Kk Growth-promoting agent and method for cultivating plant by using the same
JP2002058336A (en) * 2000-08-17 2002-02-26 Mitsuharu Shimura Root stretch-fixed matter
JP2003096090A (en) * 2001-09-27 2003-04-03 Ajinomoto Co Inc Inosine l-arginine salt and its application
JP2003095821A (en) * 2001-09-25 2003-04-03 Kao Corp Plant vitality-increasing agent
JP2003192513A (en) * 2001-12-27 2003-07-09 Masao Shibuya Crop growth promoter and crop growth promoting method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624884A (en) * 1991-09-04 1994-02-01 Kiyotake Aoki Foliage dressing agent for crop and its dressing method
JP2002017163A (en) * 2000-07-06 2002-01-22 Goko:Kk Growth-promoting agent and method for cultivating plant by using the same
JP2002058336A (en) * 2000-08-17 2002-02-26 Mitsuharu Shimura Root stretch-fixed matter
JP2003095821A (en) * 2001-09-25 2003-04-03 Kao Corp Plant vitality-increasing agent
JP2003096090A (en) * 2001-09-27 2003-04-03 Ajinomoto Co Inc Inosine l-arginine salt and its application
JP2003192513A (en) * 2001-12-27 2003-07-09 Masao Shibuya Crop growth promoter and crop growth promoting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102227977A (en) * 2011-04-16 2011-11-02 常天佑 Method for improving cold resistance of late-sowed wheat

Also Published As

Publication number Publication date
JP5006686B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
KR101812553B1 (en) Composite peptide selenoprotein nutrient solution, preparation method and application thereof
CN103864518B (en) A kind of complete water-soluble xanthohumic acid tobacco fertilizer special for organic and preparation method thereof
CN107047029A (en) The beneficial micro- SOD sweet potatoes of health and its production method
CN102336606A (en) Crop nutrient solution prescription and preparation method thereof
Mazhar et al. Zinc-aspartate-mediated drought amelioration in maize promises better growth and agronomic parameters than zinc sulfate and L-aspartate.
Phuphong et al. Effects of foliar application of zinc on grain yield and zinc concentration of rice in farmers’ fields
JP5022702B2 (en) Beans with high zinc content
KR101225890B1 (en) Manufacturing method of functionality-strengthened liquid fertilizer using seaweed
JP2008263891A (en) High zinc-containing tuber and root
RU2670061C2 (en) Method of enrichment of vegetable cultivars of the pumpking family (cucurbitaceae) with microelements
JP5291890B2 (en) Rice with high zinc content
JP5006686B2 (en) High zinc content wheat
JP5006685B2 (en) Zinc-rich buckwheat
CN105906443A (en) Fertilizer special for non-polluted rice and preparation method thereof
CN110178677A (en) A kind of implantation methods of dry-hot valley hyacinth bean and grape interplanting
JP2008263893A (en) High zinc corn grain
JP2008263895A (en) High zinc-containing axial root
Mystkowska The content of iron and manganese in potato tubers treated with biostimulators and their nutritional value.
Badawy et al. Productivity of some faba bean cultivars and its pan bread characteristics as influenced by organic fertilizers under newly reclaimed salinity sandy soil
Mahdi et al. Interaction of micro and macro elements with manure on barley feed yield and soil nutrient content in Sistan region
Shams et al. Response of quinoa to sowing dates and chemical composition of its grain
Gupta et al. Influence of bio-chemical fertilizers on growth and yield of finger millet (Eleusine coracana L.).
CN106518282A (en) Spraying liquid for selenium-enriched rice paddy planting
Al-Hubaity et al. EFFECT OF FOLIAR SPRAYING WITH ZINC, ASCORBIC AND GIBBERELLIC ACIDS ON GROWTH, YIELD OF EGGPLANTS GROWN UNDER UNHEATED PLASTIC HOUSE
Roljević et al. Effects of organic and microbiological fertilizers on morphological and productive characteristics of triticale in the organic farming system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5006686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250