JP2008263893A - High zinc corn grain - Google Patents

High zinc corn grain Download PDF

Info

Publication number
JP2008263893A
JP2008263893A JP2007113299A JP2007113299A JP2008263893A JP 2008263893 A JP2008263893 A JP 2008263893A JP 2007113299 A JP2007113299 A JP 2007113299A JP 2007113299 A JP2007113299 A JP 2007113299A JP 2008263893 A JP2008263893 A JP 2008263893A
Authority
JP
Japan
Prior art keywords
corn
zinc
zea mays
mays var
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007113299A
Other languages
Japanese (ja)
Inventor
Hiroshi Soejima
洋 副島
Hidefumi Shinoda
英史 篠田
Minoru Takahashi
穣 高橋
Keita Hirose
慶多 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Seed Co Ltd
Original Assignee
Snow Brand Seed Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Seed Co Ltd filed Critical Snow Brand Seed Co Ltd
Priority to JP2007113299A priority Critical patent/JP2008263893A/en
Publication of JP2008263893A publication Critical patent/JP2008263893A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide corn containing zinc in brown cereals at high concentration, and to provide a method for producing the corn. <P>SOLUTION: Corn mature grains contain ≥2.0 mg/100g of zinc in brown cereals. The method for producing the corn which contains ≥2.0 mg/100g of zinc in brown cereals includes the step of scattering a liquid which has a zinc concentration of 0.01-2 wt.%, on a leaf surface, or a leaf surface and a female ear adhesion part from a corn female ear forming period. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、子実中に亜鉛を高濃度含有し、食品また食品材料として有用なトウモロコシ及びその製造法に関する。   The present invention relates to a corn containing a high concentration of zinc in a grain and useful as a food or food material and a method for producing the same.

ヒトが生命を維持するためには鉄(Fe)、銅(Cu)、亜鉛(Zn)、マンガン(Mn)、コバルト(Co)、モリブデン(Mo)、バナジウム(V)、セレン(Se)、クロム(Cr)、ニッケル(Ni)、ヨウ素(I)、ケイ素(Si)、フッ素(F)、ヒ素(As)、鉛(Pb)などといった微量金属元素を体外から摂取する必要があり、これらの元素は必須元素と呼ばれている(非特許文献1)。なかでも亜鉛(Zn)は人体内に微量金属元素としては鉄についで多く含まれており、カルボキシペプチダーゼ、炭酸脱水素酵素、アルコール脱水素酵素などの重要な酵素に含有され、体内の代謝系で重要な役割を担っていることが知られている。また、亜鉛が欠乏すると成長障害、性機能低下、皮膚や毛髪の損傷、味覚異常などを示すことが知られており問題となっている。さらに、成人の亜鉛所要量は1日当たり12〜15mgとされている一方で、平均的な日本食では1日あたり9mg程度しか亜鉛を摂取できないとされ、日本人の亜鉛不足が問題視されている(非特許文献2)。このことから平成14年には厚生労働省が栄養機能食品成分として亜鉛を追加し、また平成16年には文部科学省により給食中亜鉛含量の目標値が設定されるなどといった公的機関による対策が講じられている。   In order to maintain human life, iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), cobalt (Co), molybdenum (Mo), vanadium (V), selenium (Se), chromium It is necessary to ingest trace metal elements such as (Cr), nickel (Ni), iodine (I), silicon (Si), fluorine (F), arsenic (As), and lead (Pb) from outside the body. Is called an essential element (Non-patent Document 1). Among them, zinc (Zn) is abundantly contained in the human body after iron as a trace metal element, and is contained in important enzymes such as carboxypeptidase, carbonic acid dehydrogenase, and alcohol dehydrogenase, It is known to play an important role. In addition, lack of zinc is known to cause problems such as growth failure, decreased sexual function, skin and hair damage, and abnormal taste. Furthermore, while the zinc requirement for adults is 12-15 mg per day, the average Japanese food is said to be able to ingest only about 9 mg of zinc per day. Non-patent document 2). Therefore, in 2002, the Ministry of Health, Labor and Welfare added zinc as a nutrient functional food ingredient, and in 2004, the Ministry of Education, Culture, Sports, Science and Technology set a target value for the zinc content during school meals. Has been taken.

以上のように、亜鉛(Zn)は人体が生命活動を営む上で重要であるため、適正量を日常的な食事によって摂取することが望まれている。しかしながら、これらの元素を多く含む食品は比較的限られている。例えば亜鉛(Zn)は牡蠣(カキ)中には13.2mg/100g、牛レバーには3.8mg/100gといった高い濃度で含有されている(非特許文献3)。しかしながら、現在の日本人の食生活習慣においてこれらの食材を毎日摂取するのは一般的とはいえない。これに対してトウモロコシはパンやうどん、スパゲティなど麺類などに加工されて日常的に摂取できる食材といえる。この点からトウモロコシにこれらの微量金属元素の含有量を高めることができれば有用と考えられるが、トウモロコシの栽培法に関する技術分野では微量金属元素の研究は必要最低限の施肥方法などの研究は行われているものの、可食部に積極的に取り込ませる技術については満足できるものではなかった。   As described above, since zinc (Zn) is important for the human body to carry out life activities, it is desired to take an appropriate amount by daily eating. However, foods rich in these elements are relatively limited. For example, zinc (Zn) is contained at a high concentration of 13.2 mg / 100 g in oysters (oysters) and 3.8 mg / 100 g in beef liver (Non-patent Document 3). However, it is not common to take these ingredients every day in the current Japanese dietary habits. In contrast, corn is processed into noodles such as bread, udon and spaghetti, and can be said to be a daily food. From this point of view, it would be useful if the content of these trace metal elements could be increased in corn, but in the technical field related to corn cultivation methods, research on trace metal elements such as the minimum required fertilization method was conducted. However, it was not satisfactory for the technology to be actively incorporated into the edible part.

トウモロコシではないものの、最近ライムギの子実中の亜鉛含量を高めるために遺伝子組み換えによってシロイヌナズナ由来の亜鉛トランスポーター遺伝子を過剰発現させるという技術が開発された。しかしながら、この遺伝子組み換え体に亜鉛を施肥しても亜鉛吸収速度は高まらなかった(非特許文献4)。この原因については亜鉛トランスポーター遺伝子が発現していても亜鉛が存在すると他の金属トランスポータータンパク質でみられる(非特許文献5)ように、翻訳後調節によって亜鉛トランスポータータンパク質が消失してしまうためではないかと考察されている。このように現在先端的な技術である遺伝子組み換え技術を用いても作物の可食部に亜鉛などの微量金属元素をとりこませることは困難である。   Although it is not maize, recently a technique has been developed to overexpress the zinc transporter gene from Arabidopsis thaliana by genetic modification in order to increase the zinc content in rye grains. However, even when fertilized with this genetically modified product, the rate of zinc absorption did not increase (Non-Patent Document 4). About this cause, even if the zinc transporter gene is expressed, if zinc is present, the zinc transporter protein disappears due to post-translational regulation, as seen in other metal transporter proteins (Non-patent Document 5). It is considered that. In this way, it is difficult to incorporate trace metal elements such as zinc into the edible part of crops even using genetically modified technology, which is the most advanced technology at present.

また、従来の施肥技術の一つとして葉面散布法も実用化されている。この方法は散布液が直接接触する細胞中に肥料成分を取り込ませることは可能であるため、葉の要素欠乏症状の防止もしくは改善させるといったことは出来る。しかしながら、葉から種子中に転流させる、すなわち、複数の細胞間を移行させることによって、散布液が直接接触することのない種子中に金属元素含量を高濃度で蓄積させるといった技術はみられなかった。特に亜鉛は窒素、リン、カリウム、マグネシウムなどといった転流しやすい元素ではない(非特許文献6)ため、従来の葉面散布方法では種子中に高濃度で蓄積させることは困難であった。
桜井・田中(編著)1993.生物無機化学.廣川書店 冨田1998.元気になるミネラル 亜鉛パワーの秘密.宙出版 香川(監)2003.『五訂食品分析表2003』女子栄養大学出版部 Rameshら2004.Plant Mol.Biol. Connolyら2002.Plant Cell Marschner1995.Mineral Nutrition of Higher Plants(2nd ed.)Academic Press
In addition, a foliar spray method has been put to practical use as one of the conventional fertilization techniques. In this method, the fertilizer component can be taken into the cells that are directly in contact with the spray solution, so that the leaf element deficiency symptoms can be prevented or improved. However, there has been no technique for accumulating metal element content at a high concentration in seeds that are not directly contacted by the spray solution by translocation from the leaves into the seeds, that is, by transferring between cells. It was. In particular, zinc is not an easily commutable element such as nitrogen, phosphorus, potassium, magnesium, etc. (Non-patent Document 6), and therefore it has been difficult to accumulate high concentrations in seeds by the conventional foliar application method.
Sakurai and Tanaka (edited) 1993. Bioinorganic chemistry. Yodogawa Shoten Iwata 1998. Energetic minerals The secret of zinc power. Air publication Kagawa (Director) 2003. "Fiveth Food Analysis Table 2003"Women's Nutrition University Press Ramesh et al. 2004. Plant Mol. Biol. Connolly et al. 2002. Plant Cell Marschner 1995. Mineral Nutrition of Higher Plants (2nd ed.) Academic Press

本発明の目的は、トウモロコシの可食部、すなわち子実中に亜鉛を高濃度含有するトウモロコシ及びその製造法を提供することにある。   An object of the present invention is to provide a corn edible part, that is, a corn containing a high concentration of zinc in a grain and a method for producing the same.

そこで本発明者は、トウモロコシの子実中に亜鉛を高濃度で取り込ませるべく種々検討した結果、全く意外にも、亜鉛含有液を葉面又は雌穂着生部位に散布することにより、土壌に施用する場合に比べて高濃度に子実中に取り込まれ、子実中の亜鉛濃度が従来にない高濃度のトウモロコシが得られることを見出し、本発明を完成した。   Therefore, as a result of various studies to incorporate zinc into corn grains at a high concentration, the present inventor unexpectedly applied a zinc-containing solution to the foliage or ear-growing sites, thereby applying soil to the soil. As a result, it was found that a corn having a high concentration of unconventional zinc was obtained by incorporating into a grain at a higher concentration than when applied, and the present invention was completed.

すなわち、本発明は、玄穀中に亜鉛を2.0mg/100g以上含有するトウモロコシ完熟子実を提供するものである。
また本発明は、亜鉛を1.5mg/100g(新鮮重)以上含有するスイートコーン未熟子実を提供するものである。
That is, the present invention provides a mature corn that contains 2.0 mg / 100 g or more of zinc in the grain.
Moreover, this invention provides the sweet corn immature grain which contains 1.5 mg / 100g (fresh weight) or more of zinc.

また、本発明は、亜鉛濃度として0.01〜2重量%含有する液を、トウモロコシの雌穂形成期から葉面又は葉面及び雌穂着生部位に散布することを特徴とする完熟子実玄穀中に亜鉛を2.0mg/100g以上含有するトウモロコシの製造法を提供するものである。
さらに本発明は、亜鉛濃度として0.01〜2重量%含有する液を、トウモロコシの雌穂形成期から葉面又は葉面及び雌穂着生部位に散布することを特徴とする未熟子実中に亜鉛を1.5mg/100g(新鮮重)以上含有するスイートコーンの製造法を提供するものである。
In addition, the present invention provides a fully matured fruit genus characterized in that a solution containing 0.01 to 2% by weight of zinc as a zinc concentration is sprayed on the foliage or the foliage and the ear growth site from the ear stage of corn. The present invention provides a method for producing corn containing 2.0 mg / 100 g or more of zinc in cereal.
Further, in the immature grain according to the present invention, a solution containing 0.01 to 2% by weight of zinc as a zinc concentration is sprayed on a leaf surface or a leaf surface and an ear growing part from the ear stage of corn. The present invention provides a method for producing sweet corn containing 1.5 mg / 100 g (fresh weight) or more of zinc.

また、本発明は、亜鉛濃度として0.01〜2重量%含有するトウモロコシの葉面又は雌穂着生部位散布用液であって、完熟子実玄穀中に亜鉛を2.0mg/100g以上含有するトウモロコシ製造用資材を提供するものである。
さらに本発明は、亜鉛濃度として0.01〜2重量%含有するトウモロコシの葉面又は雌穂着生部位散布用液であって、未熟子実中に亜鉛を1.5mg/100g(新鮮重)以上含有するスイートコーン製造用資材を提供するものである。
Further, the present invention is a liquid for spraying corn foliage or ear-growing parts containing 0.01 to 2% by weight of zinc as a zinc concentration, and containing 2.0 mg / 100 g or more of zinc in ripe corn grains To provide corn manufacturing materials.
Furthermore, the present invention is a liquid for spraying corn foliage or ear-growing parts containing 0.01 to 2% by weight of zinc as a zinc concentration, and 1.5 mg / 100 g (fresh weight) of zinc in immature grains The material for manufacturing sweet corn containing the above is provided.

本発明のトウモロコシ子実は、従来遺伝子組み換え技術によっても作製し得なかった高濃度の亜鉛を含有しており、栄養価の高い食品及び食品材料として有用である。
また、本発明のトウモロコシの製造法は、土壌施用でなく、葉面等への散布であることから、土壌に亜鉛を大量に施肥した場合に生じるとされている、土壌中の鉄の吸収移動を阻害し、鉄欠乏症状を引き起こしてしまう、いわゆる“重金属誘導クロロシス”という問題(熊沢・西沢1976.植物の養分吸収.東京大学出版会)が生じない。また、土壌に大量に施用した場合は河川への流亡も環境保全上問題となる。例えば日本においては平成15年の環境基本法改正により河川や海水中の亜鉛濃度基準が10〜30μg/L以下と設定されているが、本発明方法によれば、かかる問題も生じない。
The corn grain of the present invention contains a high concentration of zinc that could not be produced by conventional genetic recombination techniques, and is useful as a food and food material with high nutritional value.
In addition, since the method for producing corn of the present invention is not applied to the soil but is applied to the foliage and the like, it is said to occur when fertilizing a large amount of zinc in the soil, and the absorption and transfer of iron in the soil The problem of so-called “heavy metal-induced chlorosis” (Kumazawa and Nishizawa 1976. Absorption of plant nutrients. The University of Tokyo Press) does not occur. In addition, when applied to soil in large quantities, runoff into rivers becomes a problem for environmental conservation. For example, in Japan, the zinc concentration standard in rivers and seawater is set to 10 to 30 μg / L or less by the amendment of the Basic Environment Law in 2003. However, according to the method of the present invention, such a problem does not occur.

本発明のトウモロコシ完熟子実は、玄穀中に亜鉛を2.0mg/100g以上含有する。通常完熟トウモロコシ玄穀中の亜鉛濃度は1.5〜1.9mg/100gとされており、本発明のように高濃度の亜鉛を含有する完熟トウモロコシ子実は知られていない。完熟トウモロコシ玄穀中のより好ましい亜鉛濃度は2.0〜8.0mg/100gであり、より好ましくは2.5〜8.0mg/100g、特に好ましくは2.5〜5.0mg/100gである。ここで、亜鉛濃度は原子吸光法、ICP発光分析法、ICP質量分析法により測定でき、この濃度は乾燥物100g中の亜鉛含有量(mg)である。   The matured corn of the present invention contains 2.0 mg / 100 g or more of zinc in the brown grain. Normally, the concentration of zinc in ripe corn grain is 1.5 to 1.9 mg / 100 g, and no mature corn grain containing a high concentration of zinc as in the present invention is known. More preferable zinc concentration in ripe corn unpolished grains is 2.0 to 8.0 mg / 100 g, more preferably 2.5 to 8.0 mg / 100 g, particularly preferably 2.5 to 5.0 mg / 100 g. . Here, the zinc concentration can be measured by atomic absorption method, ICP emission spectrometry, and ICP mass spectrometry, and this concentration is the zinc content (mg) in 100 g of the dried product.

本発明のスイートコーン未熟子実は、亜鉛を1.5mg/100g(新鮮重)以上含有する。通常スイートコーン未熟子実中の亜鉛濃度は0.8〜1.2mg/100gとされており、本発明のように高濃度の亜鉛を含有する完熟トウモロコシ子実は知られていない。完熟トウモロコシ玄穀中のより好ましい亜鉛濃度は1.5〜5.0mg/100gであり、特に好ましくは1.5〜3.0mg/100gである。   The sweet corn immature grain of the present invention contains 1.5 mg / 100 g (fresh weight) or more of zinc. Usually, the zinc concentration in immature sweet corn grains is 0.8 to 1.2 mg / 100 g, and no mature corn grains containing high concentrations of zinc as in the present invention are known. A more preferable zinc concentration in ripe corn unpolished grains is 1.5 to 5.0 mg / 100 g, particularly preferably 1.5 to 3.0 mg / 100 g.

本発明におけるトウモロコシとしては、デントコーン(Dent corn、Zea mays var. indentata)、フリントコーン(Flint corn、Zea mays var. indurata)、ポップコーン(Popcorn、Zea mays var. everta)、スイートコーン(Sweet corn、Zea mays var. saccharata)及びその交雑種等が挙げられるが、このうちデントコーン、フリントコーン、スイートコーンが好ましく、特にデントコーン、スイートコーンが好ましい。 Examples of corn in the present invention include dent corn (Dent corn, Zea mays var. Indentata), flint corn (Flint corn, Zea mays var. Indurata), popcorn (Popcorn, Zea mays var. Everta), sweet corn (Sweet corn, Zea mays var. saccharata) and hybrids thereof, among which dent corn, flint corn and sweet corn are preferable, and dent corn and sweet corn are particularly preferable.

本発明の子実中に高濃度亜鉛を含有するトウモロコシは、亜鉛濃度として0.01〜2重量%含有する液を、雌穂形成期から葉面又は葉面及び雌穂着生部位に散布することにより製造できる。以下、製造方法及びトウモロコシ製造用資材におけるトウモロコシには、未熟子実も含む。
本発明者等の検討によれば、トウモロコシの子実中に亜鉛を高濃度に吸収させるには、土壌処理でなく、葉面又は雌穂着生部位散布が好ましいことが判明した。従って、亜鉛濃度として0.01〜2重量%含有し、トウモロコシの葉面又は葉面及び雌穂着生部位散布用液は、完熟子実玄穀中に亜鉛を2.0mg/100g以上、未熟種子中に1.5mg/100g(新鮮重)以上含有するトウモロコシ製造用資材として有用である。
The corn containing high-concentration zinc in the seeds of the present invention sprays a solution containing 0.01 to 2% by weight of zinc as a zinc concentration on the foliage surface or foliage surface and on the ear growth site from the ear formation stage. Can be manufactured. Hereinafter, corn in the production method and corn production material includes immature grains.
According to the study by the present inventors, it has been found that foliar or ear-growth site spraying is preferable, rather than soil treatment, in order to absorb zinc in corn grains at a high concentration. Therefore, the zinc concentration is 0.01 to 2% by weight, and the liquid for spraying the corn leaves or leaves and the ear growth area is 2.0 mg / 100 g or more of zinc in the fully mature grain cereal, immature seeds It is useful as a corn production material containing 1.5 mg / 100 g (fresh weight) or more.

散布に用いる液(以下、葉面散布資材ということもある)は、亜鉛を0.01〜2重量%含有する液が好ましい。当該液を調製するために用いる亜鉛としては水溶性があれば特に制限はなく、硫酸亜鉛、塩化亜鉛、硝酸亜鉛、蟻酸亜鉛、酢酸亜鉛、及びEDTA亜鉛のようなキレート体亜鉛などが挙げられる。このうち、子実への亜鉛移行性の点から硫酸亜鉛が特に好ましい。
葉面散布資材中の亜鉛濃度としては、亜鉛として0.02〜1重量%が好ましく、特に0.1〜0.5重量%が好ましい。
The liquid used for spraying (hereinafter sometimes referred to as foliar spray material) is preferably a liquid containing 0.01 to 2% by weight of zinc. Zinc used for preparing the liquid is not particularly limited as long as it has water solubility, and examples thereof include zinc sulfate, zinc chloride, zinc nitrate, zinc formate, zinc acetate, and chelate zinc such as EDTA zinc. Of these, zinc sulfate is particularly preferred from the viewpoint of zinc migration to the grain.
The zinc concentration in the foliar spray material is preferably 0.02 to 1% by weight, particularly 0.1 to 0.5% by weight as zinc.

また、本発明で用いる葉面散布資材には、海藻抽出物を含有させることにより、トウモロコシ子実への亜鉛移行率が向上する。海藻としては褐藻類が好ましく、なかでもコンブ目(Laminariales)が好ましい。さらにチガイソ科(Alariaceae)が好ましい。最も好適なのはアイヌワカメ(Alaria praelonga)である。これらの原料となる海藻は水分を含んだままでもよいし、乾燥させてもよいが、処理のしやすさを考慮すると乾燥物のほうが好ましい。 Moreover, the foliar spray material used by this invention improves the zinc transfer rate to a corn grain by containing a seaweed extract. As the seaweed, brown algae are preferable, and in particular, the order of the order is Laminariales. Furthermore, the Algaceae family is preferable. Most preferred is Alaria praelonga . These seaweeds as raw materials may contain moisture or may be dried, but a dried product is more preferable in consideration of ease of treatment.

海藻抽出物の葉面散布資材中の含有量は、乾燥物換算で0.1〜20重量%、さらに1〜10重量%、特に3〜5重量%が好ましい。   The content in the leaf spray material of the seaweed extract is preferably 0.1 to 20% by weight, more preferably 1 to 10% by weight, and particularly preferably 3 to 5% by weight in terms of dry matter.

海藻抽出物は、例えば以下の如くして調製できる。材料となる海藻は希硫酸水あるいは希塩酸水などの酸を加え、60℃以上に加温することによって加水分解を行う。この場合、用いる酸の種類は硫酸が好ましく、濃度は0.5〜2Nが好ましい。加温する温度については分解速度の速さから煮沸するのが好ましい。得られた加水分解物は適宜アルカリを加えることによってpHを調整したのち、遠心分離又はろ過により固形分を取り除き、海藻抽出物を得る。好ましい葉面散布資材を得るには、この海藻抽出物そのもの又は希釈液に亜鉛を適宜添加すればよい。   The seaweed extract can be prepared, for example, as follows. Seaweed as a material is hydrolyzed by adding an acid such as dilute sulfuric acid or dilute hydrochloric acid and heating to 60 ° C. or higher. In this case, the type of acid used is preferably sulfuric acid, and the concentration is preferably 0.5 to 2N. About the temperature to heat, it is preferable to boil from the speed of a decomposition rate. After adjusting the pH of the obtained hydrolyzate by adding an alkali as appropriate, the solid content is removed by centrifugation or filtration to obtain a seaweed extract. In order to obtain a preferable foliar spray material, zinc may be appropriately added to the seaweed extract itself or a diluted solution.

葉面散布資材には、葉面及び雌穂着生部位への付着性を高めるため、農業上通常用いられる展着剤、界面活性剤を添加するのが好ましい。用いる展着剤、界面活性剤は特に制限はないが、界面活性剤としては非イオン性、陰イオン性、陽イオン性及び両イオン性のいずれも使用することが出来る。例を挙げると、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、オキシエチレンポリマー、オキシプロピレンポリマー、ポリオキシエチレンアルキルリン酸エステル、脂肪酸塩、アルキル硫酸エステル塩、アルキルスルホン酸塩、アルキルアリールスルホン酸塩、アルキルリン酸塩、アルキルリン酸エステル塩、ポリオキシエチレンアルキル硫酸エステル、第四級アンモニウム塩、オキシアルキルアミン、レシチン、サポニン等である。また、必要に応じてゼラチン、カゼイン、デンプン、寒天、ポリビニルアルコール、アルギン酸ソーダなどを補助剤として用いることが出来る。   It is preferable to add a spreading agent and a surfactant that are usually used in agriculture to enhance the adhesion to the foliage and ear growth sites in the foliar spray material. The spreading agent and surfactant used are not particularly limited, and any of nonionic, anionic, cationic and amphoteric surfactants can be used as the surfactant. For example, polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, oxyethylene polymer, oxypropylene polymer, polyoxyethylene alkyl phosphate ester , Fatty acid salt, alkyl sulfate ester salt, alkyl sulfonate salt, alkyl aryl sulfonate salt, alkyl phosphate salt, alkyl phosphate ester salt, polyoxyethylene alkyl sulfate ester, quaternary ammonium salt, oxyalkylamine, lecithin, Such as saponin. If necessary, gelatin, casein, starch, agar, polyvinyl alcohol, sodium alginate and the like can be used as auxiliary agents.

葉面散布資材を散布する場合、農業上通常用いられる葉面散布用肥料と混合してもよい。この場合、肥料成分としては特に制限はないが、溶解後アルカリ性を示すものについては亜鉛が塩として沈殿を起こすため好ましくない。混合する場合に好ましい肥料成分を例示すれば、尿素、燐酸アンモニウム、塩酸アンモニウム、硫酸アンモニウム、燐酸、ピロ燐酸、などが挙げられる。中でも尿素の混用は亜鉛の吸収量を高める場合があるため好ましい(MortvedtとGilkes1993.Zinc fertilizer.“Zinc in soils and plants”Kluwer academic publishers)。   When foliar spraying material is sprayed, it may be mixed with a foliar fertilizer usually used in agriculture. In this case, although there is no restriction | limiting in particular as a fertilizer component, since the thing which shows alkalinity after melt | dissolution causes zinc to precipitate as a salt, it is not preferable. Examples of preferable fertilizer components when mixing include urea, ammonium phosphate, ammonium hydrochloride, ammonium sulfate, phosphoric acid, pyrophosphoric acid, and the like. Among them, the use of urea is preferable because it may increase the amount of zinc absorbed (Mortvedt and Gilkes 1993. Zinc fertilizer. “Zinc in soils and plants” Kluwer academic publishers).

本発明のトウモロコシを栽培する場合の土壌に施用する基肥・追肥はその地域で行われている施肥量・施肥方法に準拠すればよい。ただし、土壌に亜鉛処理すれば子実中亜鉛含量をさらに増加させることが出来ることは言うまでもない。   The basic fertilizer and topdressing applied to the soil when cultivating the corn of the present invention may be based on the fertilizing amount and fertilizing method performed in the region. However, it goes without saying that if the soil is treated with zinc, the zinc content in the grain can be further increased.

本発明のトウモロコシを栽培する場合の栽植密度は、その地域で推奨されている密度でよいが、葉面散布資材中の亜鉛濃度を0.1重量%以上とする場合は、減収を軽減する目的で栽植密度(単位面積あたり播種量)を通常より1.2〜1.5倍高めることが好ましい。   The planting density in the case of cultivating the corn of the present invention may be the density recommended in the region, but when the zinc concentration in the foliar spray material is 0.1% by weight or more, the purpose of reducing the decrease in sales It is preferable to increase the planting density (seeding amount per unit area) by 1.2 to 1.5 times.

葉面散布資材の散布方法としては、雌穂着生部位及び葉の裏面まで葉面散布資材が展着するようにすることが望ましい。スプレーヤーを使用する場合は散布液量を1ヘクタール当たり1000リットル以上、好ましくは1000〜3000リットル、より好ましくは1500〜2500リットルとすることが望ましい。その際、噴霧器の加圧は2〜3MPaと高めに設定することが好ましい。また、噴孔を小さくするなど、噴霧される液の粒子径が小さくなるような装置を使用した方がよい点については言うまでもない。また、静電気を利用することにより噴霧液の植物体への付着を促進させるいわゆる静電噴霧機や静電噴霧ノズル口を用いることも望ましい。   As a method for spraying the foliar spraying material, it is desirable that the foliar spraying material spreads to the ear growing part and the back surface of the leaf. When using a sprayer, it is desirable that the amount of sprayed liquid is 1000 liters or more per hectare, preferably 1000 to 3000 liters, more preferably 1500 to 2500 liters. In that case, it is preferable to set the pressurization of the sprayer as high as 2 to 3 MPa. Needless to say, it is better to use an apparatus that reduces the particle diameter of the sprayed liquid, such as reducing the nozzle hole. It is also desirable to use a so-called electrostatic sprayer or an electrostatic spray nozzle port that promotes adhesion of the spray liquid to the plant body by utilizing static electricity.

葉面散布資材の散布時期については雌穂形成期から苞葉(husk)が黄化する時期までがよく、特に穂ばらみ期〜黄化直前までの時期が好ましい。葉面散布資材の散布間隔については1日1回乃至2週間に1回が好ましい。さらに1週間〜2週間に1回散布することがより好ましい。また、作物生育期間中での合計散布回数は2〜8回が好ましい。   The application time of the foliar application material is from the ear formation period to the time when the husk is yellowed, and the period from the booting stage to just before the yellowing is particularly preferable. The interval between the foliar spraying materials is preferably once a day to once every two weeks. Further, it is more preferable to spray once every one to two weeks. Further, the total number of spraying during the crop growing period is preferably 2 to 8 times.

次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to a following example.

製造例1
海藻エキスの調製
アイヌワカメ(Alaria praelonga)、チガイソ(Alaria crassifola)、マコンブ(Laminaria japonica)、スジメ(Costraia costata)の乾燥物はそれぞれハサミで5cm角に細断した。これらの細断物450gに1N硫酸を2,550mL加え、2時間撹拌しながら煮沸した。得られた液体は容器をクラッシュアイス内に入れることにより冷却し、ついで遠心分離機により8,000G×60分で遠心分離した。得られた上澄み1.5Lに水1Lを加えて希釈し、硫酸亜鉛七水和物2.5kgを加えて溶かした。この液に水酸化カリウムを加えpH2.0に調整した。このうち、アイヌワカメを原料としたものを亜鉛入りアイヌワカメエキスと以後称することとする。なお、アイヌワカメ現物中の亜鉛含量は2.34mg/kgであることから、亜鉛含有アイヌワカメエキス中でアイヌワカメそのものに由来する亜鉛は0.11mg/kgに過ぎず、実質上無視できる。
Production Example 1
Preparation of seaweed extract Ainu sea turtle ( Alaria praelonga ), chigaiso ( Alaria crassifola ), macombu ( Laminaria japonica ), sujime ( Costraia costata ) dried products were each cut into 5 cm squares with scissors. 2,550 mL of 1N sulfuric acid was added to 450 g of these shredded products and boiled with stirring for 2 hours. The obtained liquid was cooled by putting the container in crushed ice, and then centrifuged at 8,000 G × 60 minutes by a centrifuge. 1 L of water was added to 1.5 L of the resulting supernatant for dilution, and 2.5 kg of zinc sulfate heptahydrate was added to dissolve. Potassium hydroxide was added to this solution to adjust to pH 2.0. Among these, what uses Ainu-wakame as a raw material is hereinafter referred to as zinc-containing Ainu-wakame extract. In addition, since the zinc content in the actual Ainu turtle is 2.34 mg / kg, the zinc derived from the Ainu turtle itself in the zinc-containing Ainu turtle extract is only 0.11 mg / kg and can be substantially ignored.

実施例1
北海道長沼町雪印種苗(株)北海道研究農場内の試験圃場においてトウモロコシ品種「リッチモンド」(雪印種苗)を栽培した。基肥は『北海道施肥ガイド』(北海道農政部編2002、社団法人 北海道農業改良普及協会)のサイレージ用トウモロコシの施肥基準に準じて行った(標準施肥区)が、その一部に硫酸亜鉛(ZnSO4)を亜鉛含量として5.7及び11.4kg/ha施用した硫酸亜鉛土壌施用区、酸化亜鉛(ZnO)を亜鉛含量として20.6及び41.2kg/ha施用した酸化亜鉛土壌施用区を設けた。播種は5月6日に行い、畦間66cm×株間22cm、一株1本立てとした。標準施肥区で生育している植物体に雌穂形成期である7月10日より2週間おきに6回、硫酸亜鉛七水和物の0.5%及び1%水溶液(亜鉛濃度としては0.11%及び0.22%)、及び製造例1に示した亜鉛含有アイヌワカメエキスの1%、2%水溶液(亜鉛濃度としては同じく、0.11%、0.22%となる)にポリオキシエチレンヘキシタン脂肪酸エステル含有展着剤アプローチBI(花王(株)社製)を0.1%加えたものを200mL/m2葉面散布した。試験は各処理2反復とした。サンプリングは収穫期である11月3日に行い、植物体を風乾後、脱穀機で玄穀を分離した。得られた玄穀は重量を測定した後、乾燥機内で90℃、3日間乾燥させた。乾燥後の子実はすみやかに乾物重を測定し、乾物率を算出した。乾燥物は超遠心粉砕機MRK−RETSCH(三田村理研工業社製)で粉砕した後、0.5gを秤量し、精密分析用硝酸(和光純薬社製)5mLを加え、テフロン(登録商標)密閉加圧分解容器にて分解した。分解液を一定量に定容し、その液をICP発光分光分析装置SPS4000(セイコーインスツルメンツ社製)によって亜鉛含量を測定した。定量値は乾物率を用いて逆算することで現物中の亜鉛含有量を算出した。
Example 1
Corn cultivar "Richmond" (Snow Brand Seedlings) was cultivated in a test field within Hokkaido Research Farm, Naganuma Town, Hokkaido. The basic fertilization was conducted according to the silage corn fertilization standards of the “Hokkaido Fertilization Guide” (Hokkaido Agricultural Administration Division 2002, Hokkaido Agricultural Improvement Promotion Association) (standard fertilization zone), but part of it was zinc sulfate (ZnSO 4 ) With zinc content of 5.7 and 11.4 kg / ha, and zinc oxide soil application with zinc oxide (ZnO) of 20.6 and 41.2 kg / ha. . The sowing was performed on May 6th, and it was set as a stand of 66 cm × 22 cm between strains and one strain per strain. The plant growing in the standard fertilized area is subjected to 0.5% and 1% aqueous solution of zinc sulfate heptahydrate 6 times every 2 weeks from July 10th, which is the ear development period. .11% and 0.22%), and 1% and 2% aqueous solutions of zinc-containing Ainu Wakame extract shown in Production Example 1 (the zinc concentration is also 0.11% and 0.22%). 200 mL / m 2 of foliar spray was added to 0.1% of oxyethylene hexitan fatty acid ester-containing spreading agent Approach BI (manufactured by Kao Corporation). The test was repeated twice for each treatment. Sampling was carried out on November 3, which is the harvest period, and the plants were air-dried and the cereals were separated with a threshing machine. The obtained unpolished grains were weighed and then dried at 90 ° C. for 3 days in a dryer. The dry weight of the dried grains was immediately measured, and the dry matter rate was calculated. The dried product was pulverized with an ultracentrifugal mill MRK-RETSCH (Mitamura Riken Kogyo Co., Ltd.), 0.5 g was weighed, 5 mL of nitric acid for precision analysis (Wako Pure Chemical Industries, Ltd.) was added, and Teflon (registered trademark) sealed. Decomposed in a pressure decomposition vessel. The decomposition solution was made up to a constant volume, and the zinc content of the solution was measured using an ICP emission spectroscopic analyzer SPS4000 (manufactured by Seiko Instruments Inc.). The zinc content in the actual product was calculated by calculating back the quantitative value using the dry matter rate.

その結果は表1に示した。土壌に硫酸亜鉛を施用し、葉面散布を行わなかった区で比較すると、もっとも玄穀中亜鉛含量が高かったのは11.4kg/ha施用区で、玄穀中亜鉛含量は1.89mg/100gで無施用区より10%高かった。土壌に酸化亜鉛を施用し、葉面散布を行わなかった区で比較すると、もっとも玄穀中亜鉛含量が高かったのは41.2kg/ha施用区であったが、玄穀中亜鉛含量は2.08mg/100gにとどまった(酸化亜鉛よりも硫酸亜鉛の効果が高かった原因としては酸化亜鉛より硫酸亜鉛の水溶性が極めて高いことが考えられる)。   The results are shown in Table 1. Compared with the area where zinc sulfate was applied to the soil and the foliar application was not performed, the area with the highest zinc content in the grain was 11.4 kg / ha, and the zinc content in the grain was 1.89 mg / It was 10% higher than the no application area at 100 g. Compared to the plots where zinc oxide was applied to the soil and no foliar was applied, the highest grain zinc content was 41.2 kg / ha, but the grain content of zinc was 2 0.08 mg / 100 g (the reason why the effect of zinc sulfate was higher than that of zinc oxide is considered to be due to the extremely high water solubility of zinc sulfate than zinc oxide).

一方、土壌に亜鉛を施用せず、硫酸亜鉛七水和物水溶液を葉面散布した区で得られたトウモロコシ玄穀中の亜鉛含量は2.04〜2.72mg/100gであり、いかなる土壌施用区よりも高かった。さらに、製造例1に示した亜鉛含有アイヌワカメエキス散布区は、散布液中の亜鉛濃度が同じであっても玄穀中亜鉛含量が高いことが明らかとなった。以上の結果から、トウモロコシの玄穀中に亜鉛を取り込ませようとする場合、一般的な肥料の施用方法である土壌施用と比較して、雌穂形成期からの葉面散布法が有効であり、さらに葉面散布液に海藻抽出物を添加することでその効果をより高めることが明らかとなった。   On the other hand, the zinc content in the corn grain obtained in the area where zinc was not applied to the soil and the zinc sulfate heptahydrate aqueous solution was sprayed on the surface was 2.04 to 2.72 mg / 100 g, and any soil application It was higher than the ward. Furthermore, it was revealed that the zinc-containing Ainu wakame extract spraying area shown in Production Example 1 has a high zinc content in the brown grain even when the zinc concentration in the spraying liquid is the same. Based on the above results, the foliar spraying method from the ear development stage is more effective when incorporating zinc into corn grain, compared to soil application, which is a common fertilizer application method. Furthermore, it was clarified that the effect was further enhanced by adding a seaweed extract to the foliar spray.

Figure 2008263893
Figure 2008263893

実施例2
北海道長沼町雪印種苗(株)北海道研究農場内の試験圃場においてスイートコーン品種「アイダホスイート88」(雪印種苗)を栽培した。基肥は『北海道施肥ガイド』(北海道農政部編2002、社団法人 北海道農業改良普及協会)のスイートコーンの施肥基準に準じて行った。播種は5月30日に行い、畦間66cm×株間40cm、一株1本立てとした。栽培中、雌穂形成期である7月26日より1週間おきに7回、実施例1と同様に硫酸亜鉛七水和物、及び製造例1に示した亜鉛含有アイヌワカメエキスにポリオキシエチレンヘキシタン脂肪酸エステル含有展着剤アプローチBI(花王(株)社製)を0.1%加えたものを150mL/m2葉面散布した。試験は各処理2反復とした。サンプリングは収穫期である9月11日に行い、未熟子実を分離し、すみやかに新鮮重を測定した後、乾燥機内で90℃、3日間乾燥させた。乾燥後の未熟子実は乾物重を測定し、乾物率を算出した。乾燥物は超遠心粉砕機MRK−RETSCH(三田村理研工業社製)で粉砕した後、0.5gを秤量し、実施例1と同様に亜鉛含量を測定した。定量値は乾物率を用いて逆算することで現物中の亜鉛含有量を算出した。
Example 2
Sweet corn variety “Idaho Sweet 88” (Snow Brand Seedlings) was cultivated at a test field in Hokkaido Research Farm, Naganuma Town, Hokkaido, Hokkaido. The basic fertilization was performed according to the fertilizer standards for sweet corn in the “Hokkaido Fertilizer Guide” (Hokkaido Agricultural Administration Division 2002, Hokkaido Agricultural Improvement Promotion Association). The seeding was performed on May 30th, with a span of 66 cm × a strain of 40 cm, and one stand. During cultivation, 7 times every other week from July 26, which is the ear formation period, zinc sulfate heptahydrate as in Example 1, and polyoxyethylene in the zinc-containing Ainu Wakame extract shown in Production Example 1 150 mL / m 2 of foliar spray was applied with 0.1% of a hexitan fatty acid ester-containing spreading agent approach BI (manufactured by Kao Corporation). The test was repeated twice for each treatment. Sampling was performed on September 11th, which is the harvest period, and immature grains were separated, immediately measured for fresh weight, and then dried in a dryer at 90 ° C. for 3 days. The immature seeds after drying were measured for dry matter weight and the dry matter rate was calculated. The dried product was pulverized with an ultracentrifugal pulverizer MRK-RETSCH (manufactured by Mitamura Riken Kogyo Co., Ltd.), 0.5 g was weighed, and the zinc content was measured in the same manner as in Example 1. The zinc content in the actual product was calculated by calculating back the quantitative value using the dry matter rate.

その結果は表2に示した。未熟子実中亜鉛含量は無散布区の0.98mg/100gに比較し、硫酸亜鉛七水和物水溶液を葉面散布した区で1.53〜1.70mg/100gであり、明らかに玄穀中の亜鉛取り込み量が高まっていた。さらに、製造例1に示した亜鉛含有アイヌワカメエキス散布区は、散布液中の亜鉛濃度が同じであっても玄穀中亜鉛含量が高いことが明らかとなった。以上の結果から、スイートコーン未熟種子中に亜鉛を取り込ませようとする場合でも、雌穂形成期からの亜鉛の継続的な葉面散布法が有効であり、さらに葉面散布液に海藻抽出物を添加することでその効果をより高めることが明らかとなった。   The results are shown in Table 2. The zinc content in immature grain is 1.53 to 1.70 mg / 100 g in the area sprayed with zinc sulfate heptahydrate aqueous solution compared to 0.98 mg / 100 g in the non-spread area, clearly brown grain The zinc uptake in the inside increased. Furthermore, it was revealed that the zinc-containing Ainu wakame extract spraying area shown in Production Example 1 has a high zinc content in the brown grain even when the zinc concentration in the spraying liquid is the same. From the above results, even when trying to incorporate zinc into immature seeds of sweet corn, the continuous foliar spray method of zinc from the ear formation stage is effective, and the seaweed extract is further added to the foliar spray solution. It became clear that the effect was further enhanced by adding.

Figure 2008263893
Figure 2008263893

Claims (17)

玄穀中に亜鉛を2.0mg/100g以上含有するトウモロコシ完熟子実。   A matured corn grain containing 2.0 mg / 100 g or more of zinc in the brown grain. 玄穀中の亜鉛含有量が2.0〜8.0mg/100gである請求項1記載のトウモロコシ完熟子実。   The matured corn of claim 1, wherein the content of zinc in the brown cereal is 2.0 to 8.0 mg / 100 g. トウモロコシが、デントコーン(Dent corn、Zea mays var. indentata)、フリントコーン(Flint corn、Zea mays var. indurata)、ポップコーン(Popcorn、Zea mays var. everta)、スイートコーン(Sweet corn、Zea mays var. saccharata)及びその交雑種から選ばれる請求項1又は2記載のトウモロコシ完熟子実。 Corn is Dent corn, Zea mays var. Indentata, Flint corn, Zea mays var. Indurata, Popcorn (Popcorn, Zea mays var. Everta), Sweet corn (Sweet corn, Zea mays var. Saccharata) ) And ripened corn according to claim 1 or 2 selected from hybrids thereof. 亜鉛を1.5mg/100g(新鮮重)以上含有するスイートコーン(Sweet corn、Zea mays var. saccharata)未熟子実。 Sweet corn ( Zea mays var. Saccharata) immature grain containing 1.5 mg / 100 g (fresh weight) or more of zinc. 亜鉛を1.5〜5.0mg/100g(新鮮重)である請求項4記載のスイートコーン(Sweet corn、Zea mays var. saccharata)未熟子実。 Sweet corn ( Zea mays var. Saccharata) immature grain according to claim 4, wherein zinc is 1.5 to 5.0 mg / 100 g (fresh weight). 亜鉛濃度として0.01〜2重量%含有する液を、トウモロコシの雌穂形成期から葉面又は葉面及び雌穂着生部位に散布することを特徴とする完熟玄穀中に亜鉛を2.0mg/100g以上含有するトウモロコシの製造法。   1. A solution containing 0.01 to 2% by weight of zinc as a zinc concentration is sprayed on the foliage or foliage surface and the ear growth site of corn from the ear formation stage of corn. A method for producing corn containing 0 mg / 100 g or more. 亜鉛濃度として0.01〜2重量%含有する液を、トウモロコシの雌穂形成期から葉面又は葉面及び雌穂着生部位に散布することを特徴とする未熟種子中に亜鉛を1.5mg/100g(新鮮重)以上含有するスイートコーンの製造法。   1.5 mg of zinc in immature seeds, characterized in that a solution containing 0.01 to 2% by weight of zinc as a zinc concentration is sprayed on the foliage or foliar surface and the ear growth site from the ear stage of corn. / Manufacturing method of sweet corn containing 100g (fresh weight) or more. 亜鉛を含有する液が、さらに海藻抽出物を含有するものである請求項6又は7記載の製造法。   The method according to claim 6 or 7, wherein the liquid containing zinc further contains a seaweed extract. 亜鉛を含有する液の散布量が、1ヘクタール当たり1000リットル以上である請求項6〜8のいずれか1項記載の製造法。   The production method according to any one of claims 6 to 8, wherein the amount of the zinc-containing liquid is 1000 liters or more per hectare. 亜鉛を含有する液の散布が、雌穂形成期から1〜2週間おきに行うものである請求項6〜9のいずれか1項記載の製造法。   The method according to any one of claims 6 to 9, wherein the zinc-containing solution is sprayed every 1 to 2 weeks from the ear formation stage. 完熟玄穀中の亜鉛含有量が、2.0〜8.0mg/100gである請求項6記載の製造法。   The production method according to claim 6, wherein the zinc content in the ripe brown grain is 2.0 to 8.0 mg / 100 g. トウモロコシが、デントコーン(Dent corn、Zea mays var. indentata)、フリントコーン(Flint corn、Zea mays var. indurata)、ポップコーン(Popcorn、Zea mays var. everta)、スイートコーン(Sweet corn、Zea mays var. saccharata)及びその交雑種から選ばれる請求項6記載の製造法。 Corn is Dent corn, Zea mays var. Indentata, Flint corn, Zea mays var. Indurata, Popcorn (Popcorn, Zea mays var. Everta), Sweet corn (Sweet corn, Zea mays var. Saccharata) ) And hybrids thereof. The production method according to claim 6. 亜鉛濃度として0.01〜2重量%含有する、トウモロコシの葉面又は雌穂着生部位散布用液であって、完熟玄穀中に亜鉛を2.0mg/100g以上含有するトウモロコシの製造用資材。   A material for producing corn, containing 0.01 to 2% by weight of zinc as a concentration of corn foliage or ears, and containing 2.0 mg / 100 g or more of zinc in ripe brown grains . さらに海藻抽出物を含有するものである請求項13記載の資材。   Furthermore, the material of Claim 13 containing a seaweed extract. トウモロコシが、デントコーン(Dent corn、Zea mays var. indentata)、フリントコーン(Flint corn、Zea mays var. indurata)、ポップコーン(Popcorn、Zea mays var. everta)、スイートコーン(Sweet corn、Zea mays var. saccharata)及びその交雑種から選ばれるものである請求項13又は14記載の資材。 Corn is Dent corn, Zea mays var. Indentata, Flint corn, Zea mays var. Indurata, Popcorn (Popcorn, Zea mays var. Everta), Sweet corn (Sweet corn, Zea mays var. Saccharata) ) And its hybrids. 15. The material according to claim 13 or 14. 亜鉛濃度として0.01〜2重量%含有する、トウモロコシの葉面又は雌穂着生部位散布用液であって、未熟子実中に亜鉛を1.5mg/100g(新鮮重)以上含有するスイートコーンの製造用資材。   Sweetening solution for spraying corn foliage or ear growing part containing 0.01 to 2% by weight of zinc, and containing 1.5 mg / 100 g (fresh weight) or more of zinc in immature grains Material for manufacturing corn. さらに海藻抽出物を含有するものである請求項16記載の資材。   Furthermore, the material of Claim 16 containing a seaweed extract.
JP2007113299A 2007-04-23 2007-04-23 High zinc corn grain Pending JP2008263893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113299A JP2008263893A (en) 2007-04-23 2007-04-23 High zinc corn grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113299A JP2008263893A (en) 2007-04-23 2007-04-23 High zinc corn grain

Publications (1)

Publication Number Publication Date
JP2008263893A true JP2008263893A (en) 2008-11-06

Family

ID=40044307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113299A Pending JP2008263893A (en) 2007-04-23 2007-04-23 High zinc corn grain

Country Status (1)

Country Link
JP (1) JP2008263893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106489487A (en) * 2016-10-24 2017-03-15 张先贵 A kind of implantation methods of zinc-rich corn

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106489487A (en) * 2016-10-24 2017-03-15 张先贵 A kind of implantation methods of zinc-rich corn

Similar Documents

Publication Publication Date Title
KR101812553B1 (en) Composite peptide selenoprotein nutrient solution, preparation method and application thereof
CN107047029A (en) The beneficial micro- SOD sweet potatoes of health and its production method
CN102336606A (en) Crop nutrient solution prescription and preparation method thereof
Mazhar et al. Zinc-aspartate-mediated drought amelioration in maize promises better growth and agronomic parameters than zinc sulfate and L-aspartate.
KR20130095892A (en) Growth-promoting rice using effective micro-organisms and cultivation method thereof
JP5022702B2 (en) Beans with high zinc content
KR101225890B1 (en) Manufacturing method of functionality-strengthened liquid fertilizer using seaweed
CN106478235A (en) A kind of rice rich in selenium Rice Cropping nutritional solution
JP2008263891A (en) High zinc-containing tuber and root
Verma et al. Ethnobotanical study of small millets from India: prodigious grain for nutritional and industrial aspects
JP4544535B2 (en) Fertilizer manufacturing method
JP5291890B2 (en) Rice with high zinc content
CN105906443A (en) Fertilizer special for non-polluted rice and preparation method thereof
CN110178677A (en) A kind of implantation methods of dry-hot valley hyacinth bean and grape interplanting
JP5006686B2 (en) High zinc content wheat
JP5006685B2 (en) Zinc-rich buckwheat
CN103435414B (en) Chitosan oligosaccharide-contained leaf spraying agent, and production method and use method thereof
JP2008263893A (en) High zinc corn grain
CN103907494A (en) Organic spirulina rice cultivation method
CN106508534A (en) Method of cultivating rice rich in selenium
CN106278666A (en) Rice rich in selenium Rice Cropping nutritional solution
JP2008263895A (en) High zinc-containing axial root
CN106495829A (en) Nutritional solution for rice rich in selenium Rice Cropping
CN106561361A (en) Selenium-enrichment rice cultivation technology
CN106518282A (en) Spraying liquid for selenium-enriched rice paddy planting