JP2008263119A - Image sensor and its manufacturing method - Google Patents

Image sensor and its manufacturing method Download PDF

Info

Publication number
JP2008263119A
JP2008263119A JP2007105823A JP2007105823A JP2008263119A JP 2008263119 A JP2008263119 A JP 2008263119A JP 2007105823 A JP2007105823 A JP 2007105823A JP 2007105823 A JP2007105823 A JP 2007105823A JP 2008263119 A JP2008263119 A JP 2008263119A
Authority
JP
Japan
Prior art keywords
layer
image sensor
pixel electrode
electrode
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007105823A
Other languages
Japanese (ja)
Other versions
JP4961590B2 (en
Inventor
Hsin-Heng Wang
汪信亨
Chiu-Tsung Huang
黄丘宗
Shih-Siang Lin
林世翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powerchip Semiconductor Corp
Original Assignee
Powerchip Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powerchip Semiconductor Corp filed Critical Powerchip Semiconductor Corp
Priority to JP2007105823A priority Critical patent/JP4961590B2/en
Publication of JP2008263119A publication Critical patent/JP2008263119A/en
Application granted granted Critical
Publication of JP4961590B2 publication Critical patent/JP4961590B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image sensor including a shield element and its manufacturing method in order to solve conventional crosstalk problems. <P>SOLUTION: The image sensor includes: a semiconductor substrate; a plurality of picture elements disposed on the semiconductor substrate, each of which has one picture element electrode; a photoconductive layer and a transparent conductive layer disposed successively on each picture element electrode; and a shield element disposed between the respective picture element electrodes. The shield element includes a shield electrode and an insulating structure which covers the shield electrode and separates it from the picture element electrodes and the photoconductive layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明はイメージセンサーに関し、特にキャリアクロストークを解消するためのシールド素子を備えるイメージセンサーに関する。 The present invention relates to an image sensor, and more particularly to an image sensor including a shield element for eliminating carrier crosstalk.

CMOS(相補型金属酸化膜半導体)やCCD(電荷結合素子)などのイメージセンサーは、光子を取り込んで電子に変換し、更に電子を測定可能な電圧に変換し、デジタルデータとして出力するシリコン半導体装置である。従来のイメージセンサーの機能を向上させるため、CCDやCMOS素子に積層された水素化アモルファスシリコン(α-Si:H)を用いるPOAP(能動画素上の光電変換体)型イメージセンサーが開発されている。POAP型のイメージセンサーは、フィルファクターを向上させ、画素領域の全体を感光可能にする積層構造を有し、その中のα-Si:Hはエネルギーを有効に変換し、量子効率を向上させる効果がある。しかし、従来の研究で指摘されているとおり、この種のイメージセンサーはクロストーク、残像及びリーク電流信号などの問題を抱えている。特に隣接画素間のキャリアクロストークは、解像度及び均一性を低下させ、色の再現性に大きく影響する。 Image sensors such as CMOS (Complementary Metal Oxide Semiconductor) and CCD (Charge Coupled Device) are silicon semiconductor devices that take photons and convert them into electrons, then convert the electrons into measurable voltages and output them as digital data. It is. In order to improve the function of the conventional image sensor, a POAP (photoelectric conversion body on active pixel) type image sensor using hydrogenated amorphous silicon (α-Si: H) stacked on a CCD or CMOS device has been developed. . The POAP type image sensor has a stacked structure that improves the fill factor and makes the entire pixel area light sensitive, and α-Si: H in it effectively converts energy and improves quantum efficiency. There is. However, as pointed out in previous studies, this type of image sensor has problems such as crosstalk, afterimages, and leakage current signals. In particular, carrier crosstalk between adjacent pixels reduces resolution and uniformity, and greatly affects color reproducibility.

図1と図2を参照する。図1は従来のPOAP型イメージセンサー10の断面図であり、図2は図1に示す画素電極間の電位を示す模擬図である。従来のイメージセンサー10は、基板12上に設けられる複数の画素14a、14b及び誘電層16と、画素14a、14b内に設けられる複数の画素回路(非表示)と、画素回路と誘電膜16の上に設けられる複数の画素電極18a、18bと、画素電極18a、18bの上に設けられる光伝導層20と、光伝導層20の上に設けられる透明導電層28とを含む。そのうち光伝導層20は下から上まで順番にn型レイヤー22と、真性層(iレイヤー)24と、p型レイヤー26を含む。これらの層はp−i−n積層構造を形成し、受光の強度に対応する電荷に変換する。 Please refer to FIG. 1 and FIG. FIG. 1 is a cross-sectional view of a conventional POAP type image sensor 10, and FIG. 2 is a simulation diagram showing a potential between pixel electrodes shown in FIG. The conventional image sensor 10 includes a plurality of pixels 14 a and 14 b and a dielectric layer 16 provided on a substrate 12, a plurality of pixel circuits (non-display) provided in the pixels 14 a and 14 b, a pixel circuit and a dielectric film 16. It includes a plurality of pixel electrodes 18a, 18b provided on top, a photoconductive layer 20 provided on the pixel electrodes 18a, 18b, and a transparent conductive layer 28 provided on the photoconductive layer 20. Among them, the photoconductive layer 20 includes an n-type layer 22, an intrinsic layer (i-layer) 24, and a p-type layer 26 in order from the bottom to the top. These layers form a p-i-n stacked structure and convert it into charges corresponding to the intensity of received light.

しかし、光を当てると、従来のイメージセンサー10は画素電極18a、18bの電圧が互いに異なるため、隣接した画素14a、14bの間では電位差による電界が発生する。例えば、光を当てるとき、画素電極18bが高電位VHとなり、画素電極18aが低電位VLとなり、透明導電層28が接地するとすれば、図2に示すように、隣接画素14a、14bの間ではリーク電流が発生し、高電位VHの画素電極18bから低電位VLの画素電極18aへ電流が流れる。これにより発生するクロストークは、画像検知の忠実度を大きく低下させるおそれがある。 However, when light is applied, since the voltage of the pixel electrodes 18a and 18b in the conventional image sensor 10 is different from each other, an electric field due to a potential difference is generated between the adjacent pixels 14a and 14b. For example, when light is applied, if the pixel electrode 18b is at a high potential VH, the pixel electrode 18a is at a low potential VL, and the transparent conductive layer 28 is grounded, as shown in FIG. 2, between the adjacent pixels 14a and 14b, A leak current is generated, and a current flows from the high potential VH pixel electrode 18b to the low potential VL pixel electrode 18a. The crosstalk generated thereby may greatly reduce the fidelity of image detection.

したがって、POAP型イメージセンサーの構造を改善し、隣接画素間のクロストークを抑え、画像検知の忠実度を向上させることは、解決すべき課題である。 Accordingly, it is a problem to be solved to improve the structure of the POAP type image sensor, suppress crosstalk between adjacent pixels, and improve the fidelity of image detection.

この発明は従来のクロストーク問題を解決するため、シールド素子を備えるイメージセンサー及びその製作方法を提供することを課題とする。 In order to solve the conventional crosstalk problem, an object of the present invention is to provide an image sensor including a shield element and a manufacturing method thereof.

この発明はイメージセンサーを提供する。該イメージセンサーは、半導体基板と、半導体基板の上に定められ、各々1個の画素電極を有する複数の画素と、画素電極の上に順次設置される光伝導層及び透明導電層と、それぞれの画素電極の間に設けられるシールド素子とを含む。そのうちシールド素子は、シールド電極と、シールド電極を被覆し、これを画素電極と光伝導層から分離する絶縁構造とを含む。 The present invention provides an image sensor. The image sensor includes a semiconductor substrate, a plurality of pixels each having one pixel electrode, a photoconductive layer and a transparent conductive layer that are sequentially installed on the pixel electrode, And a shield element provided between the pixel electrodes. Among them, the shield element includes a shield electrode and an insulating structure that covers the shield electrode and separates it from the pixel electrode and the photoconductive layer.

この発明は更にイメージセンサーの製作方法を提供する。該方法は、基板を提供し、基板の表面に第一導電層を形成し、第一導電層を一部除去して複数の画素電極を形成し、基板の表面に第一絶縁層と第二導電層を順次形成し、画素電極の表面に設けられる第二導電層と第一絶縁層を一部除去して残余の第一絶縁層とシールド電極を形成し、基板の表面に第二絶縁層を形成し、画素電極の表面に設けられる第二絶縁層を一部除去して残余の第二絶縁層を形成し、基板の上に光伝導層と透明導電層を順次形成するステップを含む。そのうちシールド電極はそれぞれの画素電極間の電極ギャップ領域に埋められ、残余の第一絶縁層と残余の第二絶縁層はシールド電極を被覆する絶縁構造を形成し、シールド電極と絶縁構造はシールド素子を形成する。 The present invention further provides a method for manufacturing an image sensor. The method provides a substrate, forms a first conductive layer on a surface of the substrate, partially removes the first conductive layer to form a plurality of pixel electrodes, and forms a first insulating layer and a second on the surface of the substrate. A conductive layer is sequentially formed, and the second conductive layer and the first insulating layer provided on the surface of the pixel electrode are partially removed to form a remaining first insulating layer and a shield electrode, and the second insulating layer is formed on the surface of the substrate. Forming a remaining second insulating layer by partially removing the second insulating layer provided on the surface of the pixel electrode, and sequentially forming a photoconductive layer and a transparent conductive layer on the substrate. Among them, the shield electrode is buried in the electrode gap region between the respective pixel electrodes, and the remaining first insulating layer and the remaining second insulating layer form an insulating structure covering the shield electrode, and the shield electrode and the insulating structure are shield elements. Form.

この発明は、隣接した画素または画素電極の間にシールド素子を設け、電極ギャップ領域に高い電位障壁を形成することで、クロストークを解消してイメージセンサーの画像検知機能を大幅に向上させる。シールド素子の製作に用いられる第二・第三PEP工程はいずれも、画素電極パターンを定めるのと同じフォトマスクを利用するため、製作コストを増やすことはない。したがって、本発明を利用すれば、コストを追加せずにシールド素子を形成し、画像検知機能の優れたイメージセンサーを製作することができる。 According to the present invention, a shield element is provided between adjacent pixels or pixel electrodes, and a high potential barrier is formed in the electrode gap region, thereby eliminating crosstalk and greatly improving the image detection function of the image sensor. Since both the second and third PEP processes used for manufacturing the shield element use the same photomask as that for defining the pixel electrode pattern, the manufacturing cost is not increased. Therefore, if the present invention is used, a shield element can be formed without adding cost, and an image sensor having an excellent image detection function can be manufactured.

かかる装置及び方法の特徴を詳述するために、具体的な実施例を挙げ、図を参照して以下に説明する。 In order to elaborate on the features of such an apparatus and method, specific examples are given and described below with reference to the figures.

図3から図9を参照する。図3から図9はこの発明によるイメージセンサー100の構造及び製作プロセスを表す説明図である。当該イメージセンサー100はPOAP型イメージセンサーである。図3に示すように、まずは半導体基板104(例えばシリコン基板)を含む半導体チップ102を設ける。半導体基板104の表面には、画素マトリックスを形成する複数の画素108が定められている。次に誘電層106の中に設けられる画素回路110として、半導体基板104の上に複数の電気素子をつくり、更に誘電層106の上(画素回路110の上)に第一導電層112を設ける。第一導電層112は金属材料、望ましくは窒化チタン(TiN)からなる。その後、図4に示すように第一フォトリソグラフィー工程を行う。詳しく言えば、半導体基板104の表面にフォトレジスト層(非表示)を形成し、画素電極パターンのあるフォトマスクでフォトレジスト層に画素電極パターンを定め、更に第一導電層112の一部をエッチングして除去し、最後にフォトレジスト層を除去し、コンタクトホール124を介して対応する画素回路110にそれぞれ電気的に接続されて、ギャップGをはさんでいるような画素電極114を各画素108に形成する。 Please refer to FIG. 3 to FIG. 3 to 9 are explanatory views showing the structure and manufacturing process of the image sensor 100 according to the present invention. The image sensor 100 is a POAP type image sensor. As shown in FIG. 3, first, a semiconductor chip 102 including a semiconductor substrate 104 (for example, a silicon substrate) is provided. A plurality of pixels 108 that form a pixel matrix are defined on the surface of the semiconductor substrate 104. Next, as the pixel circuit 110 provided in the dielectric layer 106, a plurality of electric elements are formed on the semiconductor substrate 104, and the first conductive layer 112 is further provided on the dielectric layer 106 (on the pixel circuit 110). The first conductive layer 112 is made of a metal material, preferably titanium nitride (TiN). Thereafter, a first photolithography process is performed as shown in FIG. More specifically, a photoresist layer (not shown) is formed on the surface of the semiconductor substrate 104, a pixel electrode pattern is defined on the photoresist layer with a photomask having a pixel electrode pattern, and a part of the first conductive layer 112 is etched. Finally, the photoresist layer is removed, and the pixel electrode 114 that is electrically connected to the corresponding pixel circuit 110 via the contact hole 124 and sandwiches the gap G is connected to each pixel 108. To form.

図5を参照する。半導体基板104の上に第一絶縁層116と第二導電層118を順次形成し、画素電極114及び露出した誘電層106を覆わせる。第一絶縁層116は酸化シリコンなどの酸化材料を堆積してつくったものであり、第二導電層118はポリシリコンや金属材料からなる。堆積法でつくられた第二導電層118は、隣接した画素電極114間の隙間(電極ギャップG)を埋めている。続いて図6に示すように、第二フォトリソグラフィー工程とエッチング工程を含むPEP工程(フォトリソグラフィー・エッチングプロセス)を行う。詳しく言えば、第二導電層118の表面にフォトレジスト層(非表示)を形成し、上記第一フォトリソグラフィー工程で使われたものと同じフォトマスクをフォトレジスト層にあて、画素電極パターンの反対である相補パターン120をフォトレジスト層に形成する。更にパターン化されたフォトレジスト層をエッチングマスクとして第二導電層118と第一絶縁層116の一部を除去し、大部分の画素電極114を露出させる。そうすると、残余の第二導電層は、隣接した画素電極114間に設けられるT字型のシールド電極122を形成する。一方、シールド電極122の下に残る第一絶縁層116’は、シールド電極122、画素電極114、及び誘電層106を分離する効果がある。本発明の好ましい実施例として、フォトリソグラフィーの露光率を調整し、相補パターン120の幅を電極ギャップGより大きく定めることが可能である。この場合、画素電極114の縁部は残余の第一絶縁層116’とシールド電極122に覆われている。 Please refer to FIG. A first insulating layer 116 and a second conductive layer 118 are sequentially formed on the semiconductor substrate 104 to cover the pixel electrode 114 and the exposed dielectric layer 106. The first insulating layer 116 is formed by depositing an oxide material such as silicon oxide, and the second conductive layer 118 is made of polysilicon or a metal material. The second conductive layer 118 formed by the deposition method fills the gap (electrode gap G) between the adjacent pixel electrodes 114. Subsequently, as shown in FIG. 6, a PEP process (photolithographic etching process) including a second photolithography process and an etching process is performed. Specifically, a photoresist layer (not shown) is formed on the surface of the second conductive layer 118, the same photomask used in the first photolithography process is applied to the photoresist layer, and the opposite of the pixel electrode pattern. The complementary pattern 120 is formed on the photoresist layer. Further, a part of the second conductive layer 118 and the first insulating layer 116 is removed using the patterned photoresist layer as an etching mask, and most of the pixel electrodes 114 are exposed. Then, the remaining second conductive layer forms a T-shaped shield electrode 122 provided between adjacent pixel electrodes 114. On the other hand, the first insulating layer 116 ′ remaining under the shield electrode 122 has an effect of separating the shield electrode 122, the pixel electrode 114, and the dielectric layer 106. As a preferred embodiment of the present invention, it is possible to adjust the exposure rate of photolithography so that the width of the complementary pattern 120 is larger than the electrode gap G. In this case, the edge of the pixel electrode 114 is covered with the remaining first insulating layer 116 ′ and the shield electrode 122.

図7を参照する。続いて半導体基板104の全体に、酸化シリコンまたは窒化シリコンからなる第二絶縁層126を形成する。更に図8に示すように第三フォトリソグラフィー工程を行う。詳しく言えば、第二絶縁層126の表面にフォトレジスト層(非表示)を形成し、上記第一フォトリソグラフィー工程で使われたものと同じフォトマスクで、画素電極パターンの反対である相補パターンをフォトレジスト層に形成する。更にパターン化されたフォトレジスト層をエッチングマスクとして第二絶縁層126を一部除去する。本発明の好ましい実施例として、フォトリソグラフィーの露光率を調整し、残る第二絶縁層126’の幅をシールド電極122の幅と電極ギャップGより大きく定め、画素電極114の縁部を残余の第二絶縁層126’で覆わせ、シールド電極122とその他の素子を分離させることが可能である。また別の実施例として、エッチバック法で第二絶縁層126を一部除去し、図8に示すような残余の第二絶縁層126’を形成することも可能である。注意すべきは、第二・第三フォトグラフィー工程は第一フォトリソグラフィー工程と同じフォトマスクを利用するため、第一フォトリソグラフィー工程と違うタイプのフォトレジスト(ポジティブまたはネガティブ)を使用しなければならない。例えば、第一フォトリソグラフィー工程ではポジティブフォトレジストで画素電極114のパターンを定めるとすれば、第二・第三フォトリソグラフィー工程ではネガティブフォトレジストで相補パターンを定めるべきであり、逆も同然である。 Please refer to FIG. Subsequently, a second insulating layer 126 made of silicon oxide or silicon nitride is formed on the entire semiconductor substrate 104. Further, a third photolithography process is performed as shown in FIG. More specifically, a photoresist layer (not shown) is formed on the surface of the second insulating layer 126, and a complementary pattern opposite to the pixel electrode pattern is formed using the same photomask used in the first photolithography process. Formed on the photoresist layer. Further, the second insulating layer 126 is partially removed using the patterned photoresist layer as an etching mask. As a preferred embodiment of the present invention, the exposure rate of photolithography is adjusted, the width of the remaining second insulating layer 126 ′ is determined to be larger than the width of the shield electrode 122 and the electrode gap G, and the edge of the pixel electrode 114 is set to the remaining first. The shield electrode 122 and other elements can be separated by covering with the two insulating layers 126 ′. As another example, the second insulating layer 126 may be partially removed by an etch back method to form a remaining second insulating layer 126 'as shown in FIG. It should be noted that since the second and third photolithography processes use the same photomask as the first photolithography process, a different type of photoresist (positive or negative) from the first photolithography process must be used. . For example, if the pattern of the pixel electrode 114 is defined by a positive photoresist in the first photolithography process, the complementary pattern should be defined by a negative photoresist in the second and third photolithography processes, and vice versa.

図8に示すように、残余の第一絶縁層116’、残余の第二絶縁層126’及びシールド電極112は、隣接した画素電極114間または隣接画素108間に設けられて、画素電極114の縁部を一部覆って残りの大部分を露出させるシールド素子130を形成する。そのうち残余の第一絶縁層116’と残余の第二絶縁層126’はシールド素子130の絶縁構造128を形成し、シールド電極122の下方及び表面を被覆し、シールド電極122を画素電極や後に形成されるその他の素子を分離する効果がある。また、図8に示すように、絶縁構造128の底面は画素電極114の底面とほぼ同じ平面で設けられ、言い換えれば誘電層106の表面に設けられている。 As shown in FIG. 8, the remaining first insulating layer 116 ′, the remaining second insulating layer 126 ′, and the shield electrode 112 are provided between adjacent pixel electrodes 114 or between adjacent pixels 108. A shield element 130 that covers a part of the edge and exposes most of the remaining part is formed. Of these, the remaining first insulating layer 116 ′ and the remaining second insulating layer 126 ′ form the insulating structure 128 of the shield element 130, covering the lower and surface of the shield electrode 122, and forming the shield electrode 122 on the pixel electrode and later. There is an effect of separating other elements to be separated. Further, as shown in FIG. 8, the bottom surface of the insulating structure 128 is provided in substantially the same plane as the bottom surface of the pixel electrode 114, in other words, provided on the surface of the dielectric layer 106.

図9を参照する。続いて画素電極114とシールド素子130の上に、下から上まで順番にn型レイヤー134、iレイヤー136、p型レイヤー138からなる光伝導層132を形成する。n型レイヤー134とp型レイヤー138は水素化アモルファス炭化シリコン(α-SiC:H)からなり、iレイヤー136はα-Si:Hからなる。n型レイヤー134は、シールド素子130に覆われていない画素電極114に電気的に接続されている。また別の実施例として、下から上まで順番にp型レイヤー、iレイヤー、n型レイヤーからなる光伝導層132を用いることも可能である。その後、光伝導層132の上にITO(酸化インジウムすず)からなる透明導電層140を形成し、イメージセンサー100の製作を完成させる。 Please refer to FIG. Subsequently, a photoconductive layer 132 including an n-type layer 134, an i-layer 136, and a p-type layer 138 is formed on the pixel electrode 114 and the shield element 130 in order from the bottom to the top. The n-type layer 134 and the p-type layer 138 are made of hydrogenated amorphous silicon carbide (α-SiC: H), and the i layer 136 is made of α-Si: H. The n-type layer 134 is electrically connected to the pixel electrode 114 that is not covered by the shield element 130. As another example, it is also possible to use a photoconductive layer 132 composed of a p-type layer, an i-layer, and an n-type layer in order from the bottom to the top. Thereafter, a transparent conductive layer 140 made of ITO (indium tin oxide) is formed on the photoconductive layer 132, thereby completing the manufacture of the image sensor 100.

図10を参照する。図10はこの発明によるイメージセンサー100の平面図である。イメージセンサーは、半導体基板104の上に定められた複数の画素からなる画素マトリックス142を含み、画素108ごとに画素電極114が含まれている。注意すべきは、各画素電極114の縁部を覆うシールド素子130は平面図では、各画素電極114を囲む網状のものに見られる。シールド素子130のパターンは画素電極114を形成するのと同じフォトマスクで定められるため、シールド素子130と画素電極114が重なる部分はいずれも面積が同じである。 Please refer to FIG. FIG. 10 is a plan view of the image sensor 100 according to the present invention. The image sensor includes a pixel matrix 142 including a plurality of pixels defined on the semiconductor substrate 104, and a pixel electrode 114 is included for each pixel 108. It should be noted that the shield element 130 covering the edge of each pixel electrode 114 can be seen in a net shape surrounding each pixel electrode 114 in the plan view. Since the pattern of the shield element 130 is determined by the same photomask as that for forming the pixel electrode 114, the area where the shield element 130 and the pixel electrode 114 overlap has the same area.

この発明によるシールド素子130の中のシールド電極122は接地しているため(図9参照)、その0V電圧は画素マトリックス142外の電圧供給回路から供給してよく、画素マトリックス142内のシールド電極122では電流が流れない。したがって、シールド電極122は電極ギャップGの表面電位を低くすることで、隣接した画素108を電気的に分離することができる。 Since the shield electrode 122 in the shield element 130 according to the present invention is grounded (see FIG. 9), the 0 V voltage may be supplied from a voltage supply circuit outside the pixel matrix 142, and the shield electrode 122 in the pixel matrix 142 may be supplied. Then no current flows. Therefore, the shield electrode 122 can electrically isolate adjacent pixels 108 by lowering the surface potential of the electrode gap G.

図11を参照する。図11は図1に示す従来のイメージセンサー10と、図9に示すこの発明によるイメージセンサー100の電位を表す説明図である。隣接した画素電極の電位をそれぞれ低電位VL(例えば1.2V)及び高電位VH(例えば2.6V)にすれば、従来のイメージセンサー10では、画素電極間18a、18bのギャップ領域には電位障壁が形成されない(もしくは低い障壁しか形成されない)。したがって、iレイヤー24からの電子は高電位の画素電極18bから低電位の画素電極18aへ移動し、それによりクロストークが発生する(図2参照)。それに反して、図9に示す本発明によるイメージセンサー100では、図11に示すように、隣接した画素電極114がそれぞれ高電位VHと低電位VLになっても、電極ギャップGには大きな電位障壁が形成されるため、クロストークは発生しない。 Please refer to FIG. FIG. 11 is an explanatory diagram showing potentials of the conventional image sensor 10 shown in FIG. 1 and the image sensor 100 according to the present invention shown in FIG. If the potentials of adjacent pixel electrodes are set to a low potential VL (for example, 1.2 V) and a high potential VH (for example, 2.6 V), respectively, in the conventional image sensor 10, a potential is applied to the gap region between the pixel electrodes 18a and 18b. No barrier is formed (or only a low barrier is formed). Therefore, the electrons from the i layer 24 move from the high potential pixel electrode 18b to the low potential pixel electrode 18a, thereby generating crosstalk (see FIG. 2). On the other hand, in the image sensor 100 according to the present invention shown in FIG. 9, even if the adjacent pixel electrodes 114 become the high potential VH and the low potential VL, respectively, as shown in FIG. Therefore, crosstalk does not occur.

図12を参照する。図12は図9に示すイメージセンサー100の隣接画素108間の電位を示す模擬図である。図12に示すように、隣接した画素電極114がそれぞれ高電位VHと低電位VLになった場合でも、電流は高電位の画素電極114から低電位の画素電極114へ流れないため、クロストークは生じない。 Please refer to FIG. FIG. 12 is a simulation diagram showing a potential between adjacent pixels 108 of the image sensor 100 shown in FIG. As shown in FIG. 12, even when adjacent pixel electrodes 114 are at a high potential VH and a low potential VL, current does not flow from the high potential pixel electrode 114 to the low potential pixel electrode 114. Does not occur.

以上はこの発明に好ましい実施例であって、この発明の実施の範囲を限定するものではない。よって、当業者のなし得る修正、もしくは変更であって、この発明の意図の下においてなされ、この発明に対して均等の効果を有するものは、いずれもこの発明の特許請求の範囲に属するものとする。 The above is a preferred embodiment of the present invention and does not limit the scope of the present invention. Therefore, any modifications or changes that can be made by those skilled in the art, which are made under the intention of the present invention and have an equivalent effect on the present invention, shall belong to the scope of the claims of the present invention. To do.

この発明は従来のイメージセンサーにシールド素子を付加することを内容とする。かかる構造は実施可能である。 The present invention is characterized in that a shield element is added to a conventional image sensor. Such a structure is feasible.

従来のPOAP型イメージセンサーの断面図である。It is sectional drawing of the conventional POAP type image sensor. 図1に示す画素電極間の電位を示す模擬図である。FIG. 2 is a simulation diagram illustrating a potential between pixel electrodes illustrated in FIG. 1. この発明によるイメージセンサーの構造及び製作プロセスを表す第一説明図である。It is the 1st explanatory view showing the structure and manufacturing process of the image sensor by this invention. この発明によるイメージセンサーの構造及び製作プロセスを表す第二説明図である。It is a 2nd explanatory drawing showing the structure and manufacturing process of the image sensor by this invention. この発明によるイメージセンサーの構造及び製作プロセスを表す第三説明図である。It is a 3rd explanatory drawing showing the structure and manufacturing process of the image sensor by this invention. この発明によるイメージセンサーの構造及び製作プロセスを表す第四説明図である。It is the 4th explanatory view showing the structure and manufacturing process of the image sensor by this invention. この発明によるイメージセンサーの構造及び製作プロセスを表す第五説明図である。It is a 5th explanatory view showing the structure and manufacturing process of the image sensor by this invention. この発明によるイメージセンサーの構造及び製作プロセスを表す第六説明図である。It is a 6th explanatory view showing the structure and manufacturing process of the image sensor by this invention. この発明によるイメージセンサーの構造及び製作プロセスを表す第七説明図である。It is a 7th explanatory view showing the structure and manufacturing process of an image sensor by this invention. この発明によるイメージセンサーの平面図である。It is a top view of the image sensor by this invention. 図1に示す従来のイメージセンサーと、図9に示すこの発明によるイメージセンサーの電位を表す説明図である。It is explanatory drawing showing the electric potential of the conventional image sensor shown in FIG. 1, and the image sensor by this invention shown in FIG. 図9に示すイメージセンサーの隣接画素間の電位を示す模擬図である。FIG. 10 is a simulation diagram showing a potential between adjacent pixels of the image sensor shown in FIG. 9.

符号の説明Explanation of symbols

10 イメージセンサー
100 イメージセンサー
12 基板
14a 画素
14b 画素
108 画素
16 誘電層
106 誘電層
18a 画素電極
18b 画素電極
114 画素電極
20 光伝導層
132 光伝導層
22 n型レイヤー
134 n型レイヤー
24 iレイヤー
136 iレイヤー
26 p型レイヤー
138 p型レイヤー
28 透明導電層
140 透明導電層
102 半導体チップ
104 半導体基板
110 画素回路
112 第一誘電層
116 第一絶縁層
116’ エッチング後の第一絶縁層
118 第二導電層
120 相補パターン
122 シールド電極
124 コンタクトホール
126 第二絶縁層
126’ エッチング後の第二絶縁層
128 絶縁構造
130 シールド素子
G 電極ギャップ
10 image sensor 100 image sensor 12 substrate 14a pixel 14b pixel 108 pixel 16 dielectric layer 106 dielectric layer 18a pixel electrode 18b pixel electrode 114 pixel electrode 20 photoconductive layer 132 photoconductive layer 22 n-type layer 134 n-type layer 24 i-layer 136 i Layer 26 p-type layer 138 p-type layer 28 transparent conductive layer 140 transparent conductive layer 102 semiconductor chip 104 semiconductor substrate 110 pixel circuit 112 first dielectric layer 116 first insulating layer 116 ′ first insulating layer 118 after etching second conductive layer 120 Complementary pattern 122 Shield electrode 124 Contact hole 126 Second insulating layer 126 ′ Second insulating layer 128 after etching Insulating structure 130 Shield element G Electrode gap

Claims (23)

イメージセンサーであって、半導体基板と、半導体基板の上に定められ、各々個の画素電極を有する複数の画素と、画素電極の上に順次設置される光伝導層及び透明導電層と、それぞれの画素電極の間に設けられるシールド素子とを含み、そのうちシールド素子は、シールド電極と、シールド電極を被覆し、これを画素電極と光伝導層から分離する絶縁構造とを含むことを特徴とするイメージセンサー。 An image sensor, comprising a semiconductor substrate, a plurality of pixels each having a pixel electrode, a photoconductive layer and a transparent conductive layer sequentially disposed on the pixel electrode, A shield element provided between the pixel electrodes, wherein the shield element includes a shield electrode and an insulating structure that covers the shield electrode and separates it from the pixel electrode and the photoconductive layer. sensor. 前記シールド電極はT字型の断面を有し、画素電極の縁部を被覆することを特徴とする請求項1記載のイメージセンサー。 The image sensor according to claim 1, wherein the shield electrode has a T-shaped cross section and covers an edge of the pixel electrode. 前記シールド電極はポリシリコン材料または金属材料からなることを特徴とする請求項1記載のイメージセンサー。 2. The image sensor according to claim 1, wherein the shield electrode is made of a polysilicon material or a metal material. 前記絶縁構造の底面と前記画素電極の底面が同じ平面にあることを特徴とする請求項1記載のイメージセンサー。 2. The image sensor according to claim 1, wherein the bottom surface of the insulating structure and the bottom surface of the pixel electrode are on the same plane. 前記シールド素子は画素電極の縁部を被覆し、前記画素電極のシールド素子に覆われない部分は光伝導層と直接に接触することを特徴とする請求項1記載のイメージセンサー。 2. The image sensor according to claim 1, wherein the shield element covers an edge of the pixel electrode, and a portion of the pixel electrode not covered by the shield element is in direct contact with the photoconductive layer. 前記シールド素子は画素電極を囲む網状のものであることを特徴とする請求項1記載のイメージセンサー。 The image sensor according to claim 1, wherein the shield element is a net-like element surrounding the pixel electrode. 前記絶縁構造はシリコン酸化物(SiO2)または窒化シリコン(SiN)からなることを特徴とする請求項1記載のイメージセンサー。 The image sensor according to claim 1, wherein the insulating structure is made of silicon oxide (SiO 2) or silicon nitride (SiN). 前記シールド電極は接地していることを特徴とする請求項1記載のイメージセンサー。 The image sensor according to claim 1, wherein the shield electrode is grounded. 前記光伝導層はn型レイヤー、真性層(iレイヤー)、及びp型レイヤーを順次堆積してなるものであることを特徴とする請求項1記載のイメージセンサー。 2. The image sensor according to claim 1, wherein the photoconductive layer is formed by sequentially depositing an n-type layer, an intrinsic layer (i-layer), and a p-type layer. 前記n型レイヤーとp型レイヤーは水素化アモルファス炭化シリコン(α-SiC:H)からなることを特徴とする請求項9記載のイメージセンサー。 The image sensor according to claim 9, wherein the n-type layer and the p-type layer are made of hydrogenated amorphous silicon carbide (α-SiC: H). 前記iレイヤーは水素化アモルファスシリコン(α-Si:H)からなることを特徴とする請求項9記載のイメージセンサー。 The image sensor according to claim 9, wherein the i layer is made of hydrogenated amorphous silicon (α-Si: H). イメージセンサーの製作方法であって、基板を提供し、基板の表面に第一導電層を形成し、第一導電層を一部除去して複数の画素電極を形成し、基板の表面に第一絶縁層と第二導電層を順次形成し、画素電極の表面に設けられる第二導電層と第一絶縁層を一部除去して残余の第一絶縁層とシールド電極を形成し、基板の表面に第二絶縁層を形成し、画素電極の表面に設けられる第二絶縁層を一部除去して残余の第二絶縁層を形成し、基板の上に光伝導層と透明導電層を順次形成するステップを含み、そのうちシールド電極はそれぞれの画素電極間の電極ギャップ領域に埋められ、残余の第一絶縁層と残余の第二絶縁層はシールド電極を被覆する絶縁構造を形成し、シールド電極と絶縁構造はシールド素子を形成することを特徴とするイメージセンサーの製作方法。 An image sensor manufacturing method includes providing a substrate, forming a first conductive layer on a surface of the substrate, partially removing the first conductive layer to form a plurality of pixel electrodes, and forming a first electrode on the surface of the substrate. An insulating layer and a second conductive layer are sequentially formed, and a part of the second conductive layer and the first insulating layer provided on the surface of the pixel electrode are partially removed to form a remaining first insulating layer and a shield electrode. A second insulating layer is formed on the surface of the pixel electrode, a part of the second insulating layer provided on the surface of the pixel electrode is removed to form a remaining second insulating layer, and a photoconductive layer and a transparent conductive layer are sequentially formed on the substrate. A shield electrode is buried in an electrode gap region between each pixel electrode, and the remaining first insulating layer and the remaining second insulating layer form an insulating structure covering the shield electrode, Insulation structure is an image characterized by forming a shield element Fabrication method of Nsa. 前記第二導電層と第一絶縁層を一部除去するステップはPEP(フォトリソグラフィー・エッチングプロセス)工程で行われることを特徴とする請求項12記載のイメージセンサーの製作方法。 13. The method of claim 12, wherein the step of partially removing the second conductive layer and the first insulating layer is performed in a PEP (Photolithographic Etching Process) process. 前記残余の第一絶縁層はシールド電極と画素電極を分離することを特徴とする請求項12記載のイメージセンサーの製作方法。 The method of claim 12, wherein the remaining first insulating layer separates the shield electrode and the pixel electrode. 前記製作方法は、画素電極パターンをフォトマスクで定め、前記画素電極を形成する第一フォトリソグラフィー工程と、第一フォトリソグラフィー工程と同じフォトマスクで当該画素電極パターンの反対である相補パターンを定め、前記シールド素子を形成する第二フォトリソグラフィー工程と第三フォトリソグラフィー工程を含むことを特徴とする請求項12記載のイメージセンサーの製作方法。 In the manufacturing method, a pixel electrode pattern is defined by a photomask, a first photolithography process for forming the pixel electrode, and a complementary pattern opposite to the pixel electrode pattern is defined by the same photomask as the first photolithography process, 13. The method of manufacturing an image sensor according to claim 12, further comprising a second photolithography process and a third photolithography process for forming the shield element. 前記第一フォトリソグラフィー工程はポジティブフォトレジストでパターン転写を行い、前記第二フォトリソグラフィー工程と第三フォトリソグラフィー工程はネガティブフォトレジストでパターン転写を行うことを特徴とする請求項15記載のイメージセンサーの製作方法。 16. The image sensor according to claim 15, wherein the first photolithography process performs pattern transfer with a positive photoresist, and the second photolithography process and the third photolithography process perform pattern transfer with a negative photoresist. Production method. 前記第一フォトリソグラフィー工程はネガティブフォトレジストでパターン転写を行い、前記第二フォトリソグラフィー工程と第三フォトリソグラフィー工程はポジティブフォトレジストでパターン転写を行うことを特徴とする請求項15記載のイメージセンサーの製作方法。 16. The image sensor according to claim 15, wherein the first photolithography process performs pattern transfer with a negative photoresist, and the second photolithography process and the third photolithography process perform pattern transfer with a positive photoresist. Production method. 前記シールド電極はT字型の断面を有し、画素電極の縁部を被覆するように形成することを特徴とする請求項12記載のイメージセンサーの製作方法。 13. The method of manufacturing an image sensor according to claim 12, wherein the shield electrode has a T-shaped cross section and is formed so as to cover an edge of the pixel electrode. 前記シールド電極はポリシリコン材料または金属材料で形成することを特徴とする請求項12記載のイメージセンサーの製作方法。 13. The method according to claim 12, wherein the shield electrode is made of a polysilicon material or a metal material. 前記シールド素子は画素電極の縁部を被覆し、前記画素電極のシールド素子に覆われない部分は光伝導層の下方に光伝導層と接触するように設けられることを特徴とする請求項12記載のイメージセンサーの製作方法。 13. The shield element covers an edge of a pixel electrode, and a portion of the pixel electrode not covered by the shield element is provided below the photoconductive layer so as to be in contact with the photoconductive layer. How to make an image sensor. 前記シールド素子は画素電極を囲む網状に形成することを特徴とする請求項12記載のイメージセンサーの製作方法。 The method according to claim 12, wherein the shield element is formed in a net shape surrounding the pixel electrode. 前記シールド電極は接地するように形成することを特徴とする請求項12記載のイメージセンサーの製作方法。 The method according to claim 12, wherein the shield electrode is formed to be grounded. 前記光伝導層はn型レイヤー、iレイヤー、及びp型レイヤーを順次堆積して形成されることを特徴とする請求項12記載のイメージセンサーの製作方法。 13. The method according to claim 12, wherein the photoconductive layer is formed by sequentially depositing an n-type layer, an i-layer, and a p-type layer.
JP2007105823A 2007-04-13 2007-04-13 Image sensor and manufacturing method thereof Active JP4961590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007105823A JP4961590B2 (en) 2007-04-13 2007-04-13 Image sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007105823A JP4961590B2 (en) 2007-04-13 2007-04-13 Image sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008263119A true JP2008263119A (en) 2008-10-30
JP4961590B2 JP4961590B2 (en) 2012-06-27

Family

ID=39985361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007105823A Active JP4961590B2 (en) 2007-04-13 2007-04-13 Image sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4961590B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001809A1 (en) * 2011-06-30 2013-01-03 パナソニック株式会社 Solid-state image pickup device
JP2015156493A (en) * 2011-05-31 2015-08-27 キヤノン株式会社 Detection device manufacturing method and detection device and detection system
JP2016072271A (en) * 2014-09-26 2016-05-09 キヤノン株式会社 Imaging device
JP2017005051A (en) * 2015-06-08 2017-01-05 パナソニックIpマネジメント株式会社 Imaging apparatus and imaging module
JP2018085402A (en) * 2016-11-22 2018-05-31 ソニー株式会社 Image pick-up device, stacked image pick-up device and solid state imaging device
JPWO2017086180A1 (en) * 2015-11-18 2018-08-30 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device, manufacturing method, and electronic apparatus
JP2020010062A (en) * 2019-10-02 2020-01-16 キヤノン株式会社 Photoelectric conversion device and imaging system
WO2020095596A1 (en) * 2018-11-07 2020-05-14 パナソニックIpマネジメント株式会社 Imaging device
CN112397540A (en) * 2020-11-13 2021-02-23 武汉新芯集成电路制造有限公司 Backside illuminated image sensor and method of manufacturing the same
JP2021028981A (en) * 2014-11-05 2021-02-25 ソニーセミコンダクタソリューションズ株式会社 Solid state imaging device, manufacturing method of the same, and electronic apparatus
CN114784030A (en) * 2022-04-20 2022-07-22 上海华力微电子有限公司 Method for manufacturing image sensor
CN114784030B (en) * 2022-04-20 2024-05-03 上海华力微电子有限公司 Image sensor manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218755A (en) * 1985-07-18 1987-01-27 Toshiba Corp Solid-state image pickup device
JPH0424966A (en) * 1990-05-15 1992-01-28 Mitsubishi Electric Corp Solid-state image sensing device
JPH04280677A (en) * 1991-03-08 1992-10-06 Sony Corp Laminated type solid-state image pickup device
JPH05167056A (en) * 1991-12-17 1993-07-02 Olympus Optical Co Ltd Lamination-type solid-state image sensing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218755A (en) * 1985-07-18 1987-01-27 Toshiba Corp Solid-state image pickup device
JPH0424966A (en) * 1990-05-15 1992-01-28 Mitsubishi Electric Corp Solid-state image sensing device
JPH04280677A (en) * 1991-03-08 1992-10-06 Sony Corp Laminated type solid-state image pickup device
JPH05167056A (en) * 1991-12-17 1993-07-02 Olympus Optical Co Ltd Lamination-type solid-state image sensing device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156493A (en) * 2011-05-31 2015-08-27 キヤノン株式会社 Detection device manufacturing method and detection device and detection system
US9263482B2 (en) 2011-06-30 2016-02-16 Panasonic Intellectual Property Management Co., Ltd. Solid-state image pickup device
WO2013001809A1 (en) * 2011-06-30 2013-01-03 パナソニック株式会社 Solid-state image pickup device
JP2016072271A (en) * 2014-09-26 2016-05-09 キヤノン株式会社 Imaging device
US9647018B2 (en) 2014-09-26 2017-05-09 Canon Kabushiki Kaisha Imaging device including an intermediate electrode between first and second pixel electrodes and in contact with a photoelectric conversion film
JP2021028981A (en) * 2014-11-05 2021-02-25 ソニーセミコンダクタソリューションズ株式会社 Solid state imaging device, manufacturing method of the same, and electronic apparatus
US11217620B2 (en) 2014-11-05 2022-01-04 Sony Semiconductor Solutions Corporation Solid-state image sensor for phase difference detection, method of manufacturing the same, and electronic device
JP2017005051A (en) * 2015-06-08 2017-01-05 パナソニックIpマネジメント株式会社 Imaging apparatus and imaging module
JPWO2017086180A1 (en) * 2015-11-18 2018-08-30 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device, manufacturing method, and electronic apparatus
JP2018085402A (en) * 2016-11-22 2018-05-31 ソニー株式会社 Image pick-up device, stacked image pick-up device and solid state imaging device
US11222912B2 (en) 2016-11-22 2022-01-11 Sony Corporation Imaging element, stacked type imaging element and solid-state imaging apparatus
US11901382B2 (en) 2016-11-22 2024-02-13 Sony Group Corporation Imaging element, stacked-type imaging element and solid-state imaging apparatus
WO2020095596A1 (en) * 2018-11-07 2020-05-14 パナソニックIpマネジメント株式会社 Imaging device
JP2020010062A (en) * 2019-10-02 2020-01-16 キヤノン株式会社 Photoelectric conversion device and imaging system
JP7013425B2 (en) 2019-10-02 2022-01-31 キヤノン株式会社 Photoelectric conversion device and imaging system
CN112397540A (en) * 2020-11-13 2021-02-23 武汉新芯集成电路制造有限公司 Backside illuminated image sensor and method of manufacturing the same
CN112397540B (en) * 2020-11-13 2023-12-22 武汉新芯集成电路制造有限公司 Backside illuminated image sensor and method of manufacturing the same
CN114784030A (en) * 2022-04-20 2022-07-22 上海华力微电子有限公司 Method for manufacturing image sensor
CN114784030B (en) * 2022-04-20 2024-05-03 上海华力微电子有限公司 Image sensor manufacturing method

Also Published As

Publication number Publication date
JP4961590B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4961590B2 (en) Image sensor and manufacturing method thereof
US7671385B2 (en) Image sensor and fabrication method thereof
WO2012035702A1 (en) Solid-stage imaging device and manufacturing method therefor
JP4384416B2 (en) Image sensor with performance enhancement structure
TWI505451B (en) Coplanar high fill factor pixel architecture
KR100504563B1 (en) Method for fabricating an image sensor
US20140117486A1 (en) Solid-state image pickup device
US9991305B2 (en) Stacked type solid state imaging apparatus and imaging system
JP2006173351A (en) Rear-incident solid-state imaging apparatus and its manufacturing method
KR20130132860A (en) High charge capacity pixel architecture, photoelectric conversion apparatus, radiation image pickup system and methods for same
KR20100015640A (en) Integrated mis photosensitive device using continuous films
JP2008505496A (en) Integrated MIS photoelectric device using continuous film
JP2008112907A (en) Image sensor, and manufacturing method thereof
JP6125017B2 (en) X-ray image sensor substrate
JP2007110133A (en) Cmos image sensor and manufacturing method thereof
WO2012035696A1 (en) Solid-state imaging device and manufacturing method therefor
JP4486043B2 (en) CMOS image sensor and manufacturing method thereof
JP2004273640A (en) Solid-state imaging device and its manufacturing method
US5621461A (en) Solid state image device with gate electrodes having low resistance and a method of producing the same
KR100606902B1 (en) Method for fabricating an CMOS image sensor
CN105914216A (en) Image sensor structure and manufacturing method thereof
TW200843093A (en) Image sensor structure and fabrication method thereof
US20080277754A1 (en) Image sensor and fabrication method thereof
KR100741920B1 (en) method for fabricating CMOS image sensor
US20220238568A1 (en) Stacked structure for cmos image sensors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R150 Certificate of patent or registration of utility model

Ref document number: 4961590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250