WO2020095596A1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
WO2020095596A1
WO2020095596A1 PCT/JP2019/039468 JP2019039468W WO2020095596A1 WO 2020095596 A1 WO2020095596 A1 WO 2020095596A1 JP 2019039468 W JP2019039468 W JP 2019039468W WO 2020095596 A1 WO2020095596 A1 WO 2020095596A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel electrode
shield
electrode
pixel
plan
Prior art date
Application number
PCT/JP2019/039468
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 磯野
竜典 百瀬
良太 境田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019164328A external-priority patent/JP2020077848A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980034442.9A priority Critical patent/CN112204743A/en
Publication of WO2020095596A1 publication Critical patent/WO2020095596A1/en
Priority to US17/213,597 priority patent/US11570383B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present disclosure relates to an imaging device.
  • the laminated image pickup device has a laminated structure including a semiconductor substrate and a photoelectric conversion layer.
  • Patent Documents 1 and 2 An example of a laminated image pickup device is described in Patent Documents 1 and 2.
  • the photoelectric conversion layer is arranged between the counter electrode and the pixel electrode.
  • An imaging device A photoelectric conversion layer for converting incident light into an electric charge, A first pixel electrode for collecting charges generated in the photoelectric conversion layer; A second pixel electrode adjacent to the first pixel electrode in the first direction, collecting the charges generated in the photoelectric conversion layer; A shield electrode electrically separated from the first pixel electrode and the second pixel electrode; A first shield via extending from the shield electrode and located between the first pixel electrode and the second pixel electrode in plan view; Equipped with.
  • the present disclosure provides a technique for obtaining a high-resolution image.
  • FIG. 1 is a diagram showing a cross-sectional structure of the image pickup apparatus according to the embodiment.
  • FIG. 2 is a diagram showing a cross-sectional structure of the image pickup apparatus according to the embodiment.
  • FIG. 3 is a diagram showing a planar structure of the image pickup apparatus according to the embodiment.
  • FIG. 4A is a diagram showing a cross-sectional structure of the imaging device according to the embodiment.
  • FIG. 4B is a partially enlarged view of FIG. 4A.
  • FIG. 4C is a diagram showing an insulating portion according to an example different from the example in FIG. 4B.
  • FIG. 4D is a schematic diagram showing a method for manufacturing an insulating layer and a photoelectric conversion layer.
  • FIG. 1 is a diagram showing a cross-sectional structure of the image pickup apparatus according to the embodiment.
  • FIG. 2 is a diagram showing a cross-sectional structure of the image pickup apparatus according to the embodiment.
  • FIG. 3 is a diagram showing a planar structure of the
  • FIG. 4E is a schematic diagram showing a method for manufacturing an insulating layer and a photoelectric conversion layer.
  • FIG. 5A is a diagram showing a cross-sectional structure of the imaging device according to the embodiment.
  • FIG. 5B is a partially enlarged view of FIG. 5A.
  • FIG. 6 is a diagram showing the protruding portion of the photoelectric conversion layer.
  • FIG. 7 is a diagram showing a cross-sectional structure of the image pickup apparatus according to the embodiment.
  • FIG. 8 is a diagram showing a planar structure of the image pickup apparatus according to the embodiment.
  • FIG. 9A is a diagram showing a planar structure of the image pickup apparatus according to the embodiment.
  • FIG. 9B is a partially enlarged view of FIG. 9A.
  • FIG. 9C is a partially enlarged view according to an example different from the example in FIG. 9B.
  • FIG. 9D is a partially enlarged view of FIG. 9A.
  • FIG. 9E is a partially enlarged view of FIG. 9A.
  • FIG. 10 is a block diagram of the camera system.
  • the imaging device is A photoelectric conversion layer for converting incident light into an electric charge, A first pixel electrode for collecting charges generated in the photoelectric conversion layer; A second pixel electrode adjacent to the first pixel electrode in the first direction, collecting the charges generated in the photoelectric conversion layer; A shield electrode electrically separated from the first pixel electrode and the second pixel electrode; A first shield via extending from the shield electrode and located between the first pixel electrode and the second pixel electrode in plan view; Equipped with.
  • the first mode is suitable for obtaining a high-resolution image.
  • the imaging device is A third pixel electrode adjacent to the first pixel electrode in a second direction different from the first direction, the charge being generated in the photoelectric conversion layer; A second shield via extending from the shield electrode and located between the first pixel electrode and the third pixel electrode in the plan view; May be further provided.
  • the second mode is suitable for obtaining a high-resolution image.
  • the imaging device is A third pixel electrode adjacent to the first pixel electrode in a second direction different from the first direction, the charge being generated in the photoelectric conversion layer;
  • the third mode is suitable for obtaining a high-resolution image.
  • the imaging device is A fourth pixel electrode that collects charges generated in the photoelectric conversion layer, is adjacent to the second pixel electrode in the second direction, and is adjacent to the third pixel electrode in the first direction;
  • the fourth mode is suitable for obtaining a high-resolution image.
  • the first pixel via of the fifth aspect can electrically connect the first pixel electrode to another element.
  • the second pixel via can electrically connect the second pixel electrode to another element.
  • the first shield via may be located between the first pixel via and the second pixel via.
  • the sixth mode is suitable for obtaining a high-resolution image.
  • a first wiring layer may be further provided,
  • the first shield via may extend from the shield electrode to the first wiring layer.
  • the 7th mode is suitable for obtaining high-resolution images.
  • an insulating portion located between the shield electrode and the photoelectric conversion layer may be further provided.
  • the eighth mode is suitable for obtaining a high-resolution image by the shield electrode while suppressing the decrease in sensitivity of the image pickup device due to the shield electrode.
  • the insulating portion may include a portion that does not overlap with the shield electrode.
  • the ninth mode is suitable for obtaining a high-resolution image.
  • An imaging device is A photoelectric conversion layer for converting incident light into an electric charge, A first pixel electrode for collecting charges generated in the photoelectric conversion layer; A shield electrode electrically separated from the first pixel electrode, An insulating portion located between the shield electrode and the photoelectric conversion layer, Equipped with In plan view, the insulating portion includes a portion that does not overlap with the shield electrode.
  • the tenth aspect is suitable for obtaining a high-resolution image by the shield electrode while suppressing a decrease in the sensitivity of the imaging device due to the shield electrode.
  • the insulating portion may be separated from the first pixel electrode.
  • the eleventh aspect is suitable for capturing a signal charge by the first pixel electrode and obtaining an image with high resolution.
  • the insulating portion may have a film shape,
  • the thickness of the film shape may be 10 nm or more.
  • the twelfth aspect is suitable for suppressing a decrease in sensitivity of the image pickup device due to the shield electrode.
  • the surface of the first pixel electrode and the surface of the shield electrode may be on the same plane.
  • the imaging device of the thirteenth aspect is easy to manufacture.
  • the imaging device may be a color image sensor.
  • the technique of the first aspect can contribute to suppression of color mixture.
  • An imaging device is A photoelectric conversion layer for converting incident light into an electric charge, A first pixel electrode for collecting charges generated in the photoelectric conversion layer; A shield electrode electrically separated from the first pixel electrode, An insulating portion located between the shield electrode and the photoelectric conversion layer, Equipped with.
  • via may be used.
  • the via hole and the conductor inside thereof are collectively referred to as a "via”.
  • shield via and “pixel via” may be used.
  • the shield via extends from the shield electrode.
  • the pixel via extends from the pixel electrode.
  • shield via and pixel via are used properly for the convenience of description, and are not intended to limit the features of the via.
  • the comprehensive or specific aspects may be realized by an element, device, apparatus, system, integrated circuit, method, or computer program.
  • the comprehensive or specific aspects may be realized by any combination of elements, devices, apparatuses, systems, integrated circuits, methods, and computer programs. Additional advantages and advantages of the disclosed embodiments will be apparent from the specification and drawings. The benefits and / or advantages are provided individually by the various embodiments or features disclosed in the specification and drawings, and not all are required to obtain one or more of these.
  • An imaging device is a silicon-based device that has a photoelectric conversion layer that converts light into an electric signal, that is, performs photoelectric conversion, in an upper layer and takes out an electric signal obtained in a photoelectric conversion portion to the outside.
  • a signal processing circuit including a CMOS (Complementary Metal Oxide Semiconductor) circuit is provided in a lower layer.
  • CMOS Complementary Metal Oxide Semiconductor
  • FIG. 1 and 2 are cross-sectional views of the image pickup apparatus 100 according to the embodiment.
  • the imaging device 100 includes the semiconductor substrate 1 and the pixel unit 30.
  • the pixel portion 30 is provided on the semiconductor substrate 1.
  • the pixel section 30 includes a plurality of pixel electrodes 3, a counter electrode 5, and a photoelectric conversion layer 4.
  • the photoelectric conversion layer 4 is arranged between the pixel electrode 3 and the counter electrode 5.
  • the photoelectric conversion layer 4 has a film shape.
  • the pixel unit 30 includes the detection circuit 12. A part of the detection circuit 12 is provided in the semiconductor substrate 1. The detection circuit 12 detects the potential of the pixel electrode 3.
  • the pixel unit 30 includes the insulating layer 2.
  • the insulating layer 2 is arranged between the photoelectric conversion layer 4 and the semiconductor substrate 1.
  • the detection circuit 12 is configured so as to cross the interface between the semiconductor substrate 1 and the insulating layer 2. Specifically, the detection circuit 12 corresponding to each of the plurality of pixels 20 is configured.
  • the terms X axis, Y axis, and Z axis may be used below. These axes are orthogonal to each other. Further, for convenience of description, the positive side in the Z-axis direction may be referred to as the top.
  • the main surface on the plus side in the Z-axis direction may be called the upper surface. In this example, the upper surface is the surface near the light incident side. The lower surface is the surface far from the light incident side.
  • the vertical direction is a direction perpendicular to the surface of the semiconductor substrate 1.
  • the pixel electrode 3 is formed on the upper surface of the insulating layer 2.
  • a pixel via 13 is connected to the pixel electrode 3.
  • the pixel via 13 extends from the pixel electrode 3 to the first wiring layer 14.
  • the first wiring layer 14 is a layer closest to the pixel electrode 3 among the plurality of wiring layers.
  • the pixel via 13 electrically connects the pixel electrode 3, the wiring layer, and the detection circuit 12 corresponding to the pixel electrode 3.
  • Each of the plurality of pixels 20 includes a photoelectric conversion unit 11.
  • the photoelectric conversion section 11 includes a pixel electrode 3, a counter electrode 5, and a photoelectric conversion layer 4. As described above, the photoelectric conversion layer 4 is arranged between the pixel electrode 3 and the counter electrode 5.
  • the photoelectric conversion layer 4 converts incident light into electric charges.
  • the pixel electrode 3 collects the electric charge generated in the photoelectric conversion layer 4.
  • An example of the material of the pixel electrode 3 is a metal compound such as titanium nitride (TiN).
  • Other examples of the material of the pixel electrode 3 are metals such as copper (Cu), tungsten (W), titanium (Ti), tantalum (Ta), and aluminum (Al).
  • the material of the pixel electrode 3 may be a compound or alloy formed by selecting at least two kinds from these metals.
  • the pixel electrode 3 may include a laminated structure formed by selecting at least two kinds from these metals.
  • the laminated structure is, for example, a TiN / Ti structure.
  • the TiN / Ti structure is a laminated structure in which a titanium nitride layer and a titanium layer are joined.
  • the film thickness of each of the plurality of pixel electrodes 3 is uniform.
  • the upper surface of each of the plurality of pixel electrodes 3 is flat.
  • the plurality of pixel electrodes 3 are located between the photoelectric conversion layer 4 and the semiconductor substrate 1.
  • the plurality of pixel electrodes 3 are arranged in a two-dimensional direction extending in the X-axis direction and the Y-axis direction.
  • the plurality of pixel electrodes 3 are arranged on the upper surface of the insulating layer 2.
  • the plurality of pixel electrodes 3 are arranged in a matrix.
  • the expression that a plurality of elements are arranged in a matrix means that the center of each element is located on the intersection of the lattice.
  • the plurality of pixel electrodes 3 have a constant distance from each other.
  • the pixel electrodes 3 are arranged corresponding to the arrangement of the pixels 20.
  • the plurality of pixels 20 are arranged in a matrix.
  • the plurality of pixel electrodes 3 are arranged in a matrix according to the arrangement of the plurality of pixels 20.
  • the detection circuit 12 corresponding to each of the plurality of pixels 20 is configured.
  • the detection circuit 12 detects the signal charge collected by the corresponding pixel electrode 3 and outputs a signal voltage according to the charge.
  • the detection circuit 12 includes, for example, a MOS (Metal Oxide Semiconductor) circuit, a TFT (Thin Film Transistor) circuit, and the like.
  • the detection circuit 12 includes, for example, an amplification transistor whose gate is electrically connected to the pixel electrode 3, and the amplification transistor outputs a signal voltage according to the amount of signal charge.
  • the detection circuit 12 may be shielded from light by a light shielding layer provided inside the insulating layer 2. Illustration of the light shielding layer is omitted.
  • the pixel via 13 electrically connects the pixel electrode 3 of each pixel 20, the wiring layer, and the detection circuit 12 corresponding to the pixel electrode 3.
  • An example of the material of the pixel via 13 is a conductive material such as copper (Cu), tungsten (W), cobalt (Co).
  • the pixel via 13 is embedded in the insulating layer 2.
  • the insulating layer 2 is formed on the semiconductor substrate 1.
  • the insulating layer 2 includes a plurality of constituent layers 2a, 2b, 2c, 2d and 2e.
  • the semiconductor substrate 1 is made of, for example, silicon (Si).
  • the plurality of constituent layers 2a, 2b, 2c, 2d and 2e are composed of, for example, silicon dioxide (SiO 2 ), a silicon carbide oxide film (SiOC) or the like.
  • a wiring layer is embedded in each of the constituent layers 2a, 2b, 2c, 2d and 2e.
  • the wiring layer has wiring.
  • the wiring layer and the wiring layer are connected by a via. Therefore, although the insulator of the insulating layer 2 is provided between the wiring layers, the wiring layers are electrically connected by the vias.
  • the number of constituent layers in the insulating layer 2 can be set arbitrarily and is not limited to the example of the five constituent layers 2a, 2b, 2c, 2d and 2e shown in FIG. The same applies to the number of wiring layers.
  • the pixel electrode 3 is arranged on the constituent layer 2e.
  • the photoelectric conversion layer 4 is stacked on the upper surfaces of the constituent layer 2e and the pixel electrode 3.
  • the counter electrode 5, the buffer layer 6, and the sealing layer 7 are laminated in this order.
  • a color filter 8 in the transmission wavelength range corresponding to each pixel 20 is arranged on the upper surface of the sealing layer 7, a color filter 8 in the transmission wavelength range corresponding to each pixel 20 is arranged.
  • a flattening layer 9 is arranged on the upper surface of the color filter 8.
  • the microlens 10 is arranged on the upper surface of the flattening layer 9.
  • the constituent layers of the insulating layer 2 are inserted in the gaps between the adjacent pixel electrodes 3.
  • the imaging device 100 is a color image sensor. However, it is also possible to omit the color filter 8. That is, the imaging device 100 may be a monochrome image sensor.
  • the photoelectric conversion layer 4 is composed of a photoelectric conversion material that generates an electric charge according to the intensity of received light.
  • the photoelectric conversion material is, for example, an organic semiconductor material and includes at least one of a p-type organic semiconductor and an n-type organic semiconductor.
  • the photoelectric conversion layer 4 has a uniform film thickness in the pixel region 30.
  • the photoelectric conversion layer 4 has two or more portions having different film thicknesses in the pixel region 30.
  • the counter electrode 5 faces the pixel electrode 3. Specifically, the counter electrode 5 faces the plurality of pixel electrodes 3 and a shield electrode 61, which will be described later, with the photoelectric conversion layer 4 sandwiched in the pixel section 30.
  • the counter electrode 5 is arranged on the light incident side of the imaging device 100 when viewed from the photoelectric conversion layer 4.
  • the counter electrode 5 may have a light-transmitting property in order to allow light to enter the photoelectric conversion layer 4.
  • Examples of the material of the counter electrode 5 include transparent oxide conductive materials such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
  • the expression “the first element faces the second element with the third element sandwiched therebetween” is limitedly interpreted to refer to only the aspect in which the first element and the second element are in contact with the third element. Should not be.
  • the expression “the counter electrode 5 is opposed to the pixel electrode 3 and the shield electrode 61 with the photoelectric conversion layer 4 in between” means that an insulating portion 62 described later is provided between the shield electrode 61 and the photoelectric conversion layer 4. Is included, and the contact between the shield electrode 61 and the photoelectric conversion layer 4 is blocked by this intervention.
  • the photoelectric conversion layer 4 photoelectrically converts incident light in a state in which an appropriate bias voltage is applied by the pixel electrode 3 and the counter electrode 5 to generate electric charges.
  • the bias voltage is a potential difference between the counter electrode 5 and the pixel electrode 3.
  • the electric charge generated in the photoelectric conversion layer 4 as described above is transferred from the pixel electrode 3 to the storage region in the detection circuit 12 via the pixel via 13 and is temporarily stored. Then, the electric charge is output to the outside of the detection circuit 12 as a signal at appropriate time by the opening / closing operation of the transistor element in the detection circuit 12.
  • the photoelectric conversion layer 4 is arranged between the pixel electrode 3 and the counter electrode 5.
  • a shield electrode 61 is arranged in a region 60 between the pixel electrodes 3 and 3.
  • the insulating layer 2 and the shield electrode 61 are arranged in the region 60.
  • the illustration of the insulating layer 2 is omitted in FIG. 3.
  • the region 60 has a lattice shape in plan view.
  • the plan view means, for example, observation in a direction perpendicular to the surface of the semiconductor substrate 1.
  • the shield electrode 61 does not exist.
  • the electric field strength applied to the portion of the photoelectric conversion layer 4 overlapping the region 60 is smaller than that of the portion overlapping the pixel electrode 3 in plan view. Therefore, in the portion of the photoelectric conversion layer 4 that overlaps the region 60, the electric field strength that the signal charge receives from the pixel electrode 3 is relatively small.
  • the signal charge may reach the pixel electrode 3 adjacent to the pixel electrode 3 instead of the pixel electrode 3 which should originally reach.
  • the resolution is reduced.
  • a shield electrode can be used from the viewpoint of suppressing a decrease in resolution.
  • the imaging device 100 is a color image sensor, color mixture can be suppressed by using a shield electrode.
  • the shield electrode 61 is arranged between the photoelectric conversion layer 4 and the semiconductor substrate 1. As shown in FIG. 3, the shield electrode 61 is electrically separated from the plurality of pixel electrodes 3.
  • the shield electrode 61 is arranged in the region 60 between the pixel electrodes 3 and 3.
  • the shield electrode 61 By disposing the shield electrode 61, it becomes possible to apply a voltage to a region between two pixel electrodes 3 adjacent to each other.
  • the signal charge 65 generated in the portion of the photoelectric conversion layer 4 that overlaps the region 60 in plan view is collected by the shield electrode 61.
  • an image with high resolution can be obtained.
  • the image pickup apparatus 100 is a color image sensor, color mixing between adjacent pixels can be suppressed.
  • Examples of the material of the shield electrode 61 include metals such as copper (Cu), tungsten (W), titanium (Ti), tantalum (Ta), and aluminum (Al).
  • the material of the shield electrode 61 may be a compound or alloy formed by selecting at least two kinds from these metals.
  • the shield electrode 61 may include a laminated structure formed by selecting at least two kinds from these metals.
  • the laminated structure is, for example, a TiN / Ti structure.
  • each shield electrode 61 is uniform.
  • the surface of each shield electrode 61 on the photoelectric conversion layer 4 side is flat.
  • the surface of the shield electrode 61 and the surface of the pixel electrode 3 are on the same plane. Specifically, the surface of the shield electrode 61 facing the semiconductor substrate 1 and the surface of the pixel electrode 3 facing the semiconductor substrate 1 are on the same plane.
  • the imaging device having such a configuration is easy to manufacture.
  • the surface of the shield electrode 61 and the surface of the pixel electrode 3 do not have to be on the same plane. Specifically, the surface of the shield electrode 61 facing the semiconductor substrate 1 and the surface of the pixel electrode 3 facing the semiconductor substrate 1 do not have to be on the same plane.
  • the material of the shield electrode 61 and the material of the pixel electrode 3 may be the same.
  • the shield electrode 61 and the pixel electrode 3 can be formed without requiring separate manufacturing steps. By doing so, the shield electrode 61 and the pixel electrode 3 can be formed in the same manufacturing process and with the same mask. Therefore, it is not necessary to consider misalignment.
  • misalignment means that the relative positional relationship between the shield electrode 61 and the pixel electrode 3 deviates from an appropriate range.
  • the separation width 71 between the pixel electrode 3 and the shield electrode 61 is, for example, 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the insulating portion 62 is provided between the shield electrode 61 and the photoelectric conversion layer 4.
  • the insulating portion 62 is an insulator.
  • the insulating portion 62 covers the shield electrode 61.
  • the insulating portion 62 specifically covers the entire surface of the shield electrode 61 on the photoelectric conversion layer 4 side.
  • the insulating portion 62 is in contact with the shield electrode 61. Specifically, the insulating portion 62 is in contact with the entire surface of the shield electrode 61 on the photoelectric conversion layer 4 side. The insulating portion 62 blocks contact between the shield electrode 61 and the photoelectric conversion layer 4.
  • the insulating portion 62 may protrude from the shield electrode 61 and may include a portion that does not overlap with the shield electrode 61.
  • part or all of the contour of the insulating portion 62 can be outside the contour of the shield electrode 61 in plan view. By doing so, an electric field in an obliquely upward direction from the end of the shield electrode 61 toward the photoelectric conversion layer 4 can be suppressed. This is advantageous from the viewpoint of ensuring the insulation between the shield electrode 61 and the pixel electrode 3, for example.
  • the insulating portion 62 protruding from the shield electrode 61 in a plan view is advantageous from the viewpoint of suppressing the signal charges from wrapping around the insulating portion 62 from the side and flowing into the shield electrode 61. Therefore, the form of FIG. 4C is suitable for obtaining a high-resolution image.
  • the insulating portion 62 protruding from the shield electrode 61 in a plan view means that the insulating portion 62 includes a portion outside the contour of the shield electrode 61 in a plan view. It can be said that the shield electrode 61 includes a portion located inside the contour of the insulating portion 62 in a plan view. More specifically, the insulating portion 62 protruding from the shield electrode 61 in plan view means not only the case where all the contours of the insulating portion 62 are outside the contour of the shield electrode 61 in plan view, This is a concept including a case where only a part of the outline of the insulating portion 62 exists outside the outline of the shield electrode 61 in a plan view. When seen in a plan view, the entire outline of the insulating portion 62 may be outside the outline of the shield electrode 61, or only a part of the outline of the insulating portion 62 may be outside the outline of the shield electrode 61. Good.
  • the insulating portion 62 is separated from each pixel electrode 3 in a plan view. With this configuration, the capture of the signal charge by the pixel electrode 3 is unlikely to be hindered by the insulating portion 62. This is suitable for obtaining a high resolution image.
  • the insulating portion 62 may cover a part of the pixel electrode 3.
  • the pixel electrode 3 and the photoelectric conversion layer 4 are electrically connected. Specifically, the pixel electrode 3 and the photoelectric conversion layer 4 are in contact with each other. However, a blocking layer may be provided between the pixel electrode 3 and the photoelectric conversion layer 4. The blocking layer allows the signal charges of the charge pairs generated by the photoelectric conversion in the photoelectric conversion layer 4 to pass through but blocks the charges other than the signal charges from being injected from the pixel electrode 3. As a result, the signal charge can be efficiently transported to the pixel electrode 3.
  • the blocking layer exhibits a selective charge transport property, and is therefore not an insulator.
  • Examples of the material of the insulating portion 62 are silicon dioxide (SiO 2 ), silicon oxycarbide (SiOC), silicon nitride (SiN), silicon carbonitride (SiCN), and the like.
  • Other examples of the material of the insulating portion 62 are a compound of copper (Cu), a compound of titanium (Ti), a compound of tantalum (Ta), a compound of aluminum (Al), and the like.
  • the insulating portion 62 may include a laminated structure formed by selecting at least two kinds from these materials.
  • the material of the insulating portion 62 may be the same as the material of the insulating layer 2, or may be different from the material of the insulating layer 2.
  • the insulating portion 62 typically has a film shape.
  • the thickness direction of the film shape coincides with the direction perpendicular to the surface of the semiconductor substrate 1.
  • the thickness of the film shape is, for example, 10 nm or more.
  • the thickness of the film shape may be 20 nm or more.
  • the thickness of the film shape is, for example, 500 nm or less. By reducing the thickness of the film shape to this extent, it is easy to collect signal charges around the shield electrode 61 when a voltage is applied to the shield electrode 61. When the signal charges generated between the pixel electrodes 3 are collected in the vicinity of the shield electrode 61, it is possible to suppress the signal charges from being collected by other than the desired pixel electrode 3. Therefore, setting the thickness of the film shape to 500 nm or less is suitable for obtaining an image with high resolution by the shield electrode 61.
  • the thickness of the film shape may be 300 nm or less.
  • the signal charge collected between the shield electrodes 61 is reduced to a level that can be substantially ignored, and the signal charges generated between the pixel electrodes are generated in the vicinity of the shield electrode 61. Therefore, it is easy to prevent the signal charges from being collected by other than the desired pixel electrode 3. For this reason, it is easy to obtain a high-resolution image while suppressing the decrease in the sensitivity of the imaging device due to the shield electrode 61.
  • the thickness of the film shape can be specified by a well-known method.
  • the thickness of the film shape can be specified as follows, for example. First, an electron microscope image of the cross section of the film shape is acquired. Next, using the image, the thickness is measured at arbitrary plural measurement points (for example, 5 points) of the film shape. The average value of the thicknesses of the plurality of measurement points is adopted as the thickness of the film shape.
  • the method of forming the insulating portion 62 is not particularly limited.
  • the insulating portion 62 is formed as follows. A layer of the material of the insulating portion 62 is formed on the shield electrode 61 (typically, on the entire upper surface of the shield electrode 61). Next, a part of this layer is removed. In this way, the insulating portion 62 is obtained. By doing so, it is possible to obtain the film-shaped insulating portion 62.
  • the material layer of the insulating portion 62 can be formed by, for example, chemical vapor deposition (CVD). A part of the material layer of the insulating portion 62 can be removed by, for example, lithography, etching or the like.
  • CVD chemical vapor deposition
  • the insulating portion 62 may cover the entire upper surface of the shield electrode 61, the entire upper surface of the insulating layer 2 between the pixel electrode 3 and the shield electrode 61, and a part of the pixel electrode 3. .. By doing so, the position of the step formed at the end of the insulating portion 62 can be on the pixel electrode 3.
  • the pixel electrode 3 and the shield electrode 61 are covered with the layer 62x of the material of the insulating portion 62. A part of the layer 62x is covered with the mask 81. A portion of the layer 62x not covered with the mask 81 is removed by etching.
  • the insulating layer 2 is not shown in the portion (a) of FIG. 4D and the portion (a) of FIG. 4E. In the description relating to FIGS. 4D and 4E, it is assumed that the insulating layer 2 is located between the pixel electrode 3 and the shield electrode 61. 4D and 4E, the upper surface of the insulating layer 2 at the above position is flush with the upper surface of the pixel electrode 3 and the upper surface of the shield electrode 61 before the etching.
  • the mask 81 covers the entire upper surface of the shield electrode 61. However, the mask 81 does not cover the upper surface of the insulating layer 2 between the pixel electrode 3 and the shield electrode 61. Further, the mask 81 does not cover the upper surface of the pixel electrode 3. On the other hand, in the portion (a) of FIG. 4E, the mask 81 covers the entire upper surface of the shield electrode 61 and the entire upper surface of the insulating layer 2 between the pixel electrode 3 and the shield electrode 61. In the portion (a) of FIG. 4E, the mask 81 further partially covers the upper surface of the pixel electrode 3.
  • the insulating portion 62 that covers only the entire upper surface of the shield electrode 61 is obtained.
  • the entire upper surface of the shield electrode 61, the entire upper surface of the insulating layer 2 between the pixel electrode 3 and the shield electrode 61, and the pixel electrode An insulating portion 62 that covers a part of the upper surface of 3 is obtained.
  • the portion (b) of FIG. 4D and the portion (b) of FIG. 4E show a state in which the portion of the layer 62x not covered with the mask 81 is removed by etching. By this removal, the layer 62x is processed into the insulating portion 62.
  • the mask 81 is arranged as in the portion (a) of FIG. 4D, the pixel electrode 3 and the insulating layer 2 which are not covered by the mask 81 are also cut to some extent.
  • the pixel electrode 3 and the insulating layer 2 have different etching rates and different degrees of abrasion. Therefore, as shown in the area surrounded by the dotted line 84 in the portion (b) of FIG. 4D, the height of the upper surface is different between the pixel electrode 3 and the insulating layer 2. Further, as shown in the area surrounded by the dotted line 85, there is a difference in the height of the upper surface between the insulating portion 62 and the insulating layer 2.
  • An alternate long and short dash line 82 in the portion (b) of FIG. 4D represents the positions of the upper surfaces of the pixel electrode 3 and the insulating layer 2.
  • the mask 81 covers the entire upper surface of the shield electrode 61 and partially covers the upper surface of the insulating layer 2 between the pixel electrode 3 and the shield electrode 61.
  • a difference in the height of the upper surface occurs between the pixel electrode 3 and the insulating layer 2 due to the difference in the etching rate.
  • the portion (c) of FIG. 4D and the portion (c) of FIG. 4E show a state in which the photoelectric conversion layer 4 is formed on the upper surface formed by etching.
  • the shape of the upper surface is reflected on the shape of the upper surface of the photoelectric conversion layer 4.
  • the two-dot chain line 83 in the portion (c) of FIGS. 4D and 4E represents the position of the upper surface of the photoelectric conversion layer 4.
  • the configuration of FIG. 4E is more advantageous than the configuration of FIG. 4D from the viewpoint of flattening the shape of the photoelectric conversion layer 4.
  • the structure in which the insulating portion 62 covers the entire upper surface of the shield electrode 61, the entire upper surface of the insulating layer 2 between the pixel electrode 3 and the shield electrode 61, and a part of the upper surface of the pixel electrode 3 is It can be said that it is advantageous from the viewpoint of flattening the photoelectric conversion layer 4.
  • the insulating portion 62 has a film shape.
  • the film shape has an upper surface 62a, a lower surface 62b, and a side surface 62c.
  • the side surface 62c extends from the lower surface 62b to the upper surface 62a.
  • a corner 62d is formed by the upper surface 62a and the side surface 62c.
  • An angle ⁇ is formed between the lower surface 62b and the side surface 62c.
  • the angle ⁇ is relatively large. Specifically, the angle ⁇ is about 90 °. Therefore, the corner 62d is sharp.
  • the insulating portion 62 has a film shape.
  • the angle ⁇ is smaller than in the specific examples of FIGS. 4A, 4B and 4C. In this way, the sharpness of the corner 62d is alleviated, and cracks are less likely to occur at the corner 62d when the photoelectric conversion layer 4 is formed. Thereby, the photoelectric conversion layer 4 is less likely to deteriorate at the contact portion with the insulating portion 62.
  • Reducing the angle ⁇ or reducing the sharpness of the corner 62d is, for example, a reverse sputtering effect in which the corners of the insulating portion are scraped off by ions in plasma, and the insulating portion is flattened by CMP (Chemical Mechanical Polishing). This can be achieved by removing the corners.
  • CMP Chemical Mechanical Polishing
  • the protrusion 4 p may be formed at a position in the photoelectric conversion layer 4 that overlaps with the insulating portion 62 in a plan view.
  • the protruding portion 4p protrudes in the thickness direction of the film shape of the insulating portion 62 as compared with the peripheral portion of the protruding portion 4p.
  • the protrusion width PW of the protrusion 4p may be the same as the film thickness TH of the insulating portion 62. However, as shown in FIG. 6, it is possible to make the protrusion width PW smaller than the thickness TH. In other words, the thickness of the portion of the photoelectric conversion layer 4 that overlaps the insulating portion 62 in plan view can be made thinner than the thickness of the periphery of that portion. For example, the protrusion width PW can be reduced by performing heat treatment on the photoelectric conversion layer 4. Note that the protrusion width PW being smaller than the thickness TH is a concept including a case where the protrusion width PW is zero.
  • the photoelectric conversion layer 4 in which the insulating portion 62 is provided and the protruding width PW of the protruding portion 4p is small or the protruding portion 4p does not exist.
  • the layer above the photoelectric conversion layer 4 can be easily manufactured.
  • the thickness of the portion of the photoelectric conversion layer 4 overlapping with the pixel electrode 3 in plan view is larger than the thickness of the portion of the photoelectric conversion layer 4 overlapping with the shield electrode 61 in plan view. This is suitable for promoting photoelectric conversion in the former part and capturing more signal charges in the pixel electrode 3, and suppressing photoelectric conversion in the latter part and suppressing capture of signal charges by the shield electrode 61. ing.
  • the insulating portion 62 has a film shape.
  • the pixel via 13, the pixel electrode 3, the via 68, and the pixel electrode 69 are sequentially connected from the semiconductor substrate 1 toward the photoelectric conversion layer 4. Therefore, they are electrically connected.
  • the signal charge reaching the pixel electrode 69 flows through the via 68, the pixel electrode 3, and the pixel via 13 in this order.
  • the insulating portion 62 surrounds the pixel electrode 69 in plan view.
  • the upper surface of the insulating portion 62 and the upper surface of the pixel electrode 69 are flush with each other.
  • the insulating portion 62 also exists between the pixel electrode 3 and the pixel electrode 69.
  • the upper surface of the shield electrode 61 is covered with the insulating portion 62.
  • the upper surface of the pixel electrode 3 is also covered with the insulating portion 62.
  • Providing the via 68 and the pixel electrode 69 as in the specific example of FIG. 7 is advantageous from the viewpoint of providing the insulating portion 62 between the shield electrode 61 and the photoelectric conversion layer 4 while flattening the lower surface of the photoelectric conversion layer 4. Is. Therefore, this configuration is advantageous from the viewpoint of suppressing the generation of cracks in the photoelectric conversion layer 4.
  • the insulating portion 62 is thick, a large step due to the insulating portion 62 can be formed on the insulating portion 62 or the pixel electrode 69. In that case, since the photoelectric conversion layer 4 is formed on the uneven surface, cracks are likely to occur in the photoelectric conversion layer 4. Therefore, in such a case, the crack suppression effect can be exhibited by using the configuration of FIG. 7.
  • the film thickness of the insulating portion 62 refers to the thickness of the portion of the insulating portion 62 that overlaps the shield electrode 61 in plan view. The measurement point is set in the portion.
  • an insulator 67 is provided between the pixel electrode 3 and the shield electrode 61.
  • the material of the insulator 67 and the material of the insulating portion 62 may be the same or different.
  • the insulator 67 may be the insulator of the insulating layer 2.
  • the insulating layer 2 serving as an insulator is located between the pixel electrode 3 and the shield electrode 61.
  • a charge storage region is provided separately from the photoelectric conversion layer 4.
  • the storage region is provided in a portion of the detection circuit 12 inside the semiconductor substrate 1. The charges generated in the photoelectric conversion layer 4 are transported from the pixel electrode 3 to the storage region via the pixel via 13.
  • the imaging device 100 includes a plurality of wiring layers.
  • the plurality of wiring layers are arranged between the shield electrode and the semiconductor substrate 1.
  • the plurality of wiring layers are located at different positions in the direction perpendicular to the surface of the semiconductor substrate 1.
  • the first wiring layer 14 is a layer closest to the pixel electrode 3 among the plurality of wiring layers. In a region located closer to the semiconductor substrate 1 than the first wiring layer 14 than in a region located closer to the pixel electrode 3 than the first wiring layer 14, wiring that can function as a shield for suppressing crosstalk is arranged. Often Therefore, the shield effect due to the vias connected to the shield electrode 61 is more likely to appear in the region closer to the pixel electrode 3 than the first wiring layer 14. Further, the shield effect due to the via connected to the shield electrode 61 is likely to appear when the distance between the pixel electrode 3 and the first wiring layer 14 is large.
  • the imaging device 100 is a color image sensor.
  • pixels corresponding to RGB are arranged adjacent to each other. That is, pixels corresponding to different colors are arranged adjacent to each other. Therefore, when crosstalk occurs between pixels, color mixing occurs.
  • the shield structure By applying the shield structure to the color image sensor, crosstalk is suppressed and deterioration of image quality due to color mixture is suppressed.
  • the via extending from the shield electrode 61 may be referred to as a shield via.
  • shield vias 63 and 63C are connected to the shield electrode 61.
  • the shield vias 63 and 63C extend from the shield electrode 61 toward the semiconductor substrate 1. Specifically, the shield vias 63 and 63C extend from the shield electrode 61 to the first wiring layer 14.
  • a via electrically connected to the shield electrode 61 may be provided closer to the semiconductor substrate 1 than the first wiring layer 14.
  • each pixel electrode 3 is surrounded by the frame-shaped portion included in the shield electrode 61 in plan view.
  • the shield vias 63C connected to the shield electrode 61 are arranged at the four corners of the frame-shaped portion. Further, the shield via 63 is also arranged between the four corners.
  • the shield vias 63C located at the four corners of the frame-shaped portion surrounding the pixel electrode 3 at the center of the drawing are denoted by reference numeral 63C.
  • the number of shield vias 63, 63C may be increased more than in the example of FIG.
  • a large number of shield vias 63, 63C may be provided so that adjacent shield vias 63, 63C are in contact with each other.
  • a set of the plurality of shield vias 63, 63C provided in this way can be called a line via.
  • color mixture can be suppressed by suppressing crosstalk as described above.
  • Examples of the material of the shield vias 63, 63C include conductive materials such as copper (Cu), tungsten (W), and cobalt (Co).
  • the shield vias 63, 63C can be formed by embedding in the insulating layer 2.
  • a plurality of shield vias 63, 63C may be formed in the same manufacturing process as the pixel via 13.
  • a shield structure with shield vias connected to the shield electrode 61 may be provided without providing the insulating portion 62 between the shield electrode 61 and the photoelectric conversion layer 4.
  • the position of the first shield via, which is the shield via 63 is represented by a point P1.
  • the position of the second shield via that is the shield via 63 is represented by a point P2.
  • the position of the third shield via, which is the shield via 63 is represented by a point P3.
  • the position of the fourth shield via that is the shield via 63 is represented by a point P4.
  • the position of the fifth shield via, which is the shield via 63C is represented by a point P5.
  • the position of the sixth shield via that is the shield via 63C is represented by a point P6.
  • the position of the seventh shield via, which is the shield via 63C is represented by a point P7.
  • the position of the eighth shield via, which is the shield via 63C, is represented by a point P8.
  • the position of the ninth shield via that is the shield via 63 is represented by a point P9.
  • the position of the tenth shield via, which is the shield via 63 is represented by a point P10.
  • the position of the eleventh shield via, which is the shield via 63 is represented by a point P11.
  • the position of the 12th shield via, which is the shield via 63 is represented by a point P12.
  • the position of the thirteenth shield via which is the shield via 63 is represented by a point P13.
  • the position of the 14th shield via, which is the shield via 63 is represented by a point P14.
  • first part X1, second part X2, third part X3, fourth part X4, fifth part X5, sixth part X6, seventh part X7 and eighth part X8 may be used.
  • each of these portions is hatched. Note that the illustration of the insulating layer 2 is omitted in FIG.
  • planar view means, for example, observation in a direction perpendicular to the surface of the semiconductor substrate 1.
  • the plurality of pixel electrodes 3 are the first pixel electrode 3A, the first adjacent pixel electrode 3B1, the second adjacent pixel electrode 3B2, the third adjacent pixel electrode 3B3, and the fourth adjacent pixel electrode 3B4. And, including.
  • the first adjacent pixel electrode 3B1, the second adjacent pixel electrode 3B2, the third adjacent pixel electrode 3B3, and the fourth adjacent pixel electrode 3B4 are adjacent to the first pixel electrode 3A.
  • the plurality of pixel electrodes 3 include the first specific pixel electrode 3C1, the second specific pixel electrode 3C2, the third specific pixel electrode 3C3, and the fourth specific pixel electrode 3C4.
  • the first specific pixel electrode 3C1 is adjacent to the first adjacent pixel electrode 3B1 and the second adjacent pixel electrode 3B2.
  • the second specific pixel electrode 3C2 is adjacent to the second adjacent pixel electrode 3B2 and the third adjacent pixel electrode 3B3.
  • the third specific pixel electrode 3C3 is adjacent to the third adjacent pixel electrode 3B3 and the fourth adjacent pixel electrode 3B4.
  • the fourth specific pixel electrode 3C4 is adjacent to the fourth adjacent pixel electrode 3B4 and the first adjacent pixel electrode 3B1.
  • the shield electrode 61 includes a first portion X1, a second portion X2, a third portion X3, and a fourth portion X4.
  • the at least one shield via includes a first shield via, a second shield via, a third shield via, and a fourth shield via.
  • the first shield via extends from the first portion X1 toward the semiconductor substrate 1.
  • the second shield via extends from the second portion X2 toward the semiconductor substrate 1.
  • the third shield via extends from the third portion X3 toward the semiconductor substrate 1.
  • the fourth shield via extends from the fourth portion X4 toward the semiconductor substrate 1.
  • the first pixel electrode 3A is a quadrangle Q in which a first side S1, a second side S2, a third side S3, and a fourth side S4 are connected in this order.
  • the first portion X1 is located between the first side S1 and the first adjacent pixel electrode 3B1.
  • the second portion X2 is located between the second side S2 and the second adjacent pixel electrode 3B2.
  • the third portion X3 is located between the third side S3 and the third adjacent pixel electrode 3B3.
  • the fourth portion X4 is located between the fourth side S4 and the fourth adjacent pixel electrode 3B4.
  • the first side S1 faces the first adjacent pixel electrode 3B1 with the first portion X1 interposed therebetween.
  • the second side S2 faces the second adjacent pixel electrode 3B2 with the second portion X2 interposed therebetween.
  • the third side S3 faces the third adjacent pixel electrode 3B3 with the third portion X3 interposed therebetween.
  • the fourth side S4 faces the fourth adjacent pixel electrode 3B4 with the fourth portion X4 interposed therebetween.
  • the shield electrode 61 includes a fifth portion X5, a sixth portion X6, a seventh portion X7, and an eighth portion X8.
  • the at least one shield via includes a fifth shield via, a sixth shield via, a seventh shield via, and an eighth shield via.
  • the fifth shield via extends from the fifth portion X5 toward the semiconductor substrate 1.
  • the sixth shield via extends from the sixth portion X6 toward the semiconductor substrate 1.
  • the seventh shield via extends from the seventh portion X7 toward the semiconductor substrate 1.
  • the eighth shield via extends from the eighth portion X8 toward the semiconductor substrate 1.
  • the plurality of pixel electrodes 3 are separated from each other via the grid-like region 60 including a plurality of intersecting portions.
  • the shield electrode 61 is located in the grid-shaped region 60 in a plan view.
  • the quadrangle Q includes a first vertex V1, a second vertex V2, a third vertex V3, and a fourth vertex V4.
  • the first vertex V1 is a vertex where the first side S1 and the second side S2 are in contact with each other.
  • the second vertex V2 is a vertex where the second side S2 and the third side S3 are in contact with each other.
  • the third vertex V3 is a vertex where the third side S3 and the fourth side S4 are in contact with each other.
  • the fourth vertex V4 is a vertex where the fourth side S4 and the first side S1 are in contact with each other.
  • the plurality of intersections include a first intersection Y1, a second intersection Y2, a third intersection Y3, and a fourth intersection Y4.
  • the first intersection Y1 is closest to the first vertex V1 at the plurality of intersections.
  • the second intersection Y2 is closest to the second vertex V2 at the plurality of intersections.
  • the third intersection Y3 is closest to the third vertex V3 at the plurality of intersections.
  • the fourth intersection Y4 is closest to the fourth vertex V4 at the plurality of intersections.
  • the fifth portion X5 is located at the first intersection Y1 in a plan view.
  • the sixth portion X6 is located at the second intersection Y2 in a plan view.
  • the seventh portion X7 is located at the third intersection Y3 in a plan view.
  • the eighth portion X8 is located at the fourth intersection Y4 in a plan view.
  • the at least one shield via is a ninth shield via, a tenth shield via, an eleventh shield via, a twelfth shield via, a thirteenth shield via, and a fourteenth shield via. And, including.
  • the ninth shield via and the tenth shield via extend from the first portion X1 toward the semiconductor substrate 1.
  • the eleventh shield via extends from the second portion X2 toward the semiconductor substrate 1.
  • the twelfth shield via and the thirteenth shield via extend from the third portion X3 toward the semiconductor substrate 1.
  • the fourteenth shield via extends from the fourth portion X4 toward the semiconductor substrate 1.
  • the vias connected to the shield electrode 61 contribute to obtaining an image with high resolution. Specifically, when the first to fourteenth shield vias are provided in this manner, the number of shield vias 63 and 63C surrounding one pixel electrode 3 in plan view increases, and the effect of reducing crosstalk increases. .. Further, crosstalk between pixels arranged in an oblique direction can be reduced. Therefore, it is easy to obtain an image with higher resolution.
  • the diagonal direction is the direction in which the diagonal line of the quadrangle Q extends in plan view in the example of FIG.
  • shield vias 63 and 63C connected to the shield electrode 61 according to the above description may be omitted.
  • Shield vias 63 and 63C extending from the shield electrode 61 toward the semiconductor substrate 1 may be added.
  • the imaging device 100 includes the pixel via 13.
  • the pixel via 13 is connected to the first pixel electrode 3A.
  • the pixel via 13 extends from the first pixel electrode 3A toward the semiconductor substrate 1.
  • the position of the pixel via 13 is represented by a point PA.
  • the pixel via 13 is formed on the semiconductor substrate 1 not only from the pixel electrode 3A at the center of the drawing but also from the other eight pixel electrodes 3B1 to 3B4 and 3C1 to 3C4. Extending towards.
  • an imaging device 100 noise caused by parasitic capacitance between the pixel via 13 connected to the first pixel electrode 3A and the signal charge flowing in the pixel via 13 and the pixel via connected to the adjacent pixel electrode is generated. Can be suppressed by the shield vias 63 and 63C connected to the shield electrode 61. Therefore, such an imaging device 100 is suitable for obtaining an image with high resolution.
  • the pixel vias 13 connected to the first pixel electrodes 3A are the first shield vias, the second shield vias, the third shield vias, the fourth shield vias, and the fifth shields. Surrounded by vias and.
  • the pixel vias 13 connected to the first pixel electrode 3A include the first shield via, the second shield via, the third shield via, the fourth shield via, and the fifth shield. It is surrounded by a via, a sixth shield via, a seventh shield via, and an eighth shield via.
  • the pixel vias 13 connected to the first pixel electrode 3A are the first shield via, the second shield via, the third shield via, the fourth shield via, and the fifth shield via.
  • the fourteenth shield via is the fourteenth shield via.
  • the at least one shield via extends from the shield electrode 61 to the first wiring layer 14. This is suitable for obtaining a high-resolution image.
  • the quadrangle Q is a rectangle.
  • the quadrangle Q may be a square.
  • the first adjacent pixel electrode 3B1, the second adjacent pixel electrode 3B2, the third adjacent pixel electrode 3B3, and the fourth adjacent pixel electrode 3B4 are quadrangular in a plan view.
  • the first adjacent pixel electrode 3B1, the second adjacent pixel electrode 3B2, the third adjacent pixel electrode 3B3, and the fourth adjacent pixel electrode 3B4 have the same shape and size as the quadrangle Q.
  • the first adjacent pixel electrode 3B1 and the third adjacent pixel electrode 3B3 are adjacent to the first pixel electrode 3A in the direction in which the second side S2 and the fourth side S4 extend.
  • the second adjacent pixel electrode 3B2 and the fourth adjacent pixel electrode 3B4 are adjacent to the first pixel electrode 3A in the direction in which the first side S1 and the third side S3 extend.
  • the shield electrode 61 which is a single conductor, shields the plurality of pixel electrodes 3.
  • the single conductor has a lattice shape in a plan view.
  • the shield electrode 61 may be electrically separated into a plurality of portions, and each of the plurality of portions may individually shield the corresponding pixel electrode 3.
  • the features of the imaging device will be described below with reference to FIGS. 9A to 9E.
  • the following description may overlap with the above description.
  • the following description may be combined with the above description.
  • the terms used in the following description and the terms used in the above description can be interchanged.
  • the insulating layer 2 is not shown in FIGS. 9A to 9E.
  • the first shield via SV1 in FIG. 9A corresponds to the first shield via at point P1 in FIG.
  • the second shield via SV2 in FIG. 9A corresponds to the second shield via at the point P2 in FIG.
  • the third shield via SV3 in FIG. 9A corresponds to the fifth shield via at point P5 in FIG.
  • the fourth shield via SV4 in FIG. 9A corresponds to the third shield via at point P3 in FIG.
  • the fifth shield via SV5 in FIG. 9A corresponds to the sixth shield via at point P6 in FIG.
  • the sixth shield via SV6 in FIG. 9A corresponds to the fourth shield via at point P4 in FIG.
  • the seventh shield via SV7 in FIG. 9A corresponds to the seventh shield via at point P7 in FIG.
  • the eighth shield via SV8 in FIG. 9A corresponds to the eighth shield via at point P8 in FIG.
  • the ninth shield via SV9 in FIG. 9A corresponds to the ninth shield via at point P9 in FIG.
  • the tenth shield via SV10 in FIG. 9A corresponds to the tenth shield via at point P10 in FIG.
  • the eleventh shield via SV11 in FIG. 9A corresponds to the eleventh shield via at point P11 in FIG.
  • the twelfth shield via SV12 in FIG. 9A corresponds to the twelfth shield via at point P12 in FIG.
  • the thirteenth shield via SV13 in FIG. 9A corresponds to the thirteenth shield via at point P13 in FIG.
  • the fourteenth shield via SV14 in FIG. 9A corresponds to the fourteenth shield via at point P14 in FIG.
  • the shield vias SV1 to SV14 extend from the shield electrode 61. Specifically, the shield vias SV1 to SV14 extend from the shield electrode 61 in a direction away from the light incident surface. It can be said that the shield vias SV1 to SV14 extend downward from the shield electrode 61. In this example, the shield vias SV1 to SV14 extend to the first wiring layer 14.
  • the first pixel electrode PE1 in FIG. 9A corresponds to the first pixel electrode 3A in FIG.
  • the second pixel electrode PE2 of FIG. 9A corresponds to the first adjacent pixel electrode 3B1 of FIG.
  • the third pixel electrode PE3 of FIG. 9A corresponds to the second adjacent pixel electrode 3B2 of FIG.
  • the fourth pixel electrode PE4 of FIG. 9A corresponds to the first specific pixel electrode 3C1 of FIG.
  • the fifth pixel electrode PE5 of FIG. 9A corresponds to the third adjacent pixel electrode 3B3 of FIG.
  • the sixth pixel electrode PE6 of FIG. 9A corresponds to the second specific pixel electrode 3C2 of FIG.
  • the seventh pixel electrode PE7 of FIG. 9A corresponds to the fourth adjacent pixel electrode 3B4 of FIG.
  • the eighth pixel electrode PE8 of FIG. 9A corresponds to the third specific pixel electrode 3C3 of FIG.
  • the ninth pixel electrode PE9 of FIG. 9A corresponds to the fourth specific pixel electrode 3C4 of FIG.
  • the first pixel electrode PE1 to the ninth pixel electrode PE9 collect charges.
  • the first pixel electrode PE1 to the ninth pixel electrode PE9 are electrically separated from the shield electrode 61.
  • the first pixel electrode PE1 is adjacent to the second pixel electrode PE2, the third pixel electrode PE3, the fifth pixel electrode PE5, and the seventh pixel electrode PE7.
  • the fourth pixel electrode PE4 is adjacent to the second pixel electrode PE2 and the third pixel electrode PE3.
  • the sixth pixel electrode PE6 is adjacent to the third pixel electrode PE3 and the fifth pixel electrode PE5.
  • the eighth pixel electrode PE8 is adjacent to the fifth pixel electrode PE5 and the seventh pixel electrode PE7.
  • the ninth pixel electrode PE9 is adjacent to the seventh pixel electrode PE7 and the second pixel electrode PE2.
  • the first pixel electrode PE1 and the second pixel electrode PE2 are adjacent to each other in the first direction.
  • the first pixel electrode PE1 and the third pixel electrode PE3 are adjacent to each other in the second direction.
  • the first pixel electrode PE1 and the fifth pixel electrode PE5 are adjacent to each other in the first direction.
  • the first pixel electrode PE1 and the seventh pixel electrode PE7 are adjacent to each other in the second direction.
  • the fourth pixel electrode PE4 and the second pixel electrode PE2 are adjacent to each other in the second direction.
  • the fourth pixel electrode PE4 and the third pixel electrode PE3 are adjacent to each other in the first direction.
  • the sixth pixel electrode PE6 and the third pixel electrode PE3 are adjacent to each other in the first direction.
  • the sixth pixel electrode PE6 and the fifth pixel electrode PE5 are adjacent to each other in the second direction.
  • the eighth pixel electrode PE8 and the fifth pixel electrode PE5 are adjacent to each other in the second direction.
  • the eighth pixel electrode PE8 and the seventh pixel electrode PE7 are adjacent to each other in the first direction.
  • the ninth pixel electrode PE9 and the seventh pixel electrode PE7 are adjacent to each other in the first direction.
  • the ninth pixel electrode PE9 and the second pixel electrode PE2 are adjacent to each other in the second direction.
  • first direction and the second direction are directions different from each other.
  • first direction and the second direction are directions orthogonal to each other.
  • first direction is the row direction.
  • the second direction is the column direction.
  • first direction corresponds to the X-axis direction.
  • the second direction corresponds to the Y-axis direction.
  • the expression that the first pixel electrode PE1 and the second pixel electrode PE2 are adjacent to each other will be described with reference to FIGS. 9B and 9C.
  • This expression means that, in a plan view, the side Sj of the smallest rectangle RT1 containing the first pixel electrode PE1 and the side Sk of the smallest rectangle RT2 containing the second pixel electrode PE2 face each other.
  • a rectangle is a concept that includes a square.
  • that the first pixel electrode PE1 and the second pixel electrode PE2 are adjacent to each other means that the normal line of the side Sj passes through the side Sk and the normal line of the side Sk is the side Sj in a plan view. Means to pass through.
  • the normal to the side Sj may be a line that passes through any point on the side Sj.
  • the normal line of the side Sk may be a line passing through any point on the side Sk.
  • the vertical bisector of the side Sj passes through the midpoint of the side Sk and the vertical bisector of the side Sk passes through the midpoint of the side Sj in a plan view.
  • the smallest rectangle RT1 that accommodates the first pixel electrode PE1 is the same as the contour of the first pixel electrode PE1 in plan view. The same applies to other pixel electrodes such as the second pixel electrode PE2.
  • the contour of the first pixel electrode PE1 may be rounded in a plan view.
  • the smallest rectangle RT1 that houses the first pixel electrode PE1 is different from the contour of the first pixel electrode PE1.
  • Other pixel electrodes such as the second pixel electrode PE2 may also have the shape shown in FIG. 9C. In reality, when the size of the pixel electrode is small, the pixel electrode tends to be rounded in plan view.
  • a plurality of pixels are arranged in a matrix to form a pixel array.
  • that a certain pixel electrode and another pixel electrode are adjacent to each other means that these pixel electrodes are adjacent to each other in the row direction or the column direction. Does not mean that the pixels are arranged in an oblique direction that is inclined with respect to the row direction and the column direction.
  • the row direction corresponds to the left-right direction and the column direction corresponds to the up-down direction.
  • the first pixel via PV1 extends from the first pixel electrode PE1.
  • the first pixel via PV1 in FIG. 9A corresponds to the pixel via 13 at the point PA in FIG.
  • the second pixel via PV2 extends from the second pixel electrode PE2.
  • the third pixel via PV3 extends from the third pixel electrode PE3.
  • the fourth pixel via PV4 extends from the fourth pixel electrode PE4.
  • the fifth pixel via PV5 extends from the fifth pixel electrode PE5.
  • the sixth pixel via PV6 extends from the sixth pixel electrode PE6.
  • the seventh pixel via PV7 extends from the seventh pixel electrode PE7.
  • An eighth pixel via PV8 extends from the eighth pixel electrode PE8.
  • the ninth pixel via PV9 extends from the ninth pixel electrode PE9.
  • the first pixel via PV1 to the ninth pixel via PV9 can electrically connect the first pixel electrode PE1 to the ninth pixel electrode PE9 to other elements. Specific examples of other elements are a wiring layer, the detection
  • the first shield via SV1 is located between the first pixel electrode PE1 and the second pixel electrode PE2 in a plan view.
  • the second shield via SV2 is located between the first pixel electrode PE1 and the third pixel electrode PE3.
  • the fourth shield via SV4 is located between the first pixel electrode PE1 and the fifth pixel electrode PE5.
  • the sixth shield via SV6 is located between the first pixel electrode PE1 and the seventh pixel electrode PE7.
  • the ninth shield via SV9 is located between the first pixel electrode PE1 and the second pixel electrode PE2.
  • the tenth shield via SV10 is located between the first pixel electrode PE1 and the second pixel electrode PE2 in a plan view.
  • the eleventh shield via SV11 is located between the first pixel electrode PE1 and the third pixel electrode PE3.
  • the twelfth shield via SV12 is located between the first pixel electrode PE1 and the fifth pixel electrode PE5.
  • the thirteenth shield via SV13 is located between the first pixel electrode PE1 and the fifth pixel electrode PE5.
  • the fourteenth shield via SV14 is located between the first pixel electrode PE1 and the seventh pixel electrode PE7.
  • first shield via SV1 is located between the first pixel electrode PE1 and the second pixel electrode PE2 in plan view means that, in plan view, one of the points on the side Sj is one end and one of the sides Sk is one of the ends. This means that the first shield via SV1 is present on the line segment having the point at the other end. In one specific example, the connection portion between the shield electrode 61 and the first shield via SV1 is present on the line segment in plan view. Regarding expressions and specific examples regarding the arrangement of shield vias between other two adjacent pixel electrodes such that the second shield via SV2 is located between the first pixel electrode PE1 and the third pixel electrode PE3 in a plan view Is also the same. When the shield via is located between two adjacent pixel electrodes in a plan view, the shield via can shield at least a part of the lines of electric force between the pixel electrodes.
  • the number of shield vias located between the first pixel electrode PE1 and the second pixel electrode PE2 in a plan view and the position between the first pixel electrode PE1 and the third pixel electrode PE3 in a plan view The number is different from the number of shield vias.
  • the number of shield vias located between the first pixel electrode PE1 and the third pixel electrode PE3 in a plan view, and the number of shield vias located between the first pixel electrode PE1 and the fifth pixel electrode PE5 in a plan view Is different from.
  • the number of shield vias located between the first pixel electrode PE1 and the fifth pixel electrode PE5 in a plan view, and the number of shield vias located between the first pixel electrode PE1 and the seventh pixel electrode PE7 in a plan view Is different from.
  • the number of shield vias located between the first pixel electrode PE1 and the seventh pixel electrode PE7 in a plan view, and the number of shield vias located between the first pixel electrode PE1 and the second pixel electrode PE2 in a plan view Is different from.
  • the number of shield vias located between the first pixel electrode PE1 and the second pixel electrode PE2 in a plan view and the position between the first pixel electrode PE1 and the fifth pixel electrode PE5 in a plan view The number of shield vias is the same.
  • the number of shield vias located between the first pixel electrode PE1 and the third pixel electrode PE3 in a plan view, and the number of shield vias located between the first pixel electrode PE1 and the seventh pixel electrode PE7 in a plan view And are the same.
  • the three shield vias located between the first pixel electrode PE1 and the second pixel electrode PE2 in plan view are the first shield via SV1, the ninth shield via SV9, and the tenth shield via SV10. is there.
  • the two shield vias, the second shield via SV2 and the eleventh shield via SV11, are located between the first pixel electrode PE1 and the third pixel electrode PE3 in a plan view.
  • the three shield vias located between the first pixel electrode PE1 and the fifth pixel electrode PE5 in a plan view are the fourth shield via SV4, the twelfth shield via SV12, and the thirteenth shield via SV13.
  • the two shield vias that are located between the first pixel electrode PE1 and the seventh pixel electrode PE7 in plan view are the sixth shield via SV6 and the fourteenth shield via SV14.
  • the third shield via SV3 is located between the first pixel electrode PE1 and the fourth pixel electrode PE4 in a plan view.
  • the fifth shield via SV5 is located between the first pixel electrode PE1 and the sixth pixel electrode PE6.
  • the seventh shield via SV7 is located between the first pixel electrode PE1 and the eighth pixel electrode PE8.
  • the eighth shield via SV8 is located between the first pixel electrode PE1 and the ninth pixel electrode PE9.
  • the expression that the third shield via SV3 is located between the first pixel electrode PE1 and the fourth pixel electrode PE4 in plan view will be described with reference to FIG. 9D.
  • This expression is a line segment that connects two opposite apexes of the smallest rectangle RT1 containing the first pixel electrode PE1 and the smallest rectangle RT4 containing the fourth pixel electrode PE4 in plan view.
  • the third shield via SV3 is located in a square Sx2 having a diagonal line of. The two opposite vertices are chosen such that the square Sx2 is the smallest.
  • the connection portion between the shield electrode 61 and the third shield via SV3 exists in the square Sx2 in a plan view.
  • the third shield via SV3 is located between the first pixel electrode PE1, the second pixel electrode PE2, the third pixel electrode PE3, and the fourth pixel electrode PE4 in a plan view.
  • the fifth shield via SV5 is located between the first pixel electrode PE1, the third pixel electrode PE3, the fifth pixel electrode PE5, and the sixth pixel electrode PE6.
  • the seventh shield via SV7 is located between the first pixel electrode PE1, the fifth pixel electrode PE5, the seventh pixel electrode PE7, and the eighth pixel electrode PE8.
  • the eighth shield via SV8 is located between the first pixel electrode PE1, the seventh pixel electrode PE7, the second pixel electrode PE2, and the ninth pixel electrode PE9. The presence of the vias between the four pixel electrodes in a plan view is suitable for obtaining an image with high resolution.
  • the expression that the third shield via SV3 is located between the first pixel electrode PE1, the second pixel electrode PE2, the third pixel electrode PE3, and the fourth pixel electrode PE4 in a plan view will be described with reference to FIG. 9E.
  • This expression means, in plan view, the minimum rectangle RT1 that accommodates the first pixel electrode PE1, the minimum rectangle RT2 that accommodates the second pixel electrode PE2, and the minimum rectangle that accommodates the third pixel electrode PE3.
  • connection portion between the shield electrode 61 and the third shield via SV3 is present inside the quadrangle Sx4 in a plan view.
  • the shield via between the other four pixel electrodes such that the fifth shield via SV5 is located between the first pixel electrode PE1, the third pixel electrode PE3, the fourth pixel electrode PE5 and the sixth pixel electrode PE6 in a plan view.
  • the shield via can shield at least a part of the lines of electric force between the four pixel electrodes.
  • the square Sx4 in FIG. 9E may correspond to the square Sx2 in FIG. 9D.
  • the square Sx2 of FIG. 9D and the quadrangle Sx4 of FIG. 9E may correspond to the first intersection Y1 of FIG.
  • the above description using FIG. 9D and the above description using FIG. 9E can be established even when the pixel electrode is rounded in plan view as in FIG. 9C.
  • the first shield via SV1 is located between the first pixel via PV1 and the second pixel via PV2 in a plan view.
  • the third shield via SV3 is located between the first pixel via PV1 and the fourth pixel via PV4.
  • the fourth shield via SV4 is located between the first pixel via PV1 and the fifth pixel via PV5.
  • the fifth shield via SV5 is located between the first pixel via PV1 and the sixth pixel via PV6.
  • the seventh shield via SV7 is located between the first pixel via PV1 and the eighth pixel via PV8.
  • the eighth shield via SV8 is located between the first pixel via PV1 and the ninth pixel via PV9.
  • That the first shield via SV1 is located between the first pixel via PV1 and the second pixel via PV2 in plan view means that the first pixel via PV1 is one end and the second pixel via PV2 is the other end in plan view. This means that the first shield via SV1 exists on the line segment.
  • the first shield via SV1 exists on the line segment.
  • the shield electrode 61 and the first shield via SV1 there is a connection between the shield electrode 61 and the first shield via SV1.
  • the shield vias can shield at least a part of lines of electric force between the pixel vias.
  • the insulating portion 62 includes the first pixel electrode PE1, the second pixel electrode PE2, the third pixel electrode PE3, the fourth pixel electrode PE4, and the fifth pixel electrode PE5 in plan view. It is separated from the sixth pixel electrode PE6, the seventh pixel electrode PE7, the eighth pixel electrode PE8, and the ninth pixel electrode PE9.
  • the shield electrode 61 extends between the first pixel electrode PE1 and the second pixel electrode PE2. In plan view, the shield electrode 61 extends between the first pixel electrode PE1 and the third pixel electrode PE3. In plan view, the shield electrode 61 extends between the first pixel electrode PE1 and the fifth pixel electrode PE5. In plan view, the shield electrode 61 extends between the first pixel electrode PE1 and the seventh pixel electrode PE7. In plan view, the shield electrode 61 extends between the fourth pixel electrode PE4 and the second pixel electrode PE2. In plan view, the shield electrode 61 extends between the fourth pixel electrode PE4 and the third pixel electrode PE3. In plan view, the shield electrode 61 extends between the sixth pixel electrode PE6 and the third pixel electrode PE3.
  • the shield electrode 61 extends between the sixth pixel electrode PE6 and the fifth pixel electrode PE5. In plan view, the shield electrode 61 extends between the eighth pixel electrode PE8 and the fifth pixel electrode PE5. In plan view, the shield electrode 61 extends between the eighth pixel electrode PE8 and the seventh pixel electrode PE7. In plan view, the shield electrode 61 extends between the ninth pixel electrode PE9 and the seventh pixel electrode PE7. In plan view, the shield electrode 61 extends between the ninth pixel electrode PE9 and the second pixel electrode PE2.
  • the camera system 604 includes the imaging device 100, an optical system 601, a camera signal processing unit 602, and a system controller 603.
  • the optical system 601 collects light.
  • the optical system 601 includes, for example, a lens.
  • the camera signal processing unit 602 performs signal processing on the data captured by the imaging device 100 and outputs it as an image or data.
  • the system controller 603 controls the imaging device 100 and the camera signal processing unit 602.
  • the imaging device can be used for various camera systems and sensor systems such as digital still cameras, medical cameras, surveillance cameras, vehicle-mounted cameras, digital single-lens reflex cameras, and digital mirrorless single-lens cameras. ..
  • the imaging device of the present disclosure has been described above based on the embodiment, the imaging device and the manufacturing method thereof according to the present disclosure are not limited to the above embodiments. Another embodiment realized by combining arbitrary constituent elements in the above-described embodiment, a modified example obtained by applying various modifications to those skilled in the art to the above-described embodiment without departing from the gist of the present disclosure, and the present embodiment. Various devices incorporating the disclosed solid-state imaging device are also included in the present disclosure.

Abstract

The imaging device according to an embodiment of the present disclosure is provided with a photoelectric conversion layer, a first pixel electrode, a second pixel electrode, a shield electrode, and a first shield via. The photoelectric conversion layer converts incident light into electrical charge. The first pixel electrode collects the electrical charge generated in the photoelectric conversion layer. The second pixel electrode collects the electrical charge generated in the photoelectric conversion layer. The second pixel electrode is adjacent to the first pixel electrode in a first direction. The shield electrode is electrically isolated from the first pixel electrode and the second pixel electrode. The first shield via extends from the shield electrode. In plan view, the first shield via is positioned between the first pixel electrode and the second pixel electrode.

Description

撮像装置Imaging device
 本開示は、撮像装置に関する。 The present disclosure relates to an imaging device.
 積層型の撮像装置が知られている。積層型の撮像装置では、半導体基板および光電変換層を含む積層構造が構成されている。 Laminated imaging device is known. The laminated image pickup device has a laminated structure including a semiconductor substrate and a photoelectric conversion layer.
 積層型の撮像装置の一例が、特許文献1および2に記載されている。特許文献1および2の撮像装置では、光電変換層が、対向電極と画素電極との間に配置されている。 An example of a laminated image pickup device is described in Patent Documents 1 and 2. In the imaging devices of Patent Documents 1 and 2, the photoelectric conversion layer is arranged between the counter electrode and the pixel electrode.
国際公開第2013/001809号International Publication No. 2013/001809 特開2016-127264号公報JP, 2016-127264, A
 より解像度の高い画像を得る技術が要求されている。 Demand for technology to obtain higher resolution images.
 本開示の一態様に係る撮像装置は、
 入射光を電荷に変換する光電変換層と、
 前記光電変換層で生成した電荷を収集する第1画素電極と、
 前記光電変換層で生成した電荷を収集し、第1方向において前記第1画素電極に隣接する第2画素電極と、
 前記第1画素電極および前記第2画素電極とは電気的に分離されたシールド電極と、
 前記シールド電極から延び、平面視において、前記第1画素電極と前記第2画素電極との間に位置する第1シールドビアと、
 を備える。
An imaging device according to an aspect of the present disclosure,
A photoelectric conversion layer for converting incident light into an electric charge,
A first pixel electrode for collecting charges generated in the photoelectric conversion layer;
A second pixel electrode adjacent to the first pixel electrode in the first direction, collecting the charges generated in the photoelectric conversion layer;
A shield electrode electrically separated from the first pixel electrode and the second pixel electrode;
A first shield via extending from the shield electrode and located between the first pixel electrode and the second pixel electrode in plan view;
Equipped with.
 本開示は、解像度の高い画像を得る技術を提供する。 The present disclosure provides a technique for obtaining a high-resolution image.
図1は、実施形態に係る撮像装置の断面構造を示す図である。FIG. 1 is a diagram showing a cross-sectional structure of the image pickup apparatus according to the embodiment. 図2は、実施形態に係る撮像装置の断面構造を示す図である。FIG. 2 is a diagram showing a cross-sectional structure of the image pickup apparatus according to the embodiment. 図3は、実施形態に係る撮像装置の平面構造を示す図である。FIG. 3 is a diagram showing a planar structure of the image pickup apparatus according to the embodiment. 図4Aは、実施形態に係る撮像装置の断面構造を示す図である。FIG. 4A is a diagram showing a cross-sectional structure of the imaging device according to the embodiment. 図4Bは、図4Aの部分拡大図である。FIG. 4B is a partially enlarged view of FIG. 4A. 図4Cは、図4Bの例とは異なる例に係る絶縁部を示す図である。FIG. 4C is a diagram showing an insulating portion according to an example different from the example in FIG. 4B. 図4Dは、絶縁層および光電変換層の作製方法を示す模式図である。FIG. 4D is a schematic diagram showing a method for manufacturing an insulating layer and a photoelectric conversion layer. 図4Eは、絶縁層および光電変換層の作製方法を示す模式図である。FIG. 4E is a schematic diagram showing a method for manufacturing an insulating layer and a photoelectric conversion layer. 図5Aは、実施形態に係る撮像装置の断面構造を示す図である。FIG. 5A is a diagram showing a cross-sectional structure of the imaging device according to the embodiment. 図5Bは、図5Aの部分拡大図である。FIG. 5B is a partially enlarged view of FIG. 5A. 図6は、光電変換層の突出部を示す図である。FIG. 6 is a diagram showing the protruding portion of the photoelectric conversion layer. 図7は、実施形態に係る撮像装置の断面構造を示す図である。FIG. 7 is a diagram showing a cross-sectional structure of the image pickup apparatus according to the embodiment. 図8は、実施形態に係る撮像装置の平面構造を示す図である。FIG. 8 is a diagram showing a planar structure of the image pickup apparatus according to the embodiment. 図9Aは、実施形態に係る撮像装置の平面構造を示す図である。FIG. 9A is a diagram showing a planar structure of the image pickup apparatus according to the embodiment. 図9Bは、図9Aの部分拡大図である。FIG. 9B is a partially enlarged view of FIG. 9A. 図9Cは、図9Bの例とは異なる例に係る部分拡大図である。FIG. 9C is a partially enlarged view according to an example different from the example in FIG. 9B. 図9Dは、図9Aの部分拡大図である。FIG. 9D is a partially enlarged view of FIG. 9A. 図9Eは、図9Aの部分拡大図である。FIG. 9E is a partially enlarged view of FIG. 9A. 図10は、カメラシステムのブロック図である。FIG. 10 is a block diagram of the camera system.
 (本開示に係る一態様の概要)
 本開示の第1態様に係る撮像装置は、
 入射光を電荷に変換する光電変換層と、
 前記光電変換層で生成した電荷を収集する第1画素電極と、
 前記光電変換層で生成した電荷を収集し、第1方向において前記第1画素電極に隣接する第2画素電極と、
 前記第1画素電極および前記第2画素電極とは電気的に分離されたシールド電極と、
 前記シールド電極から延び、平面視において、前記第1画素電極と前記第2画素電極との間に位置する第1シールドビアと、
 を備える。
(Outline of One Aspect According to the Present Disclosure)
The imaging device according to the first aspect of the present disclosure is
A photoelectric conversion layer for converting incident light into an electric charge,
A first pixel electrode for collecting charges generated in the photoelectric conversion layer;
A second pixel electrode adjacent to the first pixel electrode in the first direction, collecting the charges generated in the photoelectric conversion layer;
A shield electrode electrically separated from the first pixel electrode and the second pixel electrode;
A first shield via extending from the shield electrode and located between the first pixel electrode and the second pixel electrode in plan view;
Equipped with.
 第1態様は、解像度の高い画像を得るのに適している。 The first mode is suitable for obtaining a high-resolution image.
 本開示の第2態様において、例えば、第1態様に係る撮像装置は、
 前記光電変換層で生成した電荷を収集し、前記第1方向と異なる第2方向において前記第1画素電極に隣接する第3画素電極と、
 前記シールド電極から延び、前記平面視において、前記第1画素電極と前記第3画素電極との間に位置する第2シールドビアと、
 をさらに備えていてもよい。
In the second aspect of the present disclosure, for example, the imaging device according to the first aspect is
A third pixel electrode adjacent to the first pixel electrode in a second direction different from the first direction, the charge being generated in the photoelectric conversion layer;
A second shield via extending from the shield electrode and located between the first pixel electrode and the third pixel electrode in the plan view;
May be further provided.
 第2態様は、解像度の高い画像を得るのに適している。 The second mode is suitable for obtaining a high-resolution image.
 本開示の第3態様において、例えば、第1態様に係る撮像装置は、
 前記光電変換層で生成した電荷を収集し、前記第1方向と異なる第2方向において前記第1画素電極に隣接する第3画素電極と、
 前記光電変換層で生成した電荷を収集し、前記第2方向において前記第2画素電極に隣接し、前記第1方向において前記第3画素電極と隣接する第4画素電極と、
 前記シールド電極から延び、前記平面視において、前記第1画素電極と前記第4画素電極との間に位置する第3シールドビアと、
 をさらに備えていてもよい。
In the third aspect of the present disclosure, for example, the imaging device according to the first aspect is
A third pixel electrode adjacent to the first pixel electrode in a second direction different from the first direction, the charge being generated in the photoelectric conversion layer;
A fourth pixel electrode that collects charges generated in the photoelectric conversion layer, is adjacent to the second pixel electrode in the second direction, and is adjacent to the third pixel electrode in the first direction;
A third shield via extending from the shield electrode and located between the first pixel electrode and the fourth pixel electrode in the plan view;
May be further provided.
 第3態様は、解像度の高い画像を得るのに適している。 The third mode is suitable for obtaining a high-resolution image.
 本開示の第4態様において、例えば、第2態様に係る撮像装置は、
 前記光電変換層で生成した電荷を収集し、前記第2方向において前記第2画素電極に隣接し、前記第1方向において前記第3画素電極と隣接する第4画素電極と、
 前記シールド電極から延び、前記平面視において、前記第1画素電極と前記第4画素電極との間に位置する第3シールドビアと、
 をさらに備えていてもよい。
In the fourth aspect of the present disclosure, for example, the imaging device according to the second aspect is
A fourth pixel electrode that collects charges generated in the photoelectric conversion layer, is adjacent to the second pixel electrode in the second direction, and is adjacent to the third pixel electrode in the first direction;
A third shield via extending from the shield electrode and located between the first pixel electrode and the fourth pixel electrode in the plan view;
May be further provided.
 第4態様は、解像度の高い画像を得るのに適している。 The fourth mode is suitable for obtaining a high-resolution image.
 本開示の第5態様において、例えば、第1から第4態様のいずれか1つに係る撮像装置は、
 前記第1画素電極から延びる第1画素ビアと、
 前記第2画素電極から延びる第2画素ビアと、
 をさらに備えていてもよい。
In the fifth aspect of the present disclosure, for example, the imaging device according to any one of the first to fourth aspects,
A first pixel via extending from the first pixel electrode;
A second pixel via extending from the second pixel electrode;
May be further provided.
 第5態様の第1画素ビアは、第1画素電極を他の要素に電気的に接続できる。第2画素ビアは、第2画素電極を他の要素に電気的に接続できる。 The first pixel via of the fifth aspect can electrically connect the first pixel electrode to another element. The second pixel via can electrically connect the second pixel electrode to another element.
 本開示の第6態様において、例えば、第5態様に係る撮像装置では、
 前記平面視において、前記第1シールドビアは、前記第1画素ビアと前記第2画素ビアとの間に位置していてもよい。
In the sixth aspect of the present disclosure, for example, in the imaging device according to the fifth aspect,
In the plan view, the first shield via may be located between the first pixel via and the second pixel via.
 第6態様は、解像度の高い画像を得るのに適している。 The sixth mode is suitable for obtaining a high-resolution image.
 本開示の第7態様において、例えば、第1から第6態様のいずれか1つに係る撮像装置は、
 第1配線層をさらに備えていてもよく、
 前記第1シールドビアは、前記シールド電極から前記第1配線層まで延びていてもよい。
In the seventh aspect of the present disclosure, for example, an imaging device according to any one of the first to sixth aspects,
A first wiring layer may be further provided,
The first shield via may extend from the shield electrode to the first wiring layer.
 第7態様は、解像度の高い画像を得るのに適している。 ⑦ The 7th mode is suitable for obtaining high-resolution images.
 本開示の第8態様において、例えば、第1から第7態様のいずれか1つに係る撮像装置は、
 前記シールド電極と前記光電変換層との間に位置する絶縁部をさらに備えていてもよい。
In the eighth aspect of the present disclosure, for example, the imaging device according to any one of the first to seventh aspects,
An insulating portion located between the shield electrode and the photoelectric conversion layer may be further provided.
 第8態様は、シールド電極に起因する撮像装置の感度の低下を抑制しつつ、シールド電極により解像度の高い画像を得るのに適している。 The eighth mode is suitable for obtaining a high-resolution image by the shield electrode while suppressing the decrease in sensitivity of the image pickup device due to the shield electrode.
 本開示の第9態様において、例えば、第8態様に係る撮像装置では、
 前記平面視において、前記絶縁部は、前記シールド電極と重ならない部分を含んでいてもよい。
In the ninth aspect of the present disclosure, for example, in the imaging device according to the eighth aspect,
In the plan view, the insulating portion may include a portion that does not overlap with the shield electrode.
 第9態様は、解像度の高い画像を得るのに適している。 The ninth mode is suitable for obtaining a high-resolution image.
 本開示の第10態様に係る撮像装置は、
 入射光を電荷に変換する光電変換層と、
 前記光電変換層で生成した電荷を収集する第1画素電極と、
 前記第1画素電極とは電気的に分離されたシールド電極と、
 前記シールド電極と前記光電変換層との間に位置する絶縁部と、
 を備え、
 平面視において、前記絶縁部は、前記シールド電極と重ならない部分を含む。
An imaging device according to a tenth aspect of the present disclosure is
A photoelectric conversion layer for converting incident light into an electric charge,
A first pixel electrode for collecting charges generated in the photoelectric conversion layer;
A shield electrode electrically separated from the first pixel electrode,
An insulating portion located between the shield electrode and the photoelectric conversion layer,
Equipped with
In plan view, the insulating portion includes a portion that does not overlap with the shield electrode.
 第10態様は、シールド電極に起因する撮像装置の感度の低下を抑制しつつ、シールド電極により解像度の高い画像を得るのに適している。 The tenth aspect is suitable for obtaining a high-resolution image by the shield electrode while suppressing a decrease in the sensitivity of the imaging device due to the shield electrode.
 本開示の第11態様において、例えば、第9態様または第10態様に係る撮像装置では、
 前記平面視において、前記絶縁部は、前記第1画素電極と離間していてもよい。
In the eleventh aspect of the present disclosure, for example, in the imaging device according to the ninth aspect or the tenth aspect,
In the plan view, the insulating portion may be separated from the first pixel electrode.
 第11態様は、第1画素電極により信号電荷を捕獲し、解像度の高い画像を得るのに適している。 The eleventh aspect is suitable for capturing a signal charge by the first pixel electrode and obtaining an image with high resolution.
 本開示の第12態様において、例えば、第8から第11態様のいずれか1つに係る撮像装置では、
 前記絶縁部は、膜形状を有していてもよく、
 前記膜形状の厚さは、10nm以上であってもよい。
In the twelfth aspect of the present disclosure, for example, in the imaging device according to any one of the eighth to eleventh aspects,
The insulating portion may have a film shape,
The thickness of the film shape may be 10 nm or more.
 第12態様は、シールド電極に起因する撮像装置の感度の低下を抑制するのに適している。 The twelfth aspect is suitable for suppressing a decrease in sensitivity of the image pickup device due to the shield electrode.
 本開示の第13態様において、例えば、第1から第12態様のいずれか1つに係る撮像装置では、
 前記第1画素電極が有する面と、前記シールド電極が有する面とが、同一平面上にあってもよい。
In the thirteenth aspect of the present disclosure, for example, in the imaging device according to any one of the first to twelfth aspects,
The surface of the first pixel electrode and the surface of the shield electrode may be on the same plane.
 第13態様の撮像装置は、製造し易い。 The imaging device of the thirteenth aspect is easy to manufacture.
 本開示の第14態様において、例えば、第1から第13態様のいずれか1つに係る撮像装置は、カラーのイメージセンサであってもよい。 In the fourteenth aspect of the present disclosure, for example, the imaging device according to any one of the first to thirteenth aspects may be a color image sensor.
 カラーのイメージセンサにおいては、第1態様の技術が、混色の抑制に寄与し得る。 In the color image sensor, the technique of the first aspect can contribute to suppression of color mixture.
 本開示の第15態様に係る撮像装置は、
 入射光を電荷に変換する光電変換層と、
 前記光電変換層で生成した電荷を収集する第1画素電極と、
 前記第1画素電極とは電気的に分離されたシールド電極と、
 前記シールド電極と前記光電変換層との間に位置する絶縁部と、
 を備える。
An imaging device according to a fifteenth aspect of the present disclosure is
A photoelectric conversion layer for converting incident light into an electric charge,
A first pixel electrode for collecting charges generated in the photoelectric conversion layer;
A shield electrode electrically separated from the first pixel electrode,
An insulating portion located between the shield electrode and the photoelectric conversion layer,
Equipped with.
 本明細書では、「ビア」という用語を用いることがある。本明細書では、ビアホールおよびその内部の導体をまとめて「ビア」と呼ぶ。 In this specification, the term "via" may be used. In this specification, the via hole and the conductor inside thereof are collectively referred to as a "via".
 本明細書では、「シールドビア」および「画素ビア」という用語を用いることがある。以下に示す例示的な実施形態では、シールドビアは、シールド電極から延びている。画素ビアは、画素電極から延びている。シールドビアおよび画素ビアという用語の使い分けは、説明の便宜上なされているのであって、ビアの特徴を限定的に解釈する目的でなされているわけではない。 In this specification, the terms “shield via” and “pixel via” may be used. In the exemplary embodiment shown below, the shield via extends from the shield electrode. The pixel via extends from the pixel electrode. The terms “shield via” and “pixel via” are used properly for the convenience of description, and are not intended to limit the features of the via.
 本明細書では、第1、第2、第3・・・という序数詞を用いることがある。ある要素に序数詞が付されている場合に、より若番の同種類の要素が存在することは必須ではない。必要に応じて序数詞の番号を変更することができる。 In this specification, the ordinal numbers first, second, third ... May be used. When an element has an ordinal number, it is not mandatory that there be a younger element of the same type. You can change the ordinal number if necessary.
 以下で説明する実施形態は、いずれも包括的または具体的な例を示す。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。本明細書において説明される種々の態様は、矛盾が生じない限り互いに組み合わせることが可能である。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。以下の説明において、実質的に同じ機能を有する構成要素は共通の参照符号で示し、重複する説明については省略または簡略化することがある。 Each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, components, arrangements and connection forms of components, steps, order of steps, and the like shown in the following embodiments are examples and are not intended to limit the present disclosure. The various aspects described in this specification can be combined with each other as long as there is no conflict. Further, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept are described as arbitrary constituent elements. In the following description, components having substantially the same function are designated by common reference numerals, and redundant description may be omitted or simplified.
 包括的または具体的な態様は、素子、デバイス、装置、システム、集積回路、方法またはコンピュータプログラムで実現されてもよい。また、包括的または具体的な態様は、素子、デバイス、装置、システム、集積回路、方法およびコンピュータプログラムの任意の組み合わせによって実現されてもよい。開示された実施形態の追加的な効果および利点は、明細書および図面から明らかになる。効果および/または利点は、明細書および図面に開示の様々な実施形態または特徴によって個々に提供され、これらの1つ以上を得るために全てを必要とはしない。 The comprehensive or specific aspects may be realized by an element, device, apparatus, system, integrated circuit, method, or computer program. In addition, the comprehensive or specific aspects may be realized by any combination of elements, devices, apparatuses, systems, integrated circuits, methods, and computer programs. Additional advantages and advantages of the disclosed embodiments will be apparent from the specification and drawings. The benefits and / or advantages are provided individually by the various embodiments or features disclosed in the specification and drawings, and not all are required to obtain one or more of these.
 図面に示す各種の要素は、本開示の理解のために模式的に示したにすぎず、寸法比および外観などは実物とは異なり得る。 The various elements shown in the drawings are merely schematic for understanding of the present disclosure, and the dimensional ratio and the appearance may be different from the actual ones.
 本開示の一態様に係る撮像装置は、光を電気信号に変換する、すなわち光電変換を行う光電変換層を上層に有し、光電変換部にて得られた電気信号を外部に取り出すシリコンベースのCMOS(Complementary Metal Oxide Semiconductor)回路を含む信号処理回路を下層に有する。このように、本開示の一態様に係る撮像装置では、光電変換部と信号処理回路とが積層されているため、それらは独立に設計可能となる。 An imaging device according to one embodiment of the present disclosure is a silicon-based device that has a photoelectric conversion layer that converts light into an electric signal, that is, performs photoelectric conversion, in an upper layer and takes out an electric signal obtained in a photoelectric conversion portion to the outside. A signal processing circuit including a CMOS (Complementary Metal Oxide Semiconductor) circuit is provided in a lower layer. As described above, in the imaging device according to the aspect of the present disclosure, the photoelectric conversion unit and the signal processing circuit are stacked, so that they can be designed independently.
 [実施形態]
 図1および2に、実施形態に係る撮像装置100の断面図を示す。
[Embodiment]
1 and 2 are cross-sectional views of the image pickup apparatus 100 according to the embodiment.
 撮像装置100は、半導体基板1と、画素部30と、を備える。画素部30は、半導体基板1上に設けられている。 The imaging device 100 includes the semiconductor substrate 1 and the pixel unit 30. The pixel portion 30 is provided on the semiconductor substrate 1.
 画素部30は、複数の画素電極3と、対向電極5と、光電変換層4と、を含む。光電変換層4は、画素電極3と対向電極5の間に配置されている。光電変換層4は、膜形状を有している。 The pixel section 30 includes a plurality of pixel electrodes 3, a counter electrode 5, and a photoelectric conversion layer 4. The photoelectric conversion layer 4 is arranged between the pixel electrode 3 and the counter electrode 5. The photoelectric conversion layer 4 has a film shape.
 画素部30は、検出回路12を含む。検出回路12の一部は、半導体基板1内に設けられている。検出回路12は、画素電極3の電位を検出する。 The pixel unit 30 includes the detection circuit 12. A part of the detection circuit 12 is provided in the semiconductor substrate 1. The detection circuit 12 detects the potential of the pixel electrode 3.
 画素部30は、絶縁層2を含む。絶縁層2は、光電変換層4と半導体基板1との間に配置されている。 The pixel unit 30 includes the insulating layer 2. The insulating layer 2 is arranged between the photoelectric conversion layer 4 and the semiconductor substrate 1.
 画素部30では、半導体基板1および絶縁層2の界面をまたぐように、検出回路12が構成されている。具体的には、複数の画素20のそれぞれに対応する検出回路12が構成されている。 In the pixel section 30, the detection circuit 12 is configured so as to cross the interface between the semiconductor substrate 1 and the insulating layer 2. Specifically, the detection circuit 12 corresponding to each of the plurality of pixels 20 is configured.
 以下、説明の便宜上、X軸、Y軸およびZ軸という用語を用いることがある。これらの軸は、互いに直交する軸である。また、説明の便宜上、Z軸方向のプラス側を、上と呼ぶことがある。Z軸方向のプラス側の主面を、上面と呼ぶことがある。この例では、上面は、光の入射側に近い側の面である。下面は、光の入射側から遠い側の面である。この例では、上下方向は、半導体基板1の表面に垂直な方向である。 For convenience of description, the terms X axis, Y axis, and Z axis may be used below. These axes are orthogonal to each other. Further, for convenience of description, the positive side in the Z-axis direction may be referred to as the top. The main surface on the plus side in the Z-axis direction may be called the upper surface. In this example, the upper surface is the surface near the light incident side. The lower surface is the surface far from the light incident side. In this example, the vertical direction is a direction perpendicular to the surface of the semiconductor substrate 1.
 絶縁層2の上面には、画素電極3が形成されている。画素電極3には、画素ビア13が接続されている。画素ビア13は、画素電極3から第1配線層14まで延びている。第1配線層14は、複数の配線層のうち、画素電極3に最も近い層である。画素ビア13は、画素電極3と、配線層と、画素電極3に対応する検出回路12とを、電気的に接続している。 The pixel electrode 3 is formed on the upper surface of the insulating layer 2. A pixel via 13 is connected to the pixel electrode 3. The pixel via 13 extends from the pixel electrode 3 to the first wiring layer 14. The first wiring layer 14 is a layer closest to the pixel electrode 3 among the plurality of wiring layers. The pixel via 13 electrically connects the pixel electrode 3, the wiring layer, and the detection circuit 12 corresponding to the pixel electrode 3.
 複数の画素20のそれぞれは、光電変換部11を含む。光電変換部11は、画素電極3と、対向電極5と、光電変換層4と、を含む。上述のとおり、光電変換層4は、画素電極3と対向電極5の間に配置されている。 Each of the plurality of pixels 20 includes a photoelectric conversion unit 11. The photoelectric conversion section 11 includes a pixel electrode 3, a counter electrode 5, and a photoelectric conversion layer 4. As described above, the photoelectric conversion layer 4 is arranged between the pixel electrode 3 and the counter electrode 5.
 光電変換層4は、入射光を電荷に変換する。 The photoelectric conversion layer 4 converts incident light into electric charges.
 画素電極3は、光電変換層4で生成された電荷を捕集する。 The pixel electrode 3 collects the electric charge generated in the photoelectric conversion layer 4.
 画素電極3の材料の例は、窒化チタン(TiN)などの金属化合物である。画素電極3の材料の他の例は、銅(Cu)、タングステン(W)、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)などの金属である。画素電極3の材料は、これらの金属から少なくとも2種を選択して形成される化合物または合金であってもよい。画素電極3は、これらの金属から少なくとも2種を選択して形成される積層構造を含んでいてもよい。積層構造は、例えば、TiN/Ti構造である。TiN/Ti構造は、窒化チタンの層とチタンの層とが接合された積層構造である。 An example of the material of the pixel electrode 3 is a metal compound such as titanium nitride (TiN). Other examples of the material of the pixel electrode 3 are metals such as copper (Cu), tungsten (W), titanium (Ti), tantalum (Ta), and aluminum (Al). The material of the pixel electrode 3 may be a compound or alloy formed by selecting at least two kinds from these metals. The pixel electrode 3 may include a laminated structure formed by selecting at least two kinds from these metals. The laminated structure is, for example, a TiN / Ti structure. The TiN / Ti structure is a laminated structure in which a titanium nitride layer and a titanium layer are joined.
 一具体例では、複数の画素電極3のそれぞれの膜厚は、均一である。複数の画素電極3のそれぞれの上面は、平坦である。 In one specific example, the film thickness of each of the plurality of pixel electrodes 3 is uniform. The upper surface of each of the plurality of pixel electrodes 3 is flat.
 図1の断面図に示すように、複数の画素電極3は、光電変換層4および半導体基板1の間に位置している。 As shown in the cross-sectional view of FIG. 1, the plurality of pixel electrodes 3 are located between the photoelectric conversion layer 4 and the semiconductor substrate 1.
 図3の平面図に示すように、複数の画素電極3は、X軸方向およびY軸方向に拡がる2次元方向に配列されている。複数の画素電極3は、絶縁層2の上面に配置されている。 As shown in the plan view of FIG. 3, the plurality of pixel electrodes 3 are arranged in a two-dimensional direction extending in the X-axis direction and the Y-axis direction. The plurality of pixel electrodes 3 are arranged on the upper surface of the insulating layer 2.
 一具体例では、複数の画素電極3は、行列状に配置されている。ここで、複数の要素が行列状に配置されているという表現は、各要素の中心が格子の交点上に位置していることを意味する。複数の画素電極3は、互いに一定の間隔を有している。 In one specific example, the plurality of pixel electrodes 3 are arranged in a matrix. Here, the expression that a plurality of elements are arranged in a matrix means that the center of each element is located on the intersection of the lattice. The plurality of pixel electrodes 3 have a constant distance from each other.
 画素電極3は、画素20の配置に対応して配置されている。一例では、複数の画素20が行列状に配置されている。複数の画素電極3は、複数の画素20の配置に合わせて行列状に配置されている。 The pixel electrodes 3 are arranged corresponding to the arrangement of the pixels 20. In one example, the plurality of pixels 20 are arranged in a matrix. The plurality of pixel electrodes 3 are arranged in a matrix according to the arrangement of the plurality of pixels 20.
 再度、図1を参照する。上述のとおり、撮像装置100では、複数の画素20のそれぞれに対応する検出回路12が構成されている。検出回路12は、対応する画素電極3によって捕集された信号電荷を検出し、電荷に応じた信号電圧を出力する。 Refer to FIG. 1 again. As described above, in the imaging device 100, the detection circuit 12 corresponding to each of the plurality of pixels 20 is configured. The detection circuit 12 detects the signal charge collected by the corresponding pixel electrode 3 and outputs a signal voltage according to the charge.
 検出回路12は、例えば、MOS(Metal Oxide Semiconductor)回路、TFT(Thin Film Transistor)回路などを含む。検出回路12は、例えば、ゲートが画素電極3に電気的に接続された増幅トランジスタを含み、増幅トランジスタが信号電荷の量に応じた信号電圧を出力する。検出回路12は、絶縁層2の内部などに設けられた遮光層により遮光されていてもよい。遮光層の図示は省略されている。 The detection circuit 12 includes, for example, a MOS (Metal Oxide Semiconductor) circuit, a TFT (Thin Film Transistor) circuit, and the like. The detection circuit 12 includes, for example, an amplification transistor whose gate is electrically connected to the pixel electrode 3, and the amplification transistor outputs a signal voltage according to the amount of signal charge. The detection circuit 12 may be shielded from light by a light shielding layer provided inside the insulating layer 2. Illustration of the light shielding layer is omitted.
 画素ビア13は、各画素20の画素電極3と、配線層と、画素電極3に対応する検出回路12と、を電気的に接続している。 The pixel via 13 electrically connects the pixel electrode 3 of each pixel 20, the wiring layer, and the detection circuit 12 corresponding to the pixel electrode 3.
 画素ビア13の材料の例は、銅(Cu)、タングステン(W)、コバルト(Co)などの導電性材料である。画素ビア13は、絶縁層2に埋め込まれている。 An example of the material of the pixel via 13 is a conductive material such as copper (Cu), tungsten (W), cobalt (Co). The pixel via 13 is embedded in the insulating layer 2.
 絶縁層2は、半導体基板1上に形成されている。絶縁層2は、複数の構成層2a、2b、2c、2dおよび2eを含む。 The insulating layer 2 is formed on the semiconductor substrate 1. The insulating layer 2 includes a plurality of constituent layers 2a, 2b, 2c, 2d and 2e.
 半導体基板1は、例えば、シリコン(Si)などから構成される。複数の構成層2a、2b、2c、2dおよび2eは、例えば、二酸化シリコン(SiO2)、シリコン炭化酸化膜(SiOC)などから構成される。 The semiconductor substrate 1 is made of, for example, silicon (Si). The plurality of constituent layers 2a, 2b, 2c, 2d and 2e are composed of, for example, silicon dioxide (SiO 2 ), a silicon carbide oxide film (SiOC) or the like.
 各構成層2a、2b、2c、2dおよび2eには配線層が埋め込まれている。配線層は、配線を有する。配線層と配線層とは、ビアにより接続されている。このため、配線層と配線層の間には絶縁層2の絶縁体が設けられているものの、配線層と配線層とはビアにより電気的に接続されている。なお、絶縁層2内の構成層の層数は、任意に設定可能であり、図1に示す5層の構成層2a、2b、2c、2dおよび2eの例に限定されない。配線層の層数についても同様である。 A wiring layer is embedded in each of the constituent layers 2a, 2b, 2c, 2d and 2e. The wiring layer has wiring. The wiring layer and the wiring layer are connected by a via. Therefore, although the insulator of the insulating layer 2 is provided between the wiring layers, the wiring layers are electrically connected by the vias. The number of constituent layers in the insulating layer 2 can be set arbitrarily and is not limited to the example of the five constituent layers 2a, 2b, 2c, 2d and 2e shown in FIG. The same applies to the number of wiring layers.
 構成層2eには、画素電極3が配置されている。構成層2eおよび画素電極3の上面に、光電変換層4が積層されている。光電変換層4の上面に、対向電極5、緩衝層6および封止層7がこの順で積層されている。封止層7の上面には、各画素20に対応した透過波長域のカラーフィルタ8が配置されている。カラーフィルタ8の上面には、平坦化層9が配置されている。平坦化層9の上面には、マイクロレンズ10が配置されている。なお、隣接する画素電極3の間隙には、絶縁層2の構成層が介挿されている。 The pixel electrode 3 is arranged on the constituent layer 2e. The photoelectric conversion layer 4 is stacked on the upper surfaces of the constituent layer 2e and the pixel electrode 3. On the upper surface of the photoelectric conversion layer 4, the counter electrode 5, the buffer layer 6, and the sealing layer 7 are laminated in this order. On the upper surface of the sealing layer 7, a color filter 8 in the transmission wavelength range corresponding to each pixel 20 is arranged. A flattening layer 9 is arranged on the upper surface of the color filter 8. The microlens 10 is arranged on the upper surface of the flattening layer 9. The constituent layers of the insulating layer 2 are inserted in the gaps between the adjacent pixel electrodes 3.
 この例では、撮像装置100は、カラーのイメージセンサである。ただし、カラーフィルタ8を省略することも可能である。つまり、撮像装置100は、モノクロのイメージセンサであってもよい。 In this example, the imaging device 100 is a color image sensor. However, it is also possible to omit the color filter 8. That is, the imaging device 100 may be a monochrome image sensor.
 光電変換層4は、受光した光の強さに応じて電荷を発生する光電変換材料で構成されている。光電変換材料は、例えば、有機半導体材料であり、p型有機半導体およびn型有機半導体の少なくとも一方を含む。一具体例では、光電変換層4は、画素領域30において、膜厚が均一である。別の具体例では、光電変換層4は、画素領域30において、膜厚が互いに異なる2以上の部分を有する。 The photoelectric conversion layer 4 is composed of a photoelectric conversion material that generates an electric charge according to the intensity of received light. The photoelectric conversion material is, for example, an organic semiconductor material and includes at least one of a p-type organic semiconductor and an n-type organic semiconductor. In one specific example, the photoelectric conversion layer 4 has a uniform film thickness in the pixel region 30. In another specific example, the photoelectric conversion layer 4 has two or more portions having different film thicknesses in the pixel region 30.
 対向電極5は、画素電極3に対向している。具体的には、対向電極5は、画素部30内において、光電変換層4を挟んで、複数の画素電極3および後述するシールド電極61と対向している。対向電極5は、光電変換層4からみて、撮像装置100の光が入射する側に配置されている。対向電極5は、光を光電変換層4に入射させるために透光性を有してもよい。対向電極5の材料としては、ITO(Indium Tin Oxide)またはIZO(Indium Zinc Oxide)などの透明酸化物導電材料が例示される。 The counter electrode 5 faces the pixel electrode 3. Specifically, the counter electrode 5 faces the plurality of pixel electrodes 3 and a shield electrode 61, which will be described later, with the photoelectric conversion layer 4 sandwiched in the pixel section 30. The counter electrode 5 is arranged on the light incident side of the imaging device 100 when viewed from the photoelectric conversion layer 4. The counter electrode 5 may have a light-transmitting property in order to allow light to enter the photoelectric conversion layer 4. Examples of the material of the counter electrode 5 include transparent oxide conductive materials such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
 「第1要素が、第2要素と、第3要素を挟んで対向している」という表現は、第1要素および第2要素が第3要素と接している態様のみを指すと限定解釈されるべきではない。例えば、「対向電極5は、画素電極3およびシールド電極61と、光電変換層4を挟んで対向している」という表現は、シールド電極61と光電変換層4との間に後述する絶縁部62が介在し、この介在によりシールド電極61と光電変換層4との接触が阻止されている態様を包含する。 The expression "the first element faces the second element with the third element sandwiched therebetween" is limitedly interpreted to refer to only the aspect in which the first element and the second element are in contact with the third element. Should not be. For example, the expression “the counter electrode 5 is opposed to the pixel electrode 3 and the shield electrode 61 with the photoelectric conversion layer 4 in between” means that an insulating portion 62 described later is provided between the shield electrode 61 and the photoelectric conversion layer 4. Is included, and the contact between the shield electrode 61 and the photoelectric conversion layer 4 is blocked by this intervention.
 次に、撮像メカニズムについて説明する。 Next, I will explain the imaging mechanism.
 上方より撮像装置100に入射した光は、封止層7、緩衝層6および対向電極5を通過し、光電変換層4に入射される。光電変換層4は、画素電極3と対向電極5とにより適正なバイアス電圧が印加された状態で、入射された光を光電変換し、電荷を生成する。バイアス電圧は、対向電極5と画素電極3との間における電位差である。 Light incident on the imaging device 100 from above passes through the sealing layer 7, the buffer layer 6, and the counter electrode 5 and is incident on the photoelectric conversion layer 4. The photoelectric conversion layer 4 photoelectrically converts incident light in a state in which an appropriate bias voltage is applied by the pixel electrode 3 and the counter electrode 5 to generate electric charges. The bias voltage is a potential difference between the counter electrode 5 and the pixel electrode 3.
 上記のように光電変換層4で生成された電荷は、画素電極3から、画素ビア13を介して、検出回路12における蓄積領域に転送され、一時的に蓄積される。そして、電荷は、検出回路12におけるトランジスタ素子などの開閉動作により、適時に信号として検出回路12の外部に出力される。 The electric charge generated in the photoelectric conversion layer 4 as described above is transferred from the pixel electrode 3 to the storage region in the detection circuit 12 via the pixel via 13 and is temporarily stored. Then, the electric charge is output to the outside of the detection circuit 12 as a signal at appropriate time by the opening / closing operation of the transistor element in the detection circuit 12.
 (シールド電極)
 上述の説明に係る積層型の撮像装置100では、光電変換層4は、画素電極3と対向電極5の間に配置されている。図3に示すように、画素電極3と画素電極3の間の領域60には、シールド電極61が配置されている。具体的には、領域60には、絶縁層2およびシールド電極61が配置されている。なお、図3では、絶縁層2の図示は省略されている。図3の例では、平面視において、領域60は格子形状を有している。平面視は、例えば、半導体基板1の表面に垂直な方向に観察することをいう。
(Shield electrode)
In the stacked image pickup device 100 according to the above description, the photoelectric conversion layer 4 is arranged between the pixel electrode 3 and the counter electrode 5. As shown in FIG. 3, a shield electrode 61 is arranged in a region 60 between the pixel electrodes 3 and 3. Specifically, the insulating layer 2 and the shield electrode 61 are arranged in the region 60. Note that the illustration of the insulating layer 2 is omitted in FIG. 3. In the example of FIG. 3, the region 60 has a lattice shape in plan view. The plan view means, for example, observation in a direction perpendicular to the surface of the semiconductor substrate 1.
 仮に、シールド電極61が存在しないとする。この場合、平面視において光電変換層4のうち領域60と重なる部分は、画素電極3と重なる部分に比べて印加される電界強度が小さい。このため、光電変換層4のうち領域60と重なる部分では、信号電荷が画素電極3から受ける電界強度が比較的小さい。 Assuming that the shield electrode 61 does not exist. In this case, the electric field strength applied to the portion of the photoelectric conversion layer 4 overlapping the region 60 is smaller than that of the portion overlapping the pixel electrode 3 in plan view. Therefore, in the portion of the photoelectric conversion layer 4 that overlaps the region 60, the electric field strength that the signal charge receives from the pixel electrode 3 is relatively small.
 上記重なる部分においても、信号電荷は存在し得る。その信号電荷が本来到達すべき画素電極3ではなくこれに隣接する画素電極3に到達する可能性がある。隣接する画素電極3に到達した信号電荷が隣接する画素の画素信号として検出されると、解像度が低下する。解像度の低下を抑制する観点から、シールド電極を用いることができる。撮像装置100がカラーのイメージセンサである場合は、シールド電極を用いることにより、混色を抑制できる。 -Signal charges may exist even in the above-mentioned overlapping portions. The signal charge may reach the pixel electrode 3 adjacent to the pixel electrode 3 instead of the pixel electrode 3 which should originally reach. When the signal charges that have reached the adjacent pixel electrodes 3 are detected as the pixel signals of the adjacent pixels, the resolution is reduced. A shield electrode can be used from the viewpoint of suppressing a decrease in resolution. When the imaging device 100 is a color image sensor, color mixture can be suppressed by using a shield electrode.
 以下、シールド電極について、図面を参照しながら説明する。 The shield electrode will be described below with reference to the drawings.
 図1の断面図に示すように、シールド電極61は、光電変換層4および半導体基板1の間に配置されている。図3に示すように、シールド電極61は、複数の画素電極3とは電気的に分離されている。 As shown in the sectional view of FIG. 1, the shield electrode 61 is arranged between the photoelectric conversion layer 4 and the semiconductor substrate 1. As shown in FIG. 3, the shield electrode 61 is electrically separated from the plurality of pixel electrodes 3.
 この例では、画素電極3と画素電極3の間の領域60に、シールド電極61が配置されている。シールド電極61を配置することによって、互いに隣接する2つの画素電極3の間の領域に電圧を印加することが可能になる。これにより、光電変換層4における平面視で領域60と重なる部分で発生した信号電荷65は、シールド電極61に収集される。これにより、本来であればある画素電極3に到達すべき信号電荷65が、隣接する画素電極3に到達することを抑制できる。つまり、隣接画素間の信号電荷の混合を抑制できる。これにより、解像度の高い画像が得られる。撮像装置100がカラーのイメージセンサである場合は、隣接画素間の混色を抑制できる。 In this example, the shield electrode 61 is arranged in the region 60 between the pixel electrodes 3 and 3. By disposing the shield electrode 61, it becomes possible to apply a voltage to a region between two pixel electrodes 3 adjacent to each other. As a result, the signal charge 65 generated in the portion of the photoelectric conversion layer 4 that overlaps the region 60 in plan view is collected by the shield electrode 61. As a result, it is possible to prevent the signal charge 65, which should originally reach a certain pixel electrode 3, from reaching the adjacent pixel electrode 3. That is, it is possible to suppress mixing of signal charges between adjacent pixels. As a result, an image with high resolution can be obtained. When the image pickup apparatus 100 is a color image sensor, color mixing between adjacent pixels can be suppressed.
 シールド電極61の材料としては、銅(Cu)、タングステン(W)、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)などの金属が例示される。シールド電極61の材料は、これらの金属から少なくとも2種を選択して形成される化合物または合金であってもよい。シールド電極61は、これらの金属から少なくとも2種を選択して形成される積層構造を含んでいてもよい。積層構造は、例えばTiN/Ti構造である。 Examples of the material of the shield electrode 61 include metals such as copper (Cu), tungsten (W), titanium (Ti), tantalum (Ta), and aluminum (Al). The material of the shield electrode 61 may be a compound or alloy formed by selecting at least two kinds from these metals. The shield electrode 61 may include a laminated structure formed by selecting at least two kinds from these metals. The laminated structure is, for example, a TiN / Ti structure.
 一具体例では、シールド電極61のそれぞれの膜厚は、均一である。シールド電極61のそれぞれにおける光電変換層4側の面は、平坦である。 In one specific example, the film thickness of each shield electrode 61 is uniform. The surface of each shield electrode 61 on the photoelectric conversion layer 4 side is flat.
 図1および2に示す例では、シールド電極61が有する面と画素電極3が有する面とが、同一平面上にある。具体的には、シールド電極61における半導体基板1に対向する面と画素電極3における半導体基板1に対向する面とが、同一平面上にある。このような構成を有する撮像装置は、製造し易い。ただし、シールド電極61が有する面と画素電極3が有する面とが、同一平面上になくてもよい。具体的には、シールド電極61における半導体基板1に対向する面と画素電極3における半導体基板1に対向する面とが、同一平面上になくてもよい。 In the examples shown in FIGS. 1 and 2, the surface of the shield electrode 61 and the surface of the pixel electrode 3 are on the same plane. Specifically, the surface of the shield electrode 61 facing the semiconductor substrate 1 and the surface of the pixel electrode 3 facing the semiconductor substrate 1 are on the same plane. The imaging device having such a configuration is easy to manufacture. However, the surface of the shield electrode 61 and the surface of the pixel electrode 3 do not have to be on the same plane. Specifically, the surface of the shield electrode 61 facing the semiconductor substrate 1 and the surface of the pixel electrode 3 facing the semiconductor substrate 1 do not have to be on the same plane.
 シールド電極61の材料と画素電極3の材料は、同じであってもよい。この場合、シールド電極61と画素電極3とを、別々の製造工程を必要とすることなく形成できる。このようにすれば、シールド電極61および画素電極3を、同一の製造工程で、かつ、同一マスクで形成できる。このため、合わせずれを考慮する必要がない。ここで、合わせずれは、シールド電極61および画素電極3の相対的な位置関係が適切な範囲から逸脱することを指す。 The material of the shield electrode 61 and the material of the pixel electrode 3 may be the same. In this case, the shield electrode 61 and the pixel electrode 3 can be formed without requiring separate manufacturing steps. By doing so, the shield electrode 61 and the pixel electrode 3 can be formed in the same manufacturing process and with the same mask. Therefore, it is not necessary to consider misalignment. Here, misalignment means that the relative positional relationship between the shield electrode 61 and the pixel electrode 3 deviates from an appropriate range.
 画素電極3とシールド電極61の間の離間幅71は、例えば、0.1μm以上1μm以下である。 The separation width 71 between the pixel electrode 3 and the shield electrode 61 is, for example, 0.1 μm or more and 1 μm or less.
 (シールド電極61と光電変換層4との間の絶縁部)
 図1および図2で示すようにシールド電極61を配置した場合、光電変換層4で発生した信号電荷65の一部がシールド電極61に収集される。この収集により、画素電極3で捕獲可能な信号電荷が少なくなると、撮像装置の感度が低下する場合がある。撮像装置の感度の低下を抑制する観点から、シールド電極61と光電変換層4との間に絶縁部を設けてもよい。以下、そのように絶縁部が設けられた構成例について、図4A、4B、4C、4D、4E、5A、5Bおよび6を参照しながら説明する。
(Insulating portion between shield electrode 61 and photoelectric conversion layer 4)
When the shield electrode 61 is arranged as shown in FIGS. 1 and 2, a part of the signal charge 65 generated in the photoelectric conversion layer 4 is collected in the shield electrode 61. If the amount of signal charges that can be captured by the pixel electrode 3 decreases due to this collection, the sensitivity of the image pickup device may decrease. An insulating part may be provided between the shield electrode 61 and the photoelectric conversion layer 4 from the viewpoint of suppressing a decrease in sensitivity of the imaging device. Hereinafter, a configuration example in which such an insulating portion is provided will be described with reference to FIGS. 4A, 4B, 4C, 4D, 4E, 5A, 5B and 6.
 図4Aおよび4Bの例では、シールド電極61と光電変換層4との間に、絶縁部62が設けられている。絶縁部62は、絶縁体である。このような絶縁部62を設けることにより、互いに隣接する2つの画素電極3の間の領域と対向電極5との間に電界を印加した状態を保ちつつ、シールド電極61への信号電荷の流入を抑制することで撮像装置の感度の低下を抑制できる。このため、この例は、シールド電極61に起因する撮像装置の感度の低下を抑制しつつ、シールド電極61により解像度の高い画像を得るのに適している。 In the example of FIGS. 4A and 4B, the insulating portion 62 is provided between the shield electrode 61 and the photoelectric conversion layer 4. The insulating portion 62 is an insulator. By providing such an insulating portion 62, the inflow of signal charges into the shield electrode 61 can be maintained while maintaining a state in which an electric field is applied between the counter electrode 5 and a region between two pixel electrodes 3 adjacent to each other. By suppressing the deterioration of the sensitivity of the imaging device. Therefore, this example is suitable for obtaining a high-resolution image by the shield electrode 61 while suppressing a decrease in the sensitivity of the imaging device due to the shield electrode 61.
 図4Aおよび4Bの例では、絶縁部62は、シールド電極61を覆っている。絶縁部62は、具体的には、シールド電極61における光電変換層4側の面全体を覆っている。 In the example of FIGS. 4A and 4B, the insulating portion 62 covers the shield electrode 61. The insulating portion 62 specifically covers the entire surface of the shield electrode 61 on the photoelectric conversion layer 4 side.
 図4Aおよび4Bの例では、絶縁部62は、シールド電極61に接している。絶縁部62は、具体的には、シールド電極61における光電変換層4側の面全体に接している。絶縁部62により、シールド電極61と光電変換層4との接触が阻止されている。 In the example of FIGS. 4A and 4B, the insulating portion 62 is in contact with the shield electrode 61. Specifically, the insulating portion 62 is in contact with the entire surface of the shield electrode 61 on the photoelectric conversion layer 4 side. The insulating portion 62 blocks contact between the shield electrode 61 and the photoelectric conversion layer 4.
 図4Cに示すように、平面視において、絶縁部62は、シールド電極61からはみ出ており、シールド電極61と重ならない部分を含んていてもよい。このようにすれば、平面視において、絶縁部62の輪郭の一部または全部を、シールド電極61の輪郭の外側とすることができる。このようにすれば、シールド電極61の端部から光電変換層4に向かう斜め上方向の電界を抑制できる。このことは、例えば、シールド電極61と画素電極3との間の絶縁性を確保する観点から有利である。また、平面視において絶縁部62がシールド電極61からはみ出ていることは、信号電荷が絶縁部62を側方から回り込んでシールド電極61に流入することを抑制する観点から有利である。このため、図4Cの形態は、解像度の高い画像を得るのに適している。 As shown in FIG. 4C, in a plan view, the insulating portion 62 may protrude from the shield electrode 61 and may include a portion that does not overlap with the shield electrode 61. With this configuration, part or all of the contour of the insulating portion 62 can be outside the contour of the shield electrode 61 in plan view. By doing so, an electric field in an obliquely upward direction from the end of the shield electrode 61 toward the photoelectric conversion layer 4 can be suppressed. This is advantageous from the viewpoint of ensuring the insulation between the shield electrode 61 and the pixel electrode 3, for example. In addition, the insulating portion 62 protruding from the shield electrode 61 in a plan view is advantageous from the viewpoint of suppressing the signal charges from wrapping around the insulating portion 62 from the side and flowing into the shield electrode 61. Therefore, the form of FIG. 4C is suitable for obtaining a high-resolution image.
 なお、平面視において絶縁部62がシールド電極61からはみ出ているとは、平面視において絶縁部62がシールド電極61の輪郭よりも外側に存する部分を含むことを意味する。平面視において、シールド電極61が、絶縁部62の輪郭よりも内側に存する部分を含んでいるとも言える。より詳細に説明すると、平面視において絶縁部62がシールド電極61からはみ出ているとは、平面視において絶縁部62の輪郭の全てがシールド電極61の輪郭よりも外側に存在する場合のみならず、平面視において絶縁部62の輪郭の一部のみがシールド電極61の輪郭よりも外側に存在する場合を包含する概念である。平面視において、絶縁部62の輪郭の全てがシールド電極61の輪郭よりも外側に存在してもよく、絶縁部62の輪郭の一部のみがシールド電極61の輪郭よりも外側に存在してもよい。 Note that the insulating portion 62 protruding from the shield electrode 61 in a plan view means that the insulating portion 62 includes a portion outside the contour of the shield electrode 61 in a plan view. It can be said that the shield electrode 61 includes a portion located inside the contour of the insulating portion 62 in a plan view. More specifically, the insulating portion 62 protruding from the shield electrode 61 in plan view means not only the case where all the contours of the insulating portion 62 are outside the contour of the shield electrode 61 in plan view, This is a concept including a case where only a part of the outline of the insulating portion 62 exists outside the outline of the shield electrode 61 in a plan view. When seen in a plan view, the entire outline of the insulating portion 62 may be outside the outline of the shield electrode 61, or only a part of the outline of the insulating portion 62 may be outside the outline of the shield electrode 61. Good.
 一具体例では、平面視において、絶縁部62は、各画素電極3から離間している。このようにすれば、画素電極3による信号電荷の捕獲が絶縁部62によって妨げられ難い。このことは、解像度の高い画像を得るのに適している。 In one specific example, the insulating portion 62 is separated from each pixel electrode 3 in a plan view. With this configuration, the capture of the signal charge by the pixel electrode 3 is unlikely to be hindered by the insulating portion 62. This is suitable for obtaining a high resolution image.
 絶縁部62は、画素電極3の一部を覆っていてもよい。 The insulating portion 62 may cover a part of the pixel electrode 3.
 図4Aおよび4Bの例では、画素電極3と光電変換層4とは、電気的に接続されている。具体的には、画素電極3と光電変換層4とは接している。ただし、画素電極3と光電変換層4との間にブロッキング層を設けてもよい。ブロッキング層は、光電変換層4における光電変換によって発生した電荷対のうち、信号電荷を通すが、信号電荷でない方の電荷が画素電極3から注入されることを阻止する。このことにより、信号電荷を効率的に画素電極3に輸送することができる。ブロッキング層は、選択的な電荷輸送性を示し、したがって絶縁体には該当しない。 In the example of FIGS. 4A and 4B, the pixel electrode 3 and the photoelectric conversion layer 4 are electrically connected. Specifically, the pixel electrode 3 and the photoelectric conversion layer 4 are in contact with each other. However, a blocking layer may be provided between the pixel electrode 3 and the photoelectric conversion layer 4. The blocking layer allows the signal charges of the charge pairs generated by the photoelectric conversion in the photoelectric conversion layer 4 to pass through but blocks the charges other than the signal charges from being injected from the pixel electrode 3. As a result, the signal charge can be efficiently transported to the pixel electrode 3. The blocking layer exhibits a selective charge transport property, and is therefore not an insulator.
 絶縁部62の材料の例は、二酸化シリコン(SiO2)、シリコン酸炭化物(SiOC)、シリコン窒化物(SiN)、シリコン炭窒化物(SiCN)などである。絶縁部62の材料の他の例は、銅(Cu)の化合物、チタン(Ti)の化合物、タンタル(Ta)の化合物、アルミニウム(Al)の化合物などである。絶縁部62は、これらの材料から少なくとも2種を選択して形成される積層構造を含んでいてもよい。 Examples of the material of the insulating portion 62 are silicon dioxide (SiO 2 ), silicon oxycarbide (SiOC), silicon nitride (SiN), silicon carbonitride (SiCN), and the like. Other examples of the material of the insulating portion 62 are a compound of copper (Cu), a compound of titanium (Ti), a compound of tantalum (Ta), a compound of aluminum (Al), and the like. The insulating portion 62 may include a laminated structure formed by selecting at least two kinds from these materials.
 絶縁部62の材料は、絶縁層2の材料と同じであってもよく、絶縁層2の材料とは異なっていてもよい。 The material of the insulating portion 62 may be the same as the material of the insulating layer 2, or may be different from the material of the insulating layer 2.
 典型的には、絶縁部62は、膜形状を有している。この例では、膜形状の厚さ方向は、半導体基板1の表面に垂直な方向に一致している。 The insulating portion 62 typically has a film shape. In this example, the thickness direction of the film shape coincides with the direction perpendicular to the surface of the semiconductor substrate 1.
 膜形状の厚さは、例えば、10nm以上である。膜形状の厚さをこの程度に大きくすることにより、信号電荷がトンネル効果によって絶縁部62を通り抜けることを抑制できる。したがって、信号電荷がシールド電極61に捕集されることを抑制できる。このため、膜形状の厚さを10nm以上とすることは、シールド電極61に起因する撮像装置の感度の低下を抑制するのに適している。膜形状の厚さは、20nm以上であってもよい。 The thickness of the film shape is, for example, 10 nm or more. By increasing the thickness of the film shape to this extent, it is possible to suppress the signal charges from passing through the insulating portion 62 due to the tunnel effect. Therefore, it is possible to suppress the signal charges from being collected by the shield electrode 61. Therefore, setting the thickness of the film shape to 10 nm or more is suitable for suppressing the decrease in the sensitivity of the imaging device due to the shield electrode 61. The thickness of the film shape may be 20 nm or more.
 膜形状の厚さは、例えば、500nm以下である。膜形状の厚さをこの程度に小さくすることにより、シールド電極61に電圧を印加した場合に、シールド電極61周辺に信号電荷を集め易い。画素電極3間で生じた信号電荷がシールド電極61付近に集められると、信号電荷が所望の画素電極3以外に捕集されることを抑制できる。このため、膜形状の厚さを500nm以下とすることは、シールド電極61により解像度の高い画像を得るのに適している。膜形状の厚さは、300nm以下であってもよい。 The thickness of the film shape is, for example, 500 nm or less. By reducing the thickness of the film shape to this extent, it is easy to collect signal charges around the shield electrode 61 when a voltage is applied to the shield electrode 61. When the signal charges generated between the pixel electrodes 3 are collected in the vicinity of the shield electrode 61, it is possible to suppress the signal charges from being collected by other than the desired pixel electrode 3. Therefore, setting the thickness of the film shape to 500 nm or less is suitable for obtaining an image with high resolution by the shield electrode 61. The thickness of the film shape may be 300 nm or less.
 膜形状の厚さが適切な範囲に調整されていると、シールド電極61に捕集される信号電荷を実質的に無視できるレベルに下げつつ、画素電極間で生じた信号電荷をシールド電極61付近に集められるため、信号電荷が所望の画素電極3以外で捕集されることを抑制し易い。このため、シールド電極61に起因する撮像装置の感度の低下を抑制しつつ、解像度の高い画像を得易い。 When the thickness of the film shape is adjusted to an appropriate range, the signal charge collected between the shield electrodes 61 is reduced to a level that can be substantially ignored, and the signal charges generated between the pixel electrodes are generated in the vicinity of the shield electrode 61. Therefore, it is easy to prevent the signal charges from being collected by other than the desired pixel electrode 3. For this reason, it is easy to obtain a high-resolution image while suppressing the decrease in the sensitivity of the imaging device due to the shield electrode 61.
 膜形状の厚さは、周知の手法により特定できる。膜形状の厚さは、例えば、以下のように特定できる。まず、膜形状断面の電子顕微鏡像を取得する。次に、その像を用いて、膜形状の任意の複数の測定点(例えば5点)について、厚さを測定する。それら複数の測定点の厚さの平均値を、膜形状の厚さとして採用する。 The thickness of the film shape can be specified by a well-known method. The thickness of the film shape can be specified as follows, for example. First, an electron microscope image of the cross section of the film shape is acquired. Next, using the image, the thickness is measured at arbitrary plural measurement points (for example, 5 points) of the film shape. The average value of the thicknesses of the plurality of measurement points is adopted as the thickness of the film shape.
 なお、後述する図5Aおよび5Bの例に上記の例示的な特定手法を適用する場合、側面62cの部分は測定点から除外され、上面62aの部分に、測定点が設定される。 Note that when the above-described specific method is applied to the examples of FIGS. 5A and 5B described later, the side surface 62c is excluded from the measurement point, and the upper surface 62a is set to the measurement point.
 絶縁部62の形成方法は、特に限定されない。 The method of forming the insulating portion 62 is not particularly limited.
 一例では、絶縁部62は、以下のようにして形成される。シールド電極61に(典型的には、シールド電極61の上面全体に)、絶縁部62の材料の層を形成する。次に、この層の一部を除去する。こうして、絶縁部62が得られる。このようにすれば、膜形状の絶縁部62を得ることも可能である。 In one example, the insulating portion 62 is formed as follows. A layer of the material of the insulating portion 62 is formed on the shield electrode 61 (typically, on the entire upper surface of the shield electrode 61). Next, a part of this layer is removed. In this way, the insulating portion 62 is obtained. By doing so, it is possible to obtain the film-shaped insulating portion 62.
 絶縁部62の材料の層は、例えば、化学気相堆積(CVD)により形成できる。絶縁部62の材料の層の一部は、例えば、リソグラフィー、エッチングなどにより除去できる。 The material layer of the insulating portion 62 can be formed by, for example, chemical vapor deposition (CVD). A part of the material layer of the insulating portion 62 can be removed by, for example, lithography, etching or the like.
 平面視において、絶縁部62が、シールド電極61の上面全体と、画素電極3とシールド電極61との間の絶縁層2の上面全体と、画素電極3の一部と、を覆っていてもよい。このようにすれば、絶縁部62の端部で形成される段差の位置を、画素電極3上とすることができる。段差の位置の画素電極3上とすることにより得られる利点について、図4Dおよび図4Eを参照しながら説明する。図4Dおよび図4Eは、絶縁層2および光電変換層4の作製方法を示す模式図である。 In plan view, the insulating portion 62 may cover the entire upper surface of the shield electrode 61, the entire upper surface of the insulating layer 2 between the pixel electrode 3 and the shield electrode 61, and a part of the pixel electrode 3. .. By doing so, the position of the step formed at the end of the insulating portion 62 can be on the pixel electrode 3. The advantages obtained by providing the pixel electrode 3 at the step position will be described with reference to FIGS. 4D and 4E. 4D and 4E are schematic views showing a method for manufacturing the insulating layer 2 and the photoelectric conversion layer 4.
 図4Dの部分(a)および図4Eの部分(a)では、画素電極3およびシールド電極61が、絶縁部62の材料の層62xにより覆われている。層62xの一部が、マスク81により覆われている。層62xのうち、マスク81で覆われていない部分が、エッチングにより除去される。 In the portion (a) of FIG. 4D and the portion (a) of FIG. 4E, the pixel electrode 3 and the shield electrode 61 are covered with the layer 62x of the material of the insulating portion 62. A part of the layer 62x is covered with the mask 81. A portion of the layer 62x not covered with the mask 81 is removed by etching.
 なお、図4Dの部分(a)および図4Eの部分(a)では、絶縁層2の図示を省略している。図4Dおよび図4Eに関する説明では、画素電極3とシールド電極61との間の位置に絶縁層2があるものとする。また、図4Dおよび図4Eに関する説明では、エッチングの実施前において、上記位置にある絶縁層2の上面は、画素電極3の上面およびシールド電極61の上面と面一であるものとする。 The insulating layer 2 is not shown in the portion (a) of FIG. 4D and the portion (a) of FIG. 4E. In the description relating to FIGS. 4D and 4E, it is assumed that the insulating layer 2 is located between the pixel electrode 3 and the shield electrode 61. 4D and 4E, the upper surface of the insulating layer 2 at the above position is flush with the upper surface of the pixel electrode 3 and the upper surface of the shield electrode 61 before the etching.
 図4Dの部分(a)では、マスク81は、シールド電極61の上面全体を覆っている。しかし、マスク81は、画素電極3とシールド電極61との間の絶縁層2の上面を覆っていない。また、マスク81は、画素電極3の上面を覆っていない。一方、図4Eの部分(a)では、マスク81は、シールド電極61の上面全体と、画素電極3とシールド電極61との間の絶縁層2の上面全体と、を覆っている。図4Eの部分(a)では、マスク81は、さらに、画素電極3の上面を部分的に覆っている。 In part (a) of FIG. 4D, the mask 81 covers the entire upper surface of the shield electrode 61. However, the mask 81 does not cover the upper surface of the insulating layer 2 between the pixel electrode 3 and the shield electrode 61. Further, the mask 81 does not cover the upper surface of the pixel electrode 3. On the other hand, in the portion (a) of FIG. 4E, the mask 81 covers the entire upper surface of the shield electrode 61 and the entire upper surface of the insulating layer 2 between the pixel electrode 3 and the shield electrode 61. In the portion (a) of FIG. 4E, the mask 81 further partially covers the upper surface of the pixel electrode 3.
 図4Dの部分(a)のマスク81を用いてエッチングを行うことにより、シールド電極61の上面全体だけを覆う絶縁部62が得られる。一方、図4Eの部分(a)のマスク81を用いてエッチングを行うことにより、シールド電極61の上面全体と、画素電極3とシールド電極61との間の絶縁層2の上面全体と、画素電極3の上面の一部と、を覆う絶縁部62が得られる。 By performing etching using the mask 81 in the portion (a) of FIG. 4D, the insulating portion 62 that covers only the entire upper surface of the shield electrode 61 is obtained. On the other hand, by performing etching using the mask 81 of the portion (a) of FIG. 4E, the entire upper surface of the shield electrode 61, the entire upper surface of the insulating layer 2 between the pixel electrode 3 and the shield electrode 61, and the pixel electrode An insulating portion 62 that covers a part of the upper surface of 3 is obtained.
 図4Dの部分(b)および図4Eの部分(b)は、エッチングにより、層62xのうちマスク81で覆われていない部分が除去された様子を表している。この除去により、層62xが絶縁部62へと加工される。 The portion (b) of FIG. 4D and the portion (b) of FIG. 4E show a state in which the portion of the layer 62x not covered with the mask 81 is removed by etching. By this removal, the layer 62x is processed into the insulating portion 62.
 現実には、エッチングにより層62xのみを削ることは難しい。図4Dの部分(a)のようにマスク81を配置すると、マスク81によって覆われていない画素電極3および絶縁層2もある程度削られる。画素電極3と絶縁層2とでは、エッチングレートが異なり、削られる程度が異なる。このため、図4Dの部分(b)の点線84で囲った領域内に示されているように、画素電極3と絶縁層2とで、上面の高さに差が生じる。また、点線85で囲った領域内に示されているように、絶縁部62と絶縁層2とで、上面の高さに差が生じる。この上面の高さの差は、マスク81によって覆われていた部分と覆われていない部分との境目に生じるものである。図4Dの部分(b)の一点鎖線82は、画素電極3および絶縁層2の上面の位置を表している。 Actually, it is difficult to remove only the layer 62x by etching. When the mask 81 is arranged as in the portion (a) of FIG. 4D, the pixel electrode 3 and the insulating layer 2 which are not covered by the mask 81 are also cut to some extent. The pixel electrode 3 and the insulating layer 2 have different etching rates and different degrees of abrasion. Therefore, as shown in the area surrounded by the dotted line 84 in the portion (b) of FIG. 4D, the height of the upper surface is different between the pixel electrode 3 and the insulating layer 2. Further, as shown in the area surrounded by the dotted line 85, there is a difference in the height of the upper surface between the insulating portion 62 and the insulating layer 2. This difference in height of the upper surface occurs at the boundary between the portion covered by the mask 81 and the portion not covered by the mask 81. An alternate long and short dash line 82 in the portion (b) of FIG. 4D represents the positions of the upper surfaces of the pixel electrode 3 and the insulating layer 2.
 マスク81によって、シールド電極61の上面全体を覆い、画素電極3とシールド電極61との間の絶縁層2の上面を部分的に覆う場合も同様である。その場合には、画素電極3と絶縁層2とで、エッチングレートの違いに由来する上面の高さの差が生じる。また、絶縁層2上に、絶縁部62が位置している部分と位置していない部分とで、上面の高さの差が生じる。この上面の高さの差は、絶縁層2上の絶縁層62xがマスク81に覆われていた部分と覆われていない部分との境目に生じるものである。 The same applies when the mask 81 covers the entire upper surface of the shield electrode 61 and partially covers the upper surface of the insulating layer 2 between the pixel electrode 3 and the shield electrode 61. In that case, a difference in the height of the upper surface occurs between the pixel electrode 3 and the insulating layer 2 due to the difference in the etching rate. Further, on the insulating layer 2, there is a difference in height of the upper surface between the portion where the insulating portion 62 is located and the portion where the insulating portion 62 is not located. This difference in height of the upper surface occurs at the boundary between the portion where the insulating layer 62x on the insulating layer 2 is covered with the mask 81 and the portion where the insulating layer 62x is not covered.
 これに対し、図4Eの部分(a)のようにマスク81を配置すると、図4Eの部分(b)の点線86内に示されているように、画素電極3上で上面の高さに差が生じる。この差は、マスク81で覆われていた部分と覆われていない部分との境目に生じるものである。しかし、絶縁層2は絶縁部62に完全に覆われるため、絶縁層2上で、上面の高さに差が生じることがない。このため、図4Dの場合に比べて、マスク81を用いたエッチングにより形成される上面における、段差の数を減らすことができる。 On the other hand, when the mask 81 is arranged as in the portion (a) of FIG. 4E, as shown in the dotted line 86 of the portion (b) of FIG. Occurs. This difference occurs at the boundary between the portion covered with the mask 81 and the portion not covered with the mask 81. However, since the insulating layer 2 is completely covered by the insulating portion 62, there is no difference in the height of the upper surface of the insulating layer 2. Therefore, compared to the case of FIG. 4D, the number of steps on the upper surface formed by etching using the mask 81 can be reduced.
 図4Dの部分(c)および図4Eの部分(c)は、エッチングにより形成された上面上に、光電変換層4が形成された様子を表している。エッチングにより形成された上面上に光電変換層4を形成すると、該上面の形状が光電変換層4の上面の形状にも反映される。図4Dおよび図4Eの部分(c)の二点鎖線83は、光電変換層4の上面の位置を表している。 The portion (c) of FIG. 4D and the portion (c) of FIG. 4E show a state in which the photoelectric conversion layer 4 is formed on the upper surface formed by etching. When the photoelectric conversion layer 4 is formed on the upper surface formed by etching, the shape of the upper surface is reflected on the shape of the upper surface of the photoelectric conversion layer 4. The two-dot chain line 83 in the portion (c) of FIGS. 4D and 4E represents the position of the upper surface of the photoelectric conversion layer 4.
 以上の説明から理解されるように、図4Eの形態は、図4Dの形態に比べ、光電変換層4の形状をフラットにする観点から有利である。このことから、絶縁部62が、シールド電極61の上面全体と、画素電極3とシールド電極61との間の絶縁層2の上面全体と、画素電極3の上面の一部と、を覆う構成は、光電変換層4のフラットにする観点から有利であると言える。 As can be understood from the above description, the configuration of FIG. 4E is more advantageous than the configuration of FIG. 4D from the viewpoint of flattening the shape of the photoelectric conversion layer 4. From this, the structure in which the insulating portion 62 covers the entire upper surface of the shield electrode 61, the entire upper surface of the insulating layer 2 between the pixel electrode 3 and the shield electrode 61, and a part of the upper surface of the pixel electrode 3 is It can be said that it is advantageous from the viewpoint of flattening the photoelectric conversion layer 4.
 図4A、4Bおよび4Cに示す具体例では、絶縁部62は、膜形状を有する。図4Bおよび4Cに示すように、膜形状は、上面62aと、下面62bと、側面62cと、を有する。側面62cは、下面62bから上面62aに延びている。上面62aと側面62cとにより、角62dが形成されている。下面62bと側面62cとの間には、角度θが形成されている。角度θは、比較的大きい。具体的は、角度θは、約90°である。このため、角62dは、尖っている。 In the specific examples shown in FIGS. 4A, 4B, and 4C, the insulating portion 62 has a film shape. As shown in FIGS. 4B and 4C, the film shape has an upper surface 62a, a lower surface 62b, and a side surface 62c. The side surface 62c extends from the lower surface 62b to the upper surface 62a. A corner 62d is formed by the upper surface 62a and the side surface 62c. An angle θ is formed between the lower surface 62b and the side surface 62c. The angle θ is relatively large. Specifically, the angle θ is about 90 °. Therefore, the corner 62d is sharp.
 図5Aおよび5Bに示す別の具体例でも、絶縁部62は、膜形状を有する。図5Aおよび5Bの具体例では、図4A、4Bおよび4Cの具体例に比べ、角度θが小さい。このようにすれば、角62dの尖りが緩和され、光電変換層4の形成時に角62dでのクラックが発生し難くなる。これにより、絶縁部62との接触部において光電変換層4が劣化し難くなる。 Also in another specific example shown in FIGS. 5A and 5B, the insulating portion 62 has a film shape. In the specific examples of FIGS. 5A and 5B, the angle θ is smaller than in the specific examples of FIGS. 4A, 4B and 4C. In this way, the sharpness of the corner 62d is alleviated, and cracks are less likely to occur at the corner 62d when the photoelectric conversion layer 4 is formed. Thereby, the photoelectric conversion layer 4 is less likely to deteriorate at the contact portion with the insulating portion 62.
 角度θを小さくする、あるいは角62dの尖りを緩和することは、例えば、プラズマ中のイオンにより絶縁部の角が削られる逆スパッタリング効果、絶縁部をCMP(Chemical Mechanical Polishing)によって平坦化する際に角が削られることなどにより、実現できる。 Reducing the angle θ or reducing the sharpness of the corner 62d is, for example, a reverse sputtering effect in which the corners of the insulating portion are scraped off by ions in plasma, and the insulating portion is flattened by CMP (Chemical Mechanical Polishing). This can be achieved by removing the corners.
 現実には、図6に示すように、光電変換層4における平面視で絶縁部62と重複する位置に、突出部4pが形成され得る。光電変換層4において、突出部4pは、突出部4pの周囲の部分に比べ、絶縁部62の膜形状の厚さ方向に突出している。 Actually, as shown in FIG. 6, the protrusion 4 p may be formed at a position in the photoelectric conversion layer 4 that overlaps with the insulating portion 62 in a plan view. In the photoelectric conversion layer 4, the protruding portion 4p protrudes in the thickness direction of the film shape of the insulating portion 62 as compared with the peripheral portion of the protruding portion 4p.
 突出部4pの突出幅PWは、絶縁部62の膜形状の厚さTHと同じであり得る。ただし、図6に示すように、突出幅PWを、厚さTHに比べて小さくすることは可能である。別の言い方をすると、光電変換層4における平面視で絶縁部62と重複する部分の厚さを、その部分の周囲の厚さに比べて薄くすることができる。例えば、光電変換層4に対して熱処理を実施することで、突出幅PWを小さくすることができる。なお、突出幅PWが厚さTHに比べて小さいとは、突出幅PWがゼロである場合を含む概念である。 The protrusion width PW of the protrusion 4p may be the same as the film thickness TH of the insulating portion 62. However, as shown in FIG. 6, it is possible to make the protrusion width PW smaller than the thickness TH. In other words, the thickness of the portion of the photoelectric conversion layer 4 that overlaps the insulating portion 62 in plan view can be made thinner than the thickness of the periphery of that portion. For example, the protrusion width PW can be reduced by performing heat treatment on the photoelectric conversion layer 4. Note that the protrusion width PW being smaller than the thickness TH is a concept including a case where the protrusion width PW is zero.
 上述の説明から理解されるように、絶縁部62を設けつつ、突出部4pの突出幅PWが小さいまたは突出部4pが存在しない光電変換層4を実現することが可能である。光電変換層4の上面が高い平坦性を有していると、光電変換層4の上側の層を作製し易い。 As can be understood from the above description, it is possible to realize the photoelectric conversion layer 4 in which the insulating portion 62 is provided and the protruding width PW of the protruding portion 4p is small or the protruding portion 4p does not exist. When the upper surface of the photoelectric conversion layer 4 has high flatness, the layer above the photoelectric conversion layer 4 can be easily manufactured.
 図6の例では、光電変換層4における平面視で画素電極3と重複する部分の厚さが、光電変換層4における平面視でシールド電極61と重複する部分の厚さに比べ、大きい。このことは、前者の部分における光電変換を促進して画素電極3により多くの信号電荷を捕獲し、後者の部分における光電変換を抑制してシールド電極61による信号電荷の捕獲を抑制するのに適している。 In the example of FIG. 6, the thickness of the portion of the photoelectric conversion layer 4 overlapping with the pixel electrode 3 in plan view is larger than the thickness of the portion of the photoelectric conversion layer 4 overlapping with the shield electrode 61 in plan view. This is suitable for promoting photoelectric conversion in the former part and capturing more signal charges in the pixel electrode 3, and suppressing photoelectric conversion in the latter part and suppressing capture of signal charges by the shield electrode 61. ing.
 なお、光電変換層4における突出部4pは、絶縁部62が図4Bに示す態様である場合にも、図4Cに示す態様である場合にも、形成され得る。これらの場合においても、PW=THまたはPW<THとすることができる。これらの場合においても、突出部4pが存在しない光電変換層4を実現できる。これらの場合においても、光電変換層4における平面視で画素電極3と重複する部分の厚さを、光電変換層4における平面視でシールド電極61と重複する部分の厚さに比べ、大きくできる。 The protruding portion 4p in the photoelectric conversion layer 4 can be formed regardless of whether the insulating portion 62 has the form shown in FIG. 4B or the form shown in FIG. 4C. Also in these cases, PW = TH or PW <TH can be satisfied. Also in these cases, the photoelectric conversion layer 4 without the protruding portion 4p can be realized. Also in these cases, the thickness of the portion of the photoelectric conversion layer 4 that overlaps with the pixel electrode 3 in plan view can be made larger than the thickness of the portion of the photoelectric conversion layer 4 that overlaps with the shield electrode 61 in plan view.
 図7に示す具体例も採用され得る。図7の具体例でも、絶縁部62は、膜形状を有する。この具体例では、半導体基板1から光電変換層4に向かって順に、画素ビア13と、画素電極3と、ビア68と、画素電極69とが接続されている。このため、これらは電気的に接続されている。画素電極69に到達した信号電荷は、ビア68、画素電極3および画素ビア13をこの順に流れていく。 The specific example shown in FIG. 7 can also be adopted. Also in the specific example of FIG. 7, the insulating portion 62 has a film shape. In this specific example, the pixel via 13, the pixel electrode 3, the via 68, and the pixel electrode 69 are sequentially connected from the semiconductor substrate 1 toward the photoelectric conversion layer 4. Therefore, they are electrically connected. The signal charge reaching the pixel electrode 69 flows through the via 68, the pixel electrode 3, and the pixel via 13 in this order.
 図7に示す具体例では、絶縁部62は、平面視で画素電極69を取り囲んでいる。絶縁部62の上面と画素電極69の上面とは、面一である。絶縁部62は、画素電極3と画素電極69の間にも存在する。 In the specific example shown in FIG. 7, the insulating portion 62 surrounds the pixel electrode 69 in plan view. The upper surface of the insulating portion 62 and the upper surface of the pixel electrode 69 are flush with each other. The insulating portion 62 also exists between the pixel electrode 3 and the pixel electrode 69.
 図7に示す具体例では、シールド電極61の上面は、絶縁部62によって覆われている。画素電極3の上面も、絶縁部62によって覆われている。 In the specific example shown in FIG. 7, the upper surface of the shield electrode 61 is covered with the insulating portion 62. The upper surface of the pixel electrode 3 is also covered with the insulating portion 62.
 図7の具体例のようにビア68および画素電極69を設けることは、光電変換層4の下面を平坦にしつつ、シールド電極61と光電変換層4との間に絶縁部62を設ける観点から有利である。そのため、この構成は、光電変換層4においてクラックの発生を抑制する観点から有利である。特に、絶縁部62が厚い場合には、絶縁部62上あるいは画素電極69上に、絶縁部62に由来する大きな段差が形成されうる。その場合には、平坦でない表面上に光電変換層4を形成することになるため、光電変換層4にクラックが生じ易い。したがって、そのような場合には図7の構成を用いることで、クラック抑制効果を発揮することができる。なお、図7の具体例では、絶縁部62の膜形状の厚さは、絶縁部62のうち平面視でシールド電極61と重なる部分の厚さを指す。上記測定点は、当該部分に設定される。 Providing the via 68 and the pixel electrode 69 as in the specific example of FIG. 7 is advantageous from the viewpoint of providing the insulating portion 62 between the shield electrode 61 and the photoelectric conversion layer 4 while flattening the lower surface of the photoelectric conversion layer 4. Is. Therefore, this configuration is advantageous from the viewpoint of suppressing the generation of cracks in the photoelectric conversion layer 4. In particular, when the insulating portion 62 is thick, a large step due to the insulating portion 62 can be formed on the insulating portion 62 or the pixel electrode 69. In that case, since the photoelectric conversion layer 4 is formed on the uneven surface, cracks are likely to occur in the photoelectric conversion layer 4. Therefore, in such a case, the crack suppression effect can be exhibited by using the configuration of FIG. 7. In the specific example of FIG. 7, the film thickness of the insulating portion 62 refers to the thickness of the portion of the insulating portion 62 that overlaps the shield electrode 61 in plan view. The measurement point is set in the portion.
 図7の例では、画素電極3とシールド電極61との間に、絶縁体67が設けられている。絶縁体67の材料と絶縁部62の材料とは、同じであってもよく、異なっていてもよい。絶縁体67は、絶縁層2の絶縁体であり得る。なお、図4B、4Cおよび5Bでも、図示は省略されているが、画素電極3とシールド電極61との間に絶縁体である絶縁層2が位置している。 In the example of FIG. 7, an insulator 67 is provided between the pixel electrode 3 and the shield electrode 61. The material of the insulator 67 and the material of the insulating portion 62 may be the same or different. The insulator 67 may be the insulator of the insulating layer 2. Although not shown in FIGS. 4B, 4C, and 5B, the insulating layer 2 serving as an insulator is located between the pixel electrode 3 and the shield electrode 61.
 (シールド電極61に接続されたビアによるシールド構造)
 積層型の撮像装置100では、光電変換層4とは別に電荷の蓄積領域が設けられている。蓄積領域は、検出回路12における半導体基板1内の部分に設けられている。光電変換層4で発生した電荷は、画素電極3から、画素ビア13を介して、蓄積領域に輸送される。
(Shield structure by a via connected to the shield electrode 61)
In the stacked-type imaging device 100, a charge storage region is provided separately from the photoelectric conversion layer 4. The storage region is provided in a portion of the detection circuit 12 inside the semiconductor substrate 1. The charges generated in the photoelectric conversion layer 4 are transported from the pixel electrode 3 to the storage region via the pixel via 13.
 積層型の撮像装置100においては、ある画素電極3に接続された画素ビア13と、その画素電極3に隣接する画素電極3に接続された画素ビア13と、の間に、寄生容量が生じる場合がある。この寄生容量は、画素間のクロストークの原因となり得る。 In the stacked imaging device 100, when a parasitic capacitance occurs between the pixel via 13 connected to a certain pixel electrode 3 and the pixel via 13 connected to the pixel electrode 3 adjacent to the pixel electrode 3 There is. This parasitic capacitance can cause crosstalk between pixels.
 寄生容量に起因するクロストークを抑制するには、シールド電極61にビアを接続し、そのビアによって画素ビア13間をシールドすることが考えられる。このようにすれば、画素ビア13間の寄生容量を低減できるため、寄生容量に由来するクロストークを抑制できる。 In order to suppress crosstalk due to parasitic capacitance, it is conceivable to connect vias to the shield electrode 61 and shield the pixel vias 13 with the vias. In this way, since the parasitic capacitance between the pixel vias 13 can be reduced, crosstalk due to the parasitic capacitance can be suppressed.
 上述のとおり、撮像装置100は、複数の配線層を備える。複数の配線層は、シールド電極と半導体基板1の間に配置されている。複数の配線層は、半導体基板1の表面に垂直な方向について、互いに異なる位置にある。第1配線層14は、複数の配線層のうち画素電極3に最も近い層である。第1配線層14よりも画素電極3側に位置する領域に比べ、第1配線層14よりも半導体基板1側に位置する領域では、クロストークを抑制するシールドとして機能し得る配線が配置されていることが多い。よって、シールド電極61に接続されたビアによるシールド効果は、第1配線層14よりも画素電極3側の領域において現れやすい。また、シールド電極61に接続されたビアによるシールド効果は、画素電極3と第1配線層14との間隔が大きい場合には、現れやすい。 As described above, the imaging device 100 includes a plurality of wiring layers. The plurality of wiring layers are arranged between the shield electrode and the semiconductor substrate 1. The plurality of wiring layers are located at different positions in the direction perpendicular to the surface of the semiconductor substrate 1. The first wiring layer 14 is a layer closest to the pixel electrode 3 among the plurality of wiring layers. In a region located closer to the semiconductor substrate 1 than the first wiring layer 14 than in a region located closer to the pixel electrode 3 than the first wiring layer 14, wiring that can function as a shield for suppressing crosstalk is arranged. Often Therefore, the shield effect due to the vias connected to the shield electrode 61 is more likely to appear in the region closer to the pixel electrode 3 than the first wiring layer 14. Further, the shield effect due to the via connected to the shield electrode 61 is likely to appear when the distance between the pixel electrode 3 and the first wiring layer 14 is large.
 一例では、撮像装置100は、カラーのイメージセンサである。カラーのイメージセンサの一例では、RGBに対応する画素が隣接して配置されている。つまり、異なる色に対応する画素が隣接して配置されている。このため、画素間のクロストークが生じると、混色が生じる。カラーのイメージセンサにシールド構造を適用することで、クロストークが抑制され、混色による画質の低下が抑制される。 In one example, the imaging device 100 is a color image sensor. In an example of a color image sensor, pixels corresponding to RGB are arranged adjacent to each other. That is, pixels corresponding to different colors are arranged adjacent to each other. Therefore, when crosstalk occurs between pixels, color mixing occurs. By applying the shield structure to the color image sensor, crosstalk is suppressed and deterioration of image quality due to color mixture is suppressed.
 以下、シールド電極61に接続されたビアを利用する技術について説明する。以下では、シールド電極61から延びるビアを、シールドビアと称することがある。 The following will describe the technique of using the via connected to the shield electrode 61. Hereinafter, the via extending from the shield electrode 61 may be referred to as a shield via.
 本実施形態では、図1から7により理解されるように、シールド電極61に、シールドビア63,63Cが接続されている。シールドビア63,63Cは、シールド電極61から半導体基板1に向かって延びている。具体的には、シールドビア63,63Cは、シールド電極61から第1配線層14まで延びている。 In this embodiment, as understood from FIGS. 1 to 7, shield vias 63 and 63C are connected to the shield electrode 61. The shield vias 63 and 63C extend from the shield electrode 61 toward the semiconductor substrate 1. Specifically, the shield vias 63 and 63C extend from the shield electrode 61 to the first wiring layer 14.
 第1配線層14よりも半導体基板1側に、シールド電極61と電気的に接続されているビアがあってもよい。 A via electrically connected to the shield electrode 61 may be provided closer to the semiconductor substrate 1 than the first wiring layer 14.
 図3の例では、平面視において、個々の画素電極3は、シールド電極61に含まれた枠状部によって取り囲まれている。シールド電極61に接続されているシールドビア63Cは、上記枠状部の四隅に配置されている。さらに、シールドビア63は、四隅と四隅の間にも配置されている。なお、図3では、図示中央の画素電極3を取り囲む枠状部の四隅に位置するシールドビア63Cに、符号63Cを付している。 In the example of FIG. 3, each pixel electrode 3 is surrounded by the frame-shaped portion included in the shield electrode 61 in plan view. The shield vias 63C connected to the shield electrode 61 are arranged at the four corners of the frame-shaped portion. Further, the shield via 63 is also arranged between the four corners. In FIG. 3, the shield vias 63C located at the four corners of the frame-shaped portion surrounding the pixel electrode 3 at the center of the drawing are denoted by reference numeral 63C.
 図3の例よりも、シールドビア63,63Cの個数を増やしてもよい。平面視で1つの画素電極3を取り囲むシールドビア63,63Cの数が多いほど、クロストーク低減の効果が大きくなる。数多くのシールドビア63,63Cを設け、隣接するシールドビア63,63Cが互いに接するようにしてもよい。このように設けられた複数のシールドビア63,63Cの集合を、ラインビアと称することができる。 The number of shield vias 63, 63C may be increased more than in the example of FIG. The greater the number of shield vias 63, 63C surrounding one pixel electrode 3 in a plan view, the greater the effect of reducing crosstalk. A large number of shield vias 63, 63C may be provided so that adjacent shield vias 63, 63C are in contact with each other. A set of the plurality of shield vias 63, 63C provided in this way can be called a line via.
 以上説明したように、シールド電極61にシールドビア63,63Cを接続し、シールドビア63,63Cを半導体基板1に向かって延ばすことによって、画素20間のクロストークを抑制できる。 As described above, by connecting the shield vias 63 and 63C to the shield electrode 61 and extending the shield vias 63 and 63C toward the semiconductor substrate 1, crosstalk between the pixels 20 can be suppressed.
 撮像装置100がカラーのイメージセンサである場合は、上記のようにクロストークを抑制することにより、混色を抑制できる。 When the imaging device 100 is a color image sensor, color mixture can be suppressed by suppressing crosstalk as described above.
 シールドビア63,63Cの材料として、銅(Cu)、タングステン(W)、コバルト(Co)などの導電性材料が例示される。 Examples of the material of the shield vias 63, 63C include conductive materials such as copper (Cu), tungsten (W), and cobalt (Co).
 シールドビア63,63Cは、絶縁層2に埋め込ことにより形成され得る。 The shield vias 63, 63C can be formed by embedding in the insulating layer 2.
 複数のシールドビア63,63Cを、画素ビア13と同一の製造工程で形成してもよい。 A plurality of shield vias 63, 63C may be formed in the same manufacturing process as the pixel via 13.
 シールド電極61と光電変換層4との間に絶縁部62を設けることなく、シールド電極61に接続されたシールドビアによるシールド構造を設けてもよい。 A shield structure with shield vias connected to the shield electrode 61 may be provided without providing the insulating portion 62 between the shield electrode 61 and the photoelectric conversion layer 4.
 以下、図8を参照しつつ、シールドビアによるシールドについてさらに説明する。 Below, referring to FIG. 8, the shield by the shield via will be further described.
 以下では、シールドビアに序数詞をつけて説明をすることがある。図8において、シールドビア63である第1シールドビアの位置が、点P1によって表されている。シールドビア63である第2シールドビアの位置が、点P2によって表されている。シールドビア63である第3シールドビアの位置が、点P3によって表されている。シールドビア63である第4シールドビアの位置が、点P4によって表されている。シールドビア63Cである第5シールドビアの位置が、点P5によって表されている。シールドビア63Cである第6シールドビアの位置が、点P6によって表されている。シールドビア63Cである第7シールドビアの位置が、点P7によって表されている。シールドビア63Cである第8シールドビアの位置が、点P8によって表されている。シールドビア63である第9シールドビアの位置が、点P9によって表されている。シールドビア63である第10シールドビアの位置が、点P10によって表されている。シールドビア63である第11シールドビアの位置が、点P11によって表されている。シールドビア63である第12シールドビアの位置が、点P12によって表されている。シールドビア63である第13シールドビアの位置が、点P13によって表されている。シールドビア63である第14シールドビアの位置が、点P14によって表されている。 In the following, we may explain the shield via with ordinal numbers. In FIG. 8, the position of the first shield via, which is the shield via 63, is represented by a point P1. The position of the second shield via that is the shield via 63 is represented by a point P2. The position of the third shield via, which is the shield via 63, is represented by a point P3. The position of the fourth shield via that is the shield via 63 is represented by a point P4. The position of the fifth shield via, which is the shield via 63C, is represented by a point P5. The position of the sixth shield via that is the shield via 63C is represented by a point P6. The position of the seventh shield via, which is the shield via 63C, is represented by a point P7. The position of the eighth shield via, which is the shield via 63C, is represented by a point P8. The position of the ninth shield via that is the shield via 63 is represented by a point P9. The position of the tenth shield via, which is the shield via 63, is represented by a point P10. The position of the eleventh shield via, which is the shield via 63, is represented by a point P11. The position of the 12th shield via, which is the shield via 63, is represented by a point P12. The position of the thirteenth shield via which is the shield via 63 is represented by a point P13. The position of the 14th shield via, which is the shield via 63, is represented by a point P14.
 以下では、第1部分X1、第2部分X2、第3部分X3、第4部分X4、第5部分X5、第6部分X6、第7部分X7および第8部分X8という用語を用いることがある。図8では、これらの部分の各々に、ハッチングが付されている。なお、図8では、絶縁層2の図示は省略している。 In the following, the terms first part X1, second part X2, third part X3, fourth part X4, fifth part X5, sixth part X6, seventh part X7 and eighth part X8 may be used. In FIG. 8, each of these portions is hatched. Note that the illustration of the insulating layer 2 is omitted in FIG.
 以下では、平面視という用語を用いることがある。平面視は、例えば、半導体基板1の表面に垂直な方向に観察することをいう。 Hereafter, the term planar view may be used. The plan view means, for example, observation in a direction perpendicular to the surface of the semiconductor substrate 1.
 図8の例では、複数の画素電極3は、第1画素電極3Aと、第1隣接画素電極3B1と、第2隣接画素電極3B2と、第3隣接画素電極3B3と、第4隣接画素電極3B4と、を含む。第1隣接画素電極3B1、第2隣接画素電極3B2、第3隣接画素電極3B3および第4隣接画素電極3B4は、第1画素電極3Aに隣接している。 In the example of FIG. 8, the plurality of pixel electrodes 3 are the first pixel electrode 3A, the first adjacent pixel electrode 3B1, the second adjacent pixel electrode 3B2, the third adjacent pixel electrode 3B3, and the fourth adjacent pixel electrode 3B4. And, including. The first adjacent pixel electrode 3B1, the second adjacent pixel electrode 3B2, the third adjacent pixel electrode 3B3, and the fourth adjacent pixel electrode 3B4 are adjacent to the first pixel electrode 3A.
 また、図8の例では、複数の画素電極3は、第1特定画素電極3C1と、第2特定画素電極3C2と、第3特定画素電極3C3と、第4特定画素電極3C4と、を含む。第1特定画素電極3C1は、第1隣接画素電極3B1および第2隣接画素電極3B2に隣接している。第2特定画素電極3C2は、第2隣接画素電極3B2および第3隣接画素電極3B3に隣接している。第3特定画素電極3C3は、第3隣接画素電極3B3および第4隣接画素電極3B4に隣接している。第4特定画素電極3C4は、第4隣接画素電極3B4および第1隣接画素電極3B1に隣接している。 Further, in the example of FIG. 8, the plurality of pixel electrodes 3 include the first specific pixel electrode 3C1, the second specific pixel electrode 3C2, the third specific pixel electrode 3C3, and the fourth specific pixel electrode 3C4. The first specific pixel electrode 3C1 is adjacent to the first adjacent pixel electrode 3B1 and the second adjacent pixel electrode 3B2. The second specific pixel electrode 3C2 is adjacent to the second adjacent pixel electrode 3B2 and the third adjacent pixel electrode 3B3. The third specific pixel electrode 3C3 is adjacent to the third adjacent pixel electrode 3B3 and the fourth adjacent pixel electrode 3B4. The fourth specific pixel electrode 3C4 is adjacent to the fourth adjacent pixel electrode 3B4 and the first adjacent pixel electrode 3B1.
 シールド電極61は、第1部分X1と、第2部分X2と、第3部分X3と、第4部分X4と、を含む。少なくとも1つのシールドビアは、第1シールドビアと、第2シールドビアと、第3シールドビアと、第4シールドビアと、を含む。第1シールドビアは、第1部分X1から半導体基板1に向かって延びている。第2シールドビアは、第2部分X2から半導体基板1に向かって延びている。第3シールドビアは、第3部分X3から半導体基板1に向かって延びている。第4シールドビアは、第4部分X4から半導体基板1に向かって延びている。 The shield electrode 61 includes a first portion X1, a second portion X2, a third portion X3, and a fourth portion X4. The at least one shield via includes a first shield via, a second shield via, a third shield via, and a fourth shield via. The first shield via extends from the first portion X1 toward the semiconductor substrate 1. The second shield via extends from the second portion X2 toward the semiconductor substrate 1. The third shield via extends from the third portion X3 toward the semiconductor substrate 1. The fourth shield via extends from the fourth portion X4 toward the semiconductor substrate 1.
 平面視において、第1画素電極3Aは、第1辺S1と、第2辺S2と、第3辺S3と、第4辺S4と、がこの順に接続された四角形Qである。平面視において、第1部分X1は、第1辺S1と第1隣接画素電極3B1との間に位置する。平面視において、第2部分X2は、第2辺S2と第2隣接画素電極3B2との間に位置する。平面視において、第3部分X3は、第3辺S3と第3隣接画素電極3B3との間に位置する。平面視において、第4部分X4は、第4辺S4と第4隣接画素電極3B4との間に位置する。 In a plan view, the first pixel electrode 3A is a quadrangle Q in which a first side S1, a second side S2, a third side S3, and a fourth side S4 are connected in this order. In a plan view, the first portion X1 is located between the first side S1 and the first adjacent pixel electrode 3B1. In plan view, the second portion X2 is located between the second side S2 and the second adjacent pixel electrode 3B2. In plan view, the third portion X3 is located between the third side S3 and the third adjacent pixel electrode 3B3. In a plan view, the fourth portion X4 is located between the fourth side S4 and the fourth adjacent pixel electrode 3B4.
 図8の例では、具体的には、平面視において、第1辺S1は、第1部分X1を挟んで第1隣接画素電極3B1と対向している。平面視において、第2辺S2は、第2部分X2を挟んで第2隣接画素電極3B2と対向している。平面視において、第3辺S3は、第3部分X3を挟んで第3隣接画素電極3B3と対向している。平面視において、第4辺S4は、第4部分X4を挟んで第4隣接画素電極3B4と対向している。 In the example of FIG. 8, specifically, in plan view, the first side S1 faces the first adjacent pixel electrode 3B1 with the first portion X1 interposed therebetween. In plan view, the second side S2 faces the second adjacent pixel electrode 3B2 with the second portion X2 interposed therebetween. In plan view, the third side S3 faces the third adjacent pixel electrode 3B3 with the third portion X3 interposed therebetween. In a plan view, the fourth side S4 faces the fourth adjacent pixel electrode 3B4 with the fourth portion X4 interposed therebetween.
 図8の例では、シールド電極61は、第5部分X5と、第6部分X6と、第7部分X7と、第8部分X8と、を含む。少なくとも1つのシールドビアは、第5シールドビアと、第6シールドビアと、第7シールドビアと、第8シールドビアと、を含む。第5シールドビアは、第5部分X5から半導体基板1に向かって延びている。第6シールドビアは、第6部分X6から半導体基板1に向かって延びている。第7シールドビアは、第7部分X7から半導体基板1に向かって延びている。第8シールドビアは、第8部分X8から半導体基板1に向かって延びている。 In the example of FIG. 8, the shield electrode 61 includes a fifth portion X5, a sixth portion X6, a seventh portion X7, and an eighth portion X8. The at least one shield via includes a fifth shield via, a sixth shield via, a seventh shield via, and an eighth shield via. The fifth shield via extends from the fifth portion X5 toward the semiconductor substrate 1. The sixth shield via extends from the sixth portion X6 toward the semiconductor substrate 1. The seventh shield via extends from the seventh portion X7 toward the semiconductor substrate 1. The eighth shield via extends from the eighth portion X8 toward the semiconductor substrate 1.
 平面視において、複数の画素電極3は、複数の交差部を含む格子状領域60を介して互いに離間している。平面視において、シールド電極61は、格子状領域60に位置する。 In plan view, the plurality of pixel electrodes 3 are separated from each other via the grid-like region 60 including a plurality of intersecting portions. The shield electrode 61 is located in the grid-shaped region 60 in a plan view.
 平面視において、四角形Qは、第1頂点V1と、第2頂点V2と、第3頂点V3と、第4頂点V4と、を含む。第1頂点V1は、第1辺S1と第2辺S2とが接する頂点である。第2頂点V2は、第2辺S2と第3辺S3とが接する頂点である。第3頂点V3は、第3辺S3と第4辺S4とが接する頂点である。第4頂点V4は、第4辺S4と第1辺S1とが接する頂点である。 In plan view, the quadrangle Q includes a first vertex V1, a second vertex V2, a third vertex V3, and a fourth vertex V4. The first vertex V1 is a vertex where the first side S1 and the second side S2 are in contact with each other. The second vertex V2 is a vertex where the second side S2 and the third side S3 are in contact with each other. The third vertex V3 is a vertex where the third side S3 and the fourth side S4 are in contact with each other. The fourth vertex V4 is a vertex where the fourth side S4 and the first side S1 are in contact with each other.
 平面視において、複数の交差部は、第1交差部Y1と、第2交差部Y2と、第3交差部Y3と、第4交差部Y4と、を含む。平面視において、第1交差部Y1は、複数の交差部において第1頂点V1に最も近い。平面視において、第2交差部Y2は、複数の交差部において第2頂点V2に最も近い。第3交差部Y3は、複数の交差部において第3頂点V3に最も近い。第4交差部Y4は、複数の交差部において第4頂点V4に最も近い。 In a plan view, the plurality of intersections include a first intersection Y1, a second intersection Y2, a third intersection Y3, and a fourth intersection Y4. In a plan view, the first intersection Y1 is closest to the first vertex V1 at the plurality of intersections. In plan view, the second intersection Y2 is closest to the second vertex V2 at the plurality of intersections. The third intersection Y3 is closest to the third vertex V3 at the plurality of intersections. The fourth intersection Y4 is closest to the fourth vertex V4 at the plurality of intersections.
 平面視において、第5部分X5は、第1交差部Y1に位置する。平面視において、第6部分X6は、第2交差部Y2に位置する。平面視において、第7部分X7は、第3交差部Y3に位置する。平面視において、第8部分X8は、第4交差部Y4に位置する。 The fifth portion X5 is located at the first intersection Y1 in a plan view. The sixth portion X6 is located at the second intersection Y2 in a plan view. The seventh portion X7 is located at the third intersection Y3 in a plan view. The eighth portion X8 is located at the fourth intersection Y4 in a plan view.
 さらに、図8の例では、上記少なくとも1つのシールドビアは、第9シールドビアと、第10シールドビアと、第11シールドビアと、第12シールドビアと、第13シールドビアと、第14シールドビアと、を含む。第9シールドビアおよび第10シールドビアは、第1部分X1から半導体基板1に向かって延びている。第11シールドビアは、第2部分X2から半導体基板1に向かって延びている。第12シールドビアおよび第13シールドビアは、第3部分X3から半導体基板1に向かって延びている。第14シールドビアは、第4部分X4から半導体基板1に向かって延びている。 Further, in the example of FIG. 8, the at least one shield via is a ninth shield via, a tenth shield via, an eleventh shield via, a twelfth shield via, a thirteenth shield via, and a fourteenth shield via. And, including. The ninth shield via and the tenth shield via extend from the first portion X1 toward the semiconductor substrate 1. The eleventh shield via extends from the second portion X2 toward the semiconductor substrate 1. The twelfth shield via and the thirteenth shield via extend from the third portion X3 toward the semiconductor substrate 1. The fourteenth shield via extends from the fourth portion X4 toward the semiconductor substrate 1.
 シールド電極61に接続されたビアは、解像度の高い画像を得ることに寄与する。具体的には、このように第1シールドビアから第14シールドビアを設けると、平面視において1つの画素電極3を取り囲むシールドビア63、63Cの数が多くなり、クロストーク低減の効果が大きくなる。また、斜め方向に並ぶ画素間でのクロストークも低減することができる。したがって、より解像度の高い画像を得易い。なお、斜め方向は、図8の例では、平面視で四角形Qの対角線が延びる方向である。 The vias connected to the shield electrode 61 contribute to obtaining an image with high resolution. Specifically, when the first to fourteenth shield vias are provided in this manner, the number of shield vias 63 and 63C surrounding one pixel electrode 3 in plan view increases, and the effect of reducing crosstalk increases. .. Further, crosstalk between pixels arranged in an oblique direction can be reduced. Therefore, it is easy to obtain an image with higher resolution. The diagonal direction is the direction in which the diagonal line of the quadrangle Q extends in plan view in the example of FIG.
 上記の説明に係るシールド電極61に接続されたシールドビア63、63Cの一部を省略してもよい。シールド電極61から半導体基板1に向かって延びるシールドビア63、63Cを追加してもよい。 A part of the shield vias 63 and 63C connected to the shield electrode 61 according to the above description may be omitted. Shield vias 63 and 63C extending from the shield electrode 61 toward the semiconductor substrate 1 may be added.
 図8の例では、撮像装置100は、画素ビア13を含む。画素ビア13は、第1画素電極3Aに接続されている。画素ビア13は、第1画素電極3Aから半導体基板1に向かって延びている。図8において、画素ビア13の位置は、点PAによって表されている。なお、図示は省略しているが、図8の例では、図示中央の画素電極3Aのみならず、他の8つの画素電極3B1から3B4および3C1から3C4からも、画素ビア13が半導体基板1に向かって延びている。 In the example of FIG. 8, the imaging device 100 includes the pixel via 13. The pixel via 13 is connected to the first pixel electrode 3A. The pixel via 13 extends from the first pixel electrode 3A toward the semiconductor substrate 1. In FIG. 8, the position of the pixel via 13 is represented by a point PA. Although illustration is omitted, in the example of FIG. 8, the pixel via 13 is formed on the semiconductor substrate 1 not only from the pixel electrode 3A at the center of the drawing but also from the other eight pixel electrodes 3B1 to 3B4 and 3C1 to 3C4. Extending towards.
 このような撮像装置100においては、第1画素電極3Aに接続された画素ビア13を流れる信号電荷への、該画素ビア13と隣接画素電極に接続された画素ビアとの寄生容量に由来するノイズの重畳が、シールド電極61に接続されたシールドビア63、63Cによって抑制され得る。このため、このような撮像装置100は、解像度の高い画像を得るのに適している。 In such an imaging device 100, noise caused by parasitic capacitance between the pixel via 13 connected to the first pixel electrode 3A and the signal charge flowing in the pixel via 13 and the pixel via connected to the adjacent pixel electrode is generated. Can be suppressed by the shield vias 63 and 63C connected to the shield electrode 61. Therefore, such an imaging device 100 is suitable for obtaining an image with high resolution.
 一具体例では、平面視において、第1画素電極3Aに接続された画素ビア13は、第1シールドビアと、第2シールドビアと、第3シールドビアと、第4シールドビアと、第5シールドビアと、によって取り囲まれている。 In one specific example, in plan view, the pixel vias 13 connected to the first pixel electrodes 3A are the first shield vias, the second shield vias, the third shield vias, the fourth shield vias, and the fifth shields. Surrounded by vias and.
 具体的には、平面視において、第1画素電極3Aに接続された画素ビア13は、第1シールドビアと、第2シールドビアと、第3シールドビアと、第4シールドビアと、第5シールドビアと、第6シールドビアと、第7シールドビアと、第8シールドビアと、によって取り囲まれている。 Specifically, in plan view, the pixel vias 13 connected to the first pixel electrode 3A include the first shield via, the second shield via, the third shield via, the fourth shield via, and the fifth shield. It is surrounded by a via, a sixth shield via, a seventh shield via, and an eighth shield via.
 より具体的には、平面視において、第1画素電極3Aに接続された画素ビア13は、第1シールドビアと、第2シールドビアと、第3シールドビアと、第4シールドビアと、第5シールドビアと、第6シールドビアと、第7シールドビアと、第8シールドビアと、第9シールドビアと、第10シールドビアと、第11シールドビアと、第12シールドビアと、第13シールドビアと、第14シールドビアと、によって取り囲まれている。 More specifically, in plan view, the pixel vias 13 connected to the first pixel electrode 3A are the first shield via, the second shield via, the third shield via, the fourth shield via, and the fifth shield via. Shield via, sixth shield via, seventh shield via, eighth shield via, ninth shield via, tenth shield via, eleventh shield via, twelfth shield via, and thirteenth shield via And the fourteenth shield via.
 図8の例では、上記少なくとも1つのシールドビアは、シールド電極61から第1配線層14まで延びている。このようにすることは、解像度の高い画像を得るのに適している。 In the example of FIG. 8, the at least one shield via extends from the shield electrode 61 to the first wiring layer 14. This is suitable for obtaining a high-resolution image.
 図8の例では、四角形Qは、長方形である。四角形Qは、正方形であってもよい。 In the example of FIG. 8, the quadrangle Q is a rectangle. The quadrangle Q may be a square.
 図8の例では、平面視において、第1隣接画素電極3B1、第2隣接画素電極3B2、第3隣接画素電極3B3および第4隣接画素電極3B4は、四角形である。典型的には、平面視において、第1隣接画素電極3B1、第2隣接画素電極3B2、第3隣接画素電極3B3および第4隣接画素電極3B4は、四角形Qと同じ形状および寸法を有する。 In the example of FIG. 8, the first adjacent pixel electrode 3B1, the second adjacent pixel electrode 3B2, the third adjacent pixel electrode 3B3, and the fourth adjacent pixel electrode 3B4 are quadrangular in a plan view. Typically, in plan view, the first adjacent pixel electrode 3B1, the second adjacent pixel electrode 3B2, the third adjacent pixel electrode 3B3, and the fourth adjacent pixel electrode 3B4 have the same shape and size as the quadrangle Q.
 図8の例では、平面視において、第1隣接画素電極3B1および第3隣接画素電極3B3は、第1画素電極3Aと、第2辺S2および第4辺S4が延びる方向に隣接している。第2隣接画素電極3B2および第4隣接画素電極3B4は、第1画素電極3Aと、第1辺S1および第3辺S3が延びる方向に隣接している。 In the example of FIG. 8, in plan view, the first adjacent pixel electrode 3B1 and the third adjacent pixel electrode 3B3 are adjacent to the first pixel electrode 3A in the direction in which the second side S2 and the fourth side S4 extend. The second adjacent pixel electrode 3B2 and the fourth adjacent pixel electrode 3B4 are adjacent to the first pixel electrode 3A in the direction in which the first side S1 and the third side S3 extend.
 図8の例では、単一の導電体であるシールド電極61が、複数の画素電極3をシールドする。具体的には、単一の導電体は、平面視において、格子形状を有している。ただし、別の形態を採用することもできる。例えば、シールド電極61が複数の部分に電気的に分離されており、複数の部分のそれぞれが個別に対応する画素電極3をシールドしていてもよい。 In the example of FIG. 8, the shield electrode 61, which is a single conductor, shields the plurality of pixel electrodes 3. Specifically, the single conductor has a lattice shape in a plan view. However, another form can also be adopted. For example, the shield electrode 61 may be electrically separated into a plurality of portions, and each of the plurality of portions may individually shield the corresponding pixel electrode 3.
 以下、図9Aから図9Eを参照して、撮像装置の特徴を説明する。以下の説明は、上述の説明と重複することがある。以下の説明内容と上述の説明内容とを組み合わせてもよい。以下の説明における用語と上述の説明における用語の読み替えも可能である。なお、図9Aから図9Eでは、絶縁層2の図示は省略している。 The features of the imaging device will be described below with reference to FIGS. 9A to 9E. The following description may overlap with the above description. The following description may be combined with the above description. The terms used in the following description and the terms used in the above description can be interchanged. The insulating layer 2 is not shown in FIGS. 9A to 9E.
 図9Aの第1シールドビアSV1は、図8の点P1における第1シールドビアに対応する。図9Aの第2シールドビアSV2は、図8の点P2における第2シールドビアに対応する。図9Aの第3シールドビアSV3は、図8の点P5における第5シールドビアに対応する。図9Aの第4シールドビアSV4は、図8の点P3における第3シールドビアに対応する。図9Aの第5シールドビアSV5は、図8の点P6における第6シールドビアに対応する。図9Aの第6シールドビアSV6は、図8の点P4における第4シールドビアに対応する。図9Aの第7シールドビアSV7は、図8の点P7における第7シールドビアに対応する。図9Aの第8シールドビアSV8は、図8の点P8における第8シールドビアに対応する。図9Aの第9シールドビアSV9は、図8の点P9における第9シールドビアに対応する。図9Aの第10シールドビアSV10は、図8の点P10における第10シールドビアに対応する。図9Aの第11シールドビアSV11は、図8の点P11における第11シールドビアに対応する。図9Aの第12シールドビアSV12は、図8の点P12における第12シールドビアに対応する。図9Aの第13シールドビアSV13は、図8の点P13における第13シールドビアに対応する。図9Aの第14シールドビアSV14は、図8の点P14における第14シールドビアに対応する。 The first shield via SV1 in FIG. 9A corresponds to the first shield via at point P1 in FIG. The second shield via SV2 in FIG. 9A corresponds to the second shield via at the point P2 in FIG. The third shield via SV3 in FIG. 9A corresponds to the fifth shield via at point P5 in FIG. The fourth shield via SV4 in FIG. 9A corresponds to the third shield via at point P3 in FIG. The fifth shield via SV5 in FIG. 9A corresponds to the sixth shield via at point P6 in FIG. The sixth shield via SV6 in FIG. 9A corresponds to the fourth shield via at point P4 in FIG. The seventh shield via SV7 in FIG. 9A corresponds to the seventh shield via at point P7 in FIG. The eighth shield via SV8 in FIG. 9A corresponds to the eighth shield via at point P8 in FIG. The ninth shield via SV9 in FIG. 9A corresponds to the ninth shield via at point P9 in FIG. The tenth shield via SV10 in FIG. 9A corresponds to the tenth shield via at point P10 in FIG. The eleventh shield via SV11 in FIG. 9A corresponds to the eleventh shield via at point P11 in FIG. The twelfth shield via SV12 in FIG. 9A corresponds to the twelfth shield via at point P12 in FIG. The thirteenth shield via SV13 in FIG. 9A corresponds to the thirteenth shield via at point P13 in FIG. The fourteenth shield via SV14 in FIG. 9A corresponds to the fourteenth shield via at point P14 in FIG.
 シールドビアSV1からSV14は、シールド電極61から延びている。具体的には、シールドビアSV1からSV14は、シールド電極61から、光の入射面から遠ざかる方向に延びている。シールドビアSV1からSV14は、シールド電極61から下方に延びているとも言える。この例では、シールドビアSV1からSV14は、第1配線層14まで延びている。 The shield vias SV1 to SV14 extend from the shield electrode 61. Specifically, the shield vias SV1 to SV14 extend from the shield electrode 61 in a direction away from the light incident surface. It can be said that the shield vias SV1 to SV14 extend downward from the shield electrode 61. In this example, the shield vias SV1 to SV14 extend to the first wiring layer 14.
 図9Aの第1画素電極PE1は、図8の第1画素電極3Aに対応する。図9Aの第2画素電極PE2は、図8の第1隣接画素電極3B1に対応する。図9Aの第3画素電極PE3は、図8の第2隣接画素電極3B2に対応する。図9Aの第4画素電極PE4は、図8の第1特定画素電極3C1に対応する。図9Aの第5画素電極PE5は、図8の第3隣接画素電極3B3に対応する。図9Aの第6画素電極PE6は、図8の第2特定画素電極3C2に対応する。図9Aの第7画素電極PE7は、図8の第4隣接画素電極3B4に対応する。図9Aの第8画素電極PE8は、図8の第3特定画素電極3C3に対応する。図9Aの第9画素電極PE9は、図8の第4特定画素電極3C4に対応する。第1画素電極PE1から第9画素電極PE9は、電荷を収集する。第1画素電極PE1から第9画素電極PE9は、シールド電極61とは電気的に分離されている。 The first pixel electrode PE1 in FIG. 9A corresponds to the first pixel electrode 3A in FIG. The second pixel electrode PE2 of FIG. 9A corresponds to the first adjacent pixel electrode 3B1 of FIG. The third pixel electrode PE3 of FIG. 9A corresponds to the second adjacent pixel electrode 3B2 of FIG. The fourth pixel electrode PE4 of FIG. 9A corresponds to the first specific pixel electrode 3C1 of FIG. The fifth pixel electrode PE5 of FIG. 9A corresponds to the third adjacent pixel electrode 3B3 of FIG. The sixth pixel electrode PE6 of FIG. 9A corresponds to the second specific pixel electrode 3C2 of FIG. The seventh pixel electrode PE7 of FIG. 9A corresponds to the fourth adjacent pixel electrode 3B4 of FIG. The eighth pixel electrode PE8 of FIG. 9A corresponds to the third specific pixel electrode 3C3 of FIG. The ninth pixel electrode PE9 of FIG. 9A corresponds to the fourth specific pixel electrode 3C4 of FIG. The first pixel electrode PE1 to the ninth pixel electrode PE9 collect charges. The first pixel electrode PE1 to the ninth pixel electrode PE9 are electrically separated from the shield electrode 61.
 第1画素電極PE1は、第2画素電極PE2、第3画素電極PE3、第5画素電極PE5および第7画素電極PE7と隣接している。第4画素電極PE4は、第2画素電極PE2および第3画素電極PE3と隣接している。第6画素電極PE6は、第3画素電極PE3および第5画素電極PE5と隣接している。第8画素電極PE8は、第5画素電極PE5および第7画素電極PE7と隣接している。第9画素電極PE9は、第7画素電極PE7および第2画素電極PE2と隣接している。 The first pixel electrode PE1 is adjacent to the second pixel electrode PE2, the third pixel electrode PE3, the fifth pixel electrode PE5, and the seventh pixel electrode PE7. The fourth pixel electrode PE4 is adjacent to the second pixel electrode PE2 and the third pixel electrode PE3. The sixth pixel electrode PE6 is adjacent to the third pixel electrode PE3 and the fifth pixel electrode PE5. The eighth pixel electrode PE8 is adjacent to the fifth pixel electrode PE5 and the seventh pixel electrode PE7. The ninth pixel electrode PE9 is adjacent to the seventh pixel electrode PE7 and the second pixel electrode PE2.
 具体的には、第1画素電極PE1および第2画素電極PE2は、第1方向に隣接している。第1画素電極PE1および第3画素電極PE3は、第2方向に隣接している。第1画素電極PE1および第5画素電極PE5は、第1方向に隣接している。第1画素電極PE1および第7画素電極PE7は、第2方向に隣接している。第4画素電極PE4および第2画素電極PE2は、第2方向に隣接している。第4画素電極PE4および第3画素電極PE3は、第1方向に隣接している。第6画素電極PE6および第3画素電極PE3は、第1方向に隣接している。第6画素電極PE6および第5画素電極PE5は、第2方向に隣接している。第8画素電極PE8および第5画素電極PE5は、第2方向に隣接している。第8画素電極PE8および第7画素電極PE7は、第1方向に隣接している。第9画素電極PE9および第7画素電極PE7は、第1方向に隣接している。第9画素電極PE9および第2画素電極PE2は、第2方向に隣接している。 Specifically, the first pixel electrode PE1 and the second pixel electrode PE2 are adjacent to each other in the first direction. The first pixel electrode PE1 and the third pixel electrode PE3 are adjacent to each other in the second direction. The first pixel electrode PE1 and the fifth pixel electrode PE5 are adjacent to each other in the first direction. The first pixel electrode PE1 and the seventh pixel electrode PE7 are adjacent to each other in the second direction. The fourth pixel electrode PE4 and the second pixel electrode PE2 are adjacent to each other in the second direction. The fourth pixel electrode PE4 and the third pixel electrode PE3 are adjacent to each other in the first direction. The sixth pixel electrode PE6 and the third pixel electrode PE3 are adjacent to each other in the first direction. The sixth pixel electrode PE6 and the fifth pixel electrode PE5 are adjacent to each other in the second direction. The eighth pixel electrode PE8 and the fifth pixel electrode PE5 are adjacent to each other in the second direction. The eighth pixel electrode PE8 and the seventh pixel electrode PE7 are adjacent to each other in the first direction. The ninth pixel electrode PE9 and the seventh pixel electrode PE7 are adjacent to each other in the first direction. The ninth pixel electrode PE9 and the second pixel electrode PE2 are adjacent to each other in the second direction.
 ここで、第1方向および第2方向は、互いに異なる方向である。図示の例では、第1方向および第2方向は、互いに直交する方向である。図示の例では、第1方向は、行方向である。第2方向は、列方向である。また、図示の例では、第1方向は、X軸方向に対応する。第2方向は、Y軸方向に対応する。 Here, the first direction and the second direction are directions different from each other. In the illustrated example, the first direction and the second direction are directions orthogonal to each other. In the illustrated example, the first direction is the row direction. The second direction is the column direction. Further, in the illustrated example, the first direction corresponds to the X-axis direction. The second direction corresponds to the Y-axis direction.
 第1画素電極PE1と第2画素電極PE2とが隣接しているという表現について、図9Bおよび図9Cを参照しながら説明する。この表現は、平面視において、第1画素電極PE1を収容する最小の長方形RT1が有する辺Sjと第2画素電極PE2を収容する最小の長方形RT2が有する辺Skとが互いに対向していることを意味する。長方形は、正方形を含む概念である。具体的には、第1画素電極PE1と第2画素電極PE2とが隣接しているとは、平面視において、辺Sjの法線が辺Skを通り、かつ、辺Skの法線が辺Sjを通ることを意味する。辺Sjの法線は、辺Sjにおけるいずれかの点を通る線であればよい。辺Skの法線は、辺Skにおけるいずれかの点を通る線であればよい。一具体例では、平面視において、辺Sjの垂直二等分線が辺Skの中点を通り、かつ、辺Skの垂直二等分線が辺Sjの中点を通る。第1画素電極PE1と第3画素電極PE3とが隣接している等といった、他の画素電極間の隣接に関する表現およびその具体例についても同様である。 The expression that the first pixel electrode PE1 and the second pixel electrode PE2 are adjacent to each other will be described with reference to FIGS. 9B and 9C. This expression means that, in a plan view, the side Sj of the smallest rectangle RT1 containing the first pixel electrode PE1 and the side Sk of the smallest rectangle RT2 containing the second pixel electrode PE2 face each other. means. A rectangle is a concept that includes a square. Specifically, that the first pixel electrode PE1 and the second pixel electrode PE2 are adjacent to each other means that the normal line of the side Sj passes through the side Sk and the normal line of the side Sk is the side Sj in a plan view. Means to pass through. The normal to the side Sj may be a line that passes through any point on the side Sj. The normal line of the side Sk may be a line passing through any point on the side Sk. In one specific example, the vertical bisector of the side Sj passes through the midpoint of the side Sk and the vertical bisector of the side Sk passes through the midpoint of the side Sj in a plan view. The same applies to expressions relating to adjacency between other pixel electrodes, such as the adjoining of the first pixel electrode PE1 and the third pixel electrode PE3, and specific examples thereof.
 図3、図8、図9Aおよび図9Bに示す例では、平面視において、第1画素電極PE1を収容する最小の長方形RT1は、第1画素電極PE1の輪郭と同じである。第2画素電極PE2等の他の画素電極についても同様である。 In the examples shown in FIGS. 3, 8, 9A, and 9B, the smallest rectangle RT1 that accommodates the first pixel electrode PE1 is the same as the contour of the first pixel electrode PE1 in plan view. The same applies to other pixel electrodes such as the second pixel electrode PE2.
 ただし、図9Cに示すように、平面視において、第1画素電極PE1の輪郭は、丸みを帯びていることがあり得る。図9Cの例では、第1画素電極PE1を収容する最小の長方形RT1は、第1画素電極PE1の輪郭とは異なる。第2画素電極PE2等の他の画素電極も、図9Cに示す形状を有し得る。現実において、画素電極のサイズが小さい場合等には、画素電極が平面視において丸みを帯び易い傾向にある。 However, as shown in FIG. 9C, the contour of the first pixel electrode PE1 may be rounded in a plan view. In the example of FIG. 9C, the smallest rectangle RT1 that houses the first pixel electrode PE1 is different from the contour of the first pixel electrode PE1. Other pixel electrodes such as the second pixel electrode PE2 may also have the shape shown in FIG. 9C. In reality, when the size of the pixel electrode is small, the pixel electrode tends to be rounded in plan view.
 図3、図8および図9Aに示す例では、複数の画素は、行列状に配置されることによって、画素アレイを構成している。このように画素アレイが構成されている場合において、ある画素電極と別の画素電極が隣接しているとは、これらの画素電極が行方向または列方向に隣り合うことを指すのであって、これらの画素が行方向及び列方向に対して傾斜する斜め方向に並ぶことを指すのではない。図3、図8および図9Aに示す例では、行方向は左右方向に対応し、列方向は上下方向に対応する。 In the examples shown in FIGS. 3, 8 and 9A, a plurality of pixels are arranged in a matrix to form a pixel array. In the case where the pixel array is configured as described above, that a certain pixel electrode and another pixel electrode are adjacent to each other means that these pixel electrodes are adjacent to each other in the row direction or the column direction. Does not mean that the pixels are arranged in an oblique direction that is inclined with respect to the row direction and the column direction. In the examples shown in FIGS. 3, 8 and 9A, the row direction corresponds to the left-right direction and the column direction corresponds to the up-down direction.
 図9Aに戻って、第1画素電極PE1から、第1画素ビアPV1が延びている。図9Aの第1画素ビアPV1は、図8の点PAにおける画素ビア13に対応する。第2画素電極PE2から、第2画素ビアPV2が延びている。第3画素電極PE3から、第3画素ビアPV3が延びている。第4画素電極PE4から、第4画素ビアPV4が延びている。第5画素電極PE5から、第5画素ビアPV5が延びている。第6画素電極PE6から、第6画素ビアPV6が延びている。第7画素電極PE7から、第7画素ビアPV7が延びている。第8画素電極PE8から、第8画素ビアPV8が延びている。第9画素電極PE9から、第9画素ビアPV9が延びている。第1画素ビアPV1から第9画素ビアPV9は、第1画素電極PE1から第9画素電極PE9を他の要素に電気的に接続できる。他の要素の具体例は、配線層、検出回路12等である。 Returning to FIG. 9A, the first pixel via PV1 extends from the first pixel electrode PE1. The first pixel via PV1 in FIG. 9A corresponds to the pixel via 13 at the point PA in FIG. The second pixel via PV2 extends from the second pixel electrode PE2. The third pixel via PV3 extends from the third pixel electrode PE3. The fourth pixel via PV4 extends from the fourth pixel electrode PE4. The fifth pixel via PV5 extends from the fifth pixel electrode PE5. The sixth pixel via PV6 extends from the sixth pixel electrode PE6. The seventh pixel via PV7 extends from the seventh pixel electrode PE7. An eighth pixel via PV8 extends from the eighth pixel electrode PE8. The ninth pixel via PV9 extends from the ninth pixel electrode PE9. The first pixel via PV1 to the ninth pixel via PV9 can electrically connect the first pixel electrode PE1 to the ninth pixel electrode PE9 to other elements. Specific examples of other elements are a wiring layer, the detection circuit 12, and the like.
 平面視において、第1シールドビアSV1は、第1画素電極PE1と第2画素電極PE2との間に位置している。平面視において、第2シールドビアSV2は、第1画素電極PE1と第3画素電極PE3との間に位置している。平面視において、第4シールドビアSV4は、第1画素電極PE1と第5画素電極PE5との間に位置している。平面視において、第6シールドビアSV6は、第1画素電極PE1と第7画素電極PE7との間に位置している。平面視において、第9シールドビアSV9は、第1画素電極PE1と第2画素電極PE2との間に位置している。平面視において、第10シールドビアSV10は、第1画素電極PE1と第2画素電極PE2との間に位置している。平面視において、第11シールドビアSV11は、第1画素電極PE1と第3画素電極PE3との間に位置している。平面視において、第12シールドビアSV12は、第1画素電極PE1と第5画素電極PE5との間に位置している。平面視において、第13シールドビアSV13は、第1画素電極PE1と第5画素電極PE5との間に位置している。平面視において、第14シールドビアSV14は、第1画素電極PE1と第7画素電極PE7との間に位置している。平面視においてこのように2つの画素電極間にシールドビアが存在することは、解像度の高い画像を得るのに適している。 The first shield via SV1 is located between the first pixel electrode PE1 and the second pixel electrode PE2 in a plan view. In plan view, the second shield via SV2 is located between the first pixel electrode PE1 and the third pixel electrode PE3. In a plan view, the fourth shield via SV4 is located between the first pixel electrode PE1 and the fifth pixel electrode PE5. In plan view, the sixth shield via SV6 is located between the first pixel electrode PE1 and the seventh pixel electrode PE7. In plan view, the ninth shield via SV9 is located between the first pixel electrode PE1 and the second pixel electrode PE2. The tenth shield via SV10 is located between the first pixel electrode PE1 and the second pixel electrode PE2 in a plan view. In plan view, the eleventh shield via SV11 is located between the first pixel electrode PE1 and the third pixel electrode PE3. In plan view, the twelfth shield via SV12 is located between the first pixel electrode PE1 and the fifth pixel electrode PE5. In plan view, the thirteenth shield via SV13 is located between the first pixel electrode PE1 and the fifth pixel electrode PE5. In plan view, the fourteenth shield via SV14 is located between the first pixel electrode PE1 and the seventh pixel electrode PE7. The presence of the shield via between the two pixel electrodes in a plan view is suitable for obtaining an image with high resolution.
 平面視において第1シールドビアSV1が第1画素電極PE1と第2画素電極PE2との間に位置するとは、平面視において、上記辺Sjにおけるいずれかの点を一端とし上記辺Skにおけるいずれかの点を他端とする線分上に第1シールドビアSV1が存在することを意味する。一具体例では、平面視において、上記線分上にシールド電極61と第1シールドビアSV1との接続部が存在する。平面視において第2シールドビアSV2が第1画素電極PE1と第3画素電極PE3との間に位置する等といった、他の2つの隣接する画素電極間のシールドビアの配置に関する表現およびその具体例についても同様である。平面視において2つの隣接する画素電極間にシールドビアが位置することにより、シールドビアは、画素電極間の電気力線の少なくとも一部を遮蔽できる。 The fact that the first shield via SV1 is located between the first pixel electrode PE1 and the second pixel electrode PE2 in plan view means that, in plan view, one of the points on the side Sj is one end and one of the sides Sk is one of the ends. This means that the first shield via SV1 is present on the line segment having the point at the other end. In one specific example, the connection portion between the shield electrode 61 and the first shield via SV1 is present on the line segment in plan view. Regarding expressions and specific examples regarding the arrangement of shield vias between other two adjacent pixel electrodes such that the second shield via SV2 is located between the first pixel electrode PE1 and the third pixel electrode PE3 in a plan view Is also the same. When the shield via is located between two adjacent pixel electrodes in a plan view, the shield via can shield at least a part of the lines of electric force between the pixel electrodes.
 図示の例では、平面視において第1画素電極PE1と第2画素電極PE2との間に位置するシールドビアの数と、平面視において第1画素電極PE1と第3画素電極PE3との間に位置するシールドビアの数とは、異なる。平面視において第1画素電極PE1と第3画素電極PE3との間に位置するシールドビアの数と、平面視において第1画素電極PE1と第5画素電極PE5との間に位置するシールドビアの数とは、異なる。平面視において第1画素電極PE1と第5画素電極PE5との間に位置するシールドビアの数と、平面視において第1画素電極PE1と第7画素電極PE7との間に位置するシールドビアの数とは、異なる。平面視において第1画素電極PE1と第7画素電極PE7との間に位置するシールドビアの数と、平面視において第1画素電極PE1と第2画素電極PE2との間に位置するシールドビアの数とは、異なる。 In the illustrated example, the number of shield vias located between the first pixel electrode PE1 and the second pixel electrode PE2 in a plan view and the position between the first pixel electrode PE1 and the third pixel electrode PE3 in a plan view The number is different from the number of shield vias. The number of shield vias located between the first pixel electrode PE1 and the third pixel electrode PE3 in a plan view, and the number of shield vias located between the first pixel electrode PE1 and the fifth pixel electrode PE5 in a plan view Is different from. The number of shield vias located between the first pixel electrode PE1 and the fifth pixel electrode PE5 in a plan view, and the number of shield vias located between the first pixel electrode PE1 and the seventh pixel electrode PE7 in a plan view Is different from. The number of shield vias located between the first pixel electrode PE1 and the seventh pixel electrode PE7 in a plan view, and the number of shield vias located between the first pixel electrode PE1 and the second pixel electrode PE2 in a plan view Is different from.
 図示の例では、平面視において第1画素電極PE1と第2画素電極PE2との間に位置するシールドビアの数と、平面視において第1画素電極PE1と第5画素電極PE5との間に位置するシールドビアの数とは、同じである。平面視において第1画素電極PE1と第3画素電極PE3との間に位置するシールドビアの数と、平面視において第1画素電極PE1と第7画素電極PE7との間に位置するシールドビアの数とは、同じである。 In the illustrated example, the number of shield vias located between the first pixel electrode PE1 and the second pixel electrode PE2 in a plan view and the position between the first pixel electrode PE1 and the fifth pixel electrode PE5 in a plan view The number of shield vias is the same. The number of shield vias located between the first pixel electrode PE1 and the third pixel electrode PE3 in a plan view, and the number of shield vias located between the first pixel electrode PE1 and the seventh pixel electrode PE7 in a plan view And are the same.
 具体的には、平面視において第1画素電極PE1と第2画素電極PE2との間に位置するシールドビアは、第1シールドビアSV1、第9シールドビアSV9および第10シールドビアSV10の3本である。平面視において第1画素電極PE1と第3画素電極PE3との間に位置するシールドビアは、第2シールドビアSV2および第11シールドビアSV11の2本である。平面視において第1画素電極PE1と第5画素電極PE5との間に位置するシールドビアは、第4シールドビアSV4、第12シールドビアSV12および第13シールドビアSV13の3本である。平面視において第1画素電極PE1と第7画素電極PE7との間に位置するシールドビアは、第6シールドビアSV6および第14シールドビアSV14の2本である。 Specifically, the three shield vias located between the first pixel electrode PE1 and the second pixel electrode PE2 in plan view are the first shield via SV1, the ninth shield via SV9, and the tenth shield via SV10. is there. The two shield vias, the second shield via SV2 and the eleventh shield via SV11, are located between the first pixel electrode PE1 and the third pixel electrode PE3 in a plan view. The three shield vias located between the first pixel electrode PE1 and the fifth pixel electrode PE5 in a plan view are the fourth shield via SV4, the twelfth shield via SV12, and the thirteenth shield via SV13. The two shield vias that are located between the first pixel electrode PE1 and the seventh pixel electrode PE7 in plan view are the sixth shield via SV6 and the fourteenth shield via SV14.
 図示の例では、平面視において、第3シールドビアSV3は、第1画素電極PE1および第4画素電極PE4の間に位置している。平面視において、第5シールドビアSV5は、第1画素電極PE1および第6画素電極PE6の間に位置している。平面視において、第7シールドビアSV7は、第1画素電極PE1および第8画素電極PE8の間に位置している。平面視において、第8シールドビアSV8は、第1画素電極PE1および第9画素電極PE9の間に位置している。このようにすると、斜め方向に並ぶ画素間でのクロストークも低減することができる。したがって、より解像度の高い画像を得易い。なお、図9Aの例では、平面視で第1画素電極PE1の輪郭が四角形であり、斜め方向は、その四角形の対角線が延びる方向である。 In the illustrated example, the third shield via SV3 is located between the first pixel electrode PE1 and the fourth pixel electrode PE4 in a plan view. In plan view, the fifth shield via SV5 is located between the first pixel electrode PE1 and the sixth pixel electrode PE6. In plan view, the seventh shield via SV7 is located between the first pixel electrode PE1 and the eighth pixel electrode PE8. In a plan view, the eighth shield via SV8 is located between the first pixel electrode PE1 and the ninth pixel electrode PE9. By doing so, crosstalk between pixels arranged in an oblique direction can be reduced. Therefore, it is easy to obtain an image with higher resolution. In the example of FIG. 9A, the outline of the first pixel electrode PE1 is a quadrangle in plan view, and the diagonal direction is the direction in which the diagonal line of the quadrangle extends.
 平面視において第3シールドビアSV3が第1画素電極PE1および第4画素電極PE4の間に位置するという表現について、図9Dを参照しながら説明する。この表現は、平面視において、第1画素電極PE1を収容する最小の長方形RT1の頂点と、第4画素電極PE4を収容する最小の長方形RT4の頂点と、の2つの対向する頂点を結ぶ線分を対角線とする正方形Sx2内に第3シールドビアSV3が位置することを意味する。2つの対向する頂点は、正方形Sx2が最小となるように選択される。一具体例では、平面視において、正方形Sx2内にシールド電極61と第3シールドビアSV3との接続部が存在する。平面視において第5シールドビアSV5が第1画素電極PE1および第6画素電極PE6の間に位置する等といった、他の2つの画素電極間のシールドビアの配置に関する表現およびその具体例についても同様である。平面視において2つの画素電極間にシールドビアが位置することにより、シールドビアは、それら2つの画素電極間の電気力線の少なくとも一部を遮蔽できる。 The expression that the third shield via SV3 is located between the first pixel electrode PE1 and the fourth pixel electrode PE4 in plan view will be described with reference to FIG. 9D. This expression is a line segment that connects two opposite apexes of the smallest rectangle RT1 containing the first pixel electrode PE1 and the smallest rectangle RT4 containing the fourth pixel electrode PE4 in plan view. It means that the third shield via SV3 is located in a square Sx2 having a diagonal line of. The two opposite vertices are chosen such that the square Sx2 is the smallest. In one specific example, the connection portion between the shield electrode 61 and the third shield via SV3 exists in the square Sx2 in a plan view. The same applies to expressions and specific examples regarding the arrangement of shield vias between two other pixel electrodes such that the fifth shield via SV5 is located between the first pixel electrode PE1 and the sixth pixel electrode PE6 in a plan view. is there. Since the shield via is located between the two pixel electrodes in plan view, the shield via can shield at least a part of the lines of electric force between the two pixel electrodes.
 図示の例では、平面視において、第3シールドビアSV3は、第1画素電極PE1、第2画素電極PE2、第3画素電極PE3および第4画素電極PE4の間に位置している。平面視において、第5シールドビアSV5は、第1画素電極PE1、第3画素電極PE3、第5画素電極PE5および第6画素電極PE6の間に位置している。平面視において、第7シールドビアSV7は、第1画素電極PE1、第5画素電極PE5、第7画素電極PE7および第8画素電極PE8の間に位置している。平面視において、第8シールドビアSV8は、第1画素電極PE1、第7画素電極PE7、第2画素電極PE2および第9画素電極PE9の間に位置している。平面視においてこのように4つの画素電極間にビアが存在することは、解像度の高い画像を得るのに適している。 In the illustrated example, the third shield via SV3 is located between the first pixel electrode PE1, the second pixel electrode PE2, the third pixel electrode PE3, and the fourth pixel electrode PE4 in a plan view. In plan view, the fifth shield via SV5 is located between the first pixel electrode PE1, the third pixel electrode PE3, the fifth pixel electrode PE5, and the sixth pixel electrode PE6. In plan view, the seventh shield via SV7 is located between the first pixel electrode PE1, the fifth pixel electrode PE5, the seventh pixel electrode PE7, and the eighth pixel electrode PE8. In plan view, the eighth shield via SV8 is located between the first pixel electrode PE1, the seventh pixel electrode PE7, the second pixel electrode PE2, and the ninth pixel electrode PE9. The presence of the vias between the four pixel electrodes in a plan view is suitable for obtaining an image with high resolution.
 平面視において第3シールドビアSV3が第1画素電極PE1、第2画素電極PE2、第3画素電極PE3および第4画素電極PE4の間に位置するという表現について、図9Eを参照しながら説明する。この表現は、平面視において、第1画素電極PE1を収容する最小の長方形RT1の頂点と、第2画素電極PE2を収容する最小の長方形RT2の頂点と第3画素電極PE3を収容する最小の長方形RT3の頂点と、第4画素電極PE4を収容する最小の長方形RT4の頂点と、の4つの対向する頂点によって規定される四角形Sx4内に第3シールドビアSV3が位置することを意味する。4つの対向する頂点は、四角形Sx4が最小となるように選択される。一具体例では、平面視において、四角形Sx4内にシールド電極61と第3シールドビアSV3との接続部が存在する。平面視において第5シールドビアSV5が第1画素電極PE1、第3画素電極PE3、第4画素電極PE5および第6画素電極PE6の間に位置する等といった、他の4つの画素電極間のシールドビアの配置に関する表現およびその具体例についても同様である。平面視において4つの画素電極間にシールドビアが位置することにより、シールドビアは、それら4つの画素電極間の電気力線の少なくとも一部を遮蔽できる。 The expression that the third shield via SV3 is located between the first pixel electrode PE1, the second pixel electrode PE2, the third pixel electrode PE3, and the fourth pixel electrode PE4 in a plan view will be described with reference to FIG. 9E. This expression means, in plan view, the minimum rectangle RT1 that accommodates the first pixel electrode PE1, the minimum rectangle RT2 that accommodates the second pixel electrode PE2, and the minimum rectangle that accommodates the third pixel electrode PE3. This means that the third shield via SV3 is located within a quadrangle Sx4 defined by four opposite vertices of the vertex of RT3 and the smallest rectangle RT4 containing the fourth pixel electrode PE4. The four opposing vertices are chosen so that the quadrangle Sx4 is the smallest. In one specific example, the connection portion between the shield electrode 61 and the third shield via SV3 is present inside the quadrangle Sx4 in a plan view. The shield via between the other four pixel electrodes such that the fifth shield via SV5 is located between the first pixel electrode PE1, the third pixel electrode PE3, the fourth pixel electrode PE5 and the sixth pixel electrode PE6 in a plan view. The same applies to the expressions relating to the arrangement and specific examples thereof. When the shield via is located between the four pixel electrodes in a plan view, the shield via can shield at least a part of the lines of electric force between the four pixel electrodes.
 図9Eの四角形Sx4は、図9Dの正方形Sx2に対応し得る。図9Dの正方形Sx2および図9Eの四角形Sx4は、図8の第1交差部Y1に対応し得る。図9Dを用いた上記の説明および図9Eを用いた上記の説明は、図9Cのように平面視において画素電極が丸みを帯びている場合においても成立し得る。 The square Sx4 in FIG. 9E may correspond to the square Sx2 in FIG. 9D. The square Sx2 of FIG. 9D and the quadrangle Sx4 of FIG. 9E may correspond to the first intersection Y1 of FIG. The above description using FIG. 9D and the above description using FIG. 9E can be established even when the pixel electrode is rounded in plan view as in FIG. 9C.
 図9Aに戻って、平面視において、第1シールドビアSV1は、第1画素ビアPV1と第2画素ビアPV2との間に位置している。平面視において、第3シールドビアSV3は、第1画素ビアPV1と第4画素ビアPV4との間に位置している。平面視において、第4シールドビアSV4は、第1画素ビアPV1と第5画素ビアPV5との間に位置している。平面視において、第5シールドビアSV5は、第1画素ビアPV1と第6画素ビアPV6との間に位置している。平面視において、第7シールドビアSV7は、第1画素ビアPV1と第8画素ビアPV8との間に位置している。平面視において、第8シールドビアSV8は、第1画素ビアPV1と第9画素ビアPV9との間に位置している。 Returning to FIG. 9A, the first shield via SV1 is located between the first pixel via PV1 and the second pixel via PV2 in a plan view. In plan view, the third shield via SV3 is located between the first pixel via PV1 and the fourth pixel via PV4. In a plan view, the fourth shield via SV4 is located between the first pixel via PV1 and the fifth pixel via PV5. In plan view, the fifth shield via SV5 is located between the first pixel via PV1 and the sixth pixel via PV6. In plan view, the seventh shield via SV7 is located between the first pixel via PV1 and the eighth pixel via PV8. In a plan view, the eighth shield via SV8 is located between the first pixel via PV1 and the ninth pixel via PV9.
 平面視において第1シールドビアSV1が第1画素ビアPV1と第2画素ビアPV2との間に位置するとは、平面視において、第1画素ビアPV1を一端とし第2画素ビアPV2を他端とする線分上に、第1シールドビアSV1が存在することを意味する。一具体例では、平面視において、第1画素電極PE1および第1画素ビアPV1の接続部を一端とし第2画素電極PE2および第2画素ビアPV2の接続部を他端とする線分上に、シールド電極61および第1シールドビアSV1の接続部が存在する。平面視において第3シールドビアSV3が第1画素ビアPV1と第4画素ビアPV4との間に位置する等といった、他の画素ビア間のビアの配置に関する表現およびその具体例についても同様である。平面視において画素ビア間にシールドビアを配置することによって、シールドビアは画素ビア間の電気力線の少なくとも一部を遮蔽できる。 That the first shield via SV1 is located between the first pixel via PV1 and the second pixel via PV2 in plan view means that the first pixel via PV1 is one end and the second pixel via PV2 is the other end in plan view. This means that the first shield via SV1 exists on the line segment. In a specific example, in a plan view, on a line segment having the connection portion of the first pixel electrode PE1 and the first pixel via PV1 as one end and the connection portion of the second pixel electrode PE2 and the second pixel via PV2 as the other end, There is a connection between the shield electrode 61 and the first shield via SV1. The same applies to expressions and specific examples regarding the arrangement of vias between other pixel vias such that the third shield via SV3 is located between the first pixel via PV1 and the fourth pixel via PV4 in a plan view. By disposing the shield vias between the pixel vias in a plan view, the shield vias can shield at least a part of lines of electric force between the pixel vias.
 図9Aでは図示を省略しているが、平面視において、絶縁部62は、第1画素電極PE1、第2画素電極PE2、第3画素電極PE3、第4画素電極PE4、第5画素電極PE5、第6画素電極PE6、第7画素電極PE7、第8画素電極PE8および第9画素電極PE9から離間している。 Although not shown in FIG. 9A, the insulating portion 62 includes the first pixel electrode PE1, the second pixel electrode PE2, the third pixel electrode PE3, the fourth pixel electrode PE4, and the fifth pixel electrode PE5 in plan view. It is separated from the sixth pixel electrode PE6, the seventh pixel electrode PE7, the eighth pixel electrode PE8, and the ninth pixel electrode PE9.
 平面視において、シールド電極61は、第1画素電極PE1および第2画素電極PE2の間を延びている。平面視において、シールド電極61は、第1画素電極PE1および第3画素電極PE3の間を延びている。平面視において、シールド電極61は、第1画素電極PE1および第5画素電極PE5の間を延びている。平面視において、シールド電極61は、第1画素電極PE1および第7画素電極PE7の間を延びている。平面視において、シールド電極61は、第4画素電極PE4および第2画素電極PE2の間を延びている。平面視において、シールド電極61は、第4画素電極PE4および第3画素電極PE3の間を延びている。平面視において、シールド電極61は、第6画素電極PE6および第3画素電極PE3の間を延びている。平面視において、シールド電極61は、第6画素電極PE6および第5画素電極PE5の間を延びている。平面視において、シールド電極61は、第8画素電極PE8および第5画素電極PE5の間を延びている。平面視において、シールド電極61は、第8画素電極PE8および第7画素電極PE7の間を延びている。平面視において、シールド電極61は、第9画素電極PE9および第7画素電極PE7の間を延びている。平面視において、シールド電極61は、第9画素電極PE9および第2画素電極PE2の間を延びている。 In a plan view, the shield electrode 61 extends between the first pixel electrode PE1 and the second pixel electrode PE2. In plan view, the shield electrode 61 extends between the first pixel electrode PE1 and the third pixel electrode PE3. In plan view, the shield electrode 61 extends between the first pixel electrode PE1 and the fifth pixel electrode PE5. In plan view, the shield electrode 61 extends between the first pixel electrode PE1 and the seventh pixel electrode PE7. In plan view, the shield electrode 61 extends between the fourth pixel electrode PE4 and the second pixel electrode PE2. In plan view, the shield electrode 61 extends between the fourth pixel electrode PE4 and the third pixel electrode PE3. In plan view, the shield electrode 61 extends between the sixth pixel electrode PE6 and the third pixel electrode PE3. In plan view, the shield electrode 61 extends between the sixth pixel electrode PE6 and the fifth pixel electrode PE5. In plan view, the shield electrode 61 extends between the eighth pixel electrode PE8 and the fifth pixel electrode PE5. In plan view, the shield electrode 61 extends between the eighth pixel electrode PE8 and the seventh pixel electrode PE7. In plan view, the shield electrode 61 extends between the ninth pixel electrode PE9 and the seventh pixel electrode PE7. In plan view, the shield electrode 61 extends between the ninth pixel electrode PE9 and the second pixel electrode PE2.
 (カメラシステム)
 以下、上述の撮像装置100が適用されたカメラシステムについて、図10を参照しつつ説明する。
(Camera system)
Hereinafter, a camera system to which the above-described image pickup apparatus 100 is applied will be described with reference to FIG.
 図10の例では、カメラシステム604は、撮像装置100と、光学系601と、カメラ信号処理部602と、システムコントローラ603と、を備える。 In the example of FIG. 10, the camera system 604 includes the imaging device 100, an optical system 601, a camera signal processing unit 602, and a system controller 603.
 光学系601は、光を集光する。光学系601は、例えば、レンズを含む。 The optical system 601 collects light. The optical system 601 includes, for example, a lens.
 カメラ信号処理部602は、撮像装置100で撮像したデータを信号処理し、画像またはデータとして出力する。 The camera signal processing unit 602 performs signal processing on the data captured by the imaging device 100 and outputs it as an image or data.
 システムコントローラ603は、撮像装置100およびカメラ信号処理部602を制御する。 The system controller 603 controls the imaging device 100 and the camera signal processing unit 602.
 本開示に係る撮像装置は、デジタルスチルカメラ、医療用カメラ、監視用カメラ、車載用カメラ、デジタル一眼レフカメラ、デジタルミラーレス一眼カメラなど、様々なカメラシステムおよびセンサシステムへの利用が可能である。 The imaging device according to the present disclosure can be used for various camera systems and sensor systems such as digital still cameras, medical cameras, surveillance cameras, vehicle-mounted cameras, digital single-lens reflex cameras, and digital mirrorless single-lens cameras. ..
 以上、本開示の撮像装置について、実施形態に基づいて説明してきたが、本開示に係る撮像装置およびその製造方法は、上記実施形態に限定されるものではない。上記実施形態における任意の構成要素を組み合わせて実現される別の実施形態、上記実施形態に対して本開示の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例、および本開示の固体撮像装置を内蔵した各種機器も本開示に含まれる。 Although the imaging device of the present disclosure has been described above based on the embodiment, the imaging device and the manufacturing method thereof according to the present disclosure are not limited to the above embodiments. Another embodiment realized by combining arbitrary constituent elements in the above-described embodiment, a modified example obtained by applying various modifications to those skilled in the art to the above-described embodiment without departing from the gist of the present disclosure, and the present embodiment. Various devices incorporating the disclosed solid-state imaging device are also included in the present disclosure.
1 半導体基板
2 絶縁層
2a,2b,2c,2d,2e 構成層
3,3A,3B1,3B2,3B3,3B4,3C1,3C2,3C3,3C4,PE1,PE2,PE3,PE4,PE5,PE6,PE7,PE8,PE9,69 画素電極
4 光電変換層
4p 突出部
5 対向電極
6 緩衝層
7 封止層
8 カラーフィルタ
9 平坦化層
10 マイクロレンズ
11 光電変換部
12 検出回路
13,PV1,PV2,PV3,PV4,PV5,PV6,PV7,PV8,PV9 画素ビア
63,63C,SV1,SV2,SV3,SV4,SV5,SV6,SV7,SV8,SV9,SV10,SV11,SV12,SV13,SV14 シールドビア
14 第1配線層
20 画素
30 画素部
60 領域
61 シールド電極
62 絶縁部
62a 上面
62b 下面
62c 側面
62d 角
62x 層
65 信号電荷
67 絶縁体
68 ビア
71 離間幅
81 マスク
100 撮像装置
601 光学系
602 カメラ信号処理部
603 システムコントローラ
604 カメラシステム
S1,S2,S3,S4 辺
P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,PA 点
Q,Sx4 四角形
Sx2 正方形
RT1,RT2,RT3,RT4 長方形
Sk,Sj 辺
V1,V2,V3,V4 頂点
X1,X2,X3,X4,X5,X6,X7,X8 部分
Y1,Y2,Y3,Y4 交差部
1 Semiconductor Substrate 2 Insulating Layers 2a, 2b, 2c, 2d, 2e Constituent Layers 3, 3A, 3B1, 3B2, 3B3, 3B4, 3C1, 3C2, 3C3, 3C4, PE1, PE2, PE3, PE4, PE5, PE6, PE7 , PE8, PE9, 69 Pixel electrode 4 Photoelectric conversion layer 4p Protruding part 5 Counter electrode 6 Buffer layer 7 Sealing layer 8 Color filter 9 Flattening layer 10 Microlens 11 Photoelectric conversion part 12 Detection circuit 13, PV1, PV2, PV3 PV4, PV5, PV6, PV7, PV8, PV9 Pixel vias 63, 63C, SV1, SV2, SV3, SV4, SV5, SV6, SV7, SV8, SV9, SV10, SV11, SV12, SV13, SV14 Shield via 14 First wiring Layer 20 Pixel 30 Pixel portion 60 Region 61 Shield electrode 62 Insulating portion 62a Upper surface 62b Lower surface 62 Side surface 62d Corner 62x Layer 65 Signal charge 67 Insulator 68 Via 71 Separation width 81 Mask 100 Imaging device 601 Optical system 602 Camera signal processing unit 603 System controller 604 Camera system S1, S2, S3, S4 Side P1, P2, P3, P4 , P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, PA point Q, Sx4 quadrangle Sx2 square RT1, RT2, RT3, RT4 rectangle Sk, Sj side V1, V2, V3, V4 vertex X1 , X2, X3, X4, X5, X6, X7, X8 Part Y1, Y2, Y3, Y4 Intersection

Claims (16)

  1.  入射光を電荷に変換する光電変換層と、
     前記光電変換層で生成した電荷を収集する第1画素電極と、
     前記光電変換層で生成した電荷を収集し、第1方向において前記第1画素電極に隣接する第2画素電極と、
     前記第1画素電極および前記第2画素電極とは電気的に分離されたシールド電極と、
     前記シールド電極から延び、平面視において、前記第1画素電極と前記第2画素電極との間に位置する第1シールドビアと、
     を備える、
     撮像装置。
    A photoelectric conversion layer for converting incident light into an electric charge,
    A first pixel electrode for collecting charges generated in the photoelectric conversion layer;
    A second pixel electrode adjacent to the first pixel electrode in the first direction, collecting the charges generated in the photoelectric conversion layer;
    A shield electrode electrically separated from the first pixel electrode and the second pixel electrode;
    A first shield via extending from the shield electrode and located between the first pixel electrode and the second pixel electrode in plan view;
    With
    Imaging device.
  2.  前記光電変換層で生成した電荷を収集し、前記第1方向と異なる第2方向において前記第1画素電極に隣接する第3画素電極と、
     前記シールド電極から延び、前記平面視において、前記第1画素電極と前記第3画素電極との間に位置する第2シールドビアと、
     をさらに備える、
     請求項1に記載の撮像装置。
    A third pixel electrode adjacent to the first pixel electrode in a second direction different from the first direction, the charge being generated in the photoelectric conversion layer;
    A second shield via extending from the shield electrode and located between the first pixel electrode and the third pixel electrode in the plan view;
    Further comprising,
    The image pickup apparatus according to claim 1.
  3.  前記光電変換層で生成した電荷を収集し、前記第1方向と異なる第2方向において前記第1画素電極に隣接する第3画素電極と、
     前記光電変換層で生成した電荷を収集し、前記第2方向において前記第2画素電極に隣接し、前記第1方向において前記第3画素電極と隣接する第4画素電極と、
     前記シールド電極から延び、前記平面視において、前記第1画素電極と前記第4画素電極との間に位置する第3シールドビアと、
     をさらに備える、
     請求項1に記載の撮像装置。
    A third pixel electrode adjacent to the first pixel electrode in a second direction different from the first direction, the charge being generated in the photoelectric conversion layer;
    A fourth pixel electrode that collects charges generated in the photoelectric conversion layer, is adjacent to the second pixel electrode in the second direction, and is adjacent to the third pixel electrode in the first direction;
    A third shield via extending from the shield electrode and located between the first pixel electrode and the fourth pixel electrode in the plan view;
    Further comprising,
    The image pickup apparatus according to claim 1.
  4.  前記光電変換層で生成した電荷を収集し、前記第2方向において前記第2画素電極に隣接し、前記第1方向において前記第3画素電極と隣接する第4画素電極と、
     前記シールド電極から延び、前記平面視において、前記第1画素電極と前記第4画素電極との間に位置する第3シールドビアと、
     をさらに備える、
     請求項2に記載の撮像装置。
    A fourth pixel electrode that collects charges generated in the photoelectric conversion layer, is adjacent to the second pixel electrode in the second direction, and is adjacent to the third pixel electrode in the first direction;
    A third shield via extending from the shield electrode and located between the first pixel electrode and the fourth pixel electrode in the plan view;
    Further comprising,
    The image pickup apparatus according to claim 2.
  5.  前記第1画素電極から延びる第1画素ビアと、
     前記第2画素電極から延びる第2画素ビアと、
     をさらに備える、
     請求項1に記載の撮像装置。
    A first pixel via extending from the first pixel electrode;
    A second pixel via extending from the second pixel electrode;
    Further comprising,
    The image pickup apparatus according to claim 1.
  6.  前記平面視において、前記第1シールドビアは、前記第1画素ビアと前記第2画素ビアとの間に位置する、
     請求項5に記載の撮像装置。
    In the plan view, the first shield via is located between the first pixel via and the second pixel via.
    The image pickup apparatus according to claim 5.
  7.  第1配線層をさらに備え、
     前記第1シールドビアは、前記シールド電極から前記第1配線層まで延びている、
     請求項1に記載の撮像装置。
    Further comprising a first wiring layer,
    The first shield via extends from the shield electrode to the first wiring layer,
    The image pickup apparatus according to claim 1.
  8.  前記シールド電極と前記光電変換層との間に位置する絶縁部をさらに備える、
     請求項1に記載の撮像装置。
    Further comprising an insulating portion located between the shield electrode and the photoelectric conversion layer,
    The image pickup apparatus according to claim 1.
  9.  前記平面視において、前記絶縁部は、前記シールド電極と重ならない部分を含む、
     請求項8に記載の撮像装置。
    In the plan view, the insulating portion includes a portion that does not overlap with the shield electrode,
    The imaging device according to claim 8.
  10.  前記平面視において、前記絶縁部は、前記第1画素電極と離間している、
     請求項9に記載の撮像装置。
    In the plan view, the insulating portion is separated from the first pixel electrode,
    The image pickup apparatus according to claim 9.
  11.  前記絶縁部は、膜形状を有し、
     前記膜形状の厚さは、10nm以上である、
     請求項8に記載の撮像装置。
    The insulating portion has a film shape,
    The thickness of the film shape is 10 nm or more,
    The imaging device according to claim 8.
  12.  入射光を電荷に変換する光電変換層と、
     前記光電変換層で生成した電荷を収集する第1画素電極と、
     前記第1画素電極とは電気的に分離されたシールド電極と、
     前記シールド電極と前記光電変換層との間に位置する絶縁部と、
     を備え、
     平面視において、前記絶縁部は、前記シールド電極と重ならない部分を含む、
     撮像装置。
    A photoelectric conversion layer for converting incident light into an electric charge,
    A first pixel electrode for collecting charges generated in the photoelectric conversion layer;
    A shield electrode electrically separated from the first pixel electrode,
    An insulating portion located between the shield electrode and the photoelectric conversion layer,
    Equipped with
    In a plan view, the insulating portion includes a portion that does not overlap with the shield electrode,
    Imaging device.
  13.  前記平面視において、前記絶縁部は、前記第1画素電極と離間している、
     請求項12に記載の撮像装置。
    In the plan view, the insulating portion is separated from the first pixel electrode,
    The image pickup apparatus according to claim 12.
  14.  前記絶縁部は、膜形状を有し、
     前記膜形状の厚さは、10nm以上である、
     請求項12に記載の撮像装置。
    The insulating portion has a film shape,
    The thickness of the film shape is 10 nm or more,
    The image pickup apparatus according to claim 12.
  15.  前記第1画素電極が有する面と、前記シールド電極が有する面とが、同一平面上にある、
     請求項1に記載の撮像装置。
    A surface of the first pixel electrode and a surface of the shield electrode are on the same plane.
    The image pickup apparatus according to claim 1.
  16.  前記撮像装置はカラーのイメージセンサである、
     請求項1に記載の撮像装置。
    The image pickup device is a color image sensor,
    The image pickup apparatus according to claim 1.
PCT/JP2019/039468 2018-11-07 2019-10-07 Imaging device WO2020095596A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980034442.9A CN112204743A (en) 2018-11-07 2019-10-07 Image pickup apparatus
US17/213,597 US11570383B2 (en) 2018-11-07 2021-03-26 Imaging device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-210096 2018-11-07
JP2018210096 2018-11-07
JP2019164328A JP2020077848A (en) 2018-11-07 2019-09-10 Imaging apparatus
JP2019-164328 2019-09-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/213,597 Continuation US11570383B2 (en) 2018-11-07 2021-03-26 Imaging device

Publications (1)

Publication Number Publication Date
WO2020095596A1 true WO2020095596A1 (en) 2020-05-14

Family

ID=70610949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039468 WO2020095596A1 (en) 2018-11-07 2019-10-07 Imaging device

Country Status (1)

Country Link
WO (1) WO2020095596A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090116A1 (en) * 2021-11-18 2023-05-25 パナソニックIpマネジメント株式会社 Imaging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263119A (en) * 2007-04-13 2008-10-30 Powerchip Semiconductor Corp Image sensor and its manufacturing method
JP2015002247A (en) * 2013-06-14 2015-01-05 ルネサスエレクトロニクス株式会社 Semiconductor device
WO2016104177A1 (en) * 2014-12-26 2016-06-30 ソニー株式会社 Solid-state image capture element, method for manufacturing same, and electronic component
JP2016197617A (en) * 2015-04-02 2016-11-24 パナソニックIpマネジメント株式会社 Imaging device
WO2018190126A1 (en) * 2017-04-11 2018-10-18 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263119A (en) * 2007-04-13 2008-10-30 Powerchip Semiconductor Corp Image sensor and its manufacturing method
JP2015002247A (en) * 2013-06-14 2015-01-05 ルネサスエレクトロニクス株式会社 Semiconductor device
WO2016104177A1 (en) * 2014-12-26 2016-06-30 ソニー株式会社 Solid-state image capture element, method for manufacturing same, and electronic component
JP2016197617A (en) * 2015-04-02 2016-11-24 パナソニックIpマネジメント株式会社 Imaging device
WO2018190126A1 (en) * 2017-04-11 2018-10-18 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090116A1 (en) * 2021-11-18 2023-05-25 パナソニックIpマネジメント株式会社 Imaging device

Similar Documents

Publication Publication Date Title
JP6421344B2 (en) Solid-state imaging device
TWI505452B (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic equipment
US8759742B2 (en) Two-dimensional solid-state image capture device with polarization member and color filter for sub-pixel regions
JP6233717B2 (en) Solid-state imaging device and manufacturing method thereof
JP2018014762A5 (en)
JP5942275B2 (en) Solid-state imaging device
GB2558967A (en) Imaging device, imaging system and moveable object
JP6779929B2 (en) Photoelectric converters and equipment
CN107615487A (en) Image-forming component, electronic device, manufacturing equipment and manufacture method
KR102426811B1 (en) Stacked device and manufacturing method, and electronic apparatus
US9129880B2 (en) Imaging device
JP2019129322A (en) Imaging apparatus
KR20210032298A (en) Light-receiving element and distance measurement module
JP5708321B2 (en) SENSOR ELEMENT ARRAY, MANUFACTURING METHOD THEREOF, AND IMAGING DEVICE
WO2020095596A1 (en) Imaging device
JP2006245527A (en) Solid state imaging element
US20220336512A1 (en) Imaging element and imaging device
JP2020077848A (en) Imaging apparatus
JP2016031993A (en) Solid state image pickup device and camera
WO2021199724A1 (en) Imaging element and imaging device
WO2021084995A1 (en) Imaging element
WO2021090545A1 (en) Imaging element and imaging device
WO2021084994A1 (en) Imaging element
JP7357262B2 (en) Imaging device
WO2019202858A1 (en) Imaging element and method of manufacturing imaging element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881128

Country of ref document: EP

Kind code of ref document: A1